Atmospheric Pressure Tornado Plasma Jet of Polydopamine Coating on Graphite Felt for Improving Electrochemical Performance in Vanadium Redox Flow Batteries

The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the enhancement of electrochemical performance. In this work, commercial GF is used as the electrodes. The GF electrode with a coated-polydopamine catalys...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 11; no. 5; p. 627
Main Authors Chen, Song-Yu, Kuo, Yu-Lin, Wang, Yao-Ming, Hsu, Wei-Mau, Chien, Tzu-Hsuan, Lin, Chiu-Feng, Kuo, Cheng-Hsien, Okino, Akitoshi, Chiang, Tai-Chin
Format Journal Article
LanguageEnglish
Japanese
Published Basel MDPI AG 12.05.2021
Subjects
Online AccessGet full text
ISSN2073-4344
2073-4344
DOI10.3390/catal11050627

Cover

Loading…
Abstract The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the enhancement of electrochemical performance. In this work, commercial GF is used as the electrodes. The GF electrode with a coated-polydopamine catalyst is achieved to enhance the electrocatalytic activity of GF for the redox reaction of vanadium ions in vanadium redox flow battery (VRFB). Materials characteristics proved that a facile coating via atmospheric pressure plasma jet (APPJ) to alter the surface superhydrophilicity and to deposit polydopamine on GF for providing the more active sites is feasibly achieved. Due to the synergistic effects of the presence of more active sites on the superhydrophilic surface of modified electrodes, the electrochemical performance toward VO2+/VO2+ reaction was evidently improved. We believed that using the APPJ technique as a coating method for electrocatalyst preparation offers the oxygen-containing functional groups on the substrate surface on giving a hydrogen bonding with the grafted functional polymeric materials.
AbstractList The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the enhancement of electrochemical performance. In this work, commercial GF is used as the electrodes. The GF electrode with a coated-polydopamine catalyst is achieved to enhance the electrocatalytic activity of GF for the redox reaction of vanadium ions in vanadium redox flow battery (VRFB). Materials characteristics proved that a facile coating via atmospheric pressure plasma jet (APPJ) to alter the surface superhydrophilicity and to deposit polydopamine on GF for providing the more active sites is feasibly achieved. Due to the synergistic effects of the presence of more active sites on the superhydrophilic surface of modified electrodes, the electrochemical performance toward VO2+/VO2+ reaction was evidently improved. We believed that using the APPJ technique as a coating method for electrocatalyst preparation offers the oxygen-containing functional groups on the substrate surface on giving a hydrogen bonding with the grafted functional polymeric materials.
Author Tai-Chin Chiang
Yao-Ming Wang
Wei-Mau Hsu
Chiu-Feng Lin
Song-Yu Chen
Tzu-Hsuan Chien
Yu-Lin Kuo
Cheng-Hsien Kuo
Akitoshi Okino
Author_xml – sequence: 1
  givenname: Song-Yu
  orcidid: 0000-0003-3345-7456
  surname: Chen
  fullname: Chen, Song-Yu
– sequence: 2
  givenname: Yu-Lin
  surname: Kuo
  fullname: Kuo, Yu-Lin
– sequence: 3
  givenname: Yao-Ming
  surname: Wang
  fullname: Wang, Yao-Ming
– sequence: 4
  givenname: Wei-Mau
  surname: Hsu
  fullname: Hsu, Wei-Mau
– sequence: 5
  givenname: Tzu-Hsuan
  surname: Chien
  fullname: Chien, Tzu-Hsuan
– sequence: 6
  givenname: Chiu-Feng
  surname: Lin
  fullname: Lin, Chiu-Feng
– sequence: 7
  givenname: Cheng-Hsien
  orcidid: 0000-0003-0368-130X
  surname: Kuo
  fullname: Kuo, Cheng-Hsien
– sequence: 8
  givenname: Akitoshi
  surname: Okino
  fullname: Okino, Akitoshi
– sequence: 9
  givenname: Tai-Chin
  surname: Chiang
  fullname: Chiang, Tai-Chin
BackLink https://cir.nii.ac.jp/crid/1870866215893580928$$DView record in CiNii
BookMark eNp1kU1v1DAQhi1UJNrSI_eR6DXgjzhxju2qW4oqsUKFa-Q4E9bIsVPb29Lfwp_Fq-VAK3GZGWmemXf0zgk58sEjIe8Y_SBERz8anbVjjEra8PYVOea0FVUt6vron_oNOUvJDrSWgteKNsfk90WeQ1q2GK2BTcSUdhHhLkSvxwAbp9Os4TNmCBNsgnsaw6Jn6xFWQWfrf0DwcB31srUZYY0uwxQi3MxLDA_79pVDk2MwW5yt0Q42GAswa28QrIfvuujY3QxfcQy_YO3CI1zqnMs5mN6S15N2Cc_-5lPybX11t_pU3X65vlld3FZGdF2uRM2nYZTdiFJT0w60M22tULNBIZpxEsWRoUHBaTONiBPHoZYNa4zicjCSiVPy_rC3HH2_w5T7n2FXDHCp58UowWUr20KJA2ViSCni1BubiwfB56it6xnt94_onz2iTFUvppZoZx2f_sufH3hvbRHYR6ZaqpqGM6k6IRXtuBJ_AATPmnw
CitedBy_id crossref_primary_10_3390_plasma6020016
crossref_primary_10_1002_smtd_202301674
crossref_primary_10_1007_s11090_023_10365_4
crossref_primary_10_1016_j_apsusc_2025_162874
crossref_primary_10_1002_cnl2_119
crossref_primary_10_1149_1945_7111_ad5709
Cites_doi 10.1016/j.electacta.2018.05.017
10.1149/2.0631409jes
10.1016/j.apenergy.2016.05.048
10.1002/pc.24654
10.1016/j.ultsonch.2019.04.025
10.1016/j.jcis.2005.11.007
10.3390/nano10091710
10.1109/MeMeA.2017.7985867
10.1021/acscatal.5b01737
10.14710/ijred.3.1.7-12
10.1149/2.073304jes
10.1016/j.jpowsour.2013.06.018
10.1002/9783527632169.ch2
10.1016/j.apsusc.2016.01.199
10.1016/j.electacta.2013.10.011
10.1016/j.ceramint.2018.02.068
10.1039/C8TA03408G
10.1016/j.matchemphys.2019.121873
10.1098/rsos.200402
10.1016/j.jpowsour.2015.04.041
10.1039/C6TA03936G
10.1002/admi.201500309
10.1016/j.apsusc.2017.07.022
10.1016/j.est.2019.100844
10.1016/j.electacta.2007.04.121
10.1016/j.ijhydene.2017.11.050
10.1016/j.jpowsour.2017.08.075
10.1039/C7TA03922K
10.1038/srep06906
10.3390/catal8110509
10.1002/9783527807918
10.1039/c2cc31433a
10.1016/j.rser.2016.11.188
10.1016/j.nanoen.2016.08.025
10.3390/polym11010139
10.1021/acscatal.5b01973
10.1002/smll.201403715
10.1039/C8TA00464A
10.1016/j.carbon.2010.04.044
10.1039/C7TA06672D
10.1016/j.electacta.2009.10.022
10.1016/j.electacta.2018.02.124
10.1039/C5RA24626A
10.2113/gsecongeo.59.2.259
10.1039/D0SE01723J
10.1149/2.0081509jes
10.1149/2.003210jes
10.1109/9780470544273
10.1002/er.1863
10.1016/j.jpowsour.2017.07.103
10.1021/nl403674a
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/catal11050627
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4344
ExternalDocumentID 10_3390_catal11050627
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
D1I
ESX
HCIFZ
IAO
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
RYH
AAYXX
CITATION
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c399t-342fbd59de5a0c7b09c748ea1b8eecdf3062b6e3206fdeef2eb45616c825bc513
IEDL.DBID BENPR
ISSN 2073-4344
IngestDate Fri Jul 25 11:59:12 EDT 2025
Tue Jul 01 01:12:16 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
Thu Jun 26 22:27:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
Japanese
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-342fbd59de5a0c7b09c748ea1b8eecdf3062b6e3206fdeef2eb45616c825bc513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3345-7456
0000-0003-0368-130x
0000-0002-8949-294X
0000-0003-0368-130X
OpenAccessLink https://www.proquest.com/docview/2532325757?pq-origsite=%requestingapplication%
PQID 2532325757
PQPubID 2032420
ParticipantIDs proquest_journals_2532325757
crossref_citationtrail_10_3390_catal11050627
crossref_primary_10_3390_catal11050627
nii_cinii_1870866215893580928
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-12
PublicationDateYYYYMMDD 2021-05-12
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-12
  day: 12
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Catalysts
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Pham (ref_54) 2016; 6
Ji (ref_19) 2017; 5
Lee (ref_2) 2014; 161
Etesami (ref_32) 2018; 43
Kim (ref_53) 2012; 48
Ulaganathan (ref_8) 2016; 3
Hofman (ref_45) 2018; 30
Shao (ref_38) 2015; 5
Kuo (ref_20) 2018; 44
Bayeh (ref_41) 2018; 6
Kabtamu (ref_37) 2016; 4
Duan (ref_14) 2015; 11
Jiang (ref_34) 2017; 365
Yue (ref_10) 2010; 48
ref_24
Ghimire (ref_39) 2018; 6
ref_23
ref_22
Lee (ref_13) 2018; 429
Wei (ref_16) 2015; 287
Wang (ref_43) 2016; 367
ref_29
Chang (ref_27) 2017; 364
He (ref_36) 2018; 278
Huang (ref_50) 2012; 159
Jeong (ref_51) 2013; 114
Hammer (ref_7) 2014; 3
Bayeh (ref_11) 2021; 5
Li (ref_30) 2014; 14
Jiang (ref_25) 2019; 233
Choi (ref_6) 2017; 69
ref_35
Tseng (ref_49) 2013; 160
Cloke (ref_12) 1964; 59
Wang (ref_52) 2007; 52
Lee (ref_15) 2015; 162
Deng (ref_44) 2019; 40
Kwon (ref_42) 2006; 295
Li (ref_18) 2020; 7
Shah (ref_31) 2010; 55
Noh (ref_1) 2017; 5
Kim (ref_40) 2014; 4
Chang (ref_3) 2014; 245
Lourenssen (ref_5) 2019; 25
Karikalan (ref_33) 2019; 56
ref_47
ref_46
Ejigu (ref_4) 2015; 5
Kear (ref_28) 2012; 36
Wang (ref_21) 2018; 268
ref_48
Wu (ref_26) 2016; 28
Youn (ref_17) 2019; 237
Wei (ref_9) 2016; 176
References_xml – volume: 278
  start-page: 106
  year: 2018
  ident: ref_36
  article-title: A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.05.017
– volume: 161
  start-page: A1291
  year: 2014
  ident: ref_2
  article-title: Analysis of concentration polarization using UV-visible spectrophotometry in a vanadium redox flow battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0631409jes
– volume: 176
  start-page: 74
  year: 2016
  ident: ref_9
  article-title: A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.048
– volume: 233
  start-page: 105
  year: 2019
  ident: ref_25
  article-title: A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries
  publication-title: Appl. Energy
– volume: 40
  start-page: 328
  year: 2019
  ident: ref_44
  article-title: Synthesis and mechanical properties of dopamine modified titanium dioxide/waterborne polyurethane composites
  publication-title: Polym. Compos.
  doi: 10.1002/pc.24654
– volume: 56
  start-page: 297
  year: 2019
  ident: ref_33
  article-title: Effect of cavitation erosion in the sonochemical exfoliation of activated graphite for electrocatalysis of acebutolol
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2019.04.025
– volume: 295
  start-page: 409
  year: 2006
  ident: ref_42
  article-title: Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.11.007
– ident: ref_29
  doi: 10.3390/nano10091710
– ident: ref_35
  doi: 10.1109/MeMeA.2017.7985867
– volume: 5
  start-page: 7288
  year: 2015
  ident: ref_38
  article-title: Nanostructured electrocatalysts for PEM fuel cells and redox flow batteries: A selected review
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01737
– volume: 3
  start-page: 7
  year: 2014
  ident: ref_7
  article-title: Improvement of the performance of graphite felt electrodes for vanadium-redox-flow-batteries by plasma treatment
  publication-title: Int. J. Renew. Energy Dev.
  doi: 10.14710/ijred.3.1.7-12
– volume: 160
  start-page: A690
  year: 2013
  ident: ref_49
  article-title: A Kinetic Study of the Platinum/Carbon Anode Catalyst for Vanadium Redox Flow Battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.073304jes
– volume: 245
  start-page: 66
  year: 2014
  ident: ref_3
  article-title: Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.018
– ident: ref_23
  doi: 10.1002/9783527632169.ch2
– volume: 367
  start-page: 401
  year: 2016
  ident: ref_43
  article-title: Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.01.199
– volume: 114
  start-page: 439
  year: 2013
  ident: ref_51
  article-title: Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.10.011
– volume: 44
  start-page: 7349
  year: 2018
  ident: ref_20
  article-title: Tailoring the O2 reduction activity on hydrangea-like La0.5Sr0.5MnO3 cathode film fabricated via atmospheric pressure plasma jet process
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.02.068
– volume: 6
  start-page: 13908
  year: 2018
  ident: ref_41
  article-title: Synergistic effects of a TiNb2O7–reduced graphene oxide nanocomposite electrocatalyst for high-performance all-vanadium redox flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03408G
– volume: 237
  start-page: 121873
  year: 2019
  ident: ref_17
  article-title: Effect of nitrogen functionalization of graphite felt electrode by ultrasonication on the electrochemical performance of vanadium redox flow battery
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.121873
– volume: 7
  start-page: 200402
  year: 2020
  ident: ref_18
  article-title: Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.200402
– volume: 287
  start-page: 81
  year: 2015
  ident: ref_16
  article-title: A new electrocatalyst and its application method for vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.041
– volume: 4
  start-page: 11472
  year: 2016
  ident: ref_37
  article-title: Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03936G
– volume: 3
  start-page: 1500309
  year: 2016
  ident: ref_8
  article-title: Recent advancements in all-vanadium redox flow batteries
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500309
– volume: 429
  start-page: 187
  year: 2018
  ident: ref_13
  article-title: Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.022
– volume: 25
  start-page: 100844
  year: 2019
  ident: ref_5
  article-title: Vanadium redox flow batteries: A comprehensive review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100844
– volume: 52
  start-page: 6755
  year: 2007
  ident: ref_52
  article-title: Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.04.121
– volume: 43
  start-page: 189
  year: 2018
  ident: ref_32
  article-title: Phosphonated graphene oxide with high electrocatalytic performance for vanadium redox flow battery
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.11.050
– volume: 365
  start-page: 34
  year: 2017
  ident: ref_34
  article-title: Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.075
– volume: 5
  start-page: 15154
  year: 2017
  ident: ref_19
  article-title: Synergistic effect of the bifunctional polydopamine–Mn3O4 composite electrocatalyst for vanadium redox flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03922K
– volume: 4
  start-page: 1
  year: 2014
  ident: ref_40
  article-title: A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep06906
– ident: ref_47
  doi: 10.3390/catal8110509
– ident: ref_48
  doi: 10.1002/9783527807918
– ident: ref_24
– volume: 48
  start-page: 5455
  year: 2012
  ident: ref_53
  article-title: Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31433a
– volume: 69
  start-page: 263
  year: 2017
  ident: ref_6
  article-title: A review of vanadium electrolytes for vanadium redox flow batteries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.188
– volume: 28
  start-page: 19
  year: 2016
  ident: ref_26
  article-title: Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres electrocatalyst
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.025
– ident: ref_46
  doi: 10.3390/polym11010139
– volume: 5
  start-page: 7122
  year: 2015
  ident: ref_4
  article-title: Synergistic Catalyst–Support Interactions in a Graphene–Mn3O4 Electrocatalyst for Vanadium Redox Flow Batteries
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01973
– volume: 11
  start-page: 3036
  year: 2015
  ident: ref_14
  article-title: Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions
  publication-title: Small
  doi: 10.1002/smll.201403715
– volume: 6
  start-page: 6625
  year: 2018
  ident: ref_39
  article-title: Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00464A
– volume: 48
  start-page: 3079
  year: 2010
  ident: ref_10
  article-title: Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.04.044
– volume: 5
  start-page: 21334
  year: 2017
  ident: ref_1
  article-title: Chelating functional group attached to carbon nanotubes prepared for performance enhancement of vanadium redox flow battery
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06672D
– volume: 55
  start-page: 1125
  year: 2010
  ident: ref_31
  article-title: Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.10.022
– volume: 268
  start-page: 260
  year: 2018
  ident: ref_21
  article-title: Fabrication of in operando, self-growing, core-shell solid electrolyte interphase on LiFePO4 electrodes for preventing undesirable high-temperature effects in Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.124
– volume: 6
  start-page: 17574
  year: 2016
  ident: ref_54
  article-title: MoO2 nanocrystals interconnected on mesocellular carbon foam as a powerful catalyst for vanadium redox flow battery
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24626A
– volume: 59
  start-page: 259
  year: 1964
  ident: ref_12
  article-title: Solubility of gold under inorganic supergene conditions
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.59.2.259
– volume: 5
  start-page: 1668
  year: 2021
  ident: ref_11
  article-title: Carbon and metal-based catalysts for vanadium redox flow batteries: A perspective and review of recent progress
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D0SE01723J
– volume: 162
  start-page: A1675
  year: 2015
  ident: ref_15
  article-title: Graphite felt coated with dopamine-derived nitrogen-doped carbon as a positive electrode for a vanadium redox flow battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0081509jes
– volume: 159
  start-page: A1579
  year: 2012
  ident: ref_50
  article-title: Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.003210jes
– ident: ref_22
  doi: 10.1109/9780470544273
– volume: 30
  start-page: 1704640
  year: 2018
  ident: ref_45
  article-title: Bioinspired underwater adhesives by using the supramolecular toolbox
  publication-title: Adv. Biomater.
– volume: 36
  start-page: 1105
  year: 2012
  ident: ref_28
  article-title: Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.1863
– volume: 364
  start-page: 1
  year: 2017
  ident: ref_27
  article-title: High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.103
– volume: 14
  start-page: 158
  year: 2014
  ident: ref_30
  article-title: Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery
  publication-title: Nano Lett.
  doi: 10.1021/nl403674a
SSID ssib045324806
ssib045324890
ssib045324792
ssib045317778
ssib045321346
ssib045315883
ssib045315888
ssib045324855
ssj0000913815
Score 2.242044
Snippet The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the...
SourceID proquest
crossref
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 627
SubjectTerms Alternative energy sources
Atmospheric pressure
atmospheric pressure plasma jet (APPJ)
Catalysts
Chemical reactions
Coated electrodes
Dopamine
Electric fields
Electrocatalysts
Electrochemical analysis
electrode
Electrodes
Electrolytes
Energy efficiency
Energy storage
Functional groups
Gas absorption
Graphite
graphite felt (GF)
Hydrogen bonding
Hydrophilicity
Hydrophobicity
Nitrogen
Plasma
Plasma jets
polydopamine
Rechargeable batteries
Redox reactions
Renewable resources
Spectrum analysis
Substrates
Synergistic effect
Vanadium oxides
vanadium redox flow battery (VRFB)
Wettability
Title Atmospheric Pressure Tornado Plasma Jet of Polydopamine Coating on Graphite Felt for Improving Electrochemical Performance in Vanadium Redox Flow Batteries
URI https://cir.nii.ac.jp/crid/1870866215893580928
https://www.proquest.com/docview/2532325757
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEF3q5NBeSj-p2yTMofRUUWu1klankhorIdBgQlJyE9rdWTDY2jRWaPtb-mc7Y60dQmkvQiAhkGY1897szBsh3ktTukx7THTqVaJoVSTtxLrE2Mpj1mplPXcjfz0vTq_U2XV-HRNu61hWufWJG0ftguUc-SeZZxT8CVyUn2--Jzw1indX4wiNkdgnF6yJfO1_mZ3PL3ZZFla91Gk-iGtmxO-HjnCKeTnr8z4IRqNusfjLI2_CTP1MPI34EI4Hgz4Xj7B7IR5Pt2PZXorfx_0qrFkMYGFhaO67RbjkQcMuwJzA8KqFM-wheJiH5S9HrHhFUBKmoeUSZwgdnLBKNb0X1LjsgWAr7HILMBvm4tgoJADz-84CWHTwbVMkdreCC3ThJ9TL8AMGjU6i3K_EVT27nJ4mccJCYgmY9EmmpDcurxzmZKHSTCpbKo1tajSidZ74hDQFZnJSeIfoJRoGXIUlXmlsnmavxV4XOnwjAFlZXlplWyuJBJm2MnSuVV5O2lRJMxYft5-6sVF-nKdgLBuiIWyZ5oFlxuLD7vabQXfjXzcekt3okXxMyfvooiAYozf7u5XUY3GwtWgTf891c7-Y3v7_8jvxRHIRC8u1ygOx19_e4SGhkN4ciZGuT47igvsDLubgLQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacigXRHmILW2ZQ8uJiMRxEueAULU03T61QlvUW4gfkVbajUs3Velv4T_wG5nJY6sKwa2XKJItK_JMZr6xZ75hbJerxISytJ4MSuEJ1Aqv8LXxlE5LGxZS6JKqkc_O49GFOL6MLlfY774WhtIqe5vYGGrjNJ2Rf-RRiM4fwUXy-eqHR12j6Ha1b6HRqsWJvbvFkG3x6egLyneP8-xgMhx5XVcBT6Mzrr1Q8FKZKDU2wq9KlJ_qREhbBEpaq02JGJqr2Ibcj0tjbcmtIpARa4yllI6CENddZU9EGKb0R8nscHmmQxybMohaKk8c99v6c_SwEbEBP3B9q9V0-pf9b5xa9pw969Ao7Lfqs8FWbPWCrQ_7JnAv2a_9eu4WRD0w1dCWEl5bmFBbY-NgjNB7XsCxrcGVMHazO4Mx-ByBKwxdQQnV4Co4JE5s3EXI7KwGBMmwPMmAg7YLj-5oC2B8X8cA0wq-NSlpN3P4ao37CdnM3ULLCIoB_it28Sg7_5qtVa6ybxhY4rHnWuhCcwy5VJEqfJciSvwiEFwN2Id-q3PdkZ1Tz41ZjkEPSSZ_IJkBe7-cftWyfPxr4jbKDZekZ4C2TsYxgibZ3CanXA7YVi_RvDMGi_xedTf_P_yOrY8mZ6f56dH5yVv2lFP6DBHF8i22Vl_f2G3EP7XaaZQO2PfH1vI_k38cgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbarQRcEE-x0IIPwImoyeQ1OSBUthv6gFVUtai3NPOSVtrNlG6q0t_CP-HX4dkkW1UIbr1EkTIaRWPL_uyxPwO8ZSJVITfa44GJvIi0wqt8qTwhM6PDikfSuG7kb5Nk7yQ6OI1P1-B33wvjyip7m7g01MpKlyPfZnFIzp_ARbpturKIYjf_dP7DcxOk3E1rP06jVZFDfX1F4dvi4_4uyfodY_n4eLTndRMGPEmOufHCiBmh4kzpmP4wFX4m04jrKhBca6kM4WkmEh0yPzFKa8O0cIAjkRRXCRkHIe27DhspRUX-ADY-jyfF0SrD4xg3eRC3xJ5hmPltNzr529hxA99yhOv1dPqXN1i6uPwRPOywKe60yvQY1nT9BO6P-pFwT-HXTjO3C0dEMJXYNhZeaDx2Q46VxYKA-LzCA92gNVjY2bWiiHxOMBZHtnLl1Whr_OIYsukcMdezBgky4yqvgeN2Jo_sSAywuOlqwGmN35cFapdzPNLK_sR8Zq-w5QelcP8ZnNzJ2T-HQW1r_QJQO1Z7JiNZSUYBmKgyQe88ilO_CiImhvChP-pSdtTnbgLHrKQQyEmmvCWZIbxfLT9vOT_-tXCL5EZbumdAlo8nCUEovrxbzhgfwmYv0bIzDYvyRpFf_v_zG7hHGl5-3Z8cvoIHzNXSONZYtgmD5uJSbxEYasTrTusQzu5a0f8AN3QiEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Pressure+Tornado+Plasma+Jet+of+Polydopamine+Coating+on+Graphite+Felt+for+Improving+Electrochemical+Performance+in+Vanadium+Redox+Flow+Batteries&rft.jtitle=Catalysts&rft.au=Chen%2C+Song-Yu&rft.au=Kuo%2C+Yu-Lin&rft.au=Wang%2C+Yao-Ming&rft.au=Hsu%2C+Wei-Mau&rft.date=2021-05-12&rft.issn=2073-4344&rft.eissn=2073-4344&rft.volume=11&rft.issue=5&rft.spage=627&rft_id=info:doi/10.3390%2Fcatal11050627&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_catal11050627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4344&client=summon