Bayesian Uncertainty Quantification of Reflooding Model With PSO–Kriging and PCA Approach
To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction, inverse uncertainty quantification (IUQ) is proposed in recent years to quantify the uncertainty of model parameters in reactor program. As r...
Saved in:
Published in | Science and technology of nuclear installations Vol. 2025; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
01.01.2025
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 1687-6075 1687-6083 |
DOI | 10.1155/stni/5416943 |
Cover
Abstract | To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction, inverse uncertainty quantification (IUQ) is proposed in recent years to quantify the uncertainty of model parameters in reactor program. As reflooding is a vital stage to cool the core and prevent serious accidents and uncertainties exist in the important results of the program because of the complexity of the phenomena, IUQ is performed for reflooding models in this study based on Bayesian theory and Markov chain Monte Carlo (MCMC) algorithm. In order to solve the problem of large time costs in sampling and inefficient use of transient sample points, particle swarm optimization (PSO)–Kriging model and principal component analysis (PCA) are adopted in this paper. Measurement of peak cladding temperature (PCT) and quench time from FEBA and FLECHT SEASET experiments supply data for evaluation and validation. Results show that PSO–Kriging model could well represent the system program with R 2 (R‐squared coefficient of determination) close to 1 and uncertainties assessed by the method could cover most of the time sequential experiment data. By comparing the methods with and without PCA, it indicates that the IUQ method utilizing PCA not only reduces input parameter correlation but also provides more accurate estimates of input parameter posterior distributions. Furthermore, the validation outcomes of mean value calibration show enhanced agreement with the experimental data. |
---|---|
AbstractList | To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction, inverse uncertainty quantification (IUQ) is proposed in recent years to quantify the uncertainty of model parameters in reactor program. As reflooding is a vital stage to cool the core and prevent serious accidents and uncertainties exist in the important results of the program because of the complexity of the phenomena, IUQ is performed for reflooding models in this study based on Bayesian theory and Markov chain Monte Carlo (MCMC) algorithm. In order to solve the problem of large time costs in sampling and inefficient use of transient sample points, particle swarm optimization (PSO)–Kriging model and principal component analysis (PCA) are adopted in this paper. Measurement of peak cladding temperature (PCT) and quench time from FEBA and FLECHT SEASET experiments supply data for evaluation and validation. Results show that PSO–Kriging model could well represent the system program with R 2 (R‐squared coefficient of determination) close to 1 and uncertainties assessed by the method could cover most of the time sequential experiment data. By comparing the methods with and without PCA, it indicates that the IUQ method utilizing PCA not only reduces input parameter correlation but also provides more accurate estimates of input parameter posterior distributions. Furthermore, the validation outcomes of mean value calibration show enhanced agreement with the experimental data. To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction, inverse uncertainty quantification (IUQ) is proposed in recent years to quantify the uncertainty of model parameters in reactor program. As reflooding is a vital stage to cool the core and prevent serious accidents and uncertainties exist in the important results of the program because of the complexity of the phenomena, IUQ is performed for reflooding models in this study based on Bayesian theory and Markov chain Monte Carlo (MCMC) algorithm. In order to solve the problem of large time costs in sampling and inefficient use of transient sample points, particle swarm optimization (PSO)–Kriging model and principal component analysis (PCA) are adopted in this paper. Measurement of peak cladding temperature (PCT) and quench time from FEBA and FLECHT SEASET experiments supply data for evaluation and validation. Results show that PSO–Kriging model could well represent the system program with R2 (R-squared coefficient of determination) close to 1 and uncertainties assessed by the method could cover most of the time sequential experiment data. By comparing the methods with and without PCA, it indicates that the IUQ method utilizing PCA not only reduces input parameter correlation but also provides more accurate estimates of input parameter posterior distributions. Furthermore, the validation outcomes of mean value calibration show enhanced agreement with the experimental data. |
Author | Li, Dong Zhang, Ziyue Wang, Nianfeng Lei, Meng |
Author_xml | – sequence: 1 givenname: Ziyue orcidid: 0009-0005-7089-0293 surname: Zhang fullname: Zhang, Ziyue – sequence: 2 givenname: Dong orcidid: 0000-0001-6872-0977 surname: Li fullname: Li, Dong – sequence: 3 givenname: Nianfeng surname: Wang fullname: Wang, Nianfeng – sequence: 4 givenname: Meng surname: Lei fullname: Lei, Meng |
BookMark | eNo9kUlOAzEQRS0EEmHYcQBLbAnY7bGXIWISIMaIBQur2m0HR8EObmeRHXfghpyEhCBWVar6-vVLbwdtxhQdQgeUHFMqxElXYjgRnMqasw3Uo1KrviSabf73Smyjna6bECKZVLSHXk9h4boAEY-idblAiGWBH-YQS_DBQgkp4uTxo_PTlNoQx_g2tW6KX0J5w_dPd9-fX9c5jFcLiC2-Hw7wYDbLCezbHtryMO3c_l_dRaPzs-fhZf_m7uJqOLjpW1bXpV9ZL5TnznLKvaas0qIW0rWtBSKqykoGQoGWVPCaKdVoTWhNnJCM1jUwx3bR1dq3TTAxsxzeIS9MgmB-BymPDeQS7NQZzlrJPeeNrQRXjWyohEZpUK13jPqV1-Haa_nCx9x1xUzSPMdlfMOoZpWgnFRL1dFaZXPquuz8_1VKzAqFWaEwfyjYD1ghfc0 |
Cites_doi | 10.1016/j.nucengdes.2021.111230 10.5445/IR/270019697 10.1016/j.nucengdes.2018.06.003 10.1016/j.nucengdes.2021.111460 10.1016/j.ress.2021.107636 10.1016/j.nucengdes.2017.06.007 10.1016/j.nucengdes.2021.111498 10.1007/s11222-008-9110-y 10.1299/jsmeicone.2023.30.1085 10.1016/j.nucengdes.2016.11.032 10.13182/NURETH20-40380 10.3969/j.issn.2096-8299.2022.03.011 10.1080/00295639.2020.1759310 10.1007/s10596-018-9785-x 10.1016/j.nucengdes.2022.112059 10.1016/j.nucengdes.2019.110430 10.1016/j.ress.2017.09.029 10.1080/00295639.2018.1499279 10.1016/j.nucengdes.2013.05.007 10.5445/IR/270019863 10.1016/j.pnucene.2023.104612 10.1016/j.engstruct.2022.115393 10.1016/j.nucengdes.2019.110173 10.1016/j.anucene.2017.04.020 10.1016/j.anucene.2012.03.002 10.1016/j.nucengdes.2018.06.004 10.1016/j.energy.2024.132374 10.1016/j.cma.2023.116721 10.1016/j.nucengdes.2019.110199 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Ziyue Zhang et al. Science and Technology of Nuclear Installations published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2025 Ziyue Zhang et al. Science and Technology of Nuclear Installations published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License (the “License”), which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 HCIFZ KR7 L6V L7M M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1155/stni/5416943 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Scholarly Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-6083 |
Editor | Hesham MH Zakaly |
Editor_xml | – fullname: Hesham MH Zakaly |
ExternalDocumentID | oai_doaj_org_article_43d64f44bc2547b6b16ab78a7dfe31fe 10_1155_stni_5416943 |
GroupedDBID | 0R~ 123 188 24P 2UF 2WC 4.4 5VS 8FE 8FG 8R4 8R5 AAFWJ AAMMB AAYXX ABDBF ABJCF ABUWG ACCMX ACUHS ADBBV ADMLS AEFGJ AENEX AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION CS3 CWDGH E3Z EBS EJD ESX GROUPED_DOAJ H13 HCIFZ I-F IAO IL9 ISR ITC KQ8 L6V L8X M7S MK~ OK1 OVT P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO Q2X RHU TR2 TUS UGNYK ~8M 7SP 7TB 8FD AAJEY AINHJ AZQEC DWQXO FR3 KR7 L7M PKEHL PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c399t-2cf57f4ec414f813285956eddca0522c63a57a861549377b880190e563199a3e3 |
IEDL.DBID | DOA |
ISSN | 1687-6075 |
IngestDate | Wed Aug 27 00:25:28 EDT 2025 Fri Jul 25 19:02:11 EDT 2025 Wed Sep 10 06:02:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-2cf57f4ec414f813285956eddca0522c63a57a861549377b880190e563199a3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-7089-0293 0000-0001-6872-0977 |
OpenAccessLink | https://doaj.org/article/43d64f44bc2547b6b16ab78a7dfe31fe |
PQID | 3183251402 |
PQPubID | 237769 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43d64f44bc2547b6b16ab78a7dfe31fe proquest_journals_3183251402 crossref_primary_10_1155_stni_5416943 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Science and technology of nuclear installations |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | Kovtonyuk A. (e_1_2_11_29_2) 2012 Meholic M. J. (e_1_2_11_27_2) 2011 e_1_2_11_31_2 Hochreiter L. E. (e_1_2_11_35_2) 1980 e_1_2_11_13_2 e_1_2_11_34_2 e_1_2_11_11_2 e_1_2_11_33_2 e_1_2_11_10_2 e_1_2_11_6_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_4_2 e_1_2_11_26_2 e_1_2_11_3_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_1_2 Köppel M. (e_1_2_11_12_2) 2019 Chen Z.-ying (e_1_2_11_23_2) 2011; 26 Lee N. (e_1_2_11_36_2) 1982 e_1_2_11_20_2 e_1_2_11_24_2 Xie L. (e_1_2_11_32_2) 2024; 44 e_1_2_11_9_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_7_2 e_1_2_11_21_2 Li D. (e_1_2_11_30_2) 2019 e_1_2_11_17_2 e_1_2_11_16_2 e_1_2_11_15_2 e_1_2_11_14_2 e_1_2_11_19_2 e_1_2_11_18_2 |
References_xml | – ident: e_1_2_11_24_2 doi: 10.1016/j.nucengdes.2021.111230 – ident: e_1_2_11_34_2 doi: 10.5445/IR/270019697 – ident: e_1_2_11_9_2 doi: 10.1016/j.nucengdes.2018.06.003 – ident: e_1_2_11_10_2 doi: 10.1016/j.nucengdes.2021.111460 – ident: e_1_2_11_15_2 doi: 10.1016/j.ress.2021.107636 – year: 1982 ident: e_1_2_11_36_2 article-title: PWR Flecht Seaset Unblocked Bundle, Forced and Gravity Reflood Task publication-title: Data Evaluation and Analysis Report. NUREG/CR-2256 – ident: e_1_2_11_17_2 doi: 10.1016/j.nucengdes.2017.06.007 – ident: e_1_2_11_11_2 doi: 10.1016/j.nucengdes.2021.111498 – ident: e_1_2_11_13_2 doi: 10.1007/s11222-008-9110-y – ident: e_1_2_11_21_2 doi: 10.1299/jsmeicone.2023.30.1085 – ident: e_1_2_11_7_2 doi: 10.1016/j.nucengdes.2016.11.032 – ident: e_1_2_11_6_2 doi: 10.13182/NURETH20-40380 – ident: e_1_2_11_20_2 doi: 10.3969/j.issn.2096-8299.2022.03.011 – volume-title: Investigation of Uncertainty Quantification Method on BE Models and Application of Reflood Model Evaluation year: 2019 ident: e_1_2_11_30_2 – ident: e_1_2_11_5_2 doi: 10.1080/00295639.2020.1759310 – volume-title: Comparison of Data-Driven Uncertainty Quantification Methods for a Carbon Dioxide Storage Benchmark Scenario year: 2019 ident: e_1_2_11_12_2 doi: 10.1007/s10596-018-9785-x – ident: e_1_2_11_16_2 doi: 10.1016/j.nucengdes.2022.112059 – volume-title: Premium BenchmarkPhase II: Identification of Influential Input Parameters year: 2012 ident: e_1_2_11_29_2 – ident: e_1_2_11_2_2 doi: 10.1016/j.nucengdes.2019.110430 – ident: e_1_2_11_18_2 doi: 10.1016/j.ress.2017.09.029 – volume: 44 start-page: 894 year: 2024 ident: e_1_2_11_32_2 article-title: Optimization and Application of Global Sensitivity Quantification Method Based on Elementary Effects publication-title: Nuclear Science and Engineering – ident: e_1_2_11_19_2 doi: 10.1080/00295639.2018.1499279 – volume-title: The Development of a Non-E quilibrium Dispersed Flow Film Boiling Heat Transfer Modeling Package year: 2011 ident: e_1_2_11_27_2 – ident: e_1_2_11_28_2 doi: 10.1016/j.nucengdes.2013.05.007 – ident: e_1_2_11_33_2 doi: 10.5445/IR/270019863 – year: 1980 ident: e_1_2_11_35_2 article-title: PWR Flecht Seaset 161-Rod Bundle Flow Blockage Task, Task Plan Report publication-title: NUREG/CR-1531 – ident: e_1_2_11_31_2 doi: 10.1016/j.pnucene.2023.104612 – ident: e_1_2_11_26_2 doi: 10.1016/j.engstruct.2022.115393 – ident: e_1_2_11_4_2 doi: 10.1016/j.nucengdes.2019.110173 – ident: e_1_2_11_14_2 doi: 10.1016/j.anucene.2017.04.020 – ident: e_1_2_11_1_2 doi: 10.1016/j.anucene.2012.03.002 – ident: e_1_2_11_8_2 doi: 10.1016/j.nucengdes.2018.06.004 – ident: e_1_2_11_22_2 doi: 10.1016/j.energy.2024.132374 – ident: e_1_2_11_25_2 doi: 10.1016/j.cma.2023.116721 – ident: e_1_2_11_3_2 doi: 10.1016/j.nucengdes.2019.110199 – volume: 26 start-page: 1522 year: 2011 ident: e_1_2_11_23_2 article-title: Particle Swarm Optimized Kriging Approximate Model and Its Application to Reliability Analysis publication-title: Journal of Aerodynamics |
SSID | ssj0063671 ssib044760419 |
Score | 2.3122518 |
Snippet | To improve the process of best estimate plus uncertainty (BEPU) for nuclear safety assessment and calibration of thermal–hydraulic models for error reduction,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
SubjectTerms | Algorithms Bayesian analysis Calibration Error reduction Experiments Heat Hydraulic models Hydraulics Markov chains Nuclear power plants Nuclear reactors Nuclear safety Parameters Particle swarm optimization Principal components analysis Uncertainty |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTtxAEG2xXOAQQSDKJID6EI7W2NObfYjQDAIhokyGZQQSB6tXQIo8BMyBG__AH_IlVLVtIIqUq7t9qfVVd_UrQr4FnwXusKNGFC7hiheJ8ZlJMu7SwkjBnMLHyT_H8mDKD8_F-RwZd29hsK2yi4kxULuZxTPyfrQ9yO7pYOfmT4JTo_B2tRuhodvRCu57pBibJ4sQknOw-8XR3nhy3FkY50qmkcCsidWSyaYkk-BqErJn1xovRP-urq77AvBKwdlfSSty-_8TumM-2l8hH1ogSYeN5lfJnK8-kuV39IJr5GKkHzw-kqRTUG28-q8f6NG9bhqEok7oLNBjH7B9Hf6hOBrtNz27rq_o5OTX8-PTjzg465LqytHJ7pAOWw7ydTLd3zvdPUjaYQqJBQxSJwMbhArcW57xkEMNisRm0jtndQoYzEqmhdK5RMo2ppQBvwas4IUEHy008-wTWahmlf9MqBGZDXiFh2iqgK06z1IrtQK0ZmGxR7Y7aZU3DWdGGWsNIUqUatlKtUdGKMrXPch0HT_Mbi_L1nFKzpzkgXNjoZRVRppMaqNyrVzwLAu-RzY6RZSt-92Vb8by5f_LX8nSAAf6xjOVDbJQ3977TUAZtdlqTecFcG_O3Q priority: 102 providerName: ProQuest |
Title | Bayesian Uncertainty Quantification of Reflooding Model With PSO–Kriging and PCA Approach |
URI | https://www.proquest.com/docview/3183251402 https://doaj.org/article/43d64f44bc2547b6b16ab78a7dfe31fe |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5RuNADgkLVAI320B6teLMv-5ikhAgEDY8oSBysfVKkykHgHLjxH_iH_BJm1w4K4tBLT5bstWx945n9xjv7DUI_vCOe2VBRw3ObMMnyRDuiE8JsmmvBqZVhc_LJqRhN2NEVv1pq9RVqwmp54Bq4DqNWMM-YNpDKSC00EUrLTEnrHSXeheib5ukimapjsKBCkkWZO-edh6q87XDgHjmj7yagqNP_IQzHuWW4iTYaUoh79ctsoRVXfkGfl6QCt9F1Xz26sOERT8BMcRm_esRnc1UX-0R88czjc-dDKTrcg0Obs794elv9weOL3y9Pz8exCdYNVqXF40EP9xo98R00GR5cDkZJ0xghMcAnqqRrPJeeOcMI8xnkk0GkTDhrjUqBTxlBFZcqE0F-jUqpwUdh3ndcgL_lijr6Fa2Ws9J9Q1hzYnxYjgvMKIehKiOpEUoC8zJwsYV-LtAq7mr9iyLmDZwXAdWiQbWF-gHKtzFBtTqeAFsWjS2Lf9myhfYXhigaV3ooYtABWpd2d__HM_bQeje08I1_UfbRanU_d9-BV1S6jT5lw8M2WusfnI7P4TiY_jocteOH9QoFHdBU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qZQEsEE8xpYAXdBlNEr-SBULTwjBl2lKgIyp1EfwslapM6aRCs-Mf-A8-ii_h2kl4CIldt7GdxfWxz7329T0AT73LPLMho4aXNmGSlYl2mU4yZtNSC06tDI-Td_fEZMZeH_LDFfjev4UJaZX9nhg3ajs34Yx8GLGH7J7mz88-J0E1Ktyu9hIaLSymbvkFQ7bFs-0XOL8beT5-ebA1STpVgcQgGTdJbjyXnjnDMuYLDMZChS_hrDUqRWfECKq4VIUItcuolBoBjqTpuECwloo6iv-9AlcZpWWQiijGr3r8MiZFGsujtUwgqGgDPoELWSA394n3nA8XTX0y5OgNlYz-RYlROeAfYohsN74FNzs3lYxaXN2GFVffgRt_FC-8C0ebaunCE0wyQ-DExIJmSd5eqDb9KM44mXvyzvmQHI9jSBBeOyUfTppPZP_9mx9fv02jLNcxUbUl-1sjMuoqnN-D2aUY9T6s1vPaPQCieWZ8uCAMvlqJXVWRpUYoib6gwcYBbPTWqs7aihxVjGQ4r4JVq86qA9gMpvzVJ9TRjh_m58dVtywrRq1gnjFtMFCWWuhMKC0LJa13NPNuAOv9RFTd4l5Uv6G49v_mJ3BtcrC7U-1s700fwvU8SAfH05t1WG3OL9wj9Gca_TiCiMDHy0btT112Avc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVEJw4I0IFNgDPbrxYx_2AaE0IaQESnhErdSD2V3vlgrklMYRCif-A_-Gv8KNX8Ls2uYpceuBq3dtyfY3883uznwDcM-ayNLCZdSwrAiooFmgTKSCiBZhpjhLCuGKk5_u8vGMPt5n-2vwpa2FcWmVrU_0jrqYa7dH3vPYQ3YP455t0iKmw9GD4_eB6yDlTlrbdho1RCZm9QGXb4v7O0P815txPHr4ajAOmg4DgUZiroJYWyYsNZpG1Ka4MHNqX9wUhZYhBiaaJ5IJmXKnY5YIoRDsSKCGcQRuJhOT4HPPwHrK05R2YH2wN3w0btFMqeChF0ureYEnvF7-cTRrjkzdpuEz1ltU5VGPYWyU0eQ3gvR9BP6iCc99o4vwtf1qdcrL261lpbb0xz8EJf_Pz3oJLjQhOenXNnQZ1kx5Bc7_ItR4FQ625cq4clMyQyPxSRTVijxfyjrVyqObzC15YawrBMB7iGsy947sHVVvyPTls2-fPk98C7JDIsuCTAd90m_U3K_B7FTe7jp0ynlpbgBRLNLWHYa6uDTDqTKNQs2lwLhX42AXNlss5Me1-kjuV22M5Q4zeYOZLmw7oPyY4zTD_YX5yWHeuKCcJgWnllKlY0aF4iriUolUisKaJLKmCxstRPLGkS3yn_i4-e_hu3AWgZM_2dmd3IJzseuS7DeqNqBTnSzNbQzdKnWnsRECr08bP98Bk2dO3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Uncertainty+Quantification+of+Reflooding+Model+With+PSO%E2%80%93Kriging+and+PCA+Approach&rft.jtitle=Science+and+technology+of+nuclear+installations&rft.au=Ziyue+Zhang&rft.au=Dong+Li&rft.au=Nianfeng+Wang&rft.au=Meng+Lei&rft.date=2025-01-01&rft.pub=Wiley&rft.eissn=1687-6083&rft.volume=2025&rft_id=info:doi/10.1155%2Fstni%2F5416943&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43d64f44bc2547b6b16ab78a7dfe31fe |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6075&client=summon |