Atmospheric Pressure Tornado Plasma Jet of Polydopamine Coating on Graphite Felt for Improving Electrochemical Performance in Vanadium Redox Flow Batteries
The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the enhancement of electrochemical performance. In this work, commercial GF is used as the electrodes. The GF electrode with a coated-polydopamine catalys...
Saved in:
Published in | Catalysts Vol. 11; no. 5; p. 627 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Basel
MDPI AG
12.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4344 2073-4344 |
DOI | 10.3390/catal11050627 |
Cover
Loading…
Abstract | The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the enhancement of electrochemical performance. In this work, commercial GF is used as the electrodes. The GF electrode with a coated-polydopamine catalyst is achieved to enhance the electrocatalytic activity of GF for the redox reaction of vanadium ions in vanadium redox flow battery (VRFB). Materials characteristics proved that a facile coating via atmospheric pressure plasma jet (APPJ) to alter the surface superhydrophilicity and to deposit polydopamine on GF for providing the more active sites is feasibly achieved. Due to the synergistic effects of the presence of more active sites on the superhydrophilic surface of modified electrodes, the electrochemical performance toward VO2+/VO2+ reaction was evidently improved. We believed that using the APPJ technique as a coating method for electrocatalyst preparation offers the oxygen-containing functional groups on the substrate surface on giving a hydrogen bonding with the grafted functional polymeric materials. |
---|---|
AbstractList | The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the enhancement of electrochemical performance. In this work, commercial GF is used as the electrodes. The GF electrode with a coated-polydopamine catalyst is achieved to enhance the electrocatalytic activity of GF for the redox reaction of vanadium ions in vanadium redox flow battery (VRFB). Materials characteristics proved that a facile coating via atmospheric pressure plasma jet (APPJ) to alter the surface superhydrophilicity and to deposit polydopamine on GF for providing the more active sites is feasibly achieved. Due to the synergistic effects of the presence of more active sites on the superhydrophilic surface of modified electrodes, the electrochemical performance toward VO2+/VO2+ reaction was evidently improved. We believed that using the APPJ technique as a coating method for electrocatalyst preparation offers the oxygen-containing functional groups on the substrate surface on giving a hydrogen bonding with the grafted functional polymeric materials. |
Author | Tai-Chin Chiang Yao-Ming Wang Wei-Mau Hsu Chiu-Feng Lin Song-Yu Chen Tzu-Hsuan Chien Yu-Lin Kuo Cheng-Hsien Kuo Akitoshi Okino |
Author_xml | – sequence: 1 givenname: Song-Yu orcidid: 0000-0003-3345-7456 surname: Chen fullname: Chen, Song-Yu – sequence: 2 givenname: Yu-Lin surname: Kuo fullname: Kuo, Yu-Lin – sequence: 3 givenname: Yao-Ming surname: Wang fullname: Wang, Yao-Ming – sequence: 4 givenname: Wei-Mau surname: Hsu fullname: Hsu, Wei-Mau – sequence: 5 givenname: Tzu-Hsuan surname: Chien fullname: Chien, Tzu-Hsuan – sequence: 6 givenname: Chiu-Feng surname: Lin fullname: Lin, Chiu-Feng – sequence: 7 givenname: Cheng-Hsien orcidid: 0000-0003-0368-130X surname: Kuo fullname: Kuo, Cheng-Hsien – sequence: 8 givenname: Akitoshi surname: Okino fullname: Okino, Akitoshi – sequence: 9 givenname: Tai-Chin surname: Chiang fullname: Chiang, Tai-Chin |
BackLink | https://cir.nii.ac.jp/crid/1870866215893580928$$DView record in CiNii |
BookMark | eNp1kU1v1DAQhi1UJNrSI_eR6DXgjzhxju2qW4oqsUKFa-Q4E9bIsVPb29Lfwp_Fq-VAK3GZGWmemXf0zgk58sEjIe8Y_SBERz8anbVjjEra8PYVOea0FVUt6vron_oNOUvJDrSWgteKNsfk90WeQ1q2GK2BTcSUdhHhLkSvxwAbp9Os4TNmCBNsgnsaw6Jn6xFWQWfrf0DwcB31srUZYY0uwxQi3MxLDA_79pVDk2MwW5yt0Q42GAswa28QrIfvuujY3QxfcQy_YO3CI1zqnMs5mN6S15N2Cc_-5lPybX11t_pU3X65vlld3FZGdF2uRM2nYZTdiFJT0w60M22tULNBIZpxEsWRoUHBaTONiBPHoZYNa4zicjCSiVPy_rC3HH2_w5T7n2FXDHCp58UowWUr20KJA2ViSCni1BubiwfB56it6xnt94_onz2iTFUvppZoZx2f_sufH3hvbRHYR6ZaqpqGM6k6IRXtuBJ_AATPmnw |
CitedBy_id | crossref_primary_10_3390_plasma6020016 crossref_primary_10_1002_smtd_202301674 crossref_primary_10_1007_s11090_023_10365_4 crossref_primary_10_1016_j_apsusc_2025_162874 crossref_primary_10_1002_cnl2_119 crossref_primary_10_1149_1945_7111_ad5709 |
Cites_doi | 10.1016/j.electacta.2018.05.017 10.1149/2.0631409jes 10.1016/j.apenergy.2016.05.048 10.1002/pc.24654 10.1016/j.ultsonch.2019.04.025 10.1016/j.jcis.2005.11.007 10.3390/nano10091710 10.1109/MeMeA.2017.7985867 10.1021/acscatal.5b01737 10.14710/ijred.3.1.7-12 10.1149/2.073304jes 10.1016/j.jpowsour.2013.06.018 10.1002/9783527632169.ch2 10.1016/j.apsusc.2016.01.199 10.1016/j.electacta.2013.10.011 10.1016/j.ceramint.2018.02.068 10.1039/C8TA03408G 10.1016/j.matchemphys.2019.121873 10.1098/rsos.200402 10.1016/j.jpowsour.2015.04.041 10.1039/C6TA03936G 10.1002/admi.201500309 10.1016/j.apsusc.2017.07.022 10.1016/j.est.2019.100844 10.1016/j.electacta.2007.04.121 10.1016/j.ijhydene.2017.11.050 10.1016/j.jpowsour.2017.08.075 10.1039/C7TA03922K 10.1038/srep06906 10.3390/catal8110509 10.1002/9783527807918 10.1039/c2cc31433a 10.1016/j.rser.2016.11.188 10.1016/j.nanoen.2016.08.025 10.3390/polym11010139 10.1021/acscatal.5b01973 10.1002/smll.201403715 10.1039/C8TA00464A 10.1016/j.carbon.2010.04.044 10.1039/C7TA06672D 10.1016/j.electacta.2009.10.022 10.1016/j.electacta.2018.02.124 10.1039/C5RA24626A 10.2113/gsecongeo.59.2.259 10.1039/D0SE01723J 10.1149/2.0081509jes 10.1149/2.003210jes 10.1109/9780470544273 10.1002/er.1863 10.1016/j.jpowsour.2017.07.103 10.1021/nl403674a |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.3390/catal11050627 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4344 |
ExternalDocumentID | 10_3390_catal11050627 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU D1I ESX HCIFZ IAO KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC RYH AAYXX CITATION 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c399t-342fbd59de5a0c7b09c748ea1b8eecdf3062b6e3206fdeef2eb45616c825bc513 |
IEDL.DBID | BENPR |
ISSN | 2073-4344 |
IngestDate | Fri Jul 25 11:59:12 EDT 2025 Tue Jul 01 01:12:16 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 Thu Jun 26 22:27:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English Japanese |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-342fbd59de5a0c7b09c748ea1b8eecdf3062b6e3206fdeef2eb45616c825bc513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3345-7456 0000-0003-0368-130x 0000-0002-8949-294X 0000-0003-0368-130X |
OpenAccessLink | https://www.proquest.com/docview/2532325757?pq-origsite=%requestingapplication% |
PQID | 2532325757 |
PQPubID | 2032420 |
ParticipantIDs | proquest_journals_2532325757 crossref_citationtrail_10_3390_catal11050627 crossref_primary_10_3390_catal11050627 nii_cinii_1870866215893580928 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-12 |
PublicationDateYYYYMMDD | 2021-05-12 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Catalysts |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Pham (ref_54) 2016; 6 Ji (ref_19) 2017; 5 Lee (ref_2) 2014; 161 Etesami (ref_32) 2018; 43 Kim (ref_53) 2012; 48 Ulaganathan (ref_8) 2016; 3 Hofman (ref_45) 2018; 30 Shao (ref_38) 2015; 5 Kuo (ref_20) 2018; 44 Bayeh (ref_41) 2018; 6 Kabtamu (ref_37) 2016; 4 Duan (ref_14) 2015; 11 Jiang (ref_34) 2017; 365 Yue (ref_10) 2010; 48 ref_24 Ghimire (ref_39) 2018; 6 ref_23 ref_22 Lee (ref_13) 2018; 429 Wei (ref_16) 2015; 287 Wang (ref_43) 2016; 367 ref_29 Chang (ref_27) 2017; 364 He (ref_36) 2018; 278 Huang (ref_50) 2012; 159 Jeong (ref_51) 2013; 114 Hammer (ref_7) 2014; 3 Bayeh (ref_11) 2021; 5 Li (ref_30) 2014; 14 Jiang (ref_25) 2019; 233 Choi (ref_6) 2017; 69 ref_35 Tseng (ref_49) 2013; 160 Cloke (ref_12) 1964; 59 Wang (ref_52) 2007; 52 Lee (ref_15) 2015; 162 Deng (ref_44) 2019; 40 Kwon (ref_42) 2006; 295 Li (ref_18) 2020; 7 Shah (ref_31) 2010; 55 Noh (ref_1) 2017; 5 Kim (ref_40) 2014; 4 Chang (ref_3) 2014; 245 Lourenssen (ref_5) 2019; 25 Karikalan (ref_33) 2019; 56 ref_47 ref_46 Ejigu (ref_4) 2015; 5 Kear (ref_28) 2012; 36 Wang (ref_21) 2018; 268 ref_48 Wu (ref_26) 2016; 28 Youn (ref_17) 2019; 237 Wei (ref_9) 2016; 176 |
References_xml | – volume: 278 start-page: 106 year: 2018 ident: ref_36 article-title: A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.017 – volume: 161 start-page: A1291 year: 2014 ident: ref_2 article-title: Analysis of concentration polarization using UV-visible spectrophotometry in a vanadium redox flow battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.0631409jes – volume: 176 start-page: 74 year: 2016 ident: ref_9 article-title: A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.048 – volume: 233 start-page: 105 year: 2019 ident: ref_25 article-title: A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries publication-title: Appl. Energy – volume: 40 start-page: 328 year: 2019 ident: ref_44 article-title: Synthesis and mechanical properties of dopamine modified titanium dioxide/waterborne polyurethane composites publication-title: Polym. Compos. doi: 10.1002/pc.24654 – volume: 56 start-page: 297 year: 2019 ident: ref_33 article-title: Effect of cavitation erosion in the sonochemical exfoliation of activated graphite for electrocatalysis of acebutolol publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.04.025 – volume: 295 start-page: 409 year: 2006 ident: ref_42 article-title: Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.11.007 – ident: ref_29 doi: 10.3390/nano10091710 – ident: ref_35 doi: 10.1109/MeMeA.2017.7985867 – volume: 5 start-page: 7288 year: 2015 ident: ref_38 article-title: Nanostructured electrocatalysts for PEM fuel cells and redox flow batteries: A selected review publication-title: ACS Catal. doi: 10.1021/acscatal.5b01737 – volume: 3 start-page: 7 year: 2014 ident: ref_7 article-title: Improvement of the performance of graphite felt electrodes for vanadium-redox-flow-batteries by plasma treatment publication-title: Int. J. Renew. Energy Dev. doi: 10.14710/ijred.3.1.7-12 – volume: 160 start-page: A690 year: 2013 ident: ref_49 article-title: A Kinetic Study of the Platinum/Carbon Anode Catalyst for Vanadium Redox Flow Battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.073304jes – volume: 245 start-page: 66 year: 2014 ident: ref_3 article-title: Electrical, mechanical and morphological properties of compressed carbon felt electrodes in vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.018 – ident: ref_23 doi: 10.1002/9783527632169.ch2 – volume: 367 start-page: 401 year: 2016 ident: ref_43 article-title: Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.199 – volume: 114 start-page: 439 year: 2013 ident: ref_51 article-title: Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.10.011 – volume: 44 start-page: 7349 year: 2018 ident: ref_20 article-title: Tailoring the O2 reduction activity on hydrangea-like La0.5Sr0.5MnO3 cathode film fabricated via atmospheric pressure plasma jet process publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.02.068 – volume: 6 start-page: 13908 year: 2018 ident: ref_41 article-title: Synergistic effects of a TiNb2O7–reduced graphene oxide nanocomposite electrocatalyst for high-performance all-vanadium redox flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03408G – volume: 237 start-page: 121873 year: 2019 ident: ref_17 article-title: Effect of nitrogen functionalization of graphite felt electrode by ultrasonication on the electrochemical performance of vanadium redox flow battery publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.121873 – volume: 7 start-page: 200402 year: 2020 ident: ref_18 article-title: Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.200402 – volume: 287 start-page: 81 year: 2015 ident: ref_16 article-title: A new electrocatalyst and its application method for vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.041 – volume: 4 start-page: 11472 year: 2016 ident: ref_37 article-title: Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03936G – volume: 3 start-page: 1500309 year: 2016 ident: ref_8 article-title: Recent advancements in all-vanadium redox flow batteries publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500309 – volume: 429 start-page: 187 year: 2018 ident: ref_13 article-title: Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.022 – volume: 25 start-page: 100844 year: 2019 ident: ref_5 article-title: Vanadium redox flow batteries: A comprehensive review publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100844 – volume: 52 start-page: 6755 year: 2007 ident: ref_52 article-title: Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.04.121 – volume: 43 start-page: 189 year: 2018 ident: ref_32 article-title: Phosphonated graphene oxide with high electrocatalytic performance for vanadium redox flow battery publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.11.050 – volume: 365 start-page: 34 year: 2017 ident: ref_34 article-title: Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.075 – volume: 5 start-page: 15154 year: 2017 ident: ref_19 article-title: Synergistic effect of the bifunctional polydopamine–Mn3O4 composite electrocatalyst for vanadium redox flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03922K – volume: 4 start-page: 1 year: 2014 ident: ref_40 article-title: A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries publication-title: Sci. Rep. doi: 10.1038/srep06906 – ident: ref_47 doi: 10.3390/catal8110509 – ident: ref_48 doi: 10.1002/9783527807918 – ident: ref_24 – volume: 48 start-page: 5455 year: 2012 ident: ref_53 article-title: Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries publication-title: Chem. Commun. doi: 10.1039/c2cc31433a – volume: 69 start-page: 263 year: 2017 ident: ref_6 article-title: A review of vanadium electrolytes for vanadium redox flow batteries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.188 – volume: 28 start-page: 19 year: 2016 ident: ref_26 article-title: Boosting vanadium flow battery performance by nitrogen-doped carbon nanospheres electrocatalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.025 – ident: ref_46 doi: 10.3390/polym11010139 – volume: 5 start-page: 7122 year: 2015 ident: ref_4 article-title: Synergistic Catalyst–Support Interactions in a Graphene–Mn3O4 Electrocatalyst for Vanadium Redox Flow Batteries publication-title: ACS Catal. doi: 10.1021/acscatal.5b01973 – volume: 11 start-page: 3036 year: 2015 ident: ref_14 article-title: Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions publication-title: Small doi: 10.1002/smll.201403715 – volume: 6 start-page: 6625 year: 2018 ident: ref_39 article-title: Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00464A – volume: 48 start-page: 3079 year: 2010 ident: ref_10 article-title: Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery publication-title: Carbon doi: 10.1016/j.carbon.2010.04.044 – volume: 5 start-page: 21334 year: 2017 ident: ref_1 article-title: Chelating functional group attached to carbon nanotubes prepared for performance enhancement of vanadium redox flow battery publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06672D – volume: 55 start-page: 1125 year: 2010 ident: ref_31 article-title: Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.10.022 – volume: 268 start-page: 260 year: 2018 ident: ref_21 article-title: Fabrication of in operando, self-growing, core-shell solid electrolyte interphase on LiFePO4 electrodes for preventing undesirable high-temperature effects in Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.02.124 – volume: 6 start-page: 17574 year: 2016 ident: ref_54 article-title: MoO2 nanocrystals interconnected on mesocellular carbon foam as a powerful catalyst for vanadium redox flow battery publication-title: RSC Adv. doi: 10.1039/C5RA24626A – volume: 59 start-page: 259 year: 1964 ident: ref_12 article-title: Solubility of gold under inorganic supergene conditions publication-title: Econ. Geol. doi: 10.2113/gsecongeo.59.2.259 – volume: 5 start-page: 1668 year: 2021 ident: ref_11 article-title: Carbon and metal-based catalysts for vanadium redox flow batteries: A perspective and review of recent progress publication-title: Sustain. Energy Fuels doi: 10.1039/D0SE01723J – volume: 162 start-page: A1675 year: 2015 ident: ref_15 article-title: Graphite felt coated with dopamine-derived nitrogen-doped carbon as a positive electrode for a vanadium redox flow battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.0081509jes – volume: 159 start-page: A1579 year: 2012 ident: ref_50 article-title: Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.003210jes – ident: ref_22 doi: 10.1109/9780470544273 – volume: 30 start-page: 1704640 year: 2018 ident: ref_45 article-title: Bioinspired underwater adhesives by using the supramolecular toolbox publication-title: Adv. Biomater. – volume: 36 start-page: 1105 year: 2012 ident: ref_28 article-title: Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects publication-title: Int. J. Energy Res. doi: 10.1002/er.1863 – volume: 364 start-page: 1 year: 2017 ident: ref_27 article-title: High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.103 – volume: 14 start-page: 158 year: 2014 ident: ref_30 article-title: Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery publication-title: Nano Lett. doi: 10.1021/nl403674a |
SSID | ssib045324806 ssib045324890 ssib045324792 ssib045317778 ssib045321346 ssib045315883 ssib045315888 ssib045324855 ssj0000913815 |
Score | 2.242044 |
Snippet | The intrinsic hydrophobicity of graphite felt (GF) is typically altered for the purpose of the surface wettability and providing active sites for the... |
SourceID | proquest crossref nii |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 627 |
SubjectTerms | Alternative energy sources Atmospheric pressure atmospheric pressure plasma jet (APPJ) Catalysts Chemical reactions Coated electrodes Dopamine Electric fields Electrocatalysts Electrochemical analysis electrode Electrodes Electrolytes Energy efficiency Energy storage Functional groups Gas absorption Graphite graphite felt (GF) Hydrogen bonding Hydrophilicity Hydrophobicity Nitrogen Plasma Plasma jets polydopamine Rechargeable batteries Redox reactions Renewable resources Spectrum analysis Substrates Synergistic effect Vanadium oxides vanadium redox flow battery (VRFB) Wettability |
Title | Atmospheric Pressure Tornado Plasma Jet of Polydopamine Coating on Graphite Felt for Improving Electrochemical Performance in Vanadium Redox Flow Batteries |
URI | https://cir.nii.ac.jp/crid/1870866215893580928 https://www.proquest.com/docview/2532325757 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9tAEF3q5NBeSj-p2yTMofRUUWu1klankhorIdBgQlJyE9rdWTDY2jRWaPtb-mc7Y60dQmkvQiAhkGY1897szBsh3ktTukx7THTqVaJoVSTtxLrE2Mpj1mplPXcjfz0vTq_U2XV-HRNu61hWufWJG0ftguUc-SeZZxT8CVyUn2--Jzw1indX4wiNkdgnF6yJfO1_mZ3PL3ZZFla91Gk-iGtmxO-HjnCKeTnr8z4IRqNusfjLI2_CTP1MPI34EI4Hgz4Xj7B7IR5Pt2PZXorfx_0qrFkMYGFhaO67RbjkQcMuwJzA8KqFM-wheJiH5S9HrHhFUBKmoeUSZwgdnLBKNb0X1LjsgWAr7HILMBvm4tgoJADz-84CWHTwbVMkdreCC3ThJ9TL8AMGjU6i3K_EVT27nJ4mccJCYgmY9EmmpDcurxzmZKHSTCpbKo1tajSidZ74hDQFZnJSeIfoJRoGXIUlXmlsnmavxV4XOnwjAFlZXlplWyuJBJm2MnSuVV5O2lRJMxYft5-6sVF-nKdgLBuiIWyZ5oFlxuLD7vabQXfjXzcekt3okXxMyfvooiAYozf7u5XUY3GwtWgTf891c7-Y3v7_8jvxRHIRC8u1ygOx19_e4SGhkN4ciZGuT47igvsDLubgLQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacigXRHmILW2ZQ8uJiMRxEueAULU03T61QlvUW4gfkVbajUs3Velv4T_wG5nJY6sKwa2XKJItK_JMZr6xZ75hbJerxISytJ4MSuEJ1Aqv8LXxlE5LGxZS6JKqkc_O49GFOL6MLlfY774WhtIqe5vYGGrjNJ2Rf-RRiM4fwUXy-eqHR12j6Ha1b6HRqsWJvbvFkG3x6egLyneP8-xgMhx5XVcBT6Mzrr1Q8FKZKDU2wq9KlJ_qREhbBEpaq02JGJqr2Ibcj0tjbcmtIpARa4yllI6CENddZU9EGKb0R8nscHmmQxybMohaKk8c99v6c_SwEbEBP3B9q9V0-pf9b5xa9pw969Ao7Lfqs8FWbPWCrQ_7JnAv2a_9eu4WRD0w1dCWEl5bmFBbY-NgjNB7XsCxrcGVMHazO4Mx-ByBKwxdQQnV4Co4JE5s3EXI7KwGBMmwPMmAg7YLj-5oC2B8X8cA0wq-NSlpN3P4ao37CdnM3ULLCIoB_it28Sg7_5qtVa6ybxhY4rHnWuhCcwy5VJEqfJciSvwiEFwN2Id-q3PdkZ1Tz41ZjkEPSSZ_IJkBe7-cftWyfPxr4jbKDZekZ4C2TsYxgibZ3CanXA7YVi_RvDMGi_xedTf_P_yOrY8mZ6f56dH5yVv2lFP6DBHF8i22Vl_f2G3EP7XaaZQO2PfH1vI_k38cgA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbarQRcEE-x0IIPwImoyeQ1OSBUthv6gFVUtai3NPOSVtrNlG6q0t_CP-HX4dkkW1UIbr1EkTIaRWPL_uyxPwO8ZSJVITfa44GJvIi0wqt8qTwhM6PDikfSuG7kb5Nk7yQ6OI1P1-B33wvjyip7m7g01MpKlyPfZnFIzp_ARbpturKIYjf_dP7DcxOk3E1rP06jVZFDfX1F4dvi4_4uyfodY_n4eLTndRMGPEmOufHCiBmh4kzpmP4wFX4m04jrKhBca6kM4WkmEh0yPzFKa8O0cIAjkRRXCRkHIe27DhspRUX-ADY-jyfF0SrD4xg3eRC3xJ5hmPltNzr529hxA99yhOv1dPqXN1i6uPwRPOywKe60yvQY1nT9BO6P-pFwT-HXTjO3C0dEMJXYNhZeaDx2Q46VxYKA-LzCA92gNVjY2bWiiHxOMBZHtnLl1Whr_OIYsukcMdezBgky4yqvgeN2Jo_sSAywuOlqwGmN35cFapdzPNLK_sR8Zq-w5QelcP8ZnNzJ2T-HQW1r_QJQO1Z7JiNZSUYBmKgyQe88ilO_CiImhvChP-pSdtTnbgLHrKQQyEmmvCWZIbxfLT9vOT_-tXCL5EZbumdAlo8nCUEovrxbzhgfwmYv0bIzDYvyRpFf_v_zG7hHGl5-3Z8cvoIHzNXSONZYtgmD5uJSbxEYasTrTusQzu5a0f8AN3QiEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Pressure+Tornado+Plasma+Jet+of+Polydopamine+Coating+on+Graphite+Felt+for+Improving+Electrochemical+Performance+in+Vanadium+Redox+Flow+Batteries&rft.jtitle=Catalysts&rft.au=Chen%2C+Song-Yu&rft.au=Kuo%2C+Yu-Lin&rft.au=Wang%2C+Yao-Ming&rft.au=Hsu%2C+Wei-Mau&rft.date=2021-05-12&rft.issn=2073-4344&rft.eissn=2073-4344&rft.volume=11&rft.issue=5&rft.spage=627&rft_id=info:doi/10.3390%2Fcatal11050627&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_catal11050627 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4344&client=summon |