Bayesian Uncertainty Quantification of Reflooding Model With PSO–Kriging and PCA Approach

To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction, inverse uncertainty quantification (IUQ) is proposed in recent years to quantify the uncertainty of model parameters in reactor program. As r...

Full description

Saved in:
Bibliographic Details
Published inScience and technology of nuclear installations Vol. 2025; no. 1
Main Authors Zhang, Ziyue, Li, Dong, Wang, Nianfeng, Lei, Meng
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.01.2025
Wiley
Subjects
Online AccessGet full text
ISSN1687-6075
1687-6083
DOI10.1155/stni/5416943

Cover

Abstract To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction, inverse uncertainty quantification (IUQ) is proposed in recent years to quantify the uncertainty of model parameters in reactor program. As reflooding is a vital stage to cool the core and prevent serious accidents and uncertainties exist in the important results of the program because of the complexity of the phenomena, IUQ is performed for reflooding models in this study based on Bayesian theory and Markov chain Monte Carlo (MCMC) algorithm. In order to solve the problem of large time costs in sampling and inefficient use of transient sample points, particle swarm optimization (PSO)–Kriging model and principal component analysis (PCA) are adopted in this paper. Measurement of peak cladding temperature (PCT) and quench time from FEBA and FLECHT SEASET experiments supply data for evaluation and validation. Results show that PSO–Kriging model could well represent the system program with R 2 (R‐squared coefficient of determination) close to 1 and uncertainties assessed by the method could cover most of the time sequential experiment data. By comparing the methods with and without PCA, it indicates that the IUQ method utilizing PCA not only reduces input parameter correlation but also provides more accurate estimates of input parameter posterior distributions. Furthermore, the validation outcomes of mean value calibration show enhanced agreement with the experimental data.
AbstractList To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction, inverse uncertainty quantification (IUQ) is proposed in recent years to quantify the uncertainty of model parameters in reactor program. As reflooding is a vital stage to cool the core and prevent serious accidents and uncertainties exist in the important results of the program because of the complexity of the phenomena, IUQ is performed for reflooding models in this study based on Bayesian theory and Markov chain Monte Carlo (MCMC) algorithm. In order to solve the problem of large time costs in sampling and inefficient use of transient sample points, particle swarm optimization (PSO)–Kriging model and principal component analysis (PCA) are adopted in this paper. Measurement of peak cladding temperature (PCT) and quench time from FEBA and FLECHT SEASET experiments supply data for evaluation and validation. Results show that PSO–Kriging model could well represent the system program with R 2 (R‐squared coefficient of determination) close to 1 and uncertainties assessed by the method could cover most of the time sequential experiment data. By comparing the methods with and without PCA, it indicates that the IUQ method utilizing PCA not only reduces input parameter correlation but also provides more accurate estimates of input parameter posterior distributions. Furthermore, the validation outcomes of mean value calibration show enhanced agreement with the experimental data.
To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction, inverse uncertainty quantification (IUQ) is proposed in recent years to quantify the uncertainty of model parameters in reactor program. As reflooding is a vital stage to cool the core and prevent serious accidents and uncertainties exist in the important results of the program because of the complexity of the phenomena, IUQ is performed for reflooding models in this study based on Bayesian theory and Markov chain Monte Carlo (MCMC) algorithm. In order to solve the problem of large time costs in sampling and inefficient use of transient sample points, particle swarm optimization (PSO)–Kriging model and principal component analysis (PCA) are adopted in this paper. Measurement of peak cladding temperature (PCT) and quench time from FEBA and FLECHT SEASET experiments supply data for evaluation and validation. Results show that PSO–Kriging model could well represent the system program with R2 (R-squared coefficient of determination) close to 1 and uncertainties assessed by the method could cover most of the time sequential experiment data. By comparing the methods with and without PCA, it indicates that the IUQ method utilizing PCA not only reduces input parameter correlation but also provides more accurate estimates of input parameter posterior distributions. Furthermore, the validation outcomes of mean value calibration show enhanced agreement with the experimental data.
Author Li, Dong
Zhang, Ziyue
Wang, Nianfeng
Lei, Meng
Author_xml – sequence: 1
  givenname: Ziyue
  orcidid: 0009-0005-7089-0293
  surname: Zhang
  fullname: Zhang, Ziyue
– sequence: 2
  givenname: Dong
  orcidid: 0000-0001-6872-0977
  surname: Li
  fullname: Li, Dong
– sequence: 3
  givenname: Nianfeng
  surname: Wang
  fullname: Wang, Nianfeng
– sequence: 4
  givenname: Meng
  surname: Lei
  fullname: Lei, Meng
BookMark eNo9kUlOAzEQRS0EEmHYcQBLbAnY7bGXIWISIMaIBQur2m0HR8EObmeRHXfghpyEhCBWVar6-vVLbwdtxhQdQgeUHFMqxElXYjgRnMqasw3Uo1KrviSabf73Smyjna6bECKZVLSHXk9h4boAEY-idblAiGWBH-YQS_DBQgkp4uTxo_PTlNoQx_g2tW6KX0J5w_dPd9-fX9c5jFcLiC2-Hw7wYDbLCezbHtryMO3c_l_dRaPzs-fhZf_m7uJqOLjpW1bXpV9ZL5TnznLKvaas0qIW0rWtBSKqykoGQoGWVPCaKdVoTWhNnJCM1jUwx3bR1dq3TTAxsxzeIS9MgmB-BymPDeQS7NQZzlrJPeeNrQRXjWyohEZpUK13jPqV1-Haa_nCx9x1xUzSPMdlfMOoZpWgnFRL1dFaZXPquuz8_1VKzAqFWaEwfyjYD1ghfc0
Cites_doi 10.1016/j.nucengdes.2021.111230
10.5445/IR/270019697
10.1016/j.nucengdes.2018.06.003
10.1016/j.nucengdes.2021.111460
10.1016/j.ress.2021.107636
10.1016/j.nucengdes.2017.06.007
10.1016/j.nucengdes.2021.111498
10.1007/s11222-008-9110-y
10.1299/jsmeicone.2023.30.1085
10.1016/j.nucengdes.2016.11.032
10.13182/NURETH20-40380
10.3969/j.issn.2096-8299.2022.03.011
10.1080/00295639.2020.1759310
10.1007/s10596-018-9785-x
10.1016/j.nucengdes.2022.112059
10.1016/j.nucengdes.2019.110430
10.1016/j.ress.2017.09.029
10.1080/00295639.2018.1499279
10.1016/j.nucengdes.2013.05.007
10.5445/IR/270019863
10.1016/j.pnucene.2023.104612
10.1016/j.engstruct.2022.115393
10.1016/j.nucengdes.2019.110173
10.1016/j.anucene.2017.04.020
10.1016/j.anucene.2012.03.002
10.1016/j.nucengdes.2018.06.004
10.1016/j.energy.2024.132374
10.1016/j.cma.2023.116721
10.1016/j.nucengdes.2019.110199
ContentType Journal Article
Copyright Copyright © 2025 Ziyue Zhang et al. Science and Technology of Nuclear Installations published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2025 Ziyue Zhang et al. Science and Technology of Nuclear Installations published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
HCIFZ
KR7
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1155/stni/5416943
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Scholarly Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6083
Editor Hesham MH Zakaly
Editor_xml – fullname: Hesham MH Zakaly
ExternalDocumentID oai_doaj_org_article_43d64f44bc2547b6b16ab78a7dfe31fe
10_1155_stni_5416943
GroupedDBID 0R~
123
188
24P
2UF
2WC
4.4
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAMMB
AAYXX
ABDBF
ABJCF
ABUWG
ACCMX
ACUHS
ADBBV
ADMLS
AEFGJ
AENEX
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
CS3
CWDGH
E3Z
EBS
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
I-F
IAO
IL9
ISR
ITC
KQ8
L6V
L8X
M7S
MK~
OK1
OVT
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RHU
TR2
TUS
UGNYK
~8M
7SP
7TB
8FD
AAJEY
AINHJ
AZQEC
DWQXO
FR3
KR7
L7M
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c399t-2cf57f4ec414f813285956eddca0522c63a57a861549377b880190e563199a3e3
IEDL.DBID DOA
ISSN 1687-6075
IngestDate Wed Aug 27 00:25:28 EDT 2025
Fri Jul 25 19:02:11 EDT 2025
Wed Sep 10 06:02:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-2cf57f4ec414f813285956eddca0522c63a57a861549377b880190e563199a3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-7089-0293
0000-0001-6872-0977
OpenAccessLink https://doaj.org/article/43d64f44bc2547b6b16ab78a7dfe31fe
PQID 3183251402
PQPubID 237769
ParticipantIDs doaj_primary_oai_doaj_org_article_43d64f44bc2547b6b16ab78a7dfe31fe
proquest_journals_3183251402
crossref_primary_10_1155_stni_5416943
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Science and technology of nuclear installations
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References Kovtonyuk A. (e_1_2_11_29_2) 2012
Meholic M. J. (e_1_2_11_27_2) 2011
e_1_2_11_31_2
Hochreiter L. E. (e_1_2_11_35_2) 1980
e_1_2_11_13_2
e_1_2_11_34_2
e_1_2_11_11_2
e_1_2_11_33_2
e_1_2_11_10_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_4_2
e_1_2_11_26_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_1_2
Köppel M. (e_1_2_11_12_2) 2019
Chen Z.-ying (e_1_2_11_23_2) 2011; 26
Lee N. (e_1_2_11_36_2) 1982
e_1_2_11_20_2
e_1_2_11_24_2
Xie L. (e_1_2_11_32_2) 2024; 44
e_1_2_11_9_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_21_2
Li D. (e_1_2_11_30_2) 2019
e_1_2_11_17_2
e_1_2_11_16_2
e_1_2_11_15_2
e_1_2_11_14_2
e_1_2_11_19_2
e_1_2_11_18_2
References_xml – ident: e_1_2_11_24_2
  doi: 10.1016/j.nucengdes.2021.111230
– ident: e_1_2_11_34_2
  doi: 10.5445/IR/270019697
– ident: e_1_2_11_9_2
  doi: 10.1016/j.nucengdes.2018.06.003
– ident: e_1_2_11_10_2
  doi: 10.1016/j.nucengdes.2021.111460
– ident: e_1_2_11_15_2
  doi: 10.1016/j.ress.2021.107636
– year: 1982
  ident: e_1_2_11_36_2
  article-title: PWR Flecht Seaset Unblocked Bundle, Forced and Gravity Reflood Task
  publication-title: Data Evaluation and Analysis Report. NUREG/CR-2256
– ident: e_1_2_11_17_2
  doi: 10.1016/j.nucengdes.2017.06.007
– ident: e_1_2_11_11_2
  doi: 10.1016/j.nucengdes.2021.111498
– ident: e_1_2_11_13_2
  doi: 10.1007/s11222-008-9110-y
– ident: e_1_2_11_21_2
  doi: 10.1299/jsmeicone.2023.30.1085
– ident: e_1_2_11_7_2
  doi: 10.1016/j.nucengdes.2016.11.032
– ident: e_1_2_11_6_2
  doi: 10.13182/NURETH20-40380
– ident: e_1_2_11_20_2
  doi: 10.3969/j.issn.2096-8299.2022.03.011
– volume-title: Investigation of Uncertainty Quantification Method on BE Models and Application of Reflood Model Evaluation
  year: 2019
  ident: e_1_2_11_30_2
– ident: e_1_2_11_5_2
  doi: 10.1080/00295639.2020.1759310
– volume-title: Comparison of Data-Driven Uncertainty Quantification Methods for a Carbon Dioxide Storage Benchmark Scenario
  year: 2019
  ident: e_1_2_11_12_2
  doi: 10.1007/s10596-018-9785-x
– ident: e_1_2_11_16_2
  doi: 10.1016/j.nucengdes.2022.112059
– volume-title: Premium BenchmarkPhase II: Identification of Influential Input Parameters
  year: 2012
  ident: e_1_2_11_29_2
– ident: e_1_2_11_2_2
  doi: 10.1016/j.nucengdes.2019.110430
– ident: e_1_2_11_18_2
  doi: 10.1016/j.ress.2017.09.029
– volume: 44
  start-page: 894
  year: 2024
  ident: e_1_2_11_32_2
  article-title: Optimization and Application of Global Sensitivity Quantification Method Based on Elementary Effects
  publication-title: Nuclear Science and Engineering
– ident: e_1_2_11_19_2
  doi: 10.1080/00295639.2018.1499279
– volume-title: The Development of a Non-E quilibrium Dispersed Flow Film Boiling Heat Transfer Modeling Package
  year: 2011
  ident: e_1_2_11_27_2
– ident: e_1_2_11_28_2
  doi: 10.1016/j.nucengdes.2013.05.007
– ident: e_1_2_11_33_2
  doi: 10.5445/IR/270019863
– year: 1980
  ident: e_1_2_11_35_2
  article-title: PWR Flecht Seaset 161-Rod Bundle Flow Blockage Task, Task Plan Report
  publication-title: NUREG/CR-1531
– ident: e_1_2_11_31_2
  doi: 10.1016/j.pnucene.2023.104612
– ident: e_1_2_11_26_2
  doi: 10.1016/j.engstruct.2022.115393
– ident: e_1_2_11_4_2
  doi: 10.1016/j.nucengdes.2019.110173
– ident: e_1_2_11_14_2
  doi: 10.1016/j.anucene.2017.04.020
– ident: e_1_2_11_1_2
  doi: 10.1016/j.anucene.2012.03.002
– ident: e_1_2_11_8_2
  doi: 10.1016/j.nucengdes.2018.06.004
– ident: e_1_2_11_22_2
  doi: 10.1016/j.energy.2024.132374
– ident: e_1_2_11_25_2
  doi: 10.1016/j.cma.2023.116721
– ident: e_1_2_11_3_2
  doi: 10.1016/j.nucengdes.2019.110199
– volume: 26
  start-page: 1522
  year: 2011
  ident: e_1_2_11_23_2
  article-title: Particle Swarm Optimized Kriging Approximate Model and Its Application to Reliability Analysis
  publication-title: Journal of Aerodynamics
SSID ssj0063671
ssib044760419
Score 2.3122518
Snippet To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
SubjectTerms Algorithms
Bayesian analysis
Calibration
Error reduction
Experiments
Heat
Hydraulic models
Hydraulics
Markov chains
Nuclear power plants
Nuclear reactors
Nuclear safety
Parameters
Particle swarm optimization
Principal components analysis
Uncertainty
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTtxAEG2xXOAQQSDKJID6EI7W2NObfYjQDAIhokyGZQQSB6tXQIo8BMyBG__AH_IlVLVtIIqUq7t9qfVVd_UrQr4FnwXusKNGFC7hiheJ8ZlJMu7SwkjBnMLHyT_H8mDKD8_F-RwZd29hsK2yi4kxULuZxTPyfrQ9yO7pYOfmT4JTo_B2tRuhodvRCu57pBibJ4sQknOw-8XR3nhy3FkY50qmkcCsidWSyaYkk-BqErJn1xovRP-urq77AvBKwdlfSSty-_8TumM-2l8hH1ogSYeN5lfJnK8-kuV39IJr5GKkHzw-kqRTUG28-q8f6NG9bhqEok7oLNBjH7B9Hf6hOBrtNz27rq_o5OTX8-PTjzg465LqytHJ7pAOWw7ydTLd3zvdPUjaYQqJBQxSJwMbhArcW57xkEMNisRm0jtndQoYzEqmhdK5RMo2ppQBvwas4IUEHy008-wTWahmlf9MqBGZDXiFh2iqgK06z1IrtQK0ZmGxR7Y7aZU3DWdGGWsNIUqUatlKtUdGKMrXPch0HT_Mbi_L1nFKzpzkgXNjoZRVRppMaqNyrVzwLAu-RzY6RZSt-92Vb8by5f_LX8nSAAf6xjOVDbJQ3977TUAZtdlqTecFcG_O3Q
  priority: 102
  providerName: ProQuest
Title Bayesian Uncertainty Quantification of Reflooding Model With PSO–Kriging and PCA Approach
URI https://www.proquest.com/docview/3183251402
https://doaj.org/article/43d64f44bc2547b6b16ab78a7dfe31fe
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5RuNADgkLVAI320B6teLMv-5ikhAgEDY8oSBysfVKkykHgHLjxH_iH_BJm1w4K4tBLT5bstWx945n9xjv7DUI_vCOe2VBRw3ObMMnyRDuiE8JsmmvBqZVhc_LJqRhN2NEVv1pq9RVqwmp54Bq4DqNWMM-YNpDKSC00EUrLTEnrHSXeheib5ukimapjsKBCkkWZO-edh6q87XDgHjmj7yagqNP_IQzHuWW4iTYaUoh79ctsoRVXfkGfl6QCt9F1Xz26sOERT8BMcRm_esRnc1UX-0R88czjc-dDKTrcg0Obs794elv9weOL3y9Pz8exCdYNVqXF40EP9xo98R00GR5cDkZJ0xghMcAnqqRrPJeeOcMI8xnkk0GkTDhrjUqBTxlBFZcqE0F-jUqpwUdh3ndcgL_lijr6Fa2Ws9J9Q1hzYnxYjgvMKIehKiOpEUoC8zJwsYV-LtAq7mr9iyLmDZwXAdWiQbWF-gHKtzFBtTqeAFsWjS2Lf9myhfYXhigaV3ooYtABWpd2d__HM_bQeje08I1_UfbRanU_d9-BV1S6jT5lw8M2WusfnI7P4TiY_jocteOH9QoFHdBU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qZQEsEE8xpYAXdBlNEr-SBULTwjBl2lKgIyp1EfwslapM6aRCs-Mf-A8-ii_h2kl4CIldt7GdxfWxz7329T0AT73LPLMho4aXNmGSlYl2mU4yZtNSC06tDI-Td_fEZMZeH_LDFfjev4UJaZX9nhg3ajs34Yx8GLGH7J7mz88-J0E1Ktyu9hIaLSymbvkFQ7bFs-0XOL8beT5-ebA1STpVgcQgGTdJbjyXnjnDMuYLDMZChS_hrDUqRWfECKq4VIUItcuolBoBjqTpuECwloo6iv-9AlcZpWWQiijGr3r8MiZFGsujtUwgqGgDPoELWSA394n3nA8XTX0y5OgNlYz-RYlROeAfYohsN74FNzs3lYxaXN2GFVffgRt_FC-8C0ebaunCE0wyQ-DExIJmSd5eqDb9KM44mXvyzvmQHI9jSBBeOyUfTppPZP_9mx9fv02jLNcxUbUl-1sjMuoqnN-D2aUY9T6s1vPaPQCieWZ8uCAMvlqJXVWRpUYoib6gwcYBbPTWqs7aihxVjGQ4r4JVq86qA9gMpvzVJ9TRjh_m58dVtywrRq1gnjFtMFCWWuhMKC0LJa13NPNuAOv9RFTd4l5Uv6G49v_mJ3BtcrC7U-1s700fwvU8SAfH05t1WG3OL9wj9Gca_TiCiMDHy0btT112Avc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVEJw4I0IFNgDPbrxYx_2AaE0IaQESnhErdSD2V3vlgrklMYRCif-A_-Gv8KNX8Ls2uYpceuBq3dtyfY3883uznwDcM-ayNLCZdSwrAiooFmgTKSCiBZhpjhLCuGKk5_u8vGMPt5n-2vwpa2FcWmVrU_0jrqYa7dH3vPYQ3YP455t0iKmw9GD4_eB6yDlTlrbdho1RCZm9QGXb4v7O0P815txPHr4ajAOmg4DgUZiroJYWyYsNZpG1Ka4MHNqX9wUhZYhBiaaJ5IJmXKnY5YIoRDsSKCGcQRuJhOT4HPPwHrK05R2YH2wN3w0btFMqeChF0ureYEnvF7-cTRrjkzdpuEz1ltU5VGPYWyU0eQ3gvR9BP6iCc99o4vwtf1qdcrL261lpbb0xz8EJf_Pz3oJLjQhOenXNnQZ1kx5Bc7_ItR4FQ625cq4clMyQyPxSRTVijxfyjrVyqObzC15YawrBMB7iGsy947sHVVvyPTls2-fPk98C7JDIsuCTAd90m_U3K_B7FTe7jp0ynlpbgBRLNLWHYa6uDTDqTKNQs2lwLhX42AXNlss5Me1-kjuV22M5Q4zeYOZLmw7oPyY4zTD_YX5yWHeuKCcJgWnllKlY0aF4iriUolUisKaJLKmCxstRPLGkS3yn_i4-e_hu3AWgZM_2dmd3IJzseuS7DeqNqBTnSzNbQzdKnWnsRECr08bP98Bk2dO3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Uncertainty+Quantification+of+Reflooding+Model+With+PSO%E2%80%93Kriging+and+PCA+Approach&rft.jtitle=Science+and+technology+of+nuclear+installations&rft.au=Ziyue+Zhang&rft.au=Dong+Li&rft.au=Nianfeng+Wang&rft.au=Meng+Lei&rft.date=2025-01-01&rft.pub=Wiley&rft.eissn=1687-6083&rft.volume=2025&rft_id=info:doi/10.1155%2Fstni%2F5416943&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43d64f44bc2547b6b16ab78a7dfe31fe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6075&client=summon