Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation

Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production,...

Full description

Saved in:
Bibliographic Details
Published inAgricultural systems Vol. 166; pp. 26 - 35
Main Authors Baral, Khagendra R., Jégo, Guillaume, Amon, Barbara, Bol, Roland, Chantigny, Martin H., Olesen, Jørgen E., Petersen, Søren O.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production, and emissions of methane (CH4), nitrous oxide (N2O) and ammonia (NH3) during storage contribute to the overall GHG balance. We determined emissions of all three gases during summer and autumn storage of digestates and untreated manure in pilot-scale experiments. Using these and other data, GHG balances were calculated for treatment, post-treatment storage, and field application. The GHG mitigation potential of AD was demonstrated, but CH4 emissions during storage dominated the overall GHG balance irrespective of treatment; hence for GHG inventories and mitigation efforts, the correct estimation of this source is critical. Current inventory guidelines from the Intergovernmental Panel on Climate Change (IPCC) estimate CH4 emissions from manure management based on a simple classification of livestock production systems, volatile solids (VS) excreted, and annual average temperature, and the effects of treatment and management at farm level are therefore not accounted for in any detail. Two empirical models were evaluated, which instead calculate VS degradation and storage temperature with daily time steps; both models were based on concepts presented by Sommer et al. (2004). Parameters for the Arrhenius temperature relationship of CH4 production, i.e., apparent activation energy, Ea, and pre-exponential factor, A, could be selected, for which cumulative CH4 emissions calculated with the two models approached observed emissions. However, the magnitude of emissions during a warm period was not well reproduced, and the parameters identified for the two models differed. Sensitivity analyses showed that deviations from observations could not be explained by errors in manure storage temperature. The results thus suggest that CH4 emissions cannot be predicted from VS and temperature alone, i.e., that the methanogenic potential changes during storage. Determination of parameters for estimation of CH4 emissions from manure management is discussed with reference to recent literature. •Greenhouse gas (GHG) emissions were determined during storage of digestates and manure.•In GHG balances for treatment, storage and field, methane emission during storage always dominated•Two empirical models were parameterised in order to predict daily methane emissions.•Temperature functions differed, but neither model described emissions during a warm period.•Temperature response parameters should account for variations in methanogenic potential.
AbstractList Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production, and emissions of methane (CH4), nitrous oxide (N2O) and ammonia (NH3) during storage contribute to the overall GHG balance. We determined emissions of all three gases during summer and autumn storage of digestates and untreated manure in pilot-scale experiments. Using these and other data, GHG balances were calculated for treatment, post-treatment storage, and field application. The GHG mitigation potential of AD was demonstrated, but CH4 emissions during storage dominated the overall GHG balance irrespective of treatment; hence for GHG inventories and mitigation efforts, the correct estimation of this source is critical. Current inventory guidelines from the Intergovernmental Panel on Climate Change (IPCC) estimate CH4 emissions from manure management based on a simple classification of livestock production systems, volatile solids (VS) excreted, and annual average temperature, and the effects of treatment and management at farm level are therefore not accounted for in any detail. Two empirical models were evaluated, which instead calculate VS degradation and storage temperature with daily time steps; both models were based on concepts presented by Sommer et al. (2004). Parameters for the Arrhenius temperature relationship of CH4 production, i.e., apparent activation energy, Ea, and pre-exponential factor, A, could be selected, for which cumulative CH4 emissions calculated with the two models approached observed emissions. However, the magnitude of emissions during a warm period was not well reproduced, and the parameters identified for the two models differed. Sensitivity analyses showed that deviations from observations could not be explained by errors in manure storage temperature. The results thus suggest that CH4 emissions cannot be predicted from VS and temperature alone, i.e., that the methanogenic potential changes during storage. Determination of parameters for estimation of CH4 emissions from manure management is discussed with reference to recent literature. •Greenhouse gas (GHG) emissions were determined during storage of digestates and manure.•In GHG balances for treatment, storage and field, methane emission during storage always dominated•Two empirical models were parameterised in order to predict daily methane emissions.•Temperature functions differed, but neither model described emissions during a warm period.•Temperature response parameters should account for variations in methanogenic potential.
Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production, and emissions of methane (CH₄), nitrous oxide (N₂O) and ammonia (NH₃) during storage contribute to the overall GHG balance. We determined emissions of all three gases during summer and autumn storage of digestates and untreated manure in pilot-scale experiments. Using these and other data, GHG balances were calculated for treatment, post-treatment storage, and field application. The GHG mitigation potential of AD was demonstrated, but CH₄ emissions during storage dominated the overall GHG balance irrespective of treatment; hence for GHG inventories and mitigation efforts, the correct estimation of this source is critical. Current inventory guidelines from the Intergovernmental Panel on Climate Change (IPCC) estimate CH₄ emissions from manure management based on a simple classification of livestock production systems, volatile solids (VS) excreted, and annual average temperature, and the effects of treatment and management at farm level are therefore not accounted for in any detail. Two empirical models were evaluated, which instead calculate VS degradation and storage temperature with daily time steps; both models were based on concepts presented by Sommer et al. (2004). Parameters for the Arrhenius temperature relationship of CH₄ production, i.e., apparent activation energy, Eₐ, and pre-exponential factor, A, could be selected, for which cumulative CH₄ emissions calculated with the two models approached observed emissions. However, the magnitude of emissions during a warm period was not well reproduced, and the parameters identified for the two models differed. Sensitivity analyses showed that deviations from observations could not be explained by errors in manure storage temperature. The results thus suggest that CH₄ emissions cannot be predicted from VS and temperature alone, i.e., that the methanogenic potential changes during storage. Determination of parameters for estimation of CH₄ emissions from manure management is discussed with reference to recent literature.
Author Olesen, Jørgen E.
Chantigny, Martin H.
Amon, Barbara
Petersen, Søren O.
Baral, Khagendra R.
Jégo, Guillaume
Bol, Roland
Author_xml – sequence: 1
  givenname: Khagendra R.
  surname: Baral
  fullname: Baral, Khagendra R.
  organization: Department of Agroecology, Aarhus University, Tjele, Denmark
– sequence: 2
  givenname: Guillaume
  surname: Jégo
  fullname: Jégo, Guillaume
  organization: Quebec Research & Development Centre, Agriculture and Agri-Food Canada, Québec, Canada
– sequence: 3
  givenname: Barbara
  orcidid: 0000-0001-5650-1806
  surname: Amon
  fullname: Amon, Barbara
  organization: Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
– sequence: 4
  givenname: Roland
  orcidid: 0000-0003-3015-7706
  surname: Bol
  fullname: Bol, Roland
  organization: Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
– sequence: 5
  givenname: Martin H.
  surname: Chantigny
  fullname: Chantigny, Martin H.
  organization: Quebec Research & Development Centre, Agriculture and Agri-Food Canada, Québec, Canada
– sequence: 6
  givenname: Jørgen E.
  surname: Olesen
  fullname: Olesen, Jørgen E.
  organization: Department of Agroecology, Aarhus University, Tjele, Denmark
– sequence: 7
  givenname: Søren O.
  surname: Petersen
  fullname: Petersen, Søren O.
  email: sop@agro.au.dk
  organization: Department of Agroecology, Aarhus University, Tjele, Denmark
BookMark eNp9kEFvGyEQhVGVSnXS_oGeOOay2wFs2K1yqaIkjRKpl1bqDWEYNlhrcAFH8r8vjnPKIafRjN43eu-dk7OYIhLylUHPgMlvm95M5dBzYEMPqgcYP5AFG5ToOJfqjCxAwNCtOPv7iZyXsoGmYDAsSLnLiPEp7QvSyRSK21BKSLFQt88hTrTUlM2ENHm6NXGfkZroqAsTlmoqlu_0AQ80p_kkwfpkIlKfMt1ldMHW9uwF2YYaJnNcP5OP3swFv7zOC_Ln9ub39c_u8dfd_fWPx86KcawdX8ulwKVT0oxrh1z40Yt28GxUjK0cl1YyyRXAGjjzTjIhpVnJpeROWe_EBbk8_d3l9G_f_OoWzuI8N4ctsOZsGFcChIImHU5Sm1MpGb22ob6YrdmEWTPQx571Rh971seeNSjdWmwof4PuctiafHgfujpB2PI_B8y62IDRtsYy2qpdCu_h_wGJqJra
CitedBy_id crossref_primary_10_3390_su14169934
crossref_primary_10_1016_j_jclepro_2023_140288
crossref_primary_10_3389_fsufs_2021_763020
crossref_primary_10_3775_jie_102_96
crossref_primary_10_1002_cben_202300063
crossref_primary_10_3390_su152416948
crossref_primary_10_1016_j_biortech_2021_126500
crossref_primary_10_1016_j_wasman_2023_04_034
crossref_primary_10_3390_su15043079
crossref_primary_10_1016_j_wasman_2024_04_039
crossref_primary_10_1016_j_scitotenv_2023_166610
crossref_primary_10_1016_j_biteb_2020_100454
crossref_primary_10_1016_j_wasman_2019_09_036
crossref_primary_10_1016_j_energy_2021_121378
crossref_primary_10_1016_j_scitotenv_2020_142080
crossref_primary_10_3390_atmos12091156
crossref_primary_10_1016_j_wasman_2020_12_026
crossref_primary_10_1016_j_jenvman_2024_120233
crossref_primary_10_1007_s10705_019_10023_2
crossref_primary_10_1021_acsagscitech_2c00172
crossref_primary_10_3389_fsufs_2024_1397305
crossref_primary_10_1016_j_resconrec_2024_107629
crossref_primary_10_1016_j_scitotenv_2021_150070
crossref_primary_10_1016_j_biombioe_2024_107116
crossref_primary_10_1021_acsagscitech_4c00659
crossref_primary_10_3390_ani12162035
crossref_primary_10_1016_j_scitotenv_2020_142278
crossref_primary_10_3390_microorganisms9071457
crossref_primary_10_1371_journal_pone_0252881
crossref_primary_10_1016_j_agee_2022_108327
crossref_primary_10_1016_j_wasman_2023_09_007
crossref_primary_10_1016_j_biortech_2023_130247
crossref_primary_10_1016_j_wasman_2023_07_014
crossref_primary_10_1002_jeq2_20336
crossref_primary_10_1016_j_jclepro_2022_134061
crossref_primary_10_1088_1748_9326_ad8589
crossref_primary_10_1007_s40518_019_00131_6
crossref_primary_10_1002_jeq2_20252
crossref_primary_10_1016_j_scitotenv_2023_161656
crossref_primary_10_3390_agronomy14010186
crossref_primary_10_1016_j_jclepro_2025_145040
crossref_primary_10_1051_ro_2023178
crossref_primary_10_3390_app12094652
crossref_primary_10_1007_s11356_021_12981_z
crossref_primary_10_1007_s42729_020_00361_4
crossref_primary_10_3390_su14031849
crossref_primary_10_1016_j_jhazmat_2020_123063
crossref_primary_10_1016_j_biortech_2021_125080
crossref_primary_10_1111_jiec_13197
crossref_primary_10_1016_j_biortech_2020_123836
crossref_primary_10_1016_j_fuel_2023_128684
crossref_primary_10_1080_10962247_2019_1629359
crossref_primary_10_3390_su16083323
crossref_primary_10_3390_app10113890
crossref_primary_10_3390_atmos13060893
crossref_primary_10_3389_fenrg_2021_740314
Cites_doi 10.1016/j.agee.2014.09.016
10.1111/j.1365-2486.2009.01888.x
10.1016/j.soilbio.2012.11.006
10.1128/AEM.02830-17
10.1021/acs.est.5b01331
10.1016/S1161-0301(01)00112-5
10.1111/gcb.12687
10.3168/jds.2014-8082
10.1016/j.agee.2013.09.013
10.1007/s13593-013-0196-z
10.1016/j.atmosenv.2008.08.006
10.5194/acp-16-15433-2016
10.1080/10256010500131783
10.2307/2389824
10.1016/j.agee.2017.01.012
10.2134/jeq2005.0411dup
10.1128/AEM.02278-12
10.1016/j.agsy.2016.03.004
10.13031/2013.27781
10.1016/j.biortech.2011.07.026
10.13031/trans.59.11594
10.1016/S0141-4607(85)80014-7
10.1016/j.scitotenv.2015.07.145
10.1111/gcb.12767
10.2134/jeq2009.0382
10.1017/S1742170512000440
10.13031/2013.25311
10.1016/j.agee.2015.10.020
10.1007/s10705-013-9551-3
10.2134/jeq2011.0333
10.1007/s11104-008-9634-0
10.5194/bg-9-403-2012
10.2134/jeq2016.03.0083
10.1016/j.agee.2015.09.042
10.1016/j.agee.2005.08.030
10.1016/j.agee.2009.11.012
10.1007/s10705-008-9236-5
10.1016/j.agrformet.2017.12.185
10.1038/nature13164
10.1016/j.agee.2005.08.016
10.1016/j.watres.2012.10.047
10.1017/S1751731113000876
10.1016/j.soilbio.2016.03.005
10.1111/j.1574-6941.2012.01456.x
10.1016/j.atmosenv.2006.02.013
10.1007/s10705-006-9072-4
10.1023/B:FRES.0000029678.25083.fa
10.2134/jeq1994.00472425002300030026x
10.1016/j.rser.2012.04.008
10.1016/j.biortech.2014.12.066
10.1038/ngeo608
10.2134/jeq2008.0376
10.1016/j.energy.2016.06.068
10.13031/2013.29133
10.2134/jeq2000.00472425002900030009x
10.1016/j.agee.2014.10.004
10.1371/journal.pone.0160968
10.1111/j.1740-0929.2005.00240.x
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agsy.2018.07.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2267
EndPage 35
ExternalDocumentID 10_1016_j_agsy_2018_07_009
S0308521X17310119
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
3R3
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c399t-2b643e4d76a9bde23f9f33e4f197115d26c6162700b021fd61366a56462d7cfd3
IEDL.DBID .~1
ISSN 0308-521X
IngestDate Thu Jul 10 17:57:14 EDT 2025
Tue Jul 01 04:29:13 EDT 2025
Thu Apr 24 23:10:42 EDT 2025
Fri Feb 23 02:47:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Temperature
Greenhouse gas balance
Empirical model
Anaerobic digestion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-2b643e4d76a9bde23f9f33e4f197115d26c6162700b021fd61366a56462d7cfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5650-1806
0000-0003-3015-7706
PQID 2189530370
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2189530370
crossref_citationtrail_10_1016_j_agsy_2018_07_009
crossref_primary_10_1016_j_agsy_2018_07_009
elsevier_sciencedirect_doi_10_1016_j_agsy_2018_07_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Agricultural systems
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Koirala, Ndegwa, Joo, Frear, Stockle, Harrison (bb0170) 2013; 56
Petersen, Dorno, Lindholst, Feilberg, Eriksen (bb0260) 2013; 95
Gerber, Hristov, Henderson, Makkar, Oh, Lee, Meinen, Montes, Ott, Firkins (bb0120) 2013; 7
Spellman, Whiting (bb0335) 2007
Sommer, Olesen, Petersen, Weisbjerg, Valli, Rodhe, Béline (bb0330) 2009; 15
Chen, Li, Grace, Mosier (bb0050) 2008; 309
Kariyapperuma, Johannesson, Maldaner, Vanderzaag, Gordon, Wagner-Riddle (bb0165) 2017; 258
Baldé, VanderZaag, Burtt, Gordon, Desjardins (bb0020) 2016; 45
Habtewold, Gordon, Sokolov, Vanderzaag, Wagner-Riddle, Dunfield (bb0125) 2018; 84
Yusuf, Noor, Abba, Hassan, Din (bb0395) 2012; 16
Sommer, Petersen, Møller (bb0320) 2004; 69
Hou, Velthof, Oenema (bb0140) 2015; 21
Baral, Labouriau, Olesen, Petersen (bb0030) 2017; 239
Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Callesen, I., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2017. Denmark's National Inventory Report 2017. Emission Inventories 1990–2015 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy 890 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 231
Boldrin, Baral, Fitamo, Vazifehkhoran, Jensen, Kjærgaard, Lyng, van Nguyen, Nielsen, Triolo (bb0040) 2016; 112
Taghizadeh-Toosi, Olesen (bb0340) 2016; 145
Petersen, Hoffmann, Schäfer, Blicher-Mathiesen, Elsgaard, Kristensen, Larsen, Torp, Greve (bb0255) 2012; 9
Owen, Silver (bb0240) 2015; 21
Mikkelsen, M.H., Albrektsen, R., Gyldenkærne, S., 2013. Danish emission inventories for agriculture. Inventories 1985–2011. Aarhus University, DCE - Danish Centre for Environment and Energy, 142 pp. Scientific Report from DCE - Danish Centre for Environment and Energy No. 108. Available at
Montes, Rotz, Chaooui (bb0210) 2009; 52
Li, He, Wei, Gao, Zuo (bb0175) 2015; 10
Davidson (bb0085) 2009; 2
Ebner, Labatut, Rankin, Pronto, Gooch, Williamson, Trabold (bb0100) 2015; 49
Fotidis, Karakashev, Kotsopoulos, Martzopoulos, Angelidaki (bb0115) 2013; 83
Clemens, Trimborn, Weiland, Amon (bb0070) 2006; 112
Massé, Masse, Claveau, Benchaar, Thomas (bb0190) 2008; 51
Umetsu, Kimura, Takahashi, Kishimoto, Kojima, Young (bb0360) 2005; 76
Ambus, Petersen (bb0005) 2005; 41
Dhamodharan, Kumar, Kalamdhad (bb0090) 2015; 180
Pugesgaard, Olesen, Jørgensen, Dalgaard (bb0280) 2014; 29
Sommer, Petersen, Søgaard (bb0315) 2000; 29
Viguria, Sanz-Cobeña, López, Arriaga, Merino (bb0375) 2015; 199
Baral, Arthur, Olesen, Petersen (bb0025) 2016; 97
8519 (accessed 01–19-2016).
Sommer, Petersen, Sørensen, Poulsen, Møller (bb0325) 2007; 78
Möller (bb0205) 2009; 84
Petersen, Olsen, Elsgaard, Triolo, Sommer (bb0275) 2016; 11
Amon, Kryvoruchko, Amon, Zechmeister-Boltenstern (bb0010) 2006; 112
Rotz, Skinner, Stoner, Hayhoe (bb5005) 2016; 59
Foged (bb0110) 2012
Yara (bb0390) 2016
Nkoa (bb0235) 2014; 34
Triolo, Sommer, Møller, Weisbjerg, Jiang (bb0350) 2011; 102
Kai, Birkmose, Petersen (bb0160) 2015
Hansen, Henriksen, Sommer (bb0130) 2006; 40
Lloyd, Taylor (bb0180) 1994; 8
Barret, Gagnon, Topp, Masse, Massé, Talbot (bb0035) 2013; 47
Chirinda, Carter, Albert, Ambus, Olesen, Porter, Petersen (bb0065) 2010; 136
Petersen, Skov, Drøscher, Adamsen (bb0250) 2009; 38
USDE (bb0370) 2011
Hellebrand, Scholz, Kern (bb0135) 2008; 42
Ashare, Wentworth, Wise (bb0015) 1979; 3
Husted (bb0145) 1994; 23
Core Team (bb0075) 2014
IPCC (bb0155) 2006; Vol. 4
Rodhe, Ascue, Å (bb0285) 2009; 8
Thomsen, Olesen, Møller, Sørensen, Christensen (bb0345) 2013; 58
Mangino, Bartram, Brazy (bb0185) 2001
Wang, Dong, Zhu, Li, Zhou, Jiang, Xin (bb0380) 2016; 217
Elsgaard, Olsen, Petersen (bb0105) 2016; 539
Petersen, Hutchings, Hafner, Sommer, Hjorth, Jonassen (bb5000) 2016; 216
Misselbrook, Brookman, Smith, Cumby, Williams, McCrory (bb0200) 2005; 34
Wood, Gordon, Wagner-Riddle, Dunfield, Madani (bb0385) 2012; 41
USDA-ARS, 2009. The Integrated Farm System Model. United States Department of Agriculture - Agricultural Research Service. Available at
Chianese, Rotz, Richard (bb0060) 2009; 52
Rodhe, Ascue, Willén, Persson, Nordberg (bb0295) 2015; 199
Nielsen, Nielsen, Schramm, Revsbech (bb0220) 2010; 39
Rotz, Hafner (bb0300) 2011
IEA Bioenergy (bb0150) 2014
Sommer, Hutchings (bb5010) 2001; 15
Brozyna, Petersen, Chirinda, Olesen (bb0045) 2013; 181
Danish Environmental Protection Agency (bb0080) 2012
Zeeman, Wiegant, Koster-Treffers, Lettinga (bb0405) 1985; 14
Chianese, Rotz, Richard (bb0055) 2008; 52
Trousdell, Conley, Post, Faloona (bb0355) 2016; 16
Dutreuil, Wattiaux, Hardie, Cabrera (bb0095) 2014; 97
Nielsen, Schramm, Nielsen, Revsbech (bb0225) 2013; 79
Yvon-Durocher, Allen, Bastviken, Conrad, Gudasz, St-Pierre, Thanh-Duc, Del Giorgio (bb0400) 2014; 507
Myhre, Shindell, Bréon, Collins, Fuglestvedt, Huang, Koch, Lamarque, Lee, Mendoza, Nakajima, Robock, Stephens, Takemura, Zhang (bb0215) 2013
Yusuf (10.1016/j.agsy.2018.07.009_bb0395) 2012; 16
Baral (10.1016/j.agsy.2018.07.009_bb0025) 2016; 97
Yara (10.1016/j.agsy.2018.07.009_bb0390)
Rodhe (10.1016/j.agsy.2018.07.009_bb0295) 2015; 199
Chirinda (10.1016/j.agsy.2018.07.009_bb0065) 2010; 136
IPCC (10.1016/j.agsy.2018.07.009_bb0155) 2006; Vol. 4
Petersen (10.1016/j.agsy.2018.07.009_bb0255) 2012; 9
Kai (10.1016/j.agsy.2018.07.009_bb0160) 2015
Zeeman (10.1016/j.agsy.2018.07.009_bb0405) 1985; 14
Foged (10.1016/j.agsy.2018.07.009_bb0110) 2012
Nielsen (10.1016/j.agsy.2018.07.009_bb0220) 2010; 39
Misselbrook (10.1016/j.agsy.2018.07.009_bb0200) 2005; 34
Danish Environmental Protection Agency (10.1016/j.agsy.2018.07.009_bb0080) 2012
Chianese (10.1016/j.agsy.2018.07.009_bb0060) 2009; 52
Mangino (10.1016/j.agsy.2018.07.009_bb0185) 2001
Wang (10.1016/j.agsy.2018.07.009_bb0380) 2016; 217
Li (10.1016/j.agsy.2018.07.009_bb0175) 2015; 10
Husted (10.1016/j.agsy.2018.07.009_bb0145) 1994; 23
Kariyapperuma (10.1016/j.agsy.2018.07.009_bb0165) 2017; 258
Petersen (10.1016/j.agsy.2018.07.009_bb0260) 2013; 95
Boldrin (10.1016/j.agsy.2018.07.009_bb0040) 2016; 112
Nkoa (10.1016/j.agsy.2018.07.009_bb0235) 2014; 34
Sommer (10.1016/j.agsy.2018.07.009_bb5010) 2001; 15
Sommer (10.1016/j.agsy.2018.07.009_bb0325) 2007; 78
Myhre (10.1016/j.agsy.2018.07.009_bb0215) 2013
USDE (10.1016/j.agsy.2018.07.009_bb0370)
Triolo (10.1016/j.agsy.2018.07.009_bb0350) 2011; 102
Sommer (10.1016/j.agsy.2018.07.009_bb0330) 2009; 15
Amon (10.1016/j.agsy.2018.07.009_bb0010) 2006; 112
Lloyd (10.1016/j.agsy.2018.07.009_bb0180) 1994; 8
Rodhe (10.1016/j.agsy.2018.07.009_bb0285) 2009; 8
Ashare (10.1016/j.agsy.2018.07.009_bb0015) 1979; 3
Baral (10.1016/j.agsy.2018.07.009_bb0030) 2017; 239
Yvon-Durocher (10.1016/j.agsy.2018.07.009_bb0400) 2014; 507
Ambus (10.1016/j.agsy.2018.07.009_bb0005) 2005; 41
Ebner (10.1016/j.agsy.2018.07.009_bb0100) 2015; 49
Brozyna (10.1016/j.agsy.2018.07.009_bb0045) 2013; 181
Elsgaard (10.1016/j.agsy.2018.07.009_bb0105) 2016; 539
Viguria (10.1016/j.agsy.2018.07.009_bb0375) 2015; 199
Davidson (10.1016/j.agsy.2018.07.009_bb0085) 2009; 2
10.1016/j.agsy.2018.07.009_bb0365
Thomsen (10.1016/j.agsy.2018.07.009_bb0345) 2013; 58
Pugesgaard (10.1016/j.agsy.2018.07.009_bb0280) 2014; 29
Dutreuil (10.1016/j.agsy.2018.07.009_bb0095) 2014; 97
Trousdell (10.1016/j.agsy.2018.07.009_bb0355) 2016; 16
Massé (10.1016/j.agsy.2018.07.009_bb0190) 2008; 51
Petersen (10.1016/j.agsy.2018.07.009_bb0275) 2016; 11
Hansen (10.1016/j.agsy.2018.07.009_bb0130) 2006; 40
Dhamodharan (10.1016/j.agsy.2018.07.009_bb0090) 2015; 180
Koirala (10.1016/j.agsy.2018.07.009_bb0170) 2013; 56
Fotidis (10.1016/j.agsy.2018.07.009_bb0115) 2013; 83
Chianese (10.1016/j.agsy.2018.07.009_bb0055) 2008; 52
Baldé (10.1016/j.agsy.2018.07.009_bb0020) 2016; 45
Petersen (10.1016/j.agsy.2018.07.009_bb5000) 2016; 216
Hellebrand (10.1016/j.agsy.2018.07.009_bb0135) 2008; 42
Sommer (10.1016/j.agsy.2018.07.009_bb0320) 2004; 69
Montes (10.1016/j.agsy.2018.07.009_bb0210) 2009; 52
Taghizadeh-Toosi (10.1016/j.agsy.2018.07.009_bb0340) 2016; 145
10.1016/j.agsy.2018.07.009_bb0195
Petersen (10.1016/j.agsy.2018.07.009_bb0250) 2009; 38
IEA Bioenergy (10.1016/j.agsy.2018.07.009_bb0150) 2014
Rotz (10.1016/j.agsy.2018.07.009_bb0300) 2011
Rotz (10.1016/j.agsy.2018.07.009_bb5005) 2016; 59
10.1016/j.agsy.2018.07.009_bb0230
Umetsu (10.1016/j.agsy.2018.07.009_bb0360) 2005; 76
Gerber (10.1016/j.agsy.2018.07.009_bb0120) 2013; 7
Owen (10.1016/j.agsy.2018.07.009_bb0240) 2015; 21
Habtewold (10.1016/j.agsy.2018.07.009_bb0125) 2018; 84
Barret (10.1016/j.agsy.2018.07.009_bb0035) 2013; 47
Sommer (10.1016/j.agsy.2018.07.009_bb0315) 2000; 29
Hou (10.1016/j.agsy.2018.07.009_bb0140) 2015; 21
Nielsen (10.1016/j.agsy.2018.07.009_bb0225) 2013; 79
Core Team (10.1016/j.agsy.2018.07.009_bb0075) 2014
Möller (10.1016/j.agsy.2018.07.009_bb0205) 2009; 84
Wood (10.1016/j.agsy.2018.07.009_bb0385) 2012; 41
Spellman (10.1016/j.agsy.2018.07.009_bb0335) 2007
Clemens (10.1016/j.agsy.2018.07.009_bb0070) 2006; 112
Chen (10.1016/j.agsy.2018.07.009_bb0050) 2008; 309
References_xml – volume: 41
  start-page: 125
  year: 2005
  end-page: 133
  ident: bb0005
  article-title: Oxidation of
  publication-title: Isotopes Environ. Health Studies
– volume: 21
  start-page: 550
  year: 2015
  end-page: 565
  ident: bb0240
  article-title: Greenhouse gas emissions from dairy manure management: a review of field-based studies
  publication-title: Glob. Chang. Biol.
– volume: 21
  start-page: 1293
  year: 2015
  end-page: 1312
  ident: bb0140
  article-title: Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment
  publication-title: Glob. Chang. Biol.
– volume: 58
  start-page: 82
  year: 2013
  end-page: 87
  ident: bb0345
  article-title: Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces
  publication-title: Soil Biol. Biochem.
– volume: 56
  start-page: 1959
  year: 2013
  end-page: 1966
  ident: bb0170
  article-title: Impact of anaerobic digestion of liquid dairy manure on ammonia volatilization process
  publication-title: Trans. ASABE
– year: 2013
  ident: bb0215
  article-title: Anthropogenic and natural radiative forcing
  publication-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 39
  start-page: 1813
  year: 2010
  end-page: 1820
  ident: bb0220
  article-title: Oxygen distribution and potential ammonia oxidation in floating, liquid manure crusts
  publication-title: J. Environ. Qual.
– volume: 181
  start-page: 115
  year: 2013
  end-page: 126
  ident: bb0045
  article-title: Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation
  publication-title: Agric. Ecosyst. Environ.
– volume: 95
  start-page: 103
  year: 2013
  end-page: 113
  ident: bb0260
  article-title: Emissions of CH
  publication-title: Nutr. Cycl. Agroecosyst.
– reference: =8519 (accessed 01–19-2016).
– volume: 49
  start-page: 11199
  year: 2015
  end-page: 11208
  ident: bb0100
  article-title: Lifecycle greenhouse gas analysis of an anaerobic codigestion facility processing dairy manure and industrial food waste
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 4172
  year: 2006
  end-page: 4181
  ident: bb0130
  article-title: Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering
  publication-title: Atmos. Environ.
– volume: 52
  start-page: 1313
  year: 2009
  end-page: 1323
  ident: bb0060
  article-title: Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies
  publication-title: Trans. ASABE
– volume: 180
  start-page: 237
  year: 2015
  end-page: 241
  ident: bb0090
  article-title: Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics
  publication-title: Bioresour. Technol.
– volume: 7
  start-page: 220
  year: 2013
  end-page: 234
  ident: bb0120
  article-title: Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review
  publication-title: Animal
– volume: 42
  start-page: 8403
  year: 2008
  end-page: 8411
  ident: bb0135
  article-title: Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils
  publication-title: Atmos. Environ.
– volume: 112
  start-page: 171
  year: 2006
  end-page: 177
  ident: bb0070
  article-title: Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry
  publication-title: Agric. Ecosyst. Environ.
– volume: 79
  start-page: 407
  year: 2013
  end-page: 410
  ident: bb0225
  article-title: Seasonal methane oxidation potential in manure crusts
  publication-title: Appl. Environ. Microbiol.
– reference: USDA-ARS, 2009. The Integrated Farm System Model. United States Department of Agriculture - Agricultural Research Service. Available at:
– reference: Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Callesen, I., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2017. Denmark's National Inventory Report 2017. Emission Inventories 1990–2015 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy 890 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 231
– volume: 2
  start-page: 659
  year: 2009
  end-page: 662
  ident: bb0085
  article-title: The contribution of manure and fertilizer nitrogen toatmospheric nitrous oxide since 1860
  publication-title: Nat. Geosci.
– volume: 309
  start-page: 169
  year: 2008
  end-page: 189
  ident: bb0050
  article-title: N
  publication-title: Plant Soil
– volume: 145
  start-page: 83
  year: 2016
  end-page: 89
  ident: bb0340
  article-title: Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration
  publication-title: Agric. Syst.
– volume: 199
  start-page: 261
  year: 2015
  end-page: 271
  ident: bb0375
  article-title: Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil
  publication-title: Agric. Ecosyst. Environ.
– volume: 41
  start-page: 694
  year: 2012
  end-page: 704
  ident: bb0385
  article-title: Relationships between dairy slurry total solids, gas emissions, and surface crusts
  publication-title: J. Environ. Qual.
– reference: Mikkelsen, M.H., Albrektsen, R., Gyldenkærne, S., 2013. Danish emission inventories for agriculture. Inventories 1985–2011. Aarhus University, DCE - Danish Centre for Environment and Energy, 142 pp. Scientific Report from DCE - Danish Centre for Environment and Energy No. 108. Available at:
– start-page: 32
  year: 2015
  ident: bb0160
  article-title: Slurry volumes and estimated storage time of slurry in Danish livestock buildings
– year: 2001
  ident: bb0185
  article-title: Development of a methane conversion factor to estimate emissions from animal waste lagoons
  publication-title: US EPA 17th Annual Emission Inventory Conference, USEPA, Research Triangle Park, NC, 16–18 April 2002, Atlanta, GA
– volume: 52
  start-page: 1707
  year: 2009
  end-page: 1719
  ident: bb0210
  article-title: Process modeling of ammonia volatilization from ammonium solution and manure surfaces: a review with recommended models
  publication-title: Trans. ASABE
– volume: 216
  start-page: 258
  year: 2016
  end-page: 268
  ident: bb5000
  article-title: Ammonia abatement by slurryacidification: a pilot-scale study of three finishing pig production periods
  publication-title: Agric. Ecosys. Environ.
– volume: 38
  start-page: 1560
  year: 2009
  end-page: 1568
  ident: bb0250
  article-title: Pilot scale facility to determine gaseous emissions from livestock slurry during storage
  publication-title: J. Environ. Qual.
– volume: 69
  start-page: 143
  year: 2004
  end-page: 154
  ident: bb0320
  article-title: Algorithms for calculating methane and nitrous oxide emissions from manure management
  publication-title: Nutr. Cycl. Agroecosyst.
– start-page: 5220
  year: 2011
  end-page: 5231
  ident: bb0300
  article-title: Whole farm impact of anaerobic digestion and biogas use on a New York dairy farm
  publication-title: ASABE 2011, Louisville, Kentucky, August 7–10
– volume: 507
  start-page: 488
  year: 2014
  ident: bb0400
  article-title: Methane fluxes show consistent temperature dependence across microbial to ecosystem scales
  publication-title: Nature
– volume: 239
  start-page: 188
  year: 2017
  end-page: 198
  ident: bb0030
  article-title: Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley
  publication-title: Agric. Ecosyst. Environ.
– volume: 8
  start-page: 315
  year: 1994
  end-page: 323
  ident: bb0180
  article-title: On the temperature dependence of soil respiration
  publication-title: Funct. Ecol.
– volume: 199
  start-page: 358
  year: 2015
  end-page: 368
  ident: bb0295
  article-title: Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry
  publication-title: Agric. Ecosyst. Environ.
– volume: 15
  start-page: 2825
  year: 2009
  end-page: 2837
  ident: bb0330
  article-title: Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones
  publication-title: Glob. Chang. Biol.
– volume: 97
  start-page: 5904
  year: 2014
  end-page: 5917
  ident: bb0095
  article-title: Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin
  publication-title: J. Dairy Sci.
– volume: 14
  start-page: 19
  year: 1985
  end-page: 35
  ident: bb0405
  article-title: The influence of the total ammonia concentration on the thermophilic digestion of cow manure
  publication-title: Agric. Wastes
– year: 2012
  ident: bb0080
  article-title: The Danish Environmental Protection Agency (DEPA)
  publication-title: Danish Nitrate Action Programme 2008–2015 regarding the Nitrates Directive; 91/676/EEC
– year: 2011
  ident: bb0370
  article-title: Biomass Energy Data Book, Ed(4)
– year: 2016
  ident: bb0390
  article-title: Carbon Life Cycle Assessment
– volume: 97
  start-page: 112
  year: 2016
  end-page: 120
  ident: bb0025
  article-title: Predicting nitrous oxide emissions from manure properties and soil moisture: an incubation experiment
  publication-title: Soil Biol. Biochem.
– volume: 52
  start-page: 1313
  year: 2008
  ident: bb0055
  article-title: Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies
  publication-title: Trans. ASAE
– volume: 84
  start-page: 179
  year: 2009
  end-page: 202
  ident: bb0205
  article-title: Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 76
  start-page: 73
  year: 2005
  end-page: 79
  ident: bb0360
  article-title: Methane emission from stored dairy manure slurry and slurry after digestion by methane digester
  publication-title: Animal Sci. J.
– volume: 136
  start-page: 199
  year: 2010
  end-page: 208
  ident: bb0065
  article-title: Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types
  publication-title: Agric. Ecosyst. Environ.
– volume: 59
  start-page: 1771
  year: 2016
  end-page: 1781
  ident: bb5005
  article-title: Evaluating greenhouse gas mitigation and climate change adaptation in dairy production using farm simulation
  publication-title: Trans. ASABE
– start-page: 496
  year: 2007
  ident: bb0335
  article-title: Environmental Management of Concentrated Animal Feeding Operations (CAFOs)
– volume: 10
  year: 2015
  ident: bb0175
  article-title: Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet plateau grasslands
  publication-title: PLoS One
– volume: 16
  start-page: 15433
  year: 2016
  end-page: 15450
  ident: bb0355
  article-title: Observing entrainment mixing, photochemical ozone production, and regional methane emissions by aircraft using a simple mixed-layer framework
  publication-title: Atmos. Chem. Phys.
– volume: 83
  start-page: 38
  year: 2013
  end-page: 48
  ident: bb0115
  article-title: Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition
  publication-title: FEMS Microbiol. Ecol.
– volume: Vol. 4
  year: 2006
  ident: bb0155
  article-title: Guidelines for national greenhouse gas inventories
  publication-title: Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change
– volume: 29
  start-page: 744
  year: 2000
  end-page: 751
  ident: bb0315
  article-title: Greenhouse gas emission from stored livestock slurry
  publication-title: J. Environ. Qual.
– volume: 23
  start-page: 585
  year: 1994
  end-page: 592
  ident: bb0145
  article-title: Seasonal variation in methane emission from stored slurry and solid manures
  publication-title: J. Enviro. Qual.
– volume: 16
  start-page: 5059
  year: 2012
  end-page: 5070
  ident: bb0395
  article-title: Methane emission by sectors: a comprehensive review of emission sources and mitigation methods
  publication-title: Renew. Sustain. Energy Rev.
– volume: 9
  start-page: 403
  year: 2012
  end-page: 422
  ident: bb0255
  article-title: Annual emissions of CH
  publication-title: Biogeosciences
– volume: 34
  start-page: 473
  year: 2014
  end-page: 492
  ident: bb0235
  article-title: Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review
  publication-title: Agron. Sustain. Dev.
– volume: 78
  start-page: 27
  year: 2007
  end-page: 36
  ident: bb0325
  article-title: Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 3
  start-page: 259
  year: 1979
  end-page: 286
  ident: bb0015
  article-title: Fuel gas production from animal residue. Part II. An economic assessment
  publication-title: Res. Recov. Conserv.
– year: 2014
  ident: bb0150
  article-title: A Case Studies from
– volume: 51
  start-page: 1775
  year: 2008
  end-page: 1781
  ident: bb0190
  article-title: Methane emissions from manure storages
  publication-title: Trans. ASABE
– volume: 45
  start-page: 2038
  year: 2016
  end-page: 2043
  ident: bb0020
  article-title: Does fall removal of the dairy manure sludge in a storage tank reduce subsequent methane emissions?
  publication-title: J. Environ. Qual.
– volume: 29
  start-page: 28
  year: 2014
  end-page: 41
  ident: bb0280
  article-title: Biogas in organic agriculture—effects on productivity, energy self-sufficiency and greenhouse gas emissions
  publication-title: Renew. Agric. Food Syst.
– volume: 11
  year: 2016
  ident: bb0275
  article-title: Estimation of methane emissions from slurry pits below pig and cattle confinements
  publication-title: PLoS One
– year: 2012
  ident: bb0110
  article-title: Livestock Manure to Energy Status, Technologies and Innovation in Denmark
– volume: 8
  year: 2009
  ident: bb0285
  article-title: Emissions of greenhouse gases (methane and nitrous oxide) from cattle slurry storage in northern Europe
  publication-title: IOP Conf. Series
– volume: 217
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0380
  article-title: CH
  publication-title: Agric. Ecosyst. Environ.
– volume: 84
  year: 2018
  ident: bb0125
  article-title: Targeting bacteria and methanogens to understand the role of residual slurry as an inoculant in stored liquid dairy manure
  publication-title: Appl. Environ. Microbiol.
– volume: 112
  start-page: 153
  year: 2006
  end-page: 162
  ident: bb0010
  article-title: Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment
  publication-title: Agric. Ecosyst. Environ.
– year: 2014
  ident: bb0075
  article-title: R: A Language and Environment for Statistical Computing
– volume: 34
  start-page: 411
  year: 2005
  end-page: 419
  ident: bb0200
  article-title: Crusting of stored dairy slurry to abate ammonia emissions
  publication-title: J. Environ. Qual.
– volume: 47
  start-page: 737
  year: 2013
  end-page: 746
  ident: bb0035
  article-title: Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: Spatio-temporal variations and impact on methanogenic activity
  publication-title: Water Res.
– volume: 102
  start-page: 9395
  year: 2011
  end-page: 9402
  ident: bb0350
  article-title: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential
  publication-title: Bioresour. Technol.
– volume: 112
  start-page: 606
  year: 2016
  end-page: 617
  ident: bb0040
  article-title: Optimised biogas production from the co-digestion of sugar beet with pig slurry: integrating energy, GHG and economic accounting
  publication-title: Energy
– volume: 258
  start-page: 56
  year: 2017
  end-page: 65
  ident: bb0165
  article-title: Year-round methane emissions from liquid dairy manure in a cold climate reveal hysteretic pattern
  publication-title: Agric. For. Meteorol.
– volume: 539
  start-page: 78
  year: 2016
  end-page: 84
  ident: bb0105
  article-title: Temperature response of methane production in liquid manures and co-digestates
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 1
  year: 2001
  end-page: 15
  ident: bb5010
  article-title: Ammonia emission from field applied manure and its reduction
  publication-title: Eur. J. Agron.
– volume: 199
  start-page: 261
  year: 2015
  ident: 10.1016/j.agsy.2018.07.009_bb0375
  article-title: Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.09.016
– ident: 10.1016/j.agsy.2018.07.009_bb0390
– volume: 15
  start-page: 2825
  year: 2009
  ident: 10.1016/j.agsy.2018.07.009_bb0330
  article-title: Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.01888.x
– volume: 58
  start-page: 82
  year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0345
  article-title: Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.11.006
– volume: 84
  year: 2018
  ident: 10.1016/j.agsy.2018.07.009_bb0125
  article-title: Targeting bacteria and methanogens to understand the role of residual slurry as an inoculant in stored liquid dairy manure
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02830-17
– volume: 49
  start-page: 11199
  year: 2015
  ident: 10.1016/j.agsy.2018.07.009_bb0100
  article-title: Lifecycle greenhouse gas analysis of an anaerobic codigestion facility processing dairy manure and industrial food waste
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01331
– year: 2012
  ident: 10.1016/j.agsy.2018.07.009_bb0110
– volume: 15
  start-page: 1
  year: 2001
  ident: 10.1016/j.agsy.2018.07.009_bb5010
  article-title: Ammonia emission from field applied manure and its reduction
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(01)00112-5
– volume: 21
  start-page: 550
  year: 2015
  ident: 10.1016/j.agsy.2018.07.009_bb0240
  article-title: Greenhouse gas emissions from dairy manure management: a review of field-based studies
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12687
– ident: 10.1016/j.agsy.2018.07.009_bb0195
– volume: 97
  start-page: 5904
  year: 2014
  ident: 10.1016/j.agsy.2018.07.009_bb0095
  article-title: Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8082
– volume: 8
  year: 2009
  ident: 10.1016/j.agsy.2018.07.009_bb0285
  article-title: Emissions of greenhouse gases (methane and nitrous oxide) from cattle slurry storage in northern Europe
  publication-title: IOP Conf. Series
– volume: 181
  start-page: 115
  year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0045
  article-title: Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.09.013
– volume: 34
  start-page: 473
  year: 2014
  ident: 10.1016/j.agsy.2018.07.009_bb0235
  article-title: Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-013-0196-z
– volume: 42
  start-page: 8403
  year: 2008
  ident: 10.1016/j.agsy.2018.07.009_bb0135
  article-title: Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.08.006
– volume: 16
  start-page: 15433
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb0355
  article-title: Observing entrainment mixing, photochemical ozone production, and regional methane emissions by aircraft using a simple mixed-layer framework
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-15433-2016
– ident: 10.1016/j.agsy.2018.07.009_bb0365
– volume: 56
  start-page: 1959
  year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0170
  article-title: Impact of anaerobic digestion of liquid dairy manure on ammonia volatilization process
  publication-title: Trans. ASABE
– volume: 41
  start-page: 125
  year: 2005
  ident: 10.1016/j.agsy.2018.07.009_bb0005
  article-title: Oxidation of 13C-labeled methane in surface crusts of pig-and cattle slurry
  publication-title: Isotopes Environ. Health Studies
  doi: 10.1080/10256010500131783
– volume: 8
  start-page: 315
  year: 1994
  ident: 10.1016/j.agsy.2018.07.009_bb0180
  article-title: On the temperature dependence of soil respiration
  publication-title: Funct. Ecol.
  doi: 10.2307/2389824
– year: 2014
  ident: 10.1016/j.agsy.2018.07.009_bb0075
– volume: 239
  start-page: 188
  year: 2017
  ident: 10.1016/j.agsy.2018.07.009_bb0030
  article-title: Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.01.012
– ident: 10.1016/j.agsy.2018.07.009_bb0370
– volume: 34
  start-page: 411
  year: 2005
  ident: 10.1016/j.agsy.2018.07.009_bb0200
  article-title: Crusting of stored dairy slurry to abate ammonia emissions
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2005.0411dup
– volume: 79
  start-page: 407
  year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0225
  article-title: Seasonal methane oxidation potential in manure crusts
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02278-12
– volume: 145
  start-page: 83
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb0340
  article-title: Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2016.03.004
– volume: 52
  start-page: 1313
  year: 2008
  ident: 10.1016/j.agsy.2018.07.009_bb0055
  article-title: Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies
  publication-title: Trans. ASAE
  doi: 10.13031/2013.27781
– volume: 102
  start-page: 9395
  year: 2011
  ident: 10.1016/j.agsy.2018.07.009_bb0350
  article-title: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.07.026
– volume: 59
  start-page: 1771
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb5005
  article-title: Evaluating greenhouse gas mitigation and climate change adaptation in dairy production using farm simulation
  publication-title: Trans. ASABE
  doi: 10.13031/trans.59.11594
– year: 2001
  ident: 10.1016/j.agsy.2018.07.009_bb0185
  article-title: Development of a methane conversion factor to estimate emissions from animal waste lagoons
– volume: 14
  start-page: 19
  year: 1985
  ident: 10.1016/j.agsy.2018.07.009_bb0405
  article-title: The influence of the total ammonia concentration on the thermophilic digestion of cow manure
  publication-title: Agric. Wastes
  doi: 10.1016/S0141-4607(85)80014-7
– volume: 539
  start-page: 78
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb0105
  article-title: Temperature response of methane production in liquid manures and co-digestates
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.07.145
– start-page: 496
  year: 2007
  ident: 10.1016/j.agsy.2018.07.009_bb0335
– volume: 21
  start-page: 1293
  year: 2015
  ident: 10.1016/j.agsy.2018.07.009_bb0140
  article-title: Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12767
– volume: 39
  start-page: 1813
  year: 2010
  ident: 10.1016/j.agsy.2018.07.009_bb0220
  article-title: Oxygen distribution and potential ammonia oxidation in floating, liquid manure crusts
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0382
– volume: 29
  start-page: 28
  year: 2014
  ident: 10.1016/j.agsy.2018.07.009_bb0280
  article-title: Biogas in organic agriculture—effects on productivity, energy self-sufficiency and greenhouse gas emissions
  publication-title: Renew. Agric. Food Syst.
  doi: 10.1017/S1742170512000440
– start-page: 32
  year: 2015
  ident: 10.1016/j.agsy.2018.07.009_bb0160
– volume: 51
  start-page: 1775
  year: 2008
  ident: 10.1016/j.agsy.2018.07.009_bb0190
  article-title: Methane emissions from manure storages
  publication-title: Trans. ASABE
  doi: 10.13031/2013.25311
– volume: 217
  start-page: 1
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb0380
  article-title: CH4, NH3, N2O and NO emissions from stored biogas digester effluent of pig manure at different temperatures
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2015.10.020
– volume: 95
  start-page: 103
  year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0260
  article-title: Emissions of CH4, N2O, NH3 and odorants from pig slurry during winter and summer storage
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-013-9551-3
– volume: 41
  start-page: 694
  year: 2012
  ident: 10.1016/j.agsy.2018.07.009_bb0385
  article-title: Relationships between dairy slurry total solids, gas emissions, and surface crusts
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0333
– volume: 309
  start-page: 169
  year: 2008
  ident: 10.1016/j.agsy.2018.07.009_bb0050
  article-title: N2O emissions from agricultural lands: a synthesis of simulation approaches
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9634-0
– year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0215
  article-title: Anthropogenic and natural radiative forcing
– volume: 9
  start-page: 403
  year: 2012
  ident: 10.1016/j.agsy.2018.07.009_bb0255
  article-title: Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in western Denmark managed by agriculture
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-403-2012
– volume: 45
  start-page: 2038
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb0020
  article-title: Does fall removal of the dairy manure sludge in a storage tank reduce subsequent methane emissions?
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.03.0083
– year: 2012
  ident: 10.1016/j.agsy.2018.07.009_bb0080
  article-title: The Danish Environmental Protection Agency (DEPA)
– volume: 216
  start-page: 258
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb5000
  article-title: Ammonia abatement by slurryacidification: a pilot-scale study of three finishing pig production periods
  publication-title: Agric. Ecosys. Environ.
  doi: 10.1016/j.agee.2015.09.042
– volume: 112
  start-page: 153
  year: 2006
  ident: 10.1016/j.agsy.2018.07.009_bb0010
  article-title: Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2005.08.030
– volume: 136
  start-page: 199
  year: 2010
  ident: 10.1016/j.agsy.2018.07.009_bb0065
  article-title: Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.11.012
– volume: 84
  start-page: 179
  year: 2009
  ident: 10.1016/j.agsy.2018.07.009_bb0205
  article-title: Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-008-9236-5
– volume: 258
  start-page: 56
  year: 2017
  ident: 10.1016/j.agsy.2018.07.009_bb0165
  article-title: Year-round methane emissions from liquid dairy manure in a cold climate reveal hysteretic pattern
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.12.185
– volume: 507
  start-page: 488
  year: 2014
  ident: 10.1016/j.agsy.2018.07.009_bb0400
  article-title: Methane fluxes show consistent temperature dependence across microbial to ecosystem scales
  publication-title: Nature
  doi: 10.1038/nature13164
– volume: 112
  start-page: 171
  year: 2006
  ident: 10.1016/j.agsy.2018.07.009_bb0070
  article-title: Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2005.08.016
– volume: 47
  start-page: 737
  year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0035
  article-title: Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: Spatio-temporal variations and impact on methanogenic activity
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.10.047
– volume: 7
  start-page: 220
  year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0120
  article-title: Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review
  publication-title: Animal
  doi: 10.1017/S1751731113000876
– volume: 97
  start-page: 112
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb0025
  article-title: Predicting nitrous oxide emissions from manure properties and soil moisture: an incubation experiment
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.03.005
– volume: 83
  start-page: 38
  year: 2013
  ident: 10.1016/j.agsy.2018.07.009_bb0115
  article-title: Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2012.01456.x
– volume: 40
  start-page: 4172
  year: 2006
  ident: 10.1016/j.agsy.2018.07.009_bb0130
  article-title: Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.02.013
– volume: 78
  start-page: 27
  year: 2007
  ident: 10.1016/j.agsy.2018.07.009_bb0325
  article-title: Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-006-9072-4
– volume: 52
  start-page: 1313
  year: 2009
  ident: 10.1016/j.agsy.2018.07.009_bb0060
  article-title: Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies
  publication-title: Trans. ASABE
  doi: 10.13031/2013.27781
– volume: 69
  start-page: 143
  year: 2004
  ident: 10.1016/j.agsy.2018.07.009_bb0320
  article-title: Algorithms for calculating methane and nitrous oxide emissions from manure management
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/B:FRES.0000029678.25083.fa
– volume: 23
  start-page: 585
  year: 1994
  ident: 10.1016/j.agsy.2018.07.009_bb0145
  article-title: Seasonal variation in methane emission from stored slurry and solid manures
  publication-title: J. Enviro. Qual.
  doi: 10.2134/jeq1994.00472425002300030026x
– volume: 16
  start-page: 5059
  year: 2012
  ident: 10.1016/j.agsy.2018.07.009_bb0395
  article-title: Methane emission by sectors: a comprehensive review of emission sources and mitigation methods
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.04.008
– volume: 180
  start-page: 237
  year: 2015
  ident: 10.1016/j.agsy.2018.07.009_bb0090
  article-title: Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.12.066
– year: 2014
  ident: 10.1016/j.agsy.2018.07.009_bb0150
– volume: 2
  start-page: 659
  year: 2009
  ident: 10.1016/j.agsy.2018.07.009_bb0085
  article-title: The contribution of manure and fertilizer nitrogen toatmospheric nitrous oxide since 1860
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo608
– ident: 10.1016/j.agsy.2018.07.009_bb0230
– start-page: 5220
  year: 2011
  ident: 10.1016/j.agsy.2018.07.009_bb0300
  article-title: Whole farm impact of anaerobic digestion and biogas use on a New York dairy farm
– volume: 38
  start-page: 1560
  year: 2009
  ident: 10.1016/j.agsy.2018.07.009_bb0250
  article-title: Pilot scale facility to determine gaseous emissions from livestock slurry during storage
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2008.0376
– volume: 112
  start-page: 606
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb0040
  article-title: Optimised biogas production from the co-digestion of sugar beet with pig slurry: integrating energy, GHG and economic accounting
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.068
– volume: 52
  start-page: 1707
  year: 2009
  ident: 10.1016/j.agsy.2018.07.009_bb0210
  article-title: Process modeling of ammonia volatilization from ammonium solution and manure surfaces: a review with recommended models
  publication-title: Trans. ASABE
  doi: 10.13031/2013.29133
– volume: Vol. 4
  year: 2006
  ident: 10.1016/j.agsy.2018.07.009_bb0155
  article-title: Guidelines for national greenhouse gas inventories
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.agsy.2018.07.009_bb0175
  article-title: Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet plateau grasslands
  publication-title: PLoS One
– volume: 29
  start-page: 744
  year: 2000
  ident: 10.1016/j.agsy.2018.07.009_bb0315
  article-title: Greenhouse gas emission from stored livestock slurry
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2000.00472425002900030009x
– volume: 199
  start-page: 358
  year: 2015
  ident: 10.1016/j.agsy.2018.07.009_bb0295
  article-title: Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.10.004
– volume: 11
  year: 2016
  ident: 10.1016/j.agsy.2018.07.009_bb0275
  article-title: Estimation of methane emissions from slurry pits below pig and cattle confinements
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160968
– volume: 76
  start-page: 73
  year: 2005
  ident: 10.1016/j.agsy.2018.07.009_bb0360
  article-title: Methane emission from stored dairy manure slurry and slurry after digestion by methane digester
  publication-title: Animal Sci. J.
  doi: 10.1111/j.1740-0929.2005.00240.x
– volume: 3
  start-page: 259
  year: 1979
  ident: 10.1016/j.agsy.2018.07.009_bb0015
  article-title: Fuel gas production from animal residue. Part II. An economic assessment
  publication-title: Res. Recov. Conserv.
SSID ssj0009108
Score 2.4682226
Snippet Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms activation energy
ammonia
Anaerobic digestion
autumn
climate change
crop production
Empirical model
empirical models
farms
gases
Greenhouse gas balance
greenhouse gas emissions
greenhouse gases
guidelines
inventories
liquid manure
livestock production
manure storage
methane
methane production
methanogens
nitrous oxide
pollution control
prediction
production technology
renewable energy sources
storage temperature
summer
Temperature
Title Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation
URI https://dx.doi.org/10.1016/j.agsy.2018.07.009
https://www.proquest.com/docview/2189530370
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAPEV5yUhsKJS4jp2wVRWogGABpG5W_CpFNK3aMnTht3PnJCAQYmCMZUfRnXXfF993Z0JOTMyE0wmPNGZaOfc60s7byKep1aLtU-OwwPnuXvSe-E0_6S-Rbl0Lg7LKKvaXMT1E62qkVVmzNRkOWw_YaQXApx9LoChxaP3JucRdfvb-JfMAOEzLTEIa4eyqcKbUeOWD2QLlXWlo4ImixN_B6UeYDthztU7WKtJIO-V3bZAlV2yS1c5gWjXOcFtkFgQ0z_Af7-ggn1G8xg0Pwma0LESkqIKE2EHHno5yrA6meWGpDfkl5JsX9NYtKIoNwxSHR-qOAqWlkykmc9CBYcloWLblGBfb5Onq8rHbi6oLFSIDPGQeMQ38w3ErRZ5p61jbZ74NAz7OJDBDy4QRscBUtAbo9xagXog8EVwwK4237R3SKMaF2yU0jfEmMYgATBrOOPrUGCkzZnnuWR43SVxbUpmq2zheevGqalnZi0LrK7S-OsckeNYkp59rJmWvjT9nJ7WD1LcdowAM_lx3XHtTgSswPwL2BPcoYDtZApAuz_f--e59soJPpdjvgDTm0zd3CKRlro_Crjwiy53r2979ByiA7jU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSD-MT6XMGbxJrNZpN4K2Kpz4st9LZkX7WiaWnqwYu_3Zk8FEV68JrshjCTzPcl880MISfaZ8KqkHsKM62cO-Up64zn4tgoEbhYWyxwvn8Q3T6_GYSDBrmsa2FQVlnF_jKmF9G6OtKqrNmajEatR-y0AuAz8COgKD62_lzk8PriGIOzj2-dB-BhXKYSYg-XV5UzpcgrHebvqO-Kiw6eqEr8G51-xekCfDprZLVijbRd3tg6adhsg6y0h9Oqc4bdJHmhoHmCD3lLh2lOcY4b_gnLaVmJSFEGCcGDjh19TbE8mKaZoaZIMCHhvKC39p2i2rBYYvGfuqXAaelkitkc9GCx5XVU9uUYZ1uk37nqXXa9aqKCp4GIzDymgIBYbiKRJspYFrjEBXDA-UkE1NAwoYUvMBetAPudAawXIg0FF8xE2plgmyxk48zuEBr7OEoMQgCLNGccnap1FCXM8NSx1G8Sv7ak1FW7cZx68SJrXdmzROtLtL48xyx40iSnX3smZbONuavD2kHyxyMjAQ3m7juuvSnBFZggAXuCeyTQnSQETI_Od_957SOy1O3d38m764fbPbKMZ0rl3z5ZmE3f7AEwmJk6LJ7QT6EY78M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greenhouse+gas+emissions+during+storage+of+manure+and+digestates%3A+Key+role+of+methane+for+prediction+and+mitigation&rft.jtitle=Agricultural+systems&rft.au=Baral%2C+Khagendra+R&rft.au=J%C3%A9go%2C+Guillaume&rft.au=Amon%2C+Barbara&rft.au=Bol%2C+Roland&rft.date=2018-10-01&rft.issn=0308-521X&rft.volume=166+p.26-35&rft.spage=26&rft.epage=35&rft_id=info:doi/10.1016%2Fj.agsy.2018.07.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-521X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-521X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-521X&client=summon