A New Deep Anomaly Detection-Based Method for User Authentication Using Multichannel Surface EMG Signals of Hand Gestures
User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface electromyogram (sEMG) has been widely applied for human machine interface (HMI) applications, it has only seen a very limited use for user authentication. In this article...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface electromyogram (sEMG) has been widely applied for human machine interface (HMI) applications, it has only seen a very limited use for user authentication. In this article, we investigate the use of multichannel sEMG signals of hand gestures for user authentication. We propose a new deep anomaly detection-based user authentication method which employs sEMG images generated from multichannel sEMG signals. The deep anomaly detection model classifies the user performing the hand gesture as client or imposter by using sEMG images as the input. Different sEMG image generation methods are studied in this article. The performance of the proposed method is evaluated with a high density sEMG (HD-sEMG) dataset and a sparse density sEMG (SD-sEMG) dataset under three authentication test scenarios. Among the sEMG image generation methods, root mean square (rms) map achieves significantly better performance than others. The proposed method with rms map also greatly outperforms the reference method, especially when using SD-sEMG signals. The results demonstrate the validity of the proposed method with rms map for user authentication. |
---|---|
AbstractList | User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface electromyogram (sEMG) has been widely applied for human machine interface (HMI) applications, it has only seen a very limited use for user authentication. In this article, we investigate the use of multichannel sEMG signals of hand gestures for user authentication. We propose a new deep anomaly detection-based user authentication method which employs sEMG images generated from multichannel sEMG signals. The deep anomaly detection model classifies the user performing the hand gesture as client or imposter by using sEMG images as the input. Different sEMG image generation methods are studied in this article. The performance of the proposed method is evaluated with a high density sEMG (HD-sEMG) dataset and a sparse density sEMG (SD-sEMG) dataset under three authentication test scenarios. Among the sEMG image generation methods, root mean square (rms) map achieves significantly better performance than others. The proposed method with rms map also greatly outperforms the reference method, especially when using SD-sEMG signals. The results demonstrate the validity of the proposed method with rms map for user authentication. |
Author | Li, Qingqing Luo, Zhirui Zheng, Jun |
Author_xml | – sequence: 1 givenname: Qingqing orcidid: 0000-0002-9006-3552 surname: Li fullname: Li, Qingqing organization: Department of Computer Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA – sequence: 2 givenname: Zhirui orcidid: 0000-0002-3121-2597 surname: Luo fullname: Luo, Zhirui organization: Department of Computer Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA – sequence: 3 givenname: Jun orcidid: 0000-0001-6727-5867 surname: Zheng fullname: Zheng, Jun email: jun.zheng@nmt.edu organization: Department of Computer Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA |
BookMark | eNo9kM1rwjAYh8NwMHW7D3YJ7FyXjyZpjs45FXQ7qOeStm-1UhOXtAz_-1WUnV7eH8_7wTNAPessIPRMyYhSot82i9WIEcZGnMqYSnaH-lQIFWkpWQ_1CaFJpGMhH9AghAMhRMlY9dF5jL_gF38AnPDYuqOpz13TQN5UzkbvJkCBV9DsXYFL5_E2gMfjttmDbarcXKAuq-wOr9q6S_bGWqjxuvWlyQFPVzO8rnbW1AG7Es-NLfAMQtN6CI_ovuxyeLrVIdp-TjeTebT8ni0m42WUc62bKKaCCc5NThQnShOpBM8SUWoBGUm0zmOq4sJQQ4TOqBaGlRnPmExypkoRGz5Er9e9J-9-2u54enCtv7yUMikI05olrKPIlcq9C8FDmZ58dTT-nFKSXgSnneD0Iji9Ce5GXq4jFQD841rFQjPK_wDifXc9 |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2022_3227604 crossref_primary_10_1109_TCSVT_2023_3286460 crossref_primary_10_1109_TIM_2023_3234092 crossref_primary_10_1109_TIM_2023_3287254 crossref_primary_10_1109_TIM_2022_3225023 crossref_primary_10_1109_TIM_2023_3253906 crossref_primary_10_5582_bst_2023_01116 crossref_primary_10_1109_TBIOM_2023_3299948 crossref_primary_10_1109_OJIM_2022_3205680 crossref_primary_10_1109_TIM_2023_3248084 crossref_primary_10_1109_TIFS_2023_3256708 crossref_primary_10_1109_TIM_2023_3318718 crossref_primary_10_1109_TIM_2023_3277930 crossref_primary_10_1109_TIM_2023_3279873 crossref_primary_10_1109_TIM_2023_3327490 |
Cites_doi | 10.1109/TCE.2010.5505962 10.1371/journal.pone.0206049 10.3390/app10020541 10.1007/s10015-016-0323-4 10.1109/ICA.2016.7811469 10.1016/j.procs.2015.12.346 10.1007/s10462-020-09863-0 10.1016/j.cose.2020.101788 10.1016/j.jelekin.2012.06.009 10.1145/3404716.3404730 10.1109/AFGR.1998.671007 10.1109/TCPMT.2018.2799987 10.1016/j.jnca.2021.103080 10.1109/ICMLC.2016.7872960 10.1109/EMBC.2013.6609899 10.1109/TIM.2015.2503863 10.1007/s10055-016-0301-0 10.12988/ces.2017.7326 10.1109/JIOT.2021.3074952 10.1016/j.comnet.2020.107118 10.1109/TNSRE.2014.2328495 10.1109/TSMCA.2010.2093883 10.1016/j.apgeochem.2021.105043 10.3389/fbioe.2020.00058 10.1109/JBHI.2020.3027389 10.3390/s18103265 10.1109/TII.2020.3001612 10.1109/ICACCS.2017.8014594 10.1109/TIFS.2020.3036218 10.1109/JSEN.2021.3080587 10.1016/j.inffus.2021.01.004 10.1007/978-3-030-03801-4_16 10.1109/IROS.2016.7759384 10.1109/TCDS.2018.2884942 10.1109/ACCESS.2018.2889996 10.1145/3393619 10.1016/j.clinbiomech.2008.07.012 10.1007/978-3-030-20893-6_39 10.1145/3025453.3025461 10.1109/ICASI.2017.7988433 10.1109/JSEN.2021.3079428 10.1080/03091902.2019.1653391 10.1145/3439950 10.1007/978-3-319-98530-5_64 10.1016/j.buildenv.2021.107982 10.1186/1475-925X-12-111 10.1109/ICIEA51954.2021.9516228 10.1038/srep36571 10.1155/2016/7427980 10.1016/j.bspc.2007.07.009 10.1007/s11042-018-6458-7 10.1007/978-0-387-77326-1 10.24963/ijcai.2019/616 10.1016/j.bbe.2017.03.001 10.1038/sdata.2014.53 10.1016/j.compbiomed.2018.09.027 10.1109/TSP.2019.8768831 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3164162 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TIM_2022_3164162 9745921 |
Genre | orig-research |
GrantInformation_xml | – fundername: Institute for Complex Additive Systems Analysis (ICASA) of New Mexico Institute of Mining and Technology – fundername: National Science Foundation EPSCoR Cooperative Agreement grantid: OIA-1757207 funderid: 10.13039/100000001 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TN5 TWZ VH1 VJK XFK AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c399t-4152533ac07307906753b85f95eb0899c4174da1a059b195a2fb3b268c27f54a3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Thu Oct 17 20:47:45 EDT 2024 Fri Aug 23 02:16:48 EDT 2024 Wed Jun 26 19:30:48 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-4152533ac07307906753b85f95eb0899c4174da1a059b195a2fb3b268c27f54a3 |
ORCID | 0000-0002-9006-3552 0000-0001-6727-5867 0000-0002-3121-2597 |
OpenAccessLink | https://doi.org/10.1109/tim.2022.3164162 |
PQID | 2650299282 |
PQPubID | 85462 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9745921 proquest_journals_2650299282 crossref_primary_10_1109_TIM_2022_3164162 |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 Radford (ref57) 2015 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Aviv (ref3); 10 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref24 doi: 10.1109/TCE.2010.5505962 – ident: ref29 doi: 10.1371/journal.pone.0206049 – ident: ref41 doi: 10.3390/app10020541 – ident: ref37 doi: 10.1007/s10015-016-0323-4 – ident: ref50 doi: 10.1109/ICA.2016.7811469 – ident: ref46 doi: 10.1016/j.procs.2015.12.346 – ident: ref8 doi: 10.1007/s10462-020-09863-0 – ident: ref7 doi: 10.1016/j.cose.2020.101788 – ident: ref44 doi: 10.1016/j.jelekin.2012.06.009 – ident: ref53 doi: 10.1145/3404716.3404730 – ident: ref13 doi: 10.1109/AFGR.1998.671007 – ident: ref19 doi: 10.1109/TCPMT.2018.2799987 – ident: ref2 doi: 10.1016/j.jnca.2021.103080 – ident: ref16 doi: 10.1109/ICMLC.2016.7872960 – ident: ref47 doi: 10.1109/EMBC.2013.6609899 – ident: ref11 doi: 10.1109/TIM.2015.2503863 – ident: ref18 doi: 10.1007/s10055-016-0301-0 – ident: ref23 doi: 10.12988/ces.2017.7326 – ident: ref49 doi: 10.1109/JIOT.2021.3074952 – ident: ref1 doi: 10.1016/j.comnet.2020.107118 – ident: ref59 doi: 10.1109/TNSRE.2014.2328495 – ident: ref15 doi: 10.1109/TSMCA.2010.2093883 – ident: ref52 doi: 10.1016/j.apgeochem.2021.105043 – ident: ref39 doi: 10.3389/fbioe.2020.00058 – ident: ref42 doi: 10.1109/JBHI.2020.3027389 – ident: ref33 doi: 10.3390/s18103265 – ident: ref43 doi: 10.1109/TII.2020.3001612 – ident: ref45 doi: 10.1109/ICACCS.2017.8014594 – ident: ref30 doi: 10.1109/TIFS.2020.3036218 – ident: ref5 doi: 10.1109/JSEN.2021.3080587 – ident: ref9 doi: 10.1016/j.inffus.2021.01.004 – ident: ref32 doi: 10.1007/978-3-030-03801-4_16 – ident: ref28 doi: 10.1109/IROS.2016.7759384 – ident: ref26 doi: 10.1109/TCDS.2018.2884942 – ident: ref6 doi: 10.1109/ACCESS.2018.2889996 – year: 2015 ident: ref57 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv:1511.06434 contributor: fullname: Radford – ident: ref10 doi: 10.1145/3393619 – ident: ref14 doi: 10.1016/j.clinbiomech.2008.07.012 – ident: ref51 doi: 10.1007/978-3-030-20893-6_39 – volume: 10 start-page: 1 volume-title: Proc. WOOT ident: ref3 article-title: Smudge attacks on smartphone touch screens contributor: fullname: Aviv – ident: ref4 doi: 10.1145/3025453.3025461 – ident: ref17 doi: 10.1109/ICASI.2017.7988433 – ident: ref40 doi: 10.1109/JSEN.2021.3079428 – ident: ref20 doi: 10.1080/03091902.2019.1653391 – ident: ref22 doi: 10.1145/3439950 – ident: ref38 doi: 10.1007/978-3-319-98530-5_64 – ident: ref54 doi: 10.1016/j.buildenv.2021.107982 – ident: ref34 doi: 10.1186/1475-925X-12-111 – ident: ref55 doi: 10.1109/ICIEA51954.2021.9516228 – ident: ref21 doi: 10.1038/srep36571 – ident: ref35 doi: 10.1155/2016/7427980 – ident: ref25 doi: 10.1016/j.bspc.2007.07.009 – ident: ref31 doi: 10.1007/s11042-018-6458-7 – ident: ref36 doi: 10.1007/978-0-387-77326-1 – ident: ref56 doi: 10.24963/ijcai.2019/616 – ident: ref48 doi: 10.1016/j.bbe.2017.03.001 – ident: ref58 doi: 10.1038/sdata.2014.53 – ident: ref12 doi: 10.1016/j.compbiomed.2018.09.027 – ident: ref27 doi: 10.1109/TSP.2019.8768831 |
SSID | ssj0007647 |
Score | 2.5138466 |
Snippet | User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface electromyogram (sEMG) has... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Anomalies Anomaly detection Authentication Biometrics (access control) Convolutional neural networks Datasets Deep anomaly detection Density Feature extraction Gesture recognition hand gesture Image processing Man-machine interfaces multichannel surface electromyogram (sEMG) signal sEMG image Time-domain analysis user authentication |
Title | A New Deep Anomaly Detection-Based Method for User Authentication Using Multichannel Surface EMG Signals of Hand Gestures |
URI | https://ieeexplore.ieee.org/document/9745921 https://www.proquest.com/docview/2650299282 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RpEr0AJSHWKDVHLggkYU4dhIfFwpsK4ULrMQtsh0bVYUsguQAv56xk13xOvSWKA9ZnvHM941nxgB71mgpnMoizVId8VzwSMdCRYlSqTOcZ1Woei8u0vGE_7kW1wtwMK-FsdaG5DM79JdhL7-amtaHyg4J-wrpq8a_ZFJ2tVpzq5ulvOuPGdMCJlQw25I8kodXvwsigowRP00Jf7A3LiicqfLBEAfvcrYCxWxcXVLJv2Hb6KF5ftey8X8HvgrLPczEUacX32HB1mvw7VXzwTX4GpI_zeM6PI2QbB3-svYeR_X0Tt0-0U0TkrTq6Jj8XIVFOGkaCeLihLQWfWjNJxp1ET8MmQcYqnl9KXFtb_GyfXDKWDwtzvHy743v04xTh2NVV3hOU9AS0d-Aydnp1ck46o9kiAwhmSby7p4AojLeMmTS041E58JJYbXfQDScGE6lYkWoTcdSKOZ0QmqQG5Y5wVWyCYv1tLZbgFWa6ZybhNFjXjGtnItjZTLfL4Y4YD6A_ZmUyvuu80YZGMuRLEmipZdo2Ut0AOt-0ufv9fM9gN2ZWMt-aT6WjDAp-WCimtuff7UDS_7fXZxlFxabh9b-IOTR6J9B5V4AGCzUFQ |
link.rule.ids | 315,783,787,799,4033,27937,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKtRyaHm0Ysujc-gFqVk2jp3HcctrKYQLuxK3yHZsVAFZBMmB_nrGTnYFhQO3REkUyzOe-b7xzBjgp9EqE1YmgWKxCngqeKBCIYNIythqzpPSV73n5_Fowv9cissF-DWvhTHG-OQz03eXfi-_nOrGhcr2CPuKzFWNfxAOV7TVWnO7m8S87ZAZ0hImXDDblBxke-OTnKggY8RQY0Ig7IUT8qeqvDLF3r8cfYF8NrI2reS639Sqr__917TxvUNfgc8d0MRhqxmrsGCqNVh-1n5wDZZ8-qd-WIfHIZK1wwNj7nBYTW_lzSPd1D5Nqwp-k6crMfdnTSOBXJyQ3qILrrlUozbmhz73AH09rysmrswNXjT3VmqDh_kxXvy9cp2acWpxJKsSj2kKGqL6X2FydDjeHwXdoQyBJixTB87hE0SU2tmGJHOEI1KpsJkwym0hak4cp5ShJNymwkxIZlVEipBqlljBZfQNFqtpZTYAyzhRKdcRo8e8ZEpaG4ZSJ65jDLHAtAe7MykVd23vjcJzlkFWkEQLJ9Gik2gP1t2kz9_r5rsHWzOxFt3ifCgYoVLywkQ2v7_91Q_4OBrnZ8XZyfnpJnxy_2mjLluwWN83ZptwSK12vPo9AV7912I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Deep+Anomaly+Detection-Based+Method+for+User+Authentication+Using+Multichannel+Surface+EMG+Signals+of+Hand+Gestures&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+Qingqing&rft.au=Luo%2C+Zhirui&rft.au=Zheng%2C+Jun&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2022.3164162&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3164162 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |