Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation
Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production,...
Saved in:
Published in | Agricultural systems Vol. 166; pp. 26 - 35 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production, and emissions of methane (CH4), nitrous oxide (N2O) and ammonia (NH3) during storage contribute to the overall GHG balance. We determined emissions of all three gases during summer and autumn storage of digestates and untreated manure in pilot-scale experiments. Using these and other data, GHG balances were calculated for treatment, post-treatment storage, and field application. The GHG mitigation potential of AD was demonstrated, but CH4 emissions during storage dominated the overall GHG balance irrespective of treatment; hence for GHG inventories and mitigation efforts, the correct estimation of this source is critical. Current inventory guidelines from the Intergovernmental Panel on Climate Change (IPCC) estimate CH4 emissions from manure management based on a simple classification of livestock production systems, volatile solids (VS) excreted, and annual average temperature, and the effects of treatment and management at farm level are therefore not accounted for in any detail. Two empirical models were evaluated, which instead calculate VS degradation and storage temperature with daily time steps; both models were based on concepts presented by Sommer et al. (2004). Parameters for the Arrhenius temperature relationship of CH4 production, i.e., apparent activation energy, Ea, and pre-exponential factor, A, could be selected, for which cumulative CH4 emissions calculated with the two models approached observed emissions. However, the magnitude of emissions during a warm period was not well reproduced, and the parameters identified for the two models differed. Sensitivity analyses showed that deviations from observations could not be explained by errors in manure storage temperature. The results thus suggest that CH4 emissions cannot be predicted from VS and temperature alone, i.e., that the methanogenic potential changes during storage. Determination of parameters for estimation of CH4 emissions from manure management is discussed with reference to recent literature.
•Greenhouse gas (GHG) emissions were determined during storage of digestates and manure.•In GHG balances for treatment, storage and field, methane emission during storage always dominated•Two empirical models were parameterised in order to predict daily methane emissions.•Temperature functions differed, but neither model described emissions during a warm period.•Temperature response parameters should account for variations in methanogenic potential. |
---|---|
AbstractList | Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production, and emissions of methane (CH4), nitrous oxide (N2O) and ammonia (NH3) during storage contribute to the overall GHG balance. We determined emissions of all three gases during summer and autumn storage of digestates and untreated manure in pilot-scale experiments. Using these and other data, GHG balances were calculated for treatment, post-treatment storage, and field application. The GHG mitigation potential of AD was demonstrated, but CH4 emissions during storage dominated the overall GHG balance irrespective of treatment; hence for GHG inventories and mitigation efforts, the correct estimation of this source is critical. Current inventory guidelines from the Intergovernmental Panel on Climate Change (IPCC) estimate CH4 emissions from manure management based on a simple classification of livestock production systems, volatile solids (VS) excreted, and annual average temperature, and the effects of treatment and management at farm level are therefore not accounted for in any detail. Two empirical models were evaluated, which instead calculate VS degradation and storage temperature with daily time steps; both models were based on concepts presented by Sommer et al. (2004). Parameters for the Arrhenius temperature relationship of CH4 production, i.e., apparent activation energy, Ea, and pre-exponential factor, A, could be selected, for which cumulative CH4 emissions calculated with the two models approached observed emissions. However, the magnitude of emissions during a warm period was not well reproduced, and the parameters identified for the two models differed. Sensitivity analyses showed that deviations from observations could not be explained by errors in manure storage temperature. The results thus suggest that CH4 emissions cannot be predicted from VS and temperature alone, i.e., that the methanogenic potential changes during storage. Determination of parameters for estimation of CH4 emissions from manure management is discussed with reference to recent literature.
•Greenhouse gas (GHG) emissions were determined during storage of digestates and manure.•In GHG balances for treatment, storage and field, methane emission during storage always dominated•Two empirical models were parameterised in order to predict daily methane emissions.•Temperature functions differed, but neither model described emissions during a warm period.•Temperature response parameters should account for variations in methanogenic potential. Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse gas (GHG) mitigation. Both untreated manure and digestates are typically stored for a period in order to recycle nutrients for crop production, and emissions of methane (CH₄), nitrous oxide (N₂O) and ammonia (NH₃) during storage contribute to the overall GHG balance. We determined emissions of all three gases during summer and autumn storage of digestates and untreated manure in pilot-scale experiments. Using these and other data, GHG balances were calculated for treatment, post-treatment storage, and field application. The GHG mitigation potential of AD was demonstrated, but CH₄ emissions during storage dominated the overall GHG balance irrespective of treatment; hence for GHG inventories and mitigation efforts, the correct estimation of this source is critical. Current inventory guidelines from the Intergovernmental Panel on Climate Change (IPCC) estimate CH₄ emissions from manure management based on a simple classification of livestock production systems, volatile solids (VS) excreted, and annual average temperature, and the effects of treatment and management at farm level are therefore not accounted for in any detail. Two empirical models were evaluated, which instead calculate VS degradation and storage temperature with daily time steps; both models were based on concepts presented by Sommer et al. (2004). Parameters for the Arrhenius temperature relationship of CH₄ production, i.e., apparent activation energy, Eₐ, and pre-exponential factor, A, could be selected, for which cumulative CH₄ emissions calculated with the two models approached observed emissions. However, the magnitude of emissions during a warm period was not well reproduced, and the parameters identified for the two models differed. Sensitivity analyses showed that deviations from observations could not be explained by errors in manure storage temperature. The results thus suggest that CH₄ emissions cannot be predicted from VS and temperature alone, i.e., that the methanogenic potential changes during storage. Determination of parameters for estimation of CH₄ emissions from manure management is discussed with reference to recent literature. |
Author | Olesen, Jørgen E. Chantigny, Martin H. Amon, Barbara Petersen, Søren O. Baral, Khagendra R. Jégo, Guillaume Bol, Roland |
Author_xml | – sequence: 1 givenname: Khagendra R. surname: Baral fullname: Baral, Khagendra R. organization: Department of Agroecology, Aarhus University, Tjele, Denmark – sequence: 2 givenname: Guillaume surname: Jégo fullname: Jégo, Guillaume organization: Quebec Research & Development Centre, Agriculture and Agri-Food Canada, Québec, Canada – sequence: 3 givenname: Barbara orcidid: 0000-0001-5650-1806 surname: Amon fullname: Amon, Barbara organization: Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany – sequence: 4 givenname: Roland orcidid: 0000-0003-3015-7706 surname: Bol fullname: Bol, Roland organization: Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany – sequence: 5 givenname: Martin H. surname: Chantigny fullname: Chantigny, Martin H. organization: Quebec Research & Development Centre, Agriculture and Agri-Food Canada, Québec, Canada – sequence: 6 givenname: Jørgen E. surname: Olesen fullname: Olesen, Jørgen E. organization: Department of Agroecology, Aarhus University, Tjele, Denmark – sequence: 7 givenname: Søren O. surname: Petersen fullname: Petersen, Søren O. email: sop@agro.au.dk organization: Department of Agroecology, Aarhus University, Tjele, Denmark |
BookMark | eNp9kEFvGyEQhVGVSnXS_oGeOOay2wFs2K1yqaIkjRKpl1bqDWEYNlhrcAFH8r8vjnPKIafRjN43eu-dk7OYIhLylUHPgMlvm95M5dBzYEMPqgcYP5AFG5ToOJfqjCxAwNCtOPv7iZyXsoGmYDAsSLnLiPEp7QvSyRSK21BKSLFQt88hTrTUlM2ENHm6NXGfkZroqAsTlmoqlu_0AQ80p_kkwfpkIlKfMt1ldMHW9uwF2YYaJnNcP5OP3swFv7zOC_Ln9ub39c_u8dfd_fWPx86KcawdX8ulwKVT0oxrh1z40Yt28GxUjK0cl1YyyRXAGjjzTjIhpVnJpeROWe_EBbk8_d3l9G_f_OoWzuI8N4ctsOZsGFcChIImHU5Sm1MpGb22ob6YrdmEWTPQx571Rh971seeNSjdWmwof4PuctiafHgfujpB2PI_B8y62IDRtsYy2qpdCu_h_wGJqJra |
CitedBy_id | crossref_primary_10_3390_su14169934 crossref_primary_10_1016_j_jclepro_2023_140288 crossref_primary_10_3389_fsufs_2021_763020 crossref_primary_10_3775_jie_102_96 crossref_primary_10_1002_cben_202300063 crossref_primary_10_3390_su152416948 crossref_primary_10_1016_j_biortech_2021_126500 crossref_primary_10_1016_j_wasman_2023_04_034 crossref_primary_10_3390_su15043079 crossref_primary_10_1016_j_wasman_2024_04_039 crossref_primary_10_1016_j_scitotenv_2023_166610 crossref_primary_10_1016_j_biteb_2020_100454 crossref_primary_10_1016_j_wasman_2019_09_036 crossref_primary_10_1016_j_energy_2021_121378 crossref_primary_10_1016_j_scitotenv_2020_142080 crossref_primary_10_3390_atmos12091156 crossref_primary_10_1016_j_wasman_2020_12_026 crossref_primary_10_1016_j_jenvman_2024_120233 crossref_primary_10_1007_s10705_019_10023_2 crossref_primary_10_1021_acsagscitech_2c00172 crossref_primary_10_3389_fsufs_2024_1397305 crossref_primary_10_1016_j_resconrec_2024_107629 crossref_primary_10_1016_j_scitotenv_2021_150070 crossref_primary_10_1016_j_biombioe_2024_107116 crossref_primary_10_1021_acsagscitech_4c00659 crossref_primary_10_3390_ani12162035 crossref_primary_10_1016_j_scitotenv_2020_142278 crossref_primary_10_3390_microorganisms9071457 crossref_primary_10_1371_journal_pone_0252881 crossref_primary_10_1016_j_agee_2022_108327 crossref_primary_10_1016_j_wasman_2023_09_007 crossref_primary_10_1016_j_biortech_2023_130247 crossref_primary_10_1016_j_wasman_2023_07_014 crossref_primary_10_1002_jeq2_20336 crossref_primary_10_1016_j_jclepro_2022_134061 crossref_primary_10_1088_1748_9326_ad8589 crossref_primary_10_1007_s40518_019_00131_6 crossref_primary_10_1002_jeq2_20252 crossref_primary_10_1016_j_scitotenv_2023_161656 crossref_primary_10_3390_agronomy14010186 crossref_primary_10_1016_j_jclepro_2025_145040 crossref_primary_10_1051_ro_2023178 crossref_primary_10_3390_app12094652 crossref_primary_10_1007_s11356_021_12981_z crossref_primary_10_1007_s42729_020_00361_4 crossref_primary_10_3390_su14031849 crossref_primary_10_1016_j_jhazmat_2020_123063 crossref_primary_10_1016_j_biortech_2021_125080 crossref_primary_10_1111_jiec_13197 crossref_primary_10_1016_j_biortech_2020_123836 crossref_primary_10_1016_j_fuel_2023_128684 crossref_primary_10_1080_10962247_2019_1629359 crossref_primary_10_3390_su16083323 crossref_primary_10_3390_app10113890 crossref_primary_10_3390_atmos13060893 crossref_primary_10_3389_fenrg_2021_740314 |
Cites_doi | 10.1016/j.agee.2014.09.016 10.1111/j.1365-2486.2009.01888.x 10.1016/j.soilbio.2012.11.006 10.1128/AEM.02830-17 10.1021/acs.est.5b01331 10.1016/S1161-0301(01)00112-5 10.1111/gcb.12687 10.3168/jds.2014-8082 10.1016/j.agee.2013.09.013 10.1007/s13593-013-0196-z 10.1016/j.atmosenv.2008.08.006 10.5194/acp-16-15433-2016 10.1080/10256010500131783 10.2307/2389824 10.1016/j.agee.2017.01.012 10.2134/jeq2005.0411dup 10.1128/AEM.02278-12 10.1016/j.agsy.2016.03.004 10.13031/2013.27781 10.1016/j.biortech.2011.07.026 10.13031/trans.59.11594 10.1016/S0141-4607(85)80014-7 10.1016/j.scitotenv.2015.07.145 10.1111/gcb.12767 10.2134/jeq2009.0382 10.1017/S1742170512000440 10.13031/2013.25311 10.1016/j.agee.2015.10.020 10.1007/s10705-013-9551-3 10.2134/jeq2011.0333 10.1007/s11104-008-9634-0 10.5194/bg-9-403-2012 10.2134/jeq2016.03.0083 10.1016/j.agee.2015.09.042 10.1016/j.agee.2005.08.030 10.1016/j.agee.2009.11.012 10.1007/s10705-008-9236-5 10.1016/j.agrformet.2017.12.185 10.1038/nature13164 10.1016/j.agee.2005.08.016 10.1016/j.watres.2012.10.047 10.1017/S1751731113000876 10.1016/j.soilbio.2016.03.005 10.1111/j.1574-6941.2012.01456.x 10.1016/j.atmosenv.2006.02.013 10.1007/s10705-006-9072-4 10.1023/B:FRES.0000029678.25083.fa 10.2134/jeq1994.00472425002300030026x 10.1016/j.rser.2012.04.008 10.1016/j.biortech.2014.12.066 10.1038/ngeo608 10.2134/jeq2008.0376 10.1016/j.energy.2016.06.068 10.13031/2013.29133 10.2134/jeq2000.00472425002900030009x 10.1016/j.agee.2014.10.004 10.1371/journal.pone.0160968 10.1111/j.1740-0929.2005.00240.x |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.agsy.2018.07.009 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-2267 |
EndPage | 35 |
ExternalDocumentID | 10_1016_j_agsy_2018_07_009 S0308521X17310119 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 3R3 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSZ T5K UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c399t-2b643e4d76a9bde23f9f33e4f197115d26c6162700b021fd61366a56462d7cfd3 |
IEDL.DBID | .~1 |
ISSN | 0308-521X |
IngestDate | Thu Jul 10 17:57:14 EDT 2025 Tue Jul 01 04:29:13 EDT 2025 Thu Apr 24 23:10:42 EDT 2025 Fri Feb 23 02:47:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Temperature Greenhouse gas balance Empirical model Anaerobic digestion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-2b643e4d76a9bde23f9f33e4f197115d26c6162700b021fd61366a56462d7cfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5650-1806 0000-0003-3015-7706 |
PQID | 2189530370 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2189530370 crossref_citationtrail_10_1016_j_agsy_2018_07_009 crossref_primary_10_1016_j_agsy_2018_07_009 elsevier_sciencedirect_doi_10_1016_j_agsy_2018_07_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationTitle | Agricultural systems |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Koirala, Ndegwa, Joo, Frear, Stockle, Harrison (bb0170) 2013; 56 Petersen, Dorno, Lindholst, Feilberg, Eriksen (bb0260) 2013; 95 Gerber, Hristov, Henderson, Makkar, Oh, Lee, Meinen, Montes, Ott, Firkins (bb0120) 2013; 7 Spellman, Whiting (bb0335) 2007 Sommer, Olesen, Petersen, Weisbjerg, Valli, Rodhe, Béline (bb0330) 2009; 15 Chen, Li, Grace, Mosier (bb0050) 2008; 309 Kariyapperuma, Johannesson, Maldaner, Vanderzaag, Gordon, Wagner-Riddle (bb0165) 2017; 258 Baldé, VanderZaag, Burtt, Gordon, Desjardins (bb0020) 2016; 45 Habtewold, Gordon, Sokolov, Vanderzaag, Wagner-Riddle, Dunfield (bb0125) 2018; 84 Yusuf, Noor, Abba, Hassan, Din (bb0395) 2012; 16 Sommer, Petersen, Møller (bb0320) 2004; 69 Hou, Velthof, Oenema (bb0140) 2015; 21 Baral, Labouriau, Olesen, Petersen (bb0030) 2017; 239 Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Callesen, I., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2017. Denmark's National Inventory Report 2017. Emission Inventories 1990–2015 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy 890 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 231 Boldrin, Baral, Fitamo, Vazifehkhoran, Jensen, Kjærgaard, Lyng, van Nguyen, Nielsen, Triolo (bb0040) 2016; 112 Taghizadeh-Toosi, Olesen (bb0340) 2016; 145 Petersen, Hoffmann, Schäfer, Blicher-Mathiesen, Elsgaard, Kristensen, Larsen, Torp, Greve (bb0255) 2012; 9 Owen, Silver (bb0240) 2015; 21 Mikkelsen, M.H., Albrektsen, R., Gyldenkærne, S., 2013. Danish emission inventories for agriculture. Inventories 1985–2011. Aarhus University, DCE - Danish Centre for Environment and Energy, 142 pp. Scientific Report from DCE - Danish Centre for Environment and Energy No. 108. Available at Montes, Rotz, Chaooui (bb0210) 2009; 52 Li, He, Wei, Gao, Zuo (bb0175) 2015; 10 Davidson (bb0085) 2009; 2 Ebner, Labatut, Rankin, Pronto, Gooch, Williamson, Trabold (bb0100) 2015; 49 Fotidis, Karakashev, Kotsopoulos, Martzopoulos, Angelidaki (bb0115) 2013; 83 Clemens, Trimborn, Weiland, Amon (bb0070) 2006; 112 Massé, Masse, Claveau, Benchaar, Thomas (bb0190) 2008; 51 Umetsu, Kimura, Takahashi, Kishimoto, Kojima, Young (bb0360) 2005; 76 Ambus, Petersen (bb0005) 2005; 41 Dhamodharan, Kumar, Kalamdhad (bb0090) 2015; 180 Pugesgaard, Olesen, Jørgensen, Dalgaard (bb0280) 2014; 29 Sommer, Petersen, Søgaard (bb0315) 2000; 29 Viguria, Sanz-Cobeña, López, Arriaga, Merino (bb0375) 2015; 199 Baral, Arthur, Olesen, Petersen (bb0025) 2016; 97 8519 (accessed 01–19-2016). Sommer, Petersen, Sørensen, Poulsen, Møller (bb0325) 2007; 78 Möller (bb0205) 2009; 84 Petersen, Olsen, Elsgaard, Triolo, Sommer (bb0275) 2016; 11 Amon, Kryvoruchko, Amon, Zechmeister-Boltenstern (bb0010) 2006; 112 Rotz, Skinner, Stoner, Hayhoe (bb5005) 2016; 59 Foged (bb0110) 2012 Yara (bb0390) 2016 Nkoa (bb0235) 2014; 34 Triolo, Sommer, Møller, Weisbjerg, Jiang (bb0350) 2011; 102 Kai, Birkmose, Petersen (bb0160) 2015 Hansen, Henriksen, Sommer (bb0130) 2006; 40 Lloyd, Taylor (bb0180) 1994; 8 Barret, Gagnon, Topp, Masse, Massé, Talbot (bb0035) 2013; 47 Chirinda, Carter, Albert, Ambus, Olesen, Porter, Petersen (bb0065) 2010; 136 Petersen, Skov, Drøscher, Adamsen (bb0250) 2009; 38 USDE (bb0370) 2011 Hellebrand, Scholz, Kern (bb0135) 2008; 42 Ashare, Wentworth, Wise (bb0015) 1979; 3 Husted (bb0145) 1994; 23 Core Team (bb0075) 2014 IPCC (bb0155) 2006; Vol. 4 Rodhe, Ascue, Å (bb0285) 2009; 8 Thomsen, Olesen, Møller, Sørensen, Christensen (bb0345) 2013; 58 Mangino, Bartram, Brazy (bb0185) 2001 Wang, Dong, Zhu, Li, Zhou, Jiang, Xin (bb0380) 2016; 217 Elsgaard, Olsen, Petersen (bb0105) 2016; 539 Petersen, Hutchings, Hafner, Sommer, Hjorth, Jonassen (bb5000) 2016; 216 Misselbrook, Brookman, Smith, Cumby, Williams, McCrory (bb0200) 2005; 34 Wood, Gordon, Wagner-Riddle, Dunfield, Madani (bb0385) 2012; 41 USDA-ARS, 2009. The Integrated Farm System Model. United States Department of Agriculture - Agricultural Research Service. Available at Chianese, Rotz, Richard (bb0060) 2009; 52 Rodhe, Ascue, Willén, Persson, Nordberg (bb0295) 2015; 199 Nielsen, Nielsen, Schramm, Revsbech (bb0220) 2010; 39 Rotz, Hafner (bb0300) 2011 IEA Bioenergy (bb0150) 2014 Sommer, Hutchings (bb5010) 2001; 15 Brozyna, Petersen, Chirinda, Olesen (bb0045) 2013; 181 Danish Environmental Protection Agency (bb0080) 2012 Zeeman, Wiegant, Koster-Treffers, Lettinga (bb0405) 1985; 14 Chianese, Rotz, Richard (bb0055) 2008; 52 Trousdell, Conley, Post, Faloona (bb0355) 2016; 16 Dutreuil, Wattiaux, Hardie, Cabrera (bb0095) 2014; 97 Nielsen, Schramm, Nielsen, Revsbech (bb0225) 2013; 79 Yvon-Durocher, Allen, Bastviken, Conrad, Gudasz, St-Pierre, Thanh-Duc, Del Giorgio (bb0400) 2014; 507 Myhre, Shindell, Bréon, Collins, Fuglestvedt, Huang, Koch, Lamarque, Lee, Mendoza, Nakajima, Robock, Stephens, Takemura, Zhang (bb0215) 2013 Yusuf (10.1016/j.agsy.2018.07.009_bb0395) 2012; 16 Baral (10.1016/j.agsy.2018.07.009_bb0025) 2016; 97 Yara (10.1016/j.agsy.2018.07.009_bb0390) Rodhe (10.1016/j.agsy.2018.07.009_bb0295) 2015; 199 Chirinda (10.1016/j.agsy.2018.07.009_bb0065) 2010; 136 IPCC (10.1016/j.agsy.2018.07.009_bb0155) 2006; Vol. 4 Petersen (10.1016/j.agsy.2018.07.009_bb0255) 2012; 9 Kai (10.1016/j.agsy.2018.07.009_bb0160) 2015 Zeeman (10.1016/j.agsy.2018.07.009_bb0405) 1985; 14 Foged (10.1016/j.agsy.2018.07.009_bb0110) 2012 Nielsen (10.1016/j.agsy.2018.07.009_bb0220) 2010; 39 Misselbrook (10.1016/j.agsy.2018.07.009_bb0200) 2005; 34 Danish Environmental Protection Agency (10.1016/j.agsy.2018.07.009_bb0080) 2012 Chianese (10.1016/j.agsy.2018.07.009_bb0060) 2009; 52 Mangino (10.1016/j.agsy.2018.07.009_bb0185) 2001 Wang (10.1016/j.agsy.2018.07.009_bb0380) 2016; 217 Li (10.1016/j.agsy.2018.07.009_bb0175) 2015; 10 Husted (10.1016/j.agsy.2018.07.009_bb0145) 1994; 23 Kariyapperuma (10.1016/j.agsy.2018.07.009_bb0165) 2017; 258 Petersen (10.1016/j.agsy.2018.07.009_bb0260) 2013; 95 Boldrin (10.1016/j.agsy.2018.07.009_bb0040) 2016; 112 Nkoa (10.1016/j.agsy.2018.07.009_bb0235) 2014; 34 Sommer (10.1016/j.agsy.2018.07.009_bb5010) 2001; 15 Sommer (10.1016/j.agsy.2018.07.009_bb0325) 2007; 78 Myhre (10.1016/j.agsy.2018.07.009_bb0215) 2013 USDE (10.1016/j.agsy.2018.07.009_bb0370) Triolo (10.1016/j.agsy.2018.07.009_bb0350) 2011; 102 Sommer (10.1016/j.agsy.2018.07.009_bb0330) 2009; 15 Amon (10.1016/j.agsy.2018.07.009_bb0010) 2006; 112 Lloyd (10.1016/j.agsy.2018.07.009_bb0180) 1994; 8 Rodhe (10.1016/j.agsy.2018.07.009_bb0285) 2009; 8 Ashare (10.1016/j.agsy.2018.07.009_bb0015) 1979; 3 Baral (10.1016/j.agsy.2018.07.009_bb0030) 2017; 239 Yvon-Durocher (10.1016/j.agsy.2018.07.009_bb0400) 2014; 507 Ambus (10.1016/j.agsy.2018.07.009_bb0005) 2005; 41 Ebner (10.1016/j.agsy.2018.07.009_bb0100) 2015; 49 Brozyna (10.1016/j.agsy.2018.07.009_bb0045) 2013; 181 Elsgaard (10.1016/j.agsy.2018.07.009_bb0105) 2016; 539 Viguria (10.1016/j.agsy.2018.07.009_bb0375) 2015; 199 Davidson (10.1016/j.agsy.2018.07.009_bb0085) 2009; 2 10.1016/j.agsy.2018.07.009_bb0365 Thomsen (10.1016/j.agsy.2018.07.009_bb0345) 2013; 58 Pugesgaard (10.1016/j.agsy.2018.07.009_bb0280) 2014; 29 Dutreuil (10.1016/j.agsy.2018.07.009_bb0095) 2014; 97 Trousdell (10.1016/j.agsy.2018.07.009_bb0355) 2016; 16 Massé (10.1016/j.agsy.2018.07.009_bb0190) 2008; 51 Petersen (10.1016/j.agsy.2018.07.009_bb0275) 2016; 11 Hansen (10.1016/j.agsy.2018.07.009_bb0130) 2006; 40 Dhamodharan (10.1016/j.agsy.2018.07.009_bb0090) 2015; 180 Koirala (10.1016/j.agsy.2018.07.009_bb0170) 2013; 56 Fotidis (10.1016/j.agsy.2018.07.009_bb0115) 2013; 83 Chianese (10.1016/j.agsy.2018.07.009_bb0055) 2008; 52 Baldé (10.1016/j.agsy.2018.07.009_bb0020) 2016; 45 Petersen (10.1016/j.agsy.2018.07.009_bb5000) 2016; 216 Hellebrand (10.1016/j.agsy.2018.07.009_bb0135) 2008; 42 Sommer (10.1016/j.agsy.2018.07.009_bb0320) 2004; 69 Montes (10.1016/j.agsy.2018.07.009_bb0210) 2009; 52 Taghizadeh-Toosi (10.1016/j.agsy.2018.07.009_bb0340) 2016; 145 10.1016/j.agsy.2018.07.009_bb0195 Petersen (10.1016/j.agsy.2018.07.009_bb0250) 2009; 38 IEA Bioenergy (10.1016/j.agsy.2018.07.009_bb0150) 2014 Rotz (10.1016/j.agsy.2018.07.009_bb0300) 2011 Rotz (10.1016/j.agsy.2018.07.009_bb5005) 2016; 59 10.1016/j.agsy.2018.07.009_bb0230 Umetsu (10.1016/j.agsy.2018.07.009_bb0360) 2005; 76 Gerber (10.1016/j.agsy.2018.07.009_bb0120) 2013; 7 Owen (10.1016/j.agsy.2018.07.009_bb0240) 2015; 21 Habtewold (10.1016/j.agsy.2018.07.009_bb0125) 2018; 84 Barret (10.1016/j.agsy.2018.07.009_bb0035) 2013; 47 Sommer (10.1016/j.agsy.2018.07.009_bb0315) 2000; 29 Hou (10.1016/j.agsy.2018.07.009_bb0140) 2015; 21 Nielsen (10.1016/j.agsy.2018.07.009_bb0225) 2013; 79 Core Team (10.1016/j.agsy.2018.07.009_bb0075) 2014 Möller (10.1016/j.agsy.2018.07.009_bb0205) 2009; 84 Wood (10.1016/j.agsy.2018.07.009_bb0385) 2012; 41 Spellman (10.1016/j.agsy.2018.07.009_bb0335) 2007 Clemens (10.1016/j.agsy.2018.07.009_bb0070) 2006; 112 Chen (10.1016/j.agsy.2018.07.009_bb0050) 2008; 309 |
References_xml | – volume: 41 start-page: 125 year: 2005 end-page: 133 ident: bb0005 article-title: Oxidation of publication-title: Isotopes Environ. Health Studies – volume: 21 start-page: 550 year: 2015 end-page: 565 ident: bb0240 article-title: Greenhouse gas emissions from dairy manure management: a review of field-based studies publication-title: Glob. Chang. Biol. – volume: 21 start-page: 1293 year: 2015 end-page: 1312 ident: bb0140 article-title: Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment publication-title: Glob. Chang. Biol. – volume: 58 start-page: 82 year: 2013 end-page: 87 ident: bb0345 article-title: Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces publication-title: Soil Biol. Biochem. – volume: 56 start-page: 1959 year: 2013 end-page: 1966 ident: bb0170 article-title: Impact of anaerobic digestion of liquid dairy manure on ammonia volatilization process publication-title: Trans. ASABE – year: 2013 ident: bb0215 article-title: Anthropogenic and natural radiative forcing publication-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 39 start-page: 1813 year: 2010 end-page: 1820 ident: bb0220 article-title: Oxygen distribution and potential ammonia oxidation in floating, liquid manure crusts publication-title: J. Environ. Qual. – volume: 181 start-page: 115 year: 2013 end-page: 126 ident: bb0045 article-title: Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation publication-title: Agric. Ecosyst. Environ. – volume: 95 start-page: 103 year: 2013 end-page: 113 ident: bb0260 article-title: Emissions of CH publication-title: Nutr. Cycl. Agroecosyst. – reference: =8519 (accessed 01–19-2016). – volume: 49 start-page: 11199 year: 2015 end-page: 11208 ident: bb0100 article-title: Lifecycle greenhouse gas analysis of an anaerobic codigestion facility processing dairy manure and industrial food waste publication-title: Environ. Sci. Technol. – volume: 40 start-page: 4172 year: 2006 end-page: 4181 ident: bb0130 article-title: Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering publication-title: Atmos. Environ. – volume: 52 start-page: 1313 year: 2009 end-page: 1323 ident: bb0060 article-title: Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies publication-title: Trans. ASABE – volume: 180 start-page: 237 year: 2015 end-page: 241 ident: bb0090 article-title: Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics publication-title: Bioresour. Technol. – volume: 7 start-page: 220 year: 2013 end-page: 234 ident: bb0120 article-title: Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review publication-title: Animal – volume: 42 start-page: 8403 year: 2008 end-page: 8411 ident: bb0135 article-title: Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils publication-title: Atmos. Environ. – volume: 112 start-page: 171 year: 2006 end-page: 177 ident: bb0070 article-title: Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry publication-title: Agric. Ecosyst. Environ. – volume: 79 start-page: 407 year: 2013 end-page: 410 ident: bb0225 article-title: Seasonal methane oxidation potential in manure crusts publication-title: Appl. Environ. Microbiol. – reference: USDA-ARS, 2009. The Integrated Farm System Model. United States Department of Agriculture - Agricultural Research Service. Available at: – reference: Nielsen, O.-K., Plejdrup, M.S., Winther, M., Nielsen, M., Gyldenkærne, S., Mikkelsen, M.H., Albrektsen, R., Thomsen, M., Hjelgaard, K., Fauser, P., Bruun, H.G., Johannsen, V.K., Nord-Larsen, T., Vesterdal, L., Callesen, I., Caspersen, O.H., Rasmussen, E., Petersen, S.B., Baunbæk, L. & Hansen, M.G. 2017. Denmark's National Inventory Report 2017. Emission Inventories 1990–2015 - Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Aarhus University, DCE – Danish Centre for Environment and Energy 890 pp. Scientific Report from DCE – Danish Centre for Environment and Energy No. 231 – volume: 2 start-page: 659 year: 2009 end-page: 662 ident: bb0085 article-title: The contribution of manure and fertilizer nitrogen toatmospheric nitrous oxide since 1860 publication-title: Nat. Geosci. – volume: 309 start-page: 169 year: 2008 end-page: 189 ident: bb0050 article-title: N publication-title: Plant Soil – volume: 145 start-page: 83 year: 2016 end-page: 89 ident: bb0340 article-title: Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration publication-title: Agric. Syst. – volume: 199 start-page: 261 year: 2015 end-page: 271 ident: bb0375 article-title: Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil publication-title: Agric. Ecosyst. Environ. – volume: 41 start-page: 694 year: 2012 end-page: 704 ident: bb0385 article-title: Relationships between dairy slurry total solids, gas emissions, and surface crusts publication-title: J. Environ. Qual. – reference: Mikkelsen, M.H., Albrektsen, R., Gyldenkærne, S., 2013. Danish emission inventories for agriculture. Inventories 1985–2011. Aarhus University, DCE - Danish Centre for Environment and Energy, 142 pp. Scientific Report from DCE - Danish Centre for Environment and Energy No. 108. Available at: – start-page: 32 year: 2015 ident: bb0160 article-title: Slurry volumes and estimated storage time of slurry in Danish livestock buildings – year: 2001 ident: bb0185 article-title: Development of a methane conversion factor to estimate emissions from animal waste lagoons publication-title: US EPA 17th Annual Emission Inventory Conference, USEPA, Research Triangle Park, NC, 16–18 April 2002, Atlanta, GA – volume: 52 start-page: 1707 year: 2009 end-page: 1719 ident: bb0210 article-title: Process modeling of ammonia volatilization from ammonium solution and manure surfaces: a review with recommended models publication-title: Trans. ASABE – volume: 216 start-page: 258 year: 2016 end-page: 268 ident: bb5000 article-title: Ammonia abatement by slurryacidification: a pilot-scale study of three finishing pig production periods publication-title: Agric. Ecosys. Environ. – volume: 38 start-page: 1560 year: 2009 end-page: 1568 ident: bb0250 article-title: Pilot scale facility to determine gaseous emissions from livestock slurry during storage publication-title: J. Environ. Qual. – volume: 69 start-page: 143 year: 2004 end-page: 154 ident: bb0320 article-title: Algorithms for calculating methane and nitrous oxide emissions from manure management publication-title: Nutr. Cycl. Agroecosyst. – start-page: 5220 year: 2011 end-page: 5231 ident: bb0300 article-title: Whole farm impact of anaerobic digestion and biogas use on a New York dairy farm publication-title: ASABE 2011, Louisville, Kentucky, August 7–10 – volume: 507 start-page: 488 year: 2014 ident: bb0400 article-title: Methane fluxes show consistent temperature dependence across microbial to ecosystem scales publication-title: Nature – volume: 239 start-page: 188 year: 2017 end-page: 198 ident: bb0030 article-title: Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley publication-title: Agric. Ecosyst. Environ. – volume: 8 start-page: 315 year: 1994 end-page: 323 ident: bb0180 article-title: On the temperature dependence of soil respiration publication-title: Funct. Ecol. – volume: 199 start-page: 358 year: 2015 end-page: 368 ident: bb0295 article-title: Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry publication-title: Agric. Ecosyst. Environ. – volume: 15 start-page: 2825 year: 2009 end-page: 2837 ident: bb0330 article-title: Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones publication-title: Glob. Chang. Biol. – volume: 97 start-page: 5904 year: 2014 end-page: 5917 ident: bb0095 article-title: Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin publication-title: J. Dairy Sci. – volume: 14 start-page: 19 year: 1985 end-page: 35 ident: bb0405 article-title: The influence of the total ammonia concentration on the thermophilic digestion of cow manure publication-title: Agric. Wastes – year: 2012 ident: bb0080 article-title: The Danish Environmental Protection Agency (DEPA) publication-title: Danish Nitrate Action Programme 2008–2015 regarding the Nitrates Directive; 91/676/EEC – year: 2011 ident: bb0370 article-title: Biomass Energy Data Book, Ed(4) – year: 2016 ident: bb0390 article-title: Carbon Life Cycle Assessment – volume: 97 start-page: 112 year: 2016 end-page: 120 ident: bb0025 article-title: Predicting nitrous oxide emissions from manure properties and soil moisture: an incubation experiment publication-title: Soil Biol. Biochem. – volume: 52 start-page: 1313 year: 2008 ident: bb0055 article-title: Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies publication-title: Trans. ASAE – volume: 84 start-page: 179 year: 2009 end-page: 202 ident: bb0205 article-title: Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems publication-title: Nutr. Cycl. Agroecosyst. – volume: 76 start-page: 73 year: 2005 end-page: 79 ident: bb0360 article-title: Methane emission from stored dairy manure slurry and slurry after digestion by methane digester publication-title: Animal Sci. J. – volume: 136 start-page: 199 year: 2010 end-page: 208 ident: bb0065 article-title: Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types publication-title: Agric. Ecosyst. Environ. – volume: 59 start-page: 1771 year: 2016 end-page: 1781 ident: bb5005 article-title: Evaluating greenhouse gas mitigation and climate change adaptation in dairy production using farm simulation publication-title: Trans. ASABE – start-page: 496 year: 2007 ident: bb0335 article-title: Environmental Management of Concentrated Animal Feeding Operations (CAFOs) – volume: 10 year: 2015 ident: bb0175 article-title: Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet plateau grasslands publication-title: PLoS One – volume: 16 start-page: 15433 year: 2016 end-page: 15450 ident: bb0355 article-title: Observing entrainment mixing, photochemical ozone production, and regional methane emissions by aircraft using a simple mixed-layer framework publication-title: Atmos. Chem. Phys. – volume: 83 start-page: 38 year: 2013 end-page: 48 ident: bb0115 article-title: Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition publication-title: FEMS Microbiol. Ecol. – volume: Vol. 4 year: 2006 ident: bb0155 article-title: Guidelines for national greenhouse gas inventories publication-title: Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change – volume: 29 start-page: 744 year: 2000 end-page: 751 ident: bb0315 article-title: Greenhouse gas emission from stored livestock slurry publication-title: J. Environ. Qual. – volume: 23 start-page: 585 year: 1994 end-page: 592 ident: bb0145 article-title: Seasonal variation in methane emission from stored slurry and solid manures publication-title: J. Enviro. Qual. – volume: 16 start-page: 5059 year: 2012 end-page: 5070 ident: bb0395 article-title: Methane emission by sectors: a comprehensive review of emission sources and mitigation methods publication-title: Renew. Sustain. Energy Rev. – volume: 9 start-page: 403 year: 2012 end-page: 422 ident: bb0255 article-title: Annual emissions of CH publication-title: Biogeosciences – volume: 34 start-page: 473 year: 2014 end-page: 492 ident: bb0235 article-title: Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review publication-title: Agron. Sustain. Dev. – volume: 78 start-page: 27 year: 2007 end-page: 36 ident: bb0325 article-title: Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage publication-title: Nutr. Cycl. Agroecosyst. – volume: 3 start-page: 259 year: 1979 end-page: 286 ident: bb0015 article-title: Fuel gas production from animal residue. Part II. An economic assessment publication-title: Res. Recov. Conserv. – year: 2014 ident: bb0150 article-title: A Case Studies from – volume: 51 start-page: 1775 year: 2008 end-page: 1781 ident: bb0190 article-title: Methane emissions from manure storages publication-title: Trans. ASABE – volume: 45 start-page: 2038 year: 2016 end-page: 2043 ident: bb0020 article-title: Does fall removal of the dairy manure sludge in a storage tank reduce subsequent methane emissions? publication-title: J. Environ. Qual. – volume: 29 start-page: 28 year: 2014 end-page: 41 ident: bb0280 article-title: Biogas in organic agriculture—effects on productivity, energy self-sufficiency and greenhouse gas emissions publication-title: Renew. Agric. Food Syst. – volume: 11 year: 2016 ident: bb0275 article-title: Estimation of methane emissions from slurry pits below pig and cattle confinements publication-title: PLoS One – year: 2012 ident: bb0110 article-title: Livestock Manure to Energy Status, Technologies and Innovation in Denmark – volume: 8 year: 2009 ident: bb0285 article-title: Emissions of greenhouse gases (methane and nitrous oxide) from cattle slurry storage in northern Europe publication-title: IOP Conf. Series – volume: 217 start-page: 1 year: 2016 end-page: 12 ident: bb0380 article-title: CH publication-title: Agric. Ecosyst. Environ. – volume: 84 year: 2018 ident: bb0125 article-title: Targeting bacteria and methanogens to understand the role of residual slurry as an inoculant in stored liquid dairy manure publication-title: Appl. Environ. Microbiol. – volume: 112 start-page: 153 year: 2006 end-page: 162 ident: bb0010 article-title: Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment publication-title: Agric. Ecosyst. Environ. – year: 2014 ident: bb0075 article-title: R: A Language and Environment for Statistical Computing – volume: 34 start-page: 411 year: 2005 end-page: 419 ident: bb0200 article-title: Crusting of stored dairy slurry to abate ammonia emissions publication-title: J. Environ. Qual. – volume: 47 start-page: 737 year: 2013 end-page: 746 ident: bb0035 article-title: Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: Spatio-temporal variations and impact on methanogenic activity publication-title: Water Res. – volume: 102 start-page: 9395 year: 2011 end-page: 9402 ident: bb0350 article-title: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential publication-title: Bioresour. Technol. – volume: 112 start-page: 606 year: 2016 end-page: 617 ident: bb0040 article-title: Optimised biogas production from the co-digestion of sugar beet with pig slurry: integrating energy, GHG and economic accounting publication-title: Energy – volume: 258 start-page: 56 year: 2017 end-page: 65 ident: bb0165 article-title: Year-round methane emissions from liquid dairy manure in a cold climate reveal hysteretic pattern publication-title: Agric. For. Meteorol. – volume: 539 start-page: 78 year: 2016 end-page: 84 ident: bb0105 article-title: Temperature response of methane production in liquid manures and co-digestates publication-title: Sci. Total Environ. – volume: 15 start-page: 1 year: 2001 end-page: 15 ident: bb5010 article-title: Ammonia emission from field applied manure and its reduction publication-title: Eur. J. Agron. – volume: 199 start-page: 261 year: 2015 ident: 10.1016/j.agsy.2018.07.009_bb0375 article-title: Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.09.016 – ident: 10.1016/j.agsy.2018.07.009_bb0390 – volume: 15 start-page: 2825 year: 2009 ident: 10.1016/j.agsy.2018.07.009_bb0330 article-title: Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.01888.x – volume: 58 start-page: 82 year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0345 article-title: Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.11.006 – volume: 84 year: 2018 ident: 10.1016/j.agsy.2018.07.009_bb0125 article-title: Targeting bacteria and methanogens to understand the role of residual slurry as an inoculant in stored liquid dairy manure publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02830-17 – volume: 49 start-page: 11199 year: 2015 ident: 10.1016/j.agsy.2018.07.009_bb0100 article-title: Lifecycle greenhouse gas analysis of an anaerobic codigestion facility processing dairy manure and industrial food waste publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01331 – year: 2012 ident: 10.1016/j.agsy.2018.07.009_bb0110 – volume: 15 start-page: 1 year: 2001 ident: 10.1016/j.agsy.2018.07.009_bb5010 article-title: Ammonia emission from field applied manure and its reduction publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(01)00112-5 – volume: 21 start-page: 550 year: 2015 ident: 10.1016/j.agsy.2018.07.009_bb0240 article-title: Greenhouse gas emissions from dairy manure management: a review of field-based studies publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12687 – ident: 10.1016/j.agsy.2018.07.009_bb0195 – volume: 97 start-page: 5904 year: 2014 ident: 10.1016/j.agsy.2018.07.009_bb0095 article-title: Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin publication-title: J. Dairy Sci. doi: 10.3168/jds.2014-8082 – volume: 8 year: 2009 ident: 10.1016/j.agsy.2018.07.009_bb0285 article-title: Emissions of greenhouse gases (methane and nitrous oxide) from cattle slurry storage in northern Europe publication-title: IOP Conf. Series – volume: 181 start-page: 115 year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0045 article-title: Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2013.09.013 – volume: 34 start-page: 473 year: 2014 ident: 10.1016/j.agsy.2018.07.009_bb0235 article-title: Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-013-0196-z – volume: 42 start-page: 8403 year: 2008 ident: 10.1016/j.agsy.2018.07.009_bb0135 article-title: Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.08.006 – volume: 16 start-page: 15433 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb0355 article-title: Observing entrainment mixing, photochemical ozone production, and regional methane emissions by aircraft using a simple mixed-layer framework publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-15433-2016 – ident: 10.1016/j.agsy.2018.07.009_bb0365 – volume: 56 start-page: 1959 year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0170 article-title: Impact of anaerobic digestion of liquid dairy manure on ammonia volatilization process publication-title: Trans. ASABE – volume: 41 start-page: 125 year: 2005 ident: 10.1016/j.agsy.2018.07.009_bb0005 article-title: Oxidation of 13C-labeled methane in surface crusts of pig-and cattle slurry publication-title: Isotopes Environ. Health Studies doi: 10.1080/10256010500131783 – volume: 8 start-page: 315 year: 1994 ident: 10.1016/j.agsy.2018.07.009_bb0180 article-title: On the temperature dependence of soil respiration publication-title: Funct. Ecol. doi: 10.2307/2389824 – year: 2014 ident: 10.1016/j.agsy.2018.07.009_bb0075 – volume: 239 start-page: 188 year: 2017 ident: 10.1016/j.agsy.2018.07.009_bb0030 article-title: Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.01.012 – ident: 10.1016/j.agsy.2018.07.009_bb0370 – volume: 34 start-page: 411 year: 2005 ident: 10.1016/j.agsy.2018.07.009_bb0200 article-title: Crusting of stored dairy slurry to abate ammonia emissions publication-title: J. Environ. Qual. doi: 10.2134/jeq2005.0411dup – volume: 79 start-page: 407 year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0225 article-title: Seasonal methane oxidation potential in manure crusts publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02278-12 – volume: 145 start-page: 83 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb0340 article-title: Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration publication-title: Agric. Syst. doi: 10.1016/j.agsy.2016.03.004 – volume: 52 start-page: 1313 year: 2008 ident: 10.1016/j.agsy.2018.07.009_bb0055 article-title: Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies publication-title: Trans. ASAE doi: 10.13031/2013.27781 – volume: 102 start-page: 9395 year: 2011 ident: 10.1016/j.agsy.2018.07.009_bb0350 article-title: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.07.026 – volume: 59 start-page: 1771 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb5005 article-title: Evaluating greenhouse gas mitigation and climate change adaptation in dairy production using farm simulation publication-title: Trans. ASABE doi: 10.13031/trans.59.11594 – year: 2001 ident: 10.1016/j.agsy.2018.07.009_bb0185 article-title: Development of a methane conversion factor to estimate emissions from animal waste lagoons – volume: 14 start-page: 19 year: 1985 ident: 10.1016/j.agsy.2018.07.009_bb0405 article-title: The influence of the total ammonia concentration on the thermophilic digestion of cow manure publication-title: Agric. Wastes doi: 10.1016/S0141-4607(85)80014-7 – volume: 539 start-page: 78 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb0105 article-title: Temperature response of methane production in liquid manures and co-digestates publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.07.145 – start-page: 496 year: 2007 ident: 10.1016/j.agsy.2018.07.009_bb0335 – volume: 21 start-page: 1293 year: 2015 ident: 10.1016/j.agsy.2018.07.009_bb0140 article-title: Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12767 – volume: 39 start-page: 1813 year: 2010 ident: 10.1016/j.agsy.2018.07.009_bb0220 article-title: Oxygen distribution and potential ammonia oxidation in floating, liquid manure crusts publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0382 – volume: 29 start-page: 28 year: 2014 ident: 10.1016/j.agsy.2018.07.009_bb0280 article-title: Biogas in organic agriculture—effects on productivity, energy self-sufficiency and greenhouse gas emissions publication-title: Renew. Agric. Food Syst. doi: 10.1017/S1742170512000440 – start-page: 32 year: 2015 ident: 10.1016/j.agsy.2018.07.009_bb0160 – volume: 51 start-page: 1775 year: 2008 ident: 10.1016/j.agsy.2018.07.009_bb0190 article-title: Methane emissions from manure storages publication-title: Trans. ASABE doi: 10.13031/2013.25311 – volume: 217 start-page: 1 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb0380 article-title: CH4, NH3, N2O and NO emissions from stored biogas digester effluent of pig manure at different temperatures publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.10.020 – volume: 95 start-page: 103 year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0260 article-title: Emissions of CH4, N2O, NH3 and odorants from pig slurry during winter and summer storage publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-013-9551-3 – volume: 41 start-page: 694 year: 2012 ident: 10.1016/j.agsy.2018.07.009_bb0385 article-title: Relationships between dairy slurry total solids, gas emissions, and surface crusts publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0333 – volume: 309 start-page: 169 year: 2008 ident: 10.1016/j.agsy.2018.07.009_bb0050 article-title: N2O emissions from agricultural lands: a synthesis of simulation approaches publication-title: Plant Soil doi: 10.1007/s11104-008-9634-0 – year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0215 article-title: Anthropogenic and natural radiative forcing – volume: 9 start-page: 403 year: 2012 ident: 10.1016/j.agsy.2018.07.009_bb0255 article-title: Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in western Denmark managed by agriculture publication-title: Biogeosciences doi: 10.5194/bg-9-403-2012 – volume: 45 start-page: 2038 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb0020 article-title: Does fall removal of the dairy manure sludge in a storage tank reduce subsequent methane emissions? publication-title: J. Environ. Qual. doi: 10.2134/jeq2016.03.0083 – year: 2012 ident: 10.1016/j.agsy.2018.07.009_bb0080 article-title: The Danish Environmental Protection Agency (DEPA) – volume: 216 start-page: 258 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb5000 article-title: Ammonia abatement by slurryacidification: a pilot-scale study of three finishing pig production periods publication-title: Agric. Ecosys. Environ. doi: 10.1016/j.agee.2015.09.042 – volume: 112 start-page: 153 year: 2006 ident: 10.1016/j.agsy.2018.07.009_bb0010 article-title: Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2005.08.030 – volume: 136 start-page: 199 year: 2010 ident: 10.1016/j.agsy.2018.07.009_bb0065 article-title: Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.11.012 – volume: 84 start-page: 179 year: 2009 ident: 10.1016/j.agsy.2018.07.009_bb0205 article-title: Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-008-9236-5 – volume: 258 start-page: 56 year: 2017 ident: 10.1016/j.agsy.2018.07.009_bb0165 article-title: Year-round methane emissions from liquid dairy manure in a cold climate reveal hysteretic pattern publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.12.185 – volume: 507 start-page: 488 year: 2014 ident: 10.1016/j.agsy.2018.07.009_bb0400 article-title: Methane fluxes show consistent temperature dependence across microbial to ecosystem scales publication-title: Nature doi: 10.1038/nature13164 – volume: 112 start-page: 171 year: 2006 ident: 10.1016/j.agsy.2018.07.009_bb0070 article-title: Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2005.08.016 – volume: 47 start-page: 737 year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0035 article-title: Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: Spatio-temporal variations and impact on methanogenic activity publication-title: Water Res. doi: 10.1016/j.watres.2012.10.047 – volume: 7 start-page: 220 year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0120 article-title: Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review publication-title: Animal doi: 10.1017/S1751731113000876 – volume: 97 start-page: 112 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb0025 article-title: Predicting nitrous oxide emissions from manure properties and soil moisture: an incubation experiment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.005 – volume: 83 start-page: 38 year: 2013 ident: 10.1016/j.agsy.2018.07.009_bb0115 article-title: Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2012.01456.x – volume: 40 start-page: 4172 year: 2006 ident: 10.1016/j.agsy.2018.07.009_bb0130 article-title: Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.02.013 – volume: 78 start-page: 27 year: 2007 ident: 10.1016/j.agsy.2018.07.009_bb0325 article-title: Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-006-9072-4 – volume: 52 start-page: 1313 year: 2009 ident: 10.1016/j.agsy.2018.07.009_bb0060 article-title: Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies publication-title: Trans. ASABE doi: 10.13031/2013.27781 – volume: 69 start-page: 143 year: 2004 ident: 10.1016/j.agsy.2018.07.009_bb0320 article-title: Algorithms for calculating methane and nitrous oxide emissions from manure management publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/B:FRES.0000029678.25083.fa – volume: 23 start-page: 585 year: 1994 ident: 10.1016/j.agsy.2018.07.009_bb0145 article-title: Seasonal variation in methane emission from stored slurry and solid manures publication-title: J. Enviro. Qual. doi: 10.2134/jeq1994.00472425002300030026x – volume: 16 start-page: 5059 year: 2012 ident: 10.1016/j.agsy.2018.07.009_bb0395 article-title: Methane emission by sectors: a comprehensive review of emission sources and mitigation methods publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.04.008 – volume: 180 start-page: 237 year: 2015 ident: 10.1016/j.agsy.2018.07.009_bb0090 article-title: Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.12.066 – year: 2014 ident: 10.1016/j.agsy.2018.07.009_bb0150 – volume: 2 start-page: 659 year: 2009 ident: 10.1016/j.agsy.2018.07.009_bb0085 article-title: The contribution of manure and fertilizer nitrogen toatmospheric nitrous oxide since 1860 publication-title: Nat. Geosci. doi: 10.1038/ngeo608 – ident: 10.1016/j.agsy.2018.07.009_bb0230 – start-page: 5220 year: 2011 ident: 10.1016/j.agsy.2018.07.009_bb0300 article-title: Whole farm impact of anaerobic digestion and biogas use on a New York dairy farm – volume: 38 start-page: 1560 year: 2009 ident: 10.1016/j.agsy.2018.07.009_bb0250 article-title: Pilot scale facility to determine gaseous emissions from livestock slurry during storage publication-title: J. Environ. Qual. doi: 10.2134/jeq2008.0376 – volume: 112 start-page: 606 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb0040 article-title: Optimised biogas production from the co-digestion of sugar beet with pig slurry: integrating energy, GHG and economic accounting publication-title: Energy doi: 10.1016/j.energy.2016.06.068 – volume: 52 start-page: 1707 year: 2009 ident: 10.1016/j.agsy.2018.07.009_bb0210 article-title: Process modeling of ammonia volatilization from ammonium solution and manure surfaces: a review with recommended models publication-title: Trans. ASABE doi: 10.13031/2013.29133 – volume: Vol. 4 year: 2006 ident: 10.1016/j.agsy.2018.07.009_bb0155 article-title: Guidelines for national greenhouse gas inventories – volume: 10 issue: 7 year: 2015 ident: 10.1016/j.agsy.2018.07.009_bb0175 article-title: Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet plateau grasslands publication-title: PLoS One – volume: 29 start-page: 744 year: 2000 ident: 10.1016/j.agsy.2018.07.009_bb0315 article-title: Greenhouse gas emission from stored livestock slurry publication-title: J. Environ. Qual. doi: 10.2134/jeq2000.00472425002900030009x – volume: 199 start-page: 358 year: 2015 ident: 10.1016/j.agsy.2018.07.009_bb0295 article-title: Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.10.004 – volume: 11 year: 2016 ident: 10.1016/j.agsy.2018.07.009_bb0275 article-title: Estimation of methane emissions from slurry pits below pig and cattle confinements publication-title: PLoS One doi: 10.1371/journal.pone.0160968 – volume: 76 start-page: 73 year: 2005 ident: 10.1016/j.agsy.2018.07.009_bb0360 article-title: Methane emission from stored dairy manure slurry and slurry after digestion by methane digester publication-title: Animal Sci. J. doi: 10.1111/j.1740-0929.2005.00240.x – volume: 3 start-page: 259 year: 1979 ident: 10.1016/j.agsy.2018.07.009_bb0015 article-title: Fuel gas production from animal residue. Part II. An economic assessment publication-title: Res. Recov. Conserv. |
SSID | ssj0009108 |
Score | 2.4682226 |
Snippet | Treatment of liquid manure and other wastes by anaerobic digestion (AD) adds to renewable energy targets, and it is thus a favorable strategy for greenhouse... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 26 |
SubjectTerms | activation energy ammonia Anaerobic digestion autumn climate change crop production Empirical model empirical models farms gases Greenhouse gas balance greenhouse gas emissions greenhouse gases guidelines inventories liquid manure livestock production manure storage methane methane production methanogens nitrous oxide pollution control prediction production technology renewable energy sources storage temperature summer Temperature |
Title | Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation |
URI | https://dx.doi.org/10.1016/j.agsy.2018.07.009 https://www.proquest.com/docview/2189530370 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAPEV5yUhsKJS4jp2wVRWogGABpG5W_CpFNK3aMnTht3PnJCAQYmCMZUfRnXXfF993Z0JOTMyE0wmPNGZaOfc60s7byKep1aLtU-OwwPnuXvSe-E0_6S-Rbl0Lg7LKKvaXMT1E62qkVVmzNRkOWw_YaQXApx9LoChxaP3JucRdfvb-JfMAOEzLTEIa4eyqcKbUeOWD2QLlXWlo4ImixN_B6UeYDthztU7WKtJIO-V3bZAlV2yS1c5gWjXOcFtkFgQ0z_Af7-ggn1G8xg0Pwma0LESkqIKE2EHHno5yrA6meWGpDfkl5JsX9NYtKIoNwxSHR-qOAqWlkykmc9CBYcloWLblGBfb5Onq8rHbi6oLFSIDPGQeMQ38w3ErRZ5p61jbZ74NAz7OJDBDy4QRscBUtAbo9xagXog8EVwwK4237R3SKMaF2yU0jfEmMYgATBrOOPrUGCkzZnnuWR43SVxbUpmq2zheevGqalnZi0LrK7S-OsckeNYkp59rJmWvjT9nJ7WD1LcdowAM_lx3XHtTgSswPwL2BPcoYDtZApAuz_f--e59soJPpdjvgDTm0zd3CKRlro_Crjwiy53r2979ByiA7jU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSD-MT6XMGbxJrNZpN4K2Kpz4st9LZkX7WiaWnqwYu_3Zk8FEV68JrshjCTzPcl880MISfaZ8KqkHsKM62cO-Up64zn4tgoEbhYWyxwvn8Q3T6_GYSDBrmsa2FQVlnF_jKmF9G6OtKqrNmajEatR-y0AuAz8COgKD62_lzk8PriGIOzj2-dB-BhXKYSYg-XV5UzpcgrHebvqO-Kiw6eqEr8G51-xekCfDprZLVijbRd3tg6adhsg6y0h9Oqc4bdJHmhoHmCD3lLh2lOcY4b_gnLaVmJSFEGCcGDjh19TbE8mKaZoaZIMCHhvKC39p2i2rBYYvGfuqXAaelkitkc9GCx5XVU9uUYZ1uk37nqXXa9aqKCp4GIzDymgIBYbiKRJspYFrjEBXDA-UkE1NAwoYUvMBetAPudAawXIg0FF8xE2plgmyxk48zuEBr7OEoMQgCLNGccnap1FCXM8NSx1G8Sv7ak1FW7cZx68SJrXdmzROtLtL48xyx40iSnX3smZbONuavD2kHyxyMjAQ3m7juuvSnBFZggAXuCeyTQnSQETI_Od_957SOy1O3d38m764fbPbKMZ0rl3z5ZmE3f7AEwmJk6LJ7QT6EY78M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greenhouse+gas+emissions+during+storage+of+manure+and+digestates%3A+Key+role+of+methane+for+prediction+and+mitigation&rft.jtitle=Agricultural+systems&rft.au=Baral%2C+Khagendra+R&rft.au=J%C3%A9go%2C+Guillaume&rft.au=Amon%2C+Barbara&rft.au=Bol%2C+Roland&rft.date=2018-10-01&rft.issn=0308-521X&rft.volume=166+p.26-35&rft.spage=26&rft.epage=35&rft_id=info:doi/10.1016%2Fj.agsy.2018.07.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-521X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-521X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-521X&client=summon |