B5G and Explainable Deep Learning Assisted Healthcare Vertical at the Edge: COVID-I9 Perspective

B5G-based tactile edge learning shows promise as a solution to handle infectious diseases such as COVID-19 at a global level. By leveraging edge computing with the 5G RAN, management of epidemic diseases such as COVID-19 can be conducted efficiently. Deploying a hierarchical edge computing architect...

Full description

Saved in:
Bibliographic Details
Published inIEEE network Vol. 34; no. 4; pp. 98 - 105
Main Authors Rahman, Md. Abdur, Hossain, M. Shamim, Alrajeh, Nabil A., Guizani, Nadra
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract B5G-based tactile edge learning shows promise as a solution to handle infectious diseases such as COVID-19 at a global level. By leveraging edge computing with the 5G RAN, management of epidemic diseases such as COVID-19 can be conducted efficiently. Deploying a hierarchical edge computing architecture offers several benefits such as scalability, low latency, and privacy for the data and the training model, which enables analysis of COVID-19 by a local trusted edge server. However, existing deep learning (DL) algorithms suffer from two crucial drawbacks: first, the training requires a large COVID-19 dataset on various dimensions, which is difficult for any local authority to manage. Second, the DL results require ethical approval and explanations from healthcare providers and other stakeholders in order to be accepted. In this article, we propose a B5G framework that supports COVID-19 diagnosis, leveraging the low-latency, high-bandwidth features of the 5G network at the edge. Our framework employs a distributed DL paradigm where each COVID-19 edge employs its own local DL framework and uses a three-phase reconciliation with the global DL framework. The local DL model runs on edge nodes while the global DL model runs on a cloud environment. The training of a local DL model is performed with the dataset available from the edge; it is applied to the global model after receiving approval from the subject matter experts at the edge. Our framework adds semantics to existing DL models so that human domain experts on COVID-19 can gain insight and semantic visualization of the key decision-making activities that take place within the deep learning ecosystem. We have implemented a subset of various COVID-19 scenarios using distributed DL at the edge and in the cloud. The test results are promising.
AbstractList B5G-based tactile edge learning shows promise as a solution to handle infectious diseases such as COVID-19 at a global level. By leveraging edge computing with the 5G RAN, management of epidemic diseases such as COVID-19 can be conducted efficiently. Deploying a hierarchical edge computing architecture offers several benefits such as scalability, low latency, and privacy for the data and the training model, which enables analysis of COVID-19 by a local trusted edge server. However, existing deep learning (DL) algorithms suffer from two crucial drawbacks: first, the training requires a large COVID-19 dataset on various dimensions, which is difficult for any local authority to manage. Second, the DL results require ethical approval and explanations from healthcare providers and other stakeholders in order to be accepted. In this article, we propose a B5G framework that supports COVID-19 diagnosis, leveraging the low-latency, high-bandwidth features of the 5G network at the edge. Our framework employs a distributed DL paradigm where each COVID-19 edge employs its own local DL framework and uses a three-phase reconciliation with the global DL framework. The local DL model runs on edge nodes while the global DL model runs on a cloud environment. The training of a local DL model is performed with the dataset available from the edge; it is applied to the global model after receiving approval from the subject matter experts at the edge. Our framework adds semantics to existing DL models so that human domain experts on COVID-19 can gain insight and semantic visualization of the key decision-making activities that take place within the deep learning ecosystem. We have implemented a subset of various COVID-19 scenarios using distributed DL at the edge and in the cloud. The test results are promising.
Author Alrajeh, Nabil A.
Hossain, M. Shamim
Guizani, Nadra
Rahman, Md. Abdur
Author_xml – sequence: 1
  givenname: Md. Abdur
  surname: Rahman
  fullname: Rahman, Md. Abdur
  organization: Dept. of Cyber Security & Forensic Comput., Univ. of Prince Mugrin, Saudi Arabia
– sequence: 2
  givenname: M. Shamim
  surname: Hossain
  fullname: Hossain, M. Shamim
  organization: Dept. of Software Eng., King Saud Univ., Riyadh, Saudi Arabia
– sequence: 3
  givenname: Nabil A.
  surname: Alrajeh
  fullname: Alrajeh, Nabil A.
  organization: Biomed. Technol. Dept., King Saud Univ., Riyadh, Saudi Arabia
– sequence: 4
  givenname: Nadra
  surname: Guizani
  fullname: Guizani, Nadra
  organization: Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA
BookMark eNp9kD1PwzAQQC0EEuVjR2KxxJzij9iJ2aANbaVCGQCxBde-UFchCbZB8O9JVcTAwHTLe3e6d4B2m7YBhE4oGVJK1PnNbXE_JJQOGSGEC76DBlSIPKFCPu2iAckVSXKSpvvoIIQ1ITQVnA3Q85WYYN1YXHx2tXaNXtaAxwAdnoP2jWte8GUILkSweAq6jiujPeBH8NEZXWMdcVwBLuwLXODR4nE2TmYK34EPHZjoPuAI7VW6DnD8Mw_Rw3VxP5om88VkNrqcJ4YrFRNuUqqqXFNRmTwT_QvGSiEFSwGALYWurFZcLDNGdZYpZoFQsJkBYwkxqeWH6Gy7t_Pt2zuEWK7bd9_0J0uWMiklZyntKbmljG9D8FCVxkUdXdtEr11dUlJuapabmmVfs_yp2Yvkj9h596r913_K6VZx_Qu_uKJcyh74BvR6gE0
CODEN IENEET
CitedBy_id crossref_primary_10_3934_publichealth_2024004
crossref_primary_10_1109_IOTM_0001_2100052
crossref_primary_10_3233_JIFS_219066
crossref_primary_10_1007_s00530_021_00800_x
crossref_primary_10_1016_j_scs_2021_103083
crossref_primary_10_1109_MITP_2021_3134896
crossref_primary_10_1109_MNET_011_2000713
crossref_primary_10_2139_ssrn_4995377
crossref_primary_10_1109_MITP_2020_3034617
crossref_primary_10_3390_smartcities4020024
crossref_primary_10_1109_TNSE_2022_3190765
crossref_primary_10_1109_JSAC_2022_3215508
crossref_primary_10_1155_2022_6255119
crossref_primary_10_1002_spe_3144
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1007_s11042_021_11158_7
crossref_primary_10_1109_ACCESS_2024_3519567
crossref_primary_10_1109_TCBB_2022_3180393
crossref_primary_10_1109_ACCESS_2020_3037474
crossref_primary_10_1109_MNET_011_2000741
crossref_primary_10_1016_j_cosrev_2021_100452
crossref_primary_10_1109_TNSM_2023_3288738
crossref_primary_10_3390_app11062810
crossref_primary_10_1109_ACCESS_2022_3181605
crossref_primary_10_1007_s00521_021_06171_8
crossref_primary_10_1109_TCBB_2023_3252668
crossref_primary_10_3390_math11051216
crossref_primary_10_1016_j_artmed_2022_102312
crossref_primary_10_1016_j_bspc_2021_102717
crossref_primary_10_1109_JIOT_2020_3013710
crossref_primary_10_3103_S1060992X21030085
crossref_primary_10_1145_3421725
crossref_primary_10_1007_s00521_022_07087_7
crossref_primary_10_1109_TII_2022_3183000
crossref_primary_10_1109_ACCESS_2021_3064826
crossref_primary_10_32604_csse_2023_036455
crossref_primary_10_1109_MNET_011_2000458
crossref_primary_10_3389_frcmn_2020_610879
crossref_primary_10_1016_j_future_2021_09_010
crossref_primary_10_1155_2021_6668985
crossref_primary_10_1109_JIOT_2021_3051080
crossref_primary_10_1016_j_patcog_2020_107700
crossref_primary_10_3390_covid3010006
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_1016_j_iotcps_2022_05_003
crossref_primary_10_1016_j_comnet_2021_108691
crossref_primary_10_1007_s11334_022_00458_2
crossref_primary_10_1007_s42979_021_00841_z
crossref_primary_10_1016_j_rinp_2023_106977
crossref_primary_10_1145_3468506
crossref_primary_10_2139_ssrn_4167993
crossref_primary_10_1109_JIOT_2020_3037915
crossref_primary_10_1007_s10796_022_10307_z
crossref_primary_10_1109_ACCESS_2023_3266586
crossref_primary_10_1007_s11042_024_20073_6
crossref_primary_10_1049_cmu2_12240
crossref_primary_10_1111_exsy_12759
crossref_primary_10_1109_MCE_2020_3035520
crossref_primary_10_1145_3527174
crossref_primary_10_3390_fi15040142
crossref_primary_10_1111_exsy_12834
crossref_primary_10_1109_MNET_011_2000326
crossref_primary_10_1186_s13673_020_00258_2
crossref_primary_10_1007_s00607_021_00971_5
crossref_primary_10_1109_ACCESS_2020_3045115
crossref_primary_10_3390_s22062313
crossref_primary_10_1109_ACCESS_2021_3099462
crossref_primary_10_1007_s00530_021_00857_8
crossref_primary_10_3390_s24030963
crossref_primary_10_1109_OJCS_2021_3102045
crossref_primary_10_3390_s23115211
crossref_primary_10_1109_IOTM_001_2100120
crossref_primary_10_1109_ACCESS_2020_3019600
crossref_primary_10_1007_s00607_021_00937_7
crossref_primary_10_3390_s22031205
crossref_primary_10_32604_jiot_2024_052325
Cites_doi 10.1109/MWC.001.1900286
10.1109/TBDATA.2017.2717439
10.1109/TII.2019.2898174
10.1109/TWC.2019.2946140
10.1109/ACCESS.2018.2881246
10.1016/j.artmed.2019.01.001
10.1109/ACCESS.2019.2896065
10.1109/MWC.2018.1700308
10.1016/S1473-3099(20)30086-4
10.1109/MNET.2019.1800235
10.1109/ACCESS.2020.2971172
10.1109/ACCESS.2020.2964673
10.1016/j.jnca.2016.12.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/MNET.011.2000353
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-156X
EndPage 105
ExternalDocumentID 10_1109_MNET_011_2000353
9136600
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AFOGA
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZCA
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-3c419f8a15fc875003cd656524eee2b5afda935b721a7792de01ed7cecd00c4d3
IEDL.DBID RIE
ISSN 0890-8044
IngestDate Mon Jun 30 04:58:32 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Tue Jul 01 01:52:38 EDT 2025
Wed Aug 27 02:29:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-3c419f8a15fc875003cd656524eee2b5afda935b721a7792de01ed7cecd00c4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://ieeexplore.ieee.org/ielx7/65/9146400/09136600.pdf
PQID 2426663241
PQPubID 36211
PageCount 8
ParticipantIDs proquest_journals_2426663241
crossref_citationtrail_10_1109_MNET_011_2000353
crossref_primary_10_1109_MNET_011_2000353
ieee_primary_9136600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE network
PublicationTitleAbbrev NET-M
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref2
ref1
hou (ref12) 2020; 2020
ref8
ref7
ref9
lopez-rincon (ref10) 2020
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/MWC.001.1900286
– ident: ref8
  doi: 10.1109/TBDATA.2017.2717439
– ident: ref5
  doi: 10.1109/TII.2019.2898174
– ident: ref14
  doi: 10.1109/TWC.2019.2946140
– ident: ref7
  doi: 10.1109/ACCESS.2018.2881246
– ident: ref15
  doi: 10.1016/j.artmed.2019.01.001
– ident: ref4
  doi: 10.1109/ACCESS.2019.2896065
– ident: ref11
  doi: 10.1109/MWC.2018.1700308
– ident: ref2
  doi: 10.1016/S1473-3099(20)30086-4
– start-page: 2020.03.13.990242
  year: 2020
  ident: ref10
  article-title: Accurate Identification of SARS-CoV-2 from Viral Genome Sequences using Deep Learning
  publication-title: BioRxiv
– ident: ref6
  doi: 10.1109/MNET.2019.1800235
– ident: ref9
  doi: 10.1109/ACCESS.2020.2971172
– ident: ref1
  doi: 10.1109/ACCESS.2020.2964673
– volume: 2020
  year: 2020
  ident: ref12
  article-title: Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT
  publication-title: RSNA Radiology
– ident: ref3
  doi: 10.1016/j.jnca.2016.12.007
SSID ssj0014532
Score 2.5735588
SecondaryResourceType review_article
Snippet B5G-based tactile edge learning shows promise as a solution to handle infectious diseases such as COVID-19 at a global level. By leveraging edge computing with...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 98
SubjectTerms 5G mobile communication
Algorithms
Cloud computing
Coronaviruses
COVID-19
Datasets
Decision making
Deep learning
Edge computing
Health care
Hospitals
Image edge detection
Infectious diseases
Machine learning
Network latency
Semantics
Solid modeling
Training
Vaccines
Wireless networks
Title B5G and Explainable Deep Learning Assisted Healthcare Vertical at the Edge: COVID-I9 Perspective
URI https://ieeexplore.ieee.org/document/9136600
https://www.proquest.com/docview/2426663241
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BT3BgR5RNPnBBIq0TO4u5sRQKUoFDi7gFLxMOoFJBeuHrsd00rELcosiOnDwnM5N58wZgL84ELSSGQcRTE3DG00AWNubhiT0pNTJVuHrn3lXSHfDLu_huBg7qWhhE9OQzbLlDn8s3z3rsfpW1RcgSa6BnYdYGbpNarTpjwGPfjIxmrjSacj5NSVLR7l11-i2n1Rn5xBn7YoJ8T5UfH2JvXc4WoTdd14RU8tgal6ql375JNv534UuwULmZ5GiyL5ZhBocrMP9JfHAV7o_jcyKHhjgaXlVDRU4RR6TSXH0gFju3Cwzp1iwxcuuJ2PbasiTWeSQd84CH5OT69uI0uBDk5qN4cw0GZ53-STeo-i0E2ropZcA0D0WRydDxuqwnQZk21t2LI25vKFKxLIwULFY2aJRpKiKDNESTatSGUs0NW4fG8HmIG0CYSJS0sR5ilvAkyxRPClUoruPU2cywCe0pBLmuxMhdT4yn3AclVOQOtNyCllegNWG_njGaCHH8MXbVYVCPqx5_E7anKOfVm_qaexfFadaHm7_P2oK5yMXYnqK7DY3yZYw71hEp1a7fge-oldfg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NU9swEN0BeigcoC0whELRgUtn6kS2JNvqjY9AAiTtITDcjD7WHGACA86FX4-kOC7QDtObxyN5ZK_sfet9-xZgV-SSlgrjKOGZjTjjWaRKF_Pw1J1UBpkufb3zYJj2zvnJpbicgx9NLQwiBvIZtv1hyOXbOzPxv8o6Mmapc9Dz8MH5fRFPq7WanAEXoR0ZzX1xNOV8lpSksjMYdkdtr9aZhNQZe-WEQleVvz7Fwb8crcBgtrIpreSmPal02zy9EW3836V_guUaaJK96c74DHM4_gJLL-QHV-FqXxwTNbbEE_HqKipyiHhPatXVa-Ks5_eBJb2GJ0YuAhXbXVtVxMFH0rXX-JMc_LroH0Z9SX7_Kd9cg_Oj7uigF9UdFyLjgEoVMcNjWeYq9swuhyUoM9YBPpFwd0OJFqq0SjKhXdioskwmFmmMNjNoLKWGW7YOC-O7MW4AYTLVykV7iHnK0zzXPC11qbkRmfeacQs6MxMUppYj910xbosQllBZeKMVzmhFbbQWfG9m3E-lON4Zu-pt0IyrH38LtmZWLup39bEIIMWr1seb_561Ax97o8FZcdYfnn6FxcRH3IGwuwUL1cMEtx0sqfS3sBufARgd2yk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B5G+and+Explainable+Deep+Learning+Assisted+Healthcare+Vertical+at+the+Edge%3A+COVID-I9+Perspective&rft.jtitle=IEEE+network&rft.au=Rahman%2C+Md.+Abdur&rft.au=Hossain%2C+M.+Shamim&rft.au=Alrajeh%2C+Nabil+A.&rft.au=Guizani%2C+Nadra&rft.date=2020-07-01&rft.pub=IEEE&rft.issn=0890-8044&rft.volume=34&rft.issue=4&rft.spage=98&rft.epage=105&rft_id=info:doi/10.1109%2FMNET.011.2000353&rft.externalDocID=9136600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-8044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-8044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-8044&client=summon