B5G and Explainable Deep Learning Assisted Healthcare Vertical at the Edge: COVID-I9 Perspective
B5G-based tactile edge learning shows promise as a solution to handle infectious diseases such as COVID-19 at a global level. By leveraging edge computing with the 5G RAN, management of epidemic diseases such as COVID-19 can be conducted efficiently. Deploying a hierarchical edge computing architect...
Saved in:
Published in | IEEE network Vol. 34; no. 4; pp. 98 - 105 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | B5G-based tactile edge learning shows promise as a solution to handle infectious diseases such as COVID-19 at a global level. By leveraging edge computing with the 5G RAN, management of epidemic diseases such as COVID-19 can be conducted efficiently. Deploying a hierarchical edge computing architecture offers several benefits such as scalability, low latency, and privacy for the data and the training model, which enables analysis of COVID-19 by a local trusted edge server. However, existing deep learning (DL) algorithms suffer from two crucial drawbacks: first, the training requires a large COVID-19 dataset on various dimensions, which is difficult for any local authority to manage. Second, the DL results require ethical approval and explanations from healthcare providers and other stakeholders in order to be accepted. In this article, we propose a B5G framework that supports COVID-19 diagnosis, leveraging the low-latency, high-bandwidth features of the 5G network at the edge. Our framework employs a distributed DL paradigm where each COVID-19 edge employs its own local DL framework and uses a three-phase reconciliation with the global DL framework. The local DL model runs on edge nodes while the global DL model runs on a cloud environment. The training of a local DL model is performed with the dataset available from the edge; it is applied to the global model after receiving approval from the subject matter experts at the edge. Our framework adds semantics to existing DL models so that human domain experts on COVID-19 can gain insight and semantic visualization of the key decision-making activities that take place within the deep learning ecosystem. We have implemented a subset of various COVID-19 scenarios using distributed DL at the edge and in the cloud. The test results are promising. |
---|---|
AbstractList | B5G-based tactile edge learning shows promise as a solution to handle infectious diseases such as COVID-19 at a global level. By leveraging edge computing with the 5G RAN, management of epidemic diseases such as COVID-19 can be conducted efficiently. Deploying a hierarchical edge computing architecture offers several benefits such as scalability, low latency, and privacy for the data and the training model, which enables analysis of COVID-19 by a local trusted edge server. However, existing deep learning (DL) algorithms suffer from two crucial drawbacks: first, the training requires a large COVID-19 dataset on various dimensions, which is difficult for any local authority to manage. Second, the DL results require ethical approval and explanations from healthcare providers and other stakeholders in order to be accepted. In this article, we propose a B5G framework that supports COVID-19 diagnosis, leveraging the low-latency, high-bandwidth features of the 5G network at the edge. Our framework employs a distributed DL paradigm where each COVID-19 edge employs its own local DL framework and uses a three-phase reconciliation with the global DL framework. The local DL model runs on edge nodes while the global DL model runs on a cloud environment. The training of a local DL model is performed with the dataset available from the edge; it is applied to the global model after receiving approval from the subject matter experts at the edge. Our framework adds semantics to existing DL models so that human domain experts on COVID-19 can gain insight and semantic visualization of the key decision-making activities that take place within the deep learning ecosystem. We have implemented a subset of various COVID-19 scenarios using distributed DL at the edge and in the cloud. The test results are promising. |
Author | Alrajeh, Nabil A. Hossain, M. Shamim Guizani, Nadra Rahman, Md. Abdur |
Author_xml | – sequence: 1 givenname: Md. Abdur surname: Rahman fullname: Rahman, Md. Abdur organization: Dept. of Cyber Security & Forensic Comput., Univ. of Prince Mugrin, Saudi Arabia – sequence: 2 givenname: M. Shamim surname: Hossain fullname: Hossain, M. Shamim organization: Dept. of Software Eng., King Saud Univ., Riyadh, Saudi Arabia – sequence: 3 givenname: Nabil A. surname: Alrajeh fullname: Alrajeh, Nabil A. organization: Biomed. Technol. Dept., King Saud Univ., Riyadh, Saudi Arabia – sequence: 4 givenname: Nadra surname: Guizani fullname: Guizani, Nadra organization: Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA |
BookMark | eNp9kD1PwzAQQC0EEuVjR2KxxJzij9iJ2aANbaVCGQCxBde-UFchCbZB8O9JVcTAwHTLe3e6d4B2m7YBhE4oGVJK1PnNbXE_JJQOGSGEC76DBlSIPKFCPu2iAckVSXKSpvvoIIQ1ITQVnA3Q85WYYN1YXHx2tXaNXtaAxwAdnoP2jWte8GUILkSweAq6jiujPeBH8NEZXWMdcVwBLuwLXODR4nE2TmYK34EPHZjoPuAI7VW6DnD8Mw_Rw3VxP5om88VkNrqcJ4YrFRNuUqqqXFNRmTwT_QvGSiEFSwGALYWurFZcLDNGdZYpZoFQsJkBYwkxqeWH6Gy7t_Pt2zuEWK7bd9_0J0uWMiklZyntKbmljG9D8FCVxkUdXdtEr11dUlJuapabmmVfs_yp2Yvkj9h596r913_K6VZx_Qu_uKJcyh74BvR6gE0 |
CODEN | IENEET |
CitedBy_id | crossref_primary_10_3934_publichealth_2024004 crossref_primary_10_1109_IOTM_0001_2100052 crossref_primary_10_3233_JIFS_219066 crossref_primary_10_1007_s00530_021_00800_x crossref_primary_10_1016_j_scs_2021_103083 crossref_primary_10_1109_MITP_2021_3134896 crossref_primary_10_1109_MNET_011_2000713 crossref_primary_10_2139_ssrn_4995377 crossref_primary_10_1109_MITP_2020_3034617 crossref_primary_10_3390_smartcities4020024 crossref_primary_10_1109_TNSE_2022_3190765 crossref_primary_10_1109_JSAC_2022_3215508 crossref_primary_10_1155_2022_6255119 crossref_primary_10_1002_spe_3144 crossref_primary_10_1109_COMST_2022_3175453 crossref_primary_10_1007_s11042_021_11158_7 crossref_primary_10_1109_ACCESS_2024_3519567 crossref_primary_10_1109_TCBB_2022_3180393 crossref_primary_10_1109_ACCESS_2020_3037474 crossref_primary_10_1109_MNET_011_2000741 crossref_primary_10_1016_j_cosrev_2021_100452 crossref_primary_10_1109_TNSM_2023_3288738 crossref_primary_10_3390_app11062810 crossref_primary_10_1109_ACCESS_2022_3181605 crossref_primary_10_1007_s00521_021_06171_8 crossref_primary_10_1109_TCBB_2023_3252668 crossref_primary_10_3390_math11051216 crossref_primary_10_1016_j_artmed_2022_102312 crossref_primary_10_1016_j_bspc_2021_102717 crossref_primary_10_1109_JIOT_2020_3013710 crossref_primary_10_3103_S1060992X21030085 crossref_primary_10_1145_3421725 crossref_primary_10_1007_s00521_022_07087_7 crossref_primary_10_1109_TII_2022_3183000 crossref_primary_10_1109_ACCESS_2021_3064826 crossref_primary_10_32604_csse_2023_036455 crossref_primary_10_1109_MNET_011_2000458 crossref_primary_10_3389_frcmn_2020_610879 crossref_primary_10_1016_j_future_2021_09_010 crossref_primary_10_1155_2021_6668985 crossref_primary_10_1109_JIOT_2021_3051080 crossref_primary_10_1016_j_patcog_2020_107700 crossref_primary_10_3390_covid3010006 crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_1016_j_iotcps_2022_05_003 crossref_primary_10_1016_j_comnet_2021_108691 crossref_primary_10_1007_s11334_022_00458_2 crossref_primary_10_1007_s42979_021_00841_z crossref_primary_10_1016_j_rinp_2023_106977 crossref_primary_10_1145_3468506 crossref_primary_10_2139_ssrn_4167993 crossref_primary_10_1109_JIOT_2020_3037915 crossref_primary_10_1007_s10796_022_10307_z crossref_primary_10_1109_ACCESS_2023_3266586 crossref_primary_10_1007_s11042_024_20073_6 crossref_primary_10_1049_cmu2_12240 crossref_primary_10_1111_exsy_12759 crossref_primary_10_1109_MCE_2020_3035520 crossref_primary_10_1145_3527174 crossref_primary_10_3390_fi15040142 crossref_primary_10_1111_exsy_12834 crossref_primary_10_1109_MNET_011_2000326 crossref_primary_10_1186_s13673_020_00258_2 crossref_primary_10_1007_s00607_021_00971_5 crossref_primary_10_1109_ACCESS_2020_3045115 crossref_primary_10_3390_s22062313 crossref_primary_10_1109_ACCESS_2021_3099462 crossref_primary_10_1007_s00530_021_00857_8 crossref_primary_10_3390_s24030963 crossref_primary_10_1109_OJCS_2021_3102045 crossref_primary_10_3390_s23115211 crossref_primary_10_1109_IOTM_001_2100120 crossref_primary_10_1109_ACCESS_2020_3019600 crossref_primary_10_1007_s00607_021_00937_7 crossref_primary_10_3390_s22031205 crossref_primary_10_32604_jiot_2024_052325 |
Cites_doi | 10.1109/MWC.001.1900286 10.1109/TBDATA.2017.2717439 10.1109/TII.2019.2898174 10.1109/TWC.2019.2946140 10.1109/ACCESS.2018.2881246 10.1016/j.artmed.2019.01.001 10.1109/ACCESS.2019.2896065 10.1109/MWC.2018.1700308 10.1016/S1473-3099(20)30086-4 10.1109/MNET.2019.1800235 10.1109/ACCESS.2020.2971172 10.1109/ACCESS.2020.2964673 10.1016/j.jnca.2016.12.007 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/MNET.011.2000353 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-156X |
EndPage | 105 |
ExternalDocumentID | 10_1109_MNET_011_2000353 9136600 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AFOGA AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL PQQKQ RIA RIE RNS TN5 VH1 ZCA AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c399t-3c419f8a15fc875003cd656524eee2b5afda935b721a7792de01ed7cecd00c4d3 |
IEDL.DBID | RIE |
ISSN | 0890-8044 |
IngestDate | Mon Jun 30 04:58:32 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Tue Jul 01 01:52:38 EDT 2025 Wed Aug 27 02:29:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-3c419f8a15fc875003cd656524eee2b5afda935b721a7792de01ed7cecd00c4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://ieeexplore.ieee.org/ielx7/65/9146400/09136600.pdf |
PQID | 2426663241 |
PQPubID | 36211 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2426663241 crossref_citationtrail_10_1109_MNET_011_2000353 crossref_primary_10_1109_MNET_011_2000353 ieee_primary_9136600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE network |
PublicationTitleAbbrev | NET-M |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref11 ref2 ref1 hou (ref12) 2020; 2020 ref8 ref7 ref9 lopez-rincon (ref10) 2020 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1109/MWC.001.1900286 – ident: ref8 doi: 10.1109/TBDATA.2017.2717439 – ident: ref5 doi: 10.1109/TII.2019.2898174 – ident: ref14 doi: 10.1109/TWC.2019.2946140 – ident: ref7 doi: 10.1109/ACCESS.2018.2881246 – ident: ref15 doi: 10.1016/j.artmed.2019.01.001 – ident: ref4 doi: 10.1109/ACCESS.2019.2896065 – ident: ref11 doi: 10.1109/MWC.2018.1700308 – ident: ref2 doi: 10.1016/S1473-3099(20)30086-4 – start-page: 2020.03.13.990242 year: 2020 ident: ref10 article-title: Accurate Identification of SARS-CoV-2 from Viral Genome Sequences using Deep Learning publication-title: BioRxiv – ident: ref6 doi: 10.1109/MNET.2019.1800235 – ident: ref9 doi: 10.1109/ACCESS.2020.2971172 – ident: ref1 doi: 10.1109/ACCESS.2020.2964673 – volume: 2020 year: 2020 ident: ref12 article-title: Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT publication-title: RSNA Radiology – ident: ref3 doi: 10.1016/j.jnca.2016.12.007 |
SSID | ssj0014532 |
Score | 2.5735588 |
SecondaryResourceType | review_article |
Snippet | B5G-based tactile edge learning shows promise as a solution to handle infectious diseases such as COVID-19 at a global level. By leveraging edge computing with... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 98 |
SubjectTerms | 5G mobile communication Algorithms Cloud computing Coronaviruses COVID-19 Datasets Decision making Deep learning Edge computing Health care Hospitals Image edge detection Infectious diseases Machine learning Network latency Semantics Solid modeling Training Vaccines Wireless networks |
Title | B5G and Explainable Deep Learning Assisted Healthcare Vertical at the Edge: COVID-I9 Perspective |
URI | https://ieeexplore.ieee.org/document/9136600 https://www.proquest.com/docview/2426663241 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BT3BgR5RNPnBBIq0TO4u5sRQKUoFDi7gFLxMOoFJBeuHrsd00rELcosiOnDwnM5N58wZgL84ELSSGQcRTE3DG00AWNubhiT0pNTJVuHrn3lXSHfDLu_huBg7qWhhE9OQzbLlDn8s3z3rsfpW1RcgSa6BnYdYGbpNarTpjwGPfjIxmrjSacj5NSVLR7l11-i2n1Rn5xBn7YoJ8T5UfH2JvXc4WoTdd14RU8tgal6ql375JNv534UuwULmZ5GiyL5ZhBocrMP9JfHAV7o_jcyKHhjgaXlVDRU4RR6TSXH0gFju3Cwzp1iwxcuuJ2PbasiTWeSQd84CH5OT69uI0uBDk5qN4cw0GZ53-STeo-i0E2ropZcA0D0WRydDxuqwnQZk21t2LI25vKFKxLIwULFY2aJRpKiKDNESTatSGUs0NW4fG8HmIG0CYSJS0sR5ilvAkyxRPClUoruPU2cywCe0pBLmuxMhdT4yn3AclVOQOtNyCllegNWG_njGaCHH8MXbVYVCPqx5_E7anKOfVm_qaexfFadaHm7_P2oK5yMXYnqK7DY3yZYw71hEp1a7fge-oldfg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NU9swEN0BeigcoC0whELRgUtn6kS2JNvqjY9AAiTtITDcjD7WHGACA86FX4-kOC7QDtObxyN5ZK_sfet9-xZgV-SSlgrjKOGZjTjjWaRKF_Pw1J1UBpkufb3zYJj2zvnJpbicgx9NLQwiBvIZtv1hyOXbOzPxv8o6Mmapc9Dz8MH5fRFPq7WanAEXoR0ZzX1xNOV8lpSksjMYdkdtr9aZhNQZe-WEQleVvz7Fwb8crcBgtrIpreSmPal02zy9EW3836V_guUaaJK96c74DHM4_gJLL-QHV-FqXxwTNbbEE_HqKipyiHhPatXVa-Ks5_eBJb2GJ0YuAhXbXVtVxMFH0rXX-JMc_LroH0Z9SX7_Kd9cg_Oj7uigF9UdFyLjgEoVMcNjWeYq9swuhyUoM9YBPpFwd0OJFqq0SjKhXdioskwmFmmMNjNoLKWGW7YOC-O7MW4AYTLVykV7iHnK0zzXPC11qbkRmfeacQs6MxMUppYj910xbosQllBZeKMVzmhFbbQWfG9m3E-lON4Zu-pt0IyrH38LtmZWLup39bEIIMWr1seb_561Ax97o8FZcdYfnn6FxcRH3IGwuwUL1cMEtx0sqfS3sBufARgd2yk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B5G+and+Explainable+Deep+Learning+Assisted+Healthcare+Vertical+at+the+Edge%3A+COVID-I9+Perspective&rft.jtitle=IEEE+network&rft.au=Rahman%2C+Md.+Abdur&rft.au=Hossain%2C+M.+Shamim&rft.au=Alrajeh%2C+Nabil+A.&rft.au=Guizani%2C+Nadra&rft.date=2020-07-01&rft.pub=IEEE&rft.issn=0890-8044&rft.volume=34&rft.issue=4&rft.spage=98&rft.epage=105&rft_id=info:doi/10.1109%2FMNET.011.2000353&rft.externalDocID=9136600 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-8044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-8044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-8044&client=summon |