A New Deep Anomaly Detection-Based Method for User Authentication Using Multichannel Surface EMG Signals of Hand Gestures

User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface electromyogram (sEMG) has been widely applied for human machine interface (HMI) applications, it has only seen a very limited use for user authentication. In this article...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 11
Main Authors Li, Qingqing, Luo, Zhirui, Zheng, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface electromyogram (sEMG) has been widely applied for human machine interface (HMI) applications, it has only seen a very limited use for user authentication. In this article, we investigate the use of multichannel sEMG signals of hand gestures for user authentication. We propose a new deep anomaly detection-based user authentication method which employs sEMG images generated from multichannel sEMG signals. The deep anomaly detection model classifies the user performing the hand gesture as client or imposter by using sEMG images as the input. Different sEMG image generation methods are studied in this article. The performance of the proposed method is evaluated with a high density sEMG (HD-sEMG) dataset and a sparse density sEMG (SD-sEMG) dataset under three authentication test scenarios. Among the sEMG image generation methods, root mean square (rms) map achieves significantly better performance than others. The proposed method with rms map also greatly outperforms the reference method, especially when using SD-sEMG signals. The results demonstrate the validity of the proposed method with rms map for user authentication.
AbstractList User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface electromyogram (sEMG) has been widely applied for human machine interface (HMI) applications, it has only seen a very limited use for user authentication. In this article, we investigate the use of multichannel sEMG signals of hand gestures for user authentication. We propose a new deep anomaly detection-based user authentication method which employs sEMG images generated from multichannel sEMG signals. The deep anomaly detection model classifies the user performing the hand gesture as client or imposter by using sEMG images as the input. Different sEMG image generation methods are studied in this article. The performance of the proposed method is evaluated with a high density sEMG (HD-sEMG) dataset and a sparse density sEMG (SD-sEMG) dataset under three authentication test scenarios. Among the sEMG image generation methods, root mean square (rms) map achieves significantly better performance than others. The proposed method with rms map also greatly outperforms the reference method, especially when using SD-sEMG signals. The results demonstrate the validity of the proposed method with rms map for user authentication.
Author Li, Qingqing
Luo, Zhirui
Zheng, Jun
Author_xml – sequence: 1
  givenname: Qingqing
  orcidid: 0000-0002-9006-3552
  surname: Li
  fullname: Li, Qingqing
  organization: Department of Computer Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA
– sequence: 2
  givenname: Zhirui
  orcidid: 0000-0002-3121-2597
  surname: Luo
  fullname: Luo, Zhirui
  organization: Department of Computer Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA
– sequence: 3
  givenname: Jun
  orcidid: 0000-0001-6727-5867
  surname: Zheng
  fullname: Zheng, Jun
  email: jun.zheng@nmt.edu
  organization: Department of Computer Science and Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA
BookMark eNo9kM1rwjAYh8NwMHW7D3YJ7FyXjyZpjs45FXQ7qOeStm-1UhOXtAz_-1WUnV7eH8_7wTNAPessIPRMyYhSot82i9WIEcZGnMqYSnaH-lQIFWkpWQ_1CaFJpGMhH9AghAMhRMlY9dF5jL_gF38AnPDYuqOpz13TQN5UzkbvJkCBV9DsXYFL5_E2gMfjttmDbarcXKAuq-wOr9q6S_bGWqjxuvWlyQFPVzO8rnbW1AG7Es-NLfAMQtN6CI_ovuxyeLrVIdp-TjeTebT8ni0m42WUc62bKKaCCc5NThQnShOpBM8SUWoBGUm0zmOq4sJQQ4TOqBaGlRnPmExypkoRGz5Er9e9J-9-2u54enCtv7yUMikI05olrKPIlcq9C8FDmZ58dTT-nFKSXgSnneD0Iji9Ce5GXq4jFQD841rFQjPK_wDifXc9
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2022_3227604
crossref_primary_10_1109_TCSVT_2023_3286460
crossref_primary_10_1109_TIM_2023_3234092
crossref_primary_10_1109_TIM_2023_3287254
crossref_primary_10_1109_TIM_2022_3225023
crossref_primary_10_1109_TIM_2023_3253906
crossref_primary_10_5582_bst_2023_01116
crossref_primary_10_1109_TBIOM_2023_3299948
crossref_primary_10_1109_OJIM_2022_3205680
crossref_primary_10_1109_TIM_2023_3248084
crossref_primary_10_1109_TIFS_2023_3256708
crossref_primary_10_1109_TIM_2023_3318718
crossref_primary_10_1109_TIM_2023_3277930
crossref_primary_10_1109_TIM_2023_3279873
crossref_primary_10_1109_TIM_2023_3327490
Cites_doi 10.1109/TCE.2010.5505962
10.1371/journal.pone.0206049
10.3390/app10020541
10.1007/s10015-016-0323-4
10.1109/ICA.2016.7811469
10.1016/j.procs.2015.12.346
10.1007/s10462-020-09863-0
10.1016/j.cose.2020.101788
10.1016/j.jelekin.2012.06.009
10.1145/3404716.3404730
10.1109/AFGR.1998.671007
10.1109/TCPMT.2018.2799987
10.1016/j.jnca.2021.103080
10.1109/ICMLC.2016.7872960
10.1109/EMBC.2013.6609899
10.1109/TIM.2015.2503863
10.1007/s10055-016-0301-0
10.12988/ces.2017.7326
10.1109/JIOT.2021.3074952
10.1016/j.comnet.2020.107118
10.1109/TNSRE.2014.2328495
10.1109/TSMCA.2010.2093883
10.1016/j.apgeochem.2021.105043
10.3389/fbioe.2020.00058
10.1109/JBHI.2020.3027389
10.3390/s18103265
10.1109/TII.2020.3001612
10.1109/ICACCS.2017.8014594
10.1109/TIFS.2020.3036218
10.1109/JSEN.2021.3080587
10.1016/j.inffus.2021.01.004
10.1007/978-3-030-03801-4_16
10.1109/IROS.2016.7759384
10.1109/TCDS.2018.2884942
10.1109/ACCESS.2018.2889996
10.1145/3393619
10.1016/j.clinbiomech.2008.07.012
10.1007/978-3-030-20893-6_39
10.1145/3025453.3025461
10.1109/ICASI.2017.7988433
10.1109/JSEN.2021.3079428
10.1080/03091902.2019.1653391
10.1145/3439950
10.1007/978-3-319-98530-5_64
10.1016/j.buildenv.2021.107982
10.1186/1475-925X-12-111
10.1109/ICIEA51954.2021.9516228
10.1038/srep36571
10.1155/2016/7427980
10.1016/j.bspc.2007.07.009
10.1007/s11042-018-6458-7
10.1007/978-0-387-77326-1
10.24963/ijcai.2019/616
10.1016/j.bbe.2017.03.001
10.1038/sdata.2014.53
10.1016/j.compbiomed.2018.09.027
10.1109/TSP.2019.8768831
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3164162
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 11
ExternalDocumentID 10_1109_TIM_2022_3164162
9745921
Genre orig-research
GrantInformation_xml – fundername: Institute for Complex Additive Systems Analysis (ICASA) of New Mexico Institute of Mining and Technology
– fundername: National Science Foundation EPSCoR Cooperative Agreement
  grantid: OIA-1757207
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c399t-4152533ac07307906753b85f95eb0899c4174da1a059b195a2fb3b268c27f54a3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Thu Oct 17 20:47:45 EDT 2024
Fri Aug 23 02:16:48 EDT 2024
Wed Jun 26 19:30:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-4152533ac07307906753b85f95eb0899c4174da1a059b195a2fb3b268c27f54a3
ORCID 0000-0002-9006-3552
0000-0001-6727-5867
0000-0002-3121-2597
OpenAccessLink https://doi.org/10.1109/tim.2022.3164162
PQID 2650299282
PQPubID 85462
PageCount 11
ParticipantIDs ieee_primary_9745921
proquest_journals_2650299282
crossref_primary_10_1109_TIM_2022_3164162
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
Radford (ref57) 2015
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Aviv (ref3); 10
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref24
  doi: 10.1109/TCE.2010.5505962
– ident: ref29
  doi: 10.1371/journal.pone.0206049
– ident: ref41
  doi: 10.3390/app10020541
– ident: ref37
  doi: 10.1007/s10015-016-0323-4
– ident: ref50
  doi: 10.1109/ICA.2016.7811469
– ident: ref46
  doi: 10.1016/j.procs.2015.12.346
– ident: ref8
  doi: 10.1007/s10462-020-09863-0
– ident: ref7
  doi: 10.1016/j.cose.2020.101788
– ident: ref44
  doi: 10.1016/j.jelekin.2012.06.009
– ident: ref53
  doi: 10.1145/3404716.3404730
– ident: ref13
  doi: 10.1109/AFGR.1998.671007
– ident: ref19
  doi: 10.1109/TCPMT.2018.2799987
– ident: ref2
  doi: 10.1016/j.jnca.2021.103080
– ident: ref16
  doi: 10.1109/ICMLC.2016.7872960
– ident: ref47
  doi: 10.1109/EMBC.2013.6609899
– ident: ref11
  doi: 10.1109/TIM.2015.2503863
– ident: ref18
  doi: 10.1007/s10055-016-0301-0
– ident: ref23
  doi: 10.12988/ces.2017.7326
– ident: ref49
  doi: 10.1109/JIOT.2021.3074952
– ident: ref1
  doi: 10.1016/j.comnet.2020.107118
– ident: ref59
  doi: 10.1109/TNSRE.2014.2328495
– ident: ref15
  doi: 10.1109/TSMCA.2010.2093883
– ident: ref52
  doi: 10.1016/j.apgeochem.2021.105043
– ident: ref39
  doi: 10.3389/fbioe.2020.00058
– ident: ref42
  doi: 10.1109/JBHI.2020.3027389
– ident: ref33
  doi: 10.3390/s18103265
– ident: ref43
  doi: 10.1109/TII.2020.3001612
– ident: ref45
  doi: 10.1109/ICACCS.2017.8014594
– ident: ref30
  doi: 10.1109/TIFS.2020.3036218
– ident: ref5
  doi: 10.1109/JSEN.2021.3080587
– ident: ref9
  doi: 10.1016/j.inffus.2021.01.004
– ident: ref32
  doi: 10.1007/978-3-030-03801-4_16
– ident: ref28
  doi: 10.1109/IROS.2016.7759384
– ident: ref26
  doi: 10.1109/TCDS.2018.2884942
– ident: ref6
  doi: 10.1109/ACCESS.2018.2889996
– year: 2015
  ident: ref57
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
  contributor:
    fullname: Radford
– ident: ref10
  doi: 10.1145/3393619
– ident: ref14
  doi: 10.1016/j.clinbiomech.2008.07.012
– ident: ref51
  doi: 10.1007/978-3-030-20893-6_39
– volume: 10
  start-page: 1
  volume-title: Proc. WOOT
  ident: ref3
  article-title: Smudge attacks on smartphone touch screens
  contributor:
    fullname: Aviv
– ident: ref4
  doi: 10.1145/3025453.3025461
– ident: ref17
  doi: 10.1109/ICASI.2017.7988433
– ident: ref40
  doi: 10.1109/JSEN.2021.3079428
– ident: ref20
  doi: 10.1080/03091902.2019.1653391
– ident: ref22
  doi: 10.1145/3439950
– ident: ref38
  doi: 10.1007/978-3-319-98530-5_64
– ident: ref54
  doi: 10.1016/j.buildenv.2021.107982
– ident: ref34
  doi: 10.1186/1475-925X-12-111
– ident: ref55
  doi: 10.1109/ICIEA51954.2021.9516228
– ident: ref21
  doi: 10.1038/srep36571
– ident: ref35
  doi: 10.1155/2016/7427980
– ident: ref25
  doi: 10.1016/j.bspc.2007.07.009
– ident: ref31
  doi: 10.1007/s11042-018-6458-7
– ident: ref36
  doi: 10.1007/978-0-387-77326-1
– ident: ref56
  doi: 10.24963/ijcai.2019/616
– ident: ref48
  doi: 10.1016/j.bbe.2017.03.001
– ident: ref58
  doi: 10.1038/sdata.2014.53
– ident: ref12
  doi: 10.1016/j.compbiomed.2018.09.027
– ident: ref27
  doi: 10.1109/TSP.2019.8768831
SSID ssj0007647
Score 2.5138466
Snippet User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface electromyogram (sEMG) has...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Anomalies
Anomaly detection
Authentication
Biometrics (access control)
Convolutional neural networks
Datasets
Deep anomaly detection
Density
Feature extraction
Gesture recognition
hand gesture
Image processing
Man-machine interfaces
multichannel surface electromyogram (sEMG) signal
sEMG image
Time-domain analysis
user authentication
Title A New Deep Anomaly Detection-Based Method for User Authentication Using Multichannel Surface EMG Signals of Hand Gestures
URI https://ieeexplore.ieee.org/document/9745921
https://www.proquest.com/docview/2650299282
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RpEr0AJSHWKDVHLggkYU4dhIfFwpsK4ULrMQtsh0bVYUsguQAv56xk13xOvSWKA9ZnvHM941nxgB71mgpnMoizVId8VzwSMdCRYlSqTOcZ1Woei8u0vGE_7kW1wtwMK-FsdaG5DM79JdhL7-amtaHyg4J-wrpq8a_ZFJ2tVpzq5ulvOuPGdMCJlQw25I8kodXvwsigowRP00Jf7A3LiicqfLBEAfvcrYCxWxcXVLJv2Hb6KF5ftey8X8HvgrLPczEUacX32HB1mvw7VXzwTX4GpI_zeM6PI2QbB3-svYeR_X0Tt0-0U0TkrTq6Jj8XIVFOGkaCeLihLQWfWjNJxp1ET8MmQcYqnl9KXFtb_GyfXDKWDwtzvHy743v04xTh2NVV3hOU9AS0d-Aydnp1ck46o9kiAwhmSby7p4AojLeMmTS041E58JJYbXfQDScGE6lYkWoTcdSKOZ0QmqQG5Y5wVWyCYv1tLZbgFWa6ZybhNFjXjGtnItjZTLfL4Y4YD6A_ZmUyvuu80YZGMuRLEmipZdo2Ut0AOt-0ufv9fM9gN2ZWMt-aT6WjDAp-WCimtuff7UDS_7fXZxlFxabh9b-IOTR6J9B5V4AGCzUFQ
link.rule.ids 315,783,787,799,4033,27937,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKtRyaHm0Ysujc-gFqVk2jp3HcctrKYQLuxK3yHZsVAFZBMmB_nrGTnYFhQO3REkUyzOe-b7xzBjgp9EqE1YmgWKxCngqeKBCIYNIythqzpPSV73n5_Fowv9cissF-DWvhTHG-OQz03eXfi-_nOrGhcr2CPuKzFWNfxAOV7TVWnO7m8S87ZAZ0hImXDDblBxke-OTnKggY8RQY0Ig7IUT8qeqvDLF3r8cfYF8NrI2reS639Sqr__917TxvUNfgc8d0MRhqxmrsGCqNVh-1n5wDZZ8-qd-WIfHIZK1wwNj7nBYTW_lzSPd1D5Nqwp-k6crMfdnTSOBXJyQ3qILrrlUozbmhz73AH09rysmrswNXjT3VmqDh_kxXvy9cp2acWpxJKsSj2kKGqL6X2FydDjeHwXdoQyBJixTB87hE0SU2tmGJHOEI1KpsJkwym0hak4cp5ShJNymwkxIZlVEipBqlljBZfQNFqtpZTYAyzhRKdcRo8e8ZEpaG4ZSJ65jDLHAtAe7MykVd23vjcJzlkFWkEQLJ9Gik2gP1t2kz9_r5rsHWzOxFt3ifCgYoVLywkQ2v7_91Q_4OBrnZ8XZyfnpJnxy_2mjLluwWN83ZptwSK12vPo9AV7912I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Deep+Anomaly+Detection-Based+Method+for+User+Authentication+Using+Multichannel+Surface+EMG+Signals+of+Hand+Gestures&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Li%2C+Qingqing&rft.au=Luo%2C+Zhirui&rft.au=Zheng%2C+Jun&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTIM.2022.3164162&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3164162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon