The open circuit potential of hydrogen peroxide at noble and glassy carbon electrodes in acidic and basic electrolytes

► OCP of H2O2 is a mixed potential of H2O2 electrooxidation and electroreduction. ► OCP of H2O2 is closer to the equilibrium potential of H2O2 electrooxidation. ► OCP of H2O2 is around 0.8V in acidic solution and around 0V in basic solution. The open circuit potentials (OCPs) of H2O2 at Pt, Pd, Au,...

Full description

Saved in:
Bibliographic Details
Published inJournal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 658; no. 1-2; pp. 46 - 51
Main Authors Jing, Xia, Cao, Dianxue, Liu, Yao, Wang, Guiling, Yin, Jinling, Wen, Qing, Gao, Yinyi
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.07.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► OCP of H2O2 is a mixed potential of H2O2 electrooxidation and electroreduction. ► OCP of H2O2 is closer to the equilibrium potential of H2O2 electrooxidation. ► OCP of H2O2 is around 0.8V in acidic solution and around 0V in basic solution. The open circuit potentials (OCPs) of H2O2 at Pt, Pd, Au, and glassy carbon electrodes are measured in H2SO4 and NaOH electrolyte solutions. Effects of concentration of H+, OH− and H2O2 as well as temperature on the OCP of H2O2 are investigated. The OCP of H2O2 is much lower than its theoretical reduction potential in both acidic and basic medium. The OCP is actually a mixed potential of H2O2 electroreduction and electrooxidation simultaneously occurring at electrode surfaces and it is more close to the equilibrium potential of H2O2 electrooxidation rather than electroreduction. The OCP of H2O2 is around 0.77–0.80V at [H+]=[H2O2]=1.0moldm−3 in H2SO4 solution and is about 0–0.06V at [OH−]=[H2O2]=1.0moldm−3 in NaOH at 298K on Pt, Pd, Au and GC electrodes. The OCP of H2O2 is independent of H2O2 concentration within the range of 0.01 to 1.0moldm−3. It increases approximately linearly with the logarithm of H+ concentration from 0.02 to 2.0moldm−3, decreases with the logarithm of OH− concentration from 0.01 to 1.0moldm−3 and decreases with increase of temperature from 278K to 333K. The linear equations were presented and discussed.
AbstractList ► OCP of H2O2 is a mixed potential of H2O2 electrooxidation and electroreduction. ► OCP of H2O2 is closer to the equilibrium potential of H2O2 electrooxidation. ► OCP of H2O2 is around 0.8V in acidic solution and around 0V in basic solution. The open circuit potentials (OCPs) of H2O2 at Pt, Pd, Au, and glassy carbon electrodes are measured in H2SO4 and NaOH electrolyte solutions. Effects of concentration of H+, OH− and H2O2 as well as temperature on the OCP of H2O2 are investigated. The OCP of H2O2 is much lower than its theoretical reduction potential in both acidic and basic medium. The OCP is actually a mixed potential of H2O2 electroreduction and electrooxidation simultaneously occurring at electrode surfaces and it is more close to the equilibrium potential of H2O2 electrooxidation rather than electroreduction. The OCP of H2O2 is around 0.77–0.80V at [H+]=[H2O2]=1.0moldm−3 in H2SO4 solution and is about 0–0.06V at [OH−]=[H2O2]=1.0moldm−3 in NaOH at 298K on Pt, Pd, Au and GC electrodes. The OCP of H2O2 is independent of H2O2 concentration within the range of 0.01 to 1.0moldm−3. It increases approximately linearly with the logarithm of H+ concentration from 0.02 to 2.0moldm−3, decreases with the logarithm of OH− concentration from 0.01 to 1.0moldm−3 and decreases with increase of temperature from 278K to 333K. The linear equations were presented and discussed.
The open circuit potentials (OCPs) of H₂O₂ at Pt, Pd, Au, and glassy carbon electrodes are measured in H₂SO₄ and NaOH electrolyte solutions. Effects of concentration of H⁺, OH⁻ and H₂O₂ as well as temperature on the OCP of H₂O₂ are investigated. The OCP of H₂O₂ is much lower than its theoretical reduction potential in both acidic and basic medium. The OCP is actually a mixed potential of H₂O₂ electroreduction and electrooxidation simultaneously occurring at electrode surfaces and it is more close to the equilibrium potential of H₂O₂ electrooxidation rather than electroreduction. The OCP of H₂O₂ is around 0.77–0.80V at [H⁺]=[H₂O₂]=1.0moldm⁻³ in H₂SO₄ solution and is about 0–0.06V at [OH⁻]=[H₂O₂]=1.0moldm⁻³ in NaOH at 298K on Pt, Pd, Au and GC electrodes. The OCP of H₂O₂ is independent of H₂O₂ concentration within the range of 0.01 to 1.0moldm⁻³. It increases approximately linearly with the logarithm of H⁺ concentration from 0.02 to 2.0moldm⁻³, decreases with the logarithm of OH⁻ concentration from 0.01 to 1.0moldm⁻³ and decreases with increase of temperature from 278K to 333K. The linear equations were presented and discussed.
Author Liu, Yao
Wen, Qing
Yin, Jinling
Jing, Xia
Wang, Guiling
Gao, Yinyi
Cao, Dianxue
Author_xml – sequence: 1
  givenname: Xia
  surname: Jing
  fullname: Jing, Xia
– sequence: 2
  givenname: Dianxue
  surname: Cao
  fullname: Cao, Dianxue
  email: caodianxue@hrbeu.edu.cn
– sequence: 3
  givenname: Yao
  surname: Liu
  fullname: Liu, Yao
– sequence: 4
  givenname: Guiling
  surname: Wang
  fullname: Wang, Guiling
– sequence: 5
  givenname: Jinling
  surname: Yin
  fullname: Yin, Jinling
– sequence: 6
  givenname: Qing
  surname: Wen
  fullname: Wen, Qing
– sequence: 7
  givenname: Yinyi
  surname: Gao
  fullname: Gao, Yinyi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24274051$$DView record in Pascal Francis
BookMark eNqFkUtv1DAUhSNUJPrgL4A3SGwS_IoTSyxAFbRIlbqgXVuOfTPjkccOtqfq_Hs8zHTDpisf-X7H9_qei-YsxABN84HgjmAivmy6DXgwa9h2FBPSYd5h2r9pzsk4sJb2Qp5V3Q-0FaIf3jUXOW8wpuNI6Hnz9LAGFBcIyLhkdq6gJRYIxWmP4ozWe5viqlYXSPHZWUC6oBAnX0WwaOV1zntkdJpiQIcpSooWMnIBaeOsM_-wSeeqTmW_L5Cvmrez9hnen87L5vHnj4fr2_bu_ubX9fe71jApS0uxJLPhZJKWzESamY6UWG4HLHAvRqsFZVWyHvP6QTlikCOno2D1nrBpYJfN5-O7S4p_dpCL2rpswHsdIO6yImIYe4El4xX9dEJ1NtrPSQfjslqS2-q0V5TTgeOeVO7rkTMp5pxgVsYVXVwMJWnnFcHqEIvaqJdY1CEWhbmqsVS7-M_-0uFV48ejcdZR6VWqsz3-rkCPKyTZcJjs25GAutEnB0ll4yAYsC7V1Ssb3WtN_gKueLYf
CitedBy_id crossref_primary_10_1039_C5RA04644K
crossref_primary_10_1016_j_elecom_2021_107055
crossref_primary_10_1021_ja211656g
crossref_primary_10_1002_fuce_202100109
crossref_primary_10_1016_j_ijhydene_2012_01_038
crossref_primary_10_1016_j_ijhydene_2020_01_077
crossref_primary_10_1007_s41061_018_0219_y
crossref_primary_10_3139_146_111066
crossref_primary_10_1007_s11434_014_0694_7
crossref_primary_10_1016_j_electacta_2012_03_132
crossref_primary_10_1071_CH13436
crossref_primary_10_1016_j_ijhydene_2017_07_200
crossref_primary_10_20964_2020_04_15
crossref_primary_10_1016_j_apcatb_2023_123458
crossref_primary_10_1021_ja209978q
crossref_primary_10_1016_j_ijhydene_2014_02_169
crossref_primary_10_1016_j_jpowsour_2013_12_068
crossref_primary_10_1016_j_jpowsour_2022_232114
crossref_primary_10_1002_anie_202418792
crossref_primary_10_1016_j_jpowsour_2012_06_079
crossref_primary_10_1002_fuce_201600009
crossref_primary_10_1149_2_003212jes
crossref_primary_10_3390_w15132467
crossref_primary_10_1039_c3ra47616b
crossref_primary_10_1016_j_electacta_2016_05_152
crossref_primary_10_5796_electrochemistry_24_00113
crossref_primary_10_1002_aenm_201200975
crossref_primary_10_1007_s11837_023_06318_z
crossref_primary_10_1016_j_renene_2022_10_076
crossref_primary_10_1021_ja312523u
crossref_primary_10_1016_j_electacta_2013_05_007
crossref_primary_10_1021_ic503012s
crossref_primary_10_1039_C5RA19478D
crossref_primary_10_1149_2_0011702jes
crossref_primary_10_1016_j_jpowsour_2012_07_019
crossref_primary_10_1071_CH18328
crossref_primary_10_1002_er_4176
crossref_primary_10_1016_j_cej_2021_129480
crossref_primary_10_1021_acs_analchem_8b00933
crossref_primary_10_3390_nano14191592
crossref_primary_10_1039_C4RA00874J
crossref_primary_10_1002_ange_202418792
crossref_primary_10_1002_fuce_201300299
crossref_primary_10_1016_j_ijhydene_2013_11_072
crossref_primary_10_1021_ja312199h
Cites_doi 10.1016/S0013-4686(98)00256-4
10.1002/elan.1140091411
10.1016/j.jpowsour.2007.05.005
10.1016/j.jpowsour.2005.07.021
10.1149/1.2901043
10.1021/bp050225j
10.1016/j.elecom.2008.08.006
10.1016/j.jelechem.2008.04.007
10.1016/j.electacta.2006.03.066
10.1016/0013-4686(66)80061-0
10.1016/j.jpowsour.2007.07.012
10.1016/S0378-7753(01)00492-X
10.1016/j.jpowsour.2004.03.024
10.1016/j.jpowsour.2008.12.134
10.1007/s10008-009-0860-z
10.1038/213592a0
10.1016/j.jpowsour.2006.07.059
10.1016/j.ijhydene.2009.11.026
10.1016/j.ijhydene.2009.11.073
10.1021/la7013557
10.1016/j.ijhydene.2010.09.038
10.1016/j.jpowsour.2007.12.013
10.1016/S0378-7753(03)00824-3
10.1016/j.jpowsour.2004.08.059
10.1016/0013-4686(66)87001-9
10.1016/j.jpowsour.2006.10.069
10.1149/1.2423617
10.1016/j.ijhydene.2009.04.020
10.1016/S0378-7753(98)00265-1
10.1016/S0306-2619(02)00139-3
10.1016/j.jpowsour.2010.01.059
10.1021/cm901928b
10.1016/j.jpowsour.2006.10.062
10.1039/tf9555100249
10.1021/la0508745
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.jelechem.2011.04.025
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Applied Sciences
EISSN 1873-2569
EndPage 51
ExternalDocumentID 24274051
10_1016_j_jelechem_2011_04_025
US201500119371
S157266571100227X
GroupedDBID --K
--M
-~X
.~1
1B1
1RT
1~.
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
M23
M2Z
M41
MO0
N9A
NQ-
O-L
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
YQT
~02
186
29K
AAQXK
AATTM
AAXKI
AAYWO
ABFNM
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
D-I
EFKBS
FBQ
FEDTE
FGOYB
HMU
HVGLF
R2-
RIG
ROL
SCH
SEW
WUQ
AAYXX
CITATION
SSH
IQODW
7S9
L.6
ID FETCH-LOGICAL-c399t-2091fc41b9d1f19cf2821d4d7060568da6230603504157980e984286362313b73
IEDL.DBID .~1
ISSN 1572-6657
IngestDate Fri Jul 11 08:59:44 EDT 2025
Mon Jul 21 09:18:00 EDT 2025
Tue Jul 01 00:21:43 EDT 2025
Thu Apr 24 22:54:22 EDT 2025
Tue Jul 29 07:45:08 EDT 2025
Fri Feb 23 02:32:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Glassy carbon electrode
Hydrogen peroxide
Noble metal electrodes
Open circuit potential
Fuel cell
Gold
Basic solution
Transition metal
Palladium
Carbon
Acidic solution
Open circuit voltage
Electrodes
Chemical reduction
Platinum
Reaction mechanism
Noble metal
Oxidation
Electrochemical reaction
Platinoid
Glassy state
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-2091fc41b9d1f19cf2821d4d7060568da6230603504157980e984286362313b73
Notes http://dx.doi.org/10.1016/j.jelechem.2011.04.025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1678560934
PQPubID 24069
PageCount 6
ParticipantIDs proquest_miscellaneous_1678560934
pascalfrancis_primary_24274051
crossref_citationtrail_10_1016_j_jelechem_2011_04_025
crossref_primary_10_1016_j_jelechem_2011_04_025
fao_agris_US201500119371
elsevier_sciencedirect_doi_10_1016_j_jelechem_2011_04_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-15
PublicationDateYYYYMMDD 2011-07-15
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of electroanalytical chemistry (Lausanne, Switzerland)
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bessette, Medeiros, Patrissi, Deschenes, LaFratta (b0045) 2001; 96
Pournaghi-Azar, Ahour (b0110) 2010; 14
Savinova, Wasle, Doblhofer (b0155) 1998; 44
Stewart, Gewirth (b0130) 2007; 23
Li, Heryadi, Gewirth (b0135) 2005; 21
Wu, Wang, Liu, Mao (b0025) 2010; 35
Lao, Qin, Ye, Liu, Li (b0085) 2010; 195
Hoare (b0150) 1966; 11
Cao, Chen, Lan, Wang (b0030) 2009; 190
Ponce de Leon, Walsh, Patrissi, Medeiros, Bessette, Reeve, Lakeman, Rose, Browning (b0020) 2008; 10
Bockris, Oldfield (b0165) 1955; 51
Medeiros, Bessette, Deschenes, Patrissi, Carreiro, Tucker, Atwater (b0060) 2004; 136
Raman, Prashant, Shukla (b0015) 2006; 162
Gerlache, Senturk, Quarin, Kauffmann (b0140) 1997; 9
Wang, Cao, Yin, Gao, Yin, Cheng (b0115) 2009; 21
Sung, Choi (b0070) 2007; 172
Disselkamp (b0095) 2010; 35
Bewer, Beckmann, Dohle, Mergel, Stolten (b0075) 2004; 125
Cao, Sun, Wang, Lv, Zhang (b0105) 2008; 621
Ponce de Leon, Walsh, Rose, Lakeman, Browning, Reeve (b0005) 2007; 164
Hoare (b0120) 1965; 112
Miley, Luo, Mather, Burton, Hawkins, Gu, Byrd, Gimlin, Shrestha, Benavides, Laystrom, Carroll (b0010) 2007; 165
Yamazaki, Siroma, Senoh, Ioroi, Fujiwara, Yasuda (b0145) 2008; 178
Prater, Rusek (b0080) 2003; 74
Tartakovsky, Guiot (b0090) 2006; 22
Charles, Russell, Yong, Christian (b0040) 2008; 155
Gu, Luo, Miley (b0160) 2007; 173
Hasvold, Storkersen, Forseth, Lian (b0055) 2006; 162
Hurlen, Sandler, Pantier (b0175) 1966; 11
Sanli, Ayta (b0100) 2011; 36
Bowen, Urbach, Harrison (b0125) 1967; 213
Yang, Yang, Sun, Sun, Xin (b0065) 2006; 52
Choudhury, Raman, Sampath, Shukla (b0170) 2005; 143
Cao, Gao, Wang, Miao, Liu (b0035) 2010; 35
Bessette, Cichon, Dischert, Dow (b0050) 1999; 80
Sung (10.1016/j.jelechem.2011.04.025_b0070) 2007; 172
Gerlache (10.1016/j.jelechem.2011.04.025_b0140) 1997; 9
Cao (10.1016/j.jelechem.2011.04.025_b0030) 2009; 190
Bowen (10.1016/j.jelechem.2011.04.025_b0125) 1967; 213
Stewart (10.1016/j.jelechem.2011.04.025_b0130) 2007; 23
Gu (10.1016/j.jelechem.2011.04.025_b0160) 2007; 173
Cao (10.1016/j.jelechem.2011.04.025_b0035) 2010; 35
Charles (10.1016/j.jelechem.2011.04.025_b0040) 2008; 155
Hoare (10.1016/j.jelechem.2011.04.025_b0150) 1966; 11
Yamazaki (10.1016/j.jelechem.2011.04.025_b0145) 2008; 178
Savinova (10.1016/j.jelechem.2011.04.025_b0155) 1998; 44
Lao (10.1016/j.jelechem.2011.04.025_b0085) 2010; 195
Yang (10.1016/j.jelechem.2011.04.025_b0065) 2006; 52
Cao (10.1016/j.jelechem.2011.04.025_b0105) 2008; 621
Hasvold (10.1016/j.jelechem.2011.04.025_b0055) 2006; 162
Pournaghi-Azar (10.1016/j.jelechem.2011.04.025_b0110) 2010; 14
Ponce de Leon (10.1016/j.jelechem.2011.04.025_b0020) 2008; 10
Medeiros (10.1016/j.jelechem.2011.04.025_b0060) 2004; 136
Prater (10.1016/j.jelechem.2011.04.025_b0080) 2003; 74
Tartakovsky (10.1016/j.jelechem.2011.04.025_b0090) 2006; 22
Raman (10.1016/j.jelechem.2011.04.025_b0015) 2006; 162
Disselkamp (10.1016/j.jelechem.2011.04.025_b0095) 2010; 35
Bessette (10.1016/j.jelechem.2011.04.025_b0050) 1999; 80
Wang (10.1016/j.jelechem.2011.04.025_b0115) 2009; 21
Bewer (10.1016/j.jelechem.2011.04.025_b0075) 2004; 125
Hoare (10.1016/j.jelechem.2011.04.025_b0120) 1965; 112
Bessette (10.1016/j.jelechem.2011.04.025_b0045) 2001; 96
Hurlen (10.1016/j.jelechem.2011.04.025_b0175) 1966; 11
Bockris (10.1016/j.jelechem.2011.04.025_b0165) 1955; 51
Wu (10.1016/j.jelechem.2011.04.025_b0025) 2010; 35
Ponce de Leon (10.1016/j.jelechem.2011.04.025_b0005) 2007; 164
Choudhury (10.1016/j.jelechem.2011.04.025_b0170) 2005; 143
Li (10.1016/j.jelechem.2011.04.025_b0135) 2005; 21
Sanli (10.1016/j.jelechem.2011.04.025_b0100) 2011; 36
Miley (10.1016/j.jelechem.2011.04.025_b0010) 2007; 165
References_xml – volume: 11
  start-page: 549
  year: 1966
  end-page: 554
  ident: b0150
  article-title: Oxygen overvoltage on bright gold–II: bright gold in H2O2-stabilized acid solutions
  publication-title: Electrochim. Acta
– volume: 195
  start-page: 4135
  year: 2010
  end-page: 4138
  ident: b0085
  article-title: A development of direct hydrazine/hydrogen peroxide fuel cell
  publication-title: J. Power Sources
– volume: 155
  start-page: B558
  year: 2008
  end-page: B562
  ident: b0040
  article-title: Fabrication and rate performance of a microfiber cathode in a Mg–H2O2 Flowing electrolyte semi-fuel cell
  publication-title: J. Electrochem. Soc.
– volume: 35
  start-page: 1049
  year: 2010
  end-page: 1053
  ident: b0095
  article-title: Can aqueous hydrogen peroxide be used as a stand-alone energy source?
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  start-page: 1088
  year: 1997
  end-page: 1092
  ident: b0140
  article-title: Electrochemical behavior of H
  publication-title: Electroanalysis
– volume: 621
  start-page: 31
  year: 2008
  end-page: 37
  ident: b0105
  article-title: Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium
  publication-title: J. Electroanal. Chem.
– volume: 80
  start-page: 248
  year: 1999
  end-page: 253
  ident: b0050
  article-title: A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell
  publication-title: J. Power Sources
– volume: 74
  start-page: 135
  year: 2003
  end-page: 140
  ident: b0080
  article-title: Energy density of a methanol/hydrogen-peroxide fuel cell
  publication-title: Appl. Energy
– volume: 21
  start-page: 9251
  year: 2005
  end-page: 9259
  ident: b0135
  article-title: Electroreduction activity of hydrogen peroxide on Pt and Au electrodes
  publication-title: Langmuir
– volume: 162
  start-page: 935
  year: 2006
  end-page: 942
  ident: b0055
  article-title: Power sources for autonomous underwater vehicles
  publication-title: J. Power Sources
– volume: 51
  start-page: 249
  year: 1955
  end-page: 259
  ident: b0165
  article-title: The oxidation-reduction of hydrogen peroxide at inter metal electrodes and mercury cathodes
  publication-title: Trans. Faraday Soc.
– volume: 22
  start-page: 241
  year: 2006
  end-page: 246
  ident: b0090
  article-title: A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors
  publication-title: Biotechnol. Prog.
– volume: 112
  start-page: 608
  year: 1965
  end-page: 611
  ident: b0120
  article-title: Oxygen Overvoltage Measurements on Bright Platinum in Acid Solutions
  publication-title: J. Electrochem. Soc.
– volume: 35
  start-page: 2648
  year: 2010
  end-page: 2651
  ident: b0025
  article-title: Influence of operation conditions on direct NaBH
  publication-title: Int. J. Hydrogen Energy
– volume: 136
  start-page: 226
  year: 2004
  end-page: 231
  ident: b0060
  article-title: Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles
  publication-title: J. Power Sources
– volume: 178
  start-page: 20
  year: 2008
  end-page: 25
  ident: b0145
  article-title: A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel
  publication-title: J. Power Sources
– volume: 143
  start-page: 1
  year: 2005
  end-page: 8
  ident: b0170
  article-title: An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant
  publication-title: J. Power Sources
– volume: 14
  start-page: 823
  year: 2010
  end-page: 828
  ident: b0110
  article-title: Electrochemical reduction and kinetics of hydrogen peroxide on the rotating disk palladium-plated aluminum electrode modified by Prussian blue film as an improved electrocatalyst
  publication-title: J. Solid State Electrochem.
– volume: 23
  start-page: 9911
  year: 2007
  end-page: 9918
  ident: b0130
  article-title: Mechanism of electrochemical reduction of hydrogen peroxide on copper in acidic sulfate solutions
  publication-title: Langmuir
– volume: 44
  start-page: 1341
  year: 1998
  end-page: 1348
  ident: b0155
  article-title: Structure and activity relations in the hydrogen peroxide reduction at silver electrodes in alkaline NaF/NaOH electrolytes
  publication-title: Electrochim. Acta
– volume: 173
  start-page: 77
  year: 2007
  end-page: 85
  ident: b0160
  article-title: Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell
  publication-title: J. Power Sources
– volume: 11
  start-page: 1463
  year: 1966
  end-page: 1473
  ident: b0175
  article-title: Reactions of oxygen and hydrogen peroxide at silver electrodes in alkaline solutions
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 1610
  year: 2008
  end-page: 1613
  ident: b0020
  article-title: A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode
  publication-title: Electrochem. Commun.
– volume: 125
  start-page: 1
  year: 2004
  end-page: 9
  ident: b0075
  article-title: Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution
  publication-title: J. Power Sources
– volume: 190
  start-page: 346
  year: 2009
  end-page: 350
  ident: b0030
  article-title: An alkaline direct NaBH4–H2O2 fuel cell with high power density
  publication-title: J. Power Sources
– volume: 36
  start-page: 869
  year: 2011
  end-page: 875
  ident: b0100
  article-title: Response to disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell
  publication-title: Int. J. Hydrogen Energy
– volume: 165
  start-page: 509
  year: 2007
  end-page: 516
  ident: b0010
  article-title: Direct NaBH
  publication-title: J. Power Sources
– volume: 172
  start-page: 198
  year: 2007
  ident: b0070
  article-title: A membraneless microscale fuel cell using non-noble catalysts in alkaline solution
  publication-title: J. Power Sources
– volume: 213
  start-page: 592
  year: 1967
  end-page: 593
  ident: b0125
  article-title: Oxygen–peroxide couple on platinum
  publication-title: Nature
– volume: 164
  start-page: 441
  year: 2007
  end-page: 448
  ident: b0005
  article-title: A direct borohydride – acid peroxide fuel cell
  publication-title: J. Power Sources
– volume: 35
  start-page: 807
  year: 2010
  end-page: 813
  ident: b0035
  article-title: A direct NaBH4–H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes
  publication-title: Int. J. Hydrogen Energy
– volume: 21
  start-page: 5112
  year: 2009
  end-page: 5118
  ident: b0115
  article-title: Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction
  publication-title: Chem. Mater.
– volume: 52
  start-page: 9
  year: 2006
  end-page: 14
  ident: b0065
  article-title: Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells
  publication-title: Electrochim. Acta
– volume: 162
  start-page: 1073
  year: 2006
  end-page: 1076
  ident: b0015
  article-title: A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack
  publication-title: J. Power Sources
– volume: 96
  start-page: 240
  year: 2001
  end-page: 244
  ident: b0045
  article-title: Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications
  publication-title: J. Power Sources
– volume: 44
  start-page: 1341
  year: 1998
  ident: 10.1016/j.jelechem.2011.04.025_b0155
  article-title: Structure and activity relations in the hydrogen peroxide reduction at silver electrodes in alkaline NaF/NaOH electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(98)00256-4
– volume: 9
  start-page: 1088
  year: 1997
  ident: 10.1016/j.jelechem.2011.04.025_b0140
  article-title: Electrochemical behavior of H2O2 on gold
  publication-title: Electroanalysis
  doi: 10.1002/elan.1140091411
– volume: 173
  start-page: 77
  year: 2007
  ident: 10.1016/j.jelechem.2011.04.025_b0160
  article-title: Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.05.005
– volume: 162
  start-page: 935
  year: 2006
  ident: 10.1016/j.jelechem.2011.04.025_b0055
  article-title: Power sources for autonomous underwater vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.07.021
– volume: 155
  start-page: B558
  year: 2008
  ident: 10.1016/j.jelechem.2011.04.025_b0040
  article-title: Fabrication and rate performance of a microfiber cathode in a Mg–H2O2 Flowing electrolyte semi-fuel cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2901043
– volume: 22
  start-page: 241
  year: 2006
  ident: 10.1016/j.jelechem.2011.04.025_b0090
  article-title: A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp050225j
– volume: 10
  start-page: 1610
  year: 2008
  ident: 10.1016/j.jelechem.2011.04.025_b0020
  article-title: A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.08.006
– volume: 621
  start-page: 31
  year: 2008
  ident: 10.1016/j.jelechem.2011.04.025_b0105
  article-title: Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2008.04.007
– volume: 52
  start-page: 9
  year: 2006
  ident: 10.1016/j.jelechem.2011.04.025_b0065
  article-title: Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.066
– volume: 11
  start-page: 1463
  year: 1966
  ident: 10.1016/j.jelechem.2011.04.025_b0175
  article-title: Reactions of oxygen and hydrogen peroxide at silver electrodes in alkaline solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(66)80061-0
– volume: 172
  start-page: 198
  year: 2007
  ident: 10.1016/j.jelechem.2011.04.025_b0070
  article-title: A membraneless microscale fuel cell using non-noble catalysts in alkaline solution
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.07.012
– volume: 96
  start-page: 240
  year: 2001
  ident: 10.1016/j.jelechem.2011.04.025_b0045
  article-title: Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00492-X
– volume: 136
  start-page: 226
  year: 2004
  ident: 10.1016/j.jelechem.2011.04.025_b0060
  article-title: Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.03.024
– volume: 190
  start-page: 346
  year: 2009
  ident: 10.1016/j.jelechem.2011.04.025_b0030
  article-title: An alkaline direct NaBH4–H2O2 fuel cell with high power density
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.12.134
– volume: 14
  start-page: 823
  year: 2010
  ident: 10.1016/j.jelechem.2011.04.025_b0110
  article-title: Electrochemical reduction and kinetics of hydrogen peroxide on the rotating disk palladium-plated aluminum electrode modified by Prussian blue film as an improved electrocatalyst
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-009-0860-z
– volume: 213
  start-page: 592
  year: 1967
  ident: 10.1016/j.jelechem.2011.04.025_b0125
  article-title: Oxygen–peroxide couple on platinum
  publication-title: Nature
  doi: 10.1038/213592a0
– volume: 162
  start-page: 1073
  year: 2006
  ident: 10.1016/j.jelechem.2011.04.025_b0015
  article-title: A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.07.059
– volume: 35
  start-page: 807
  year: 2010
  ident: 10.1016/j.jelechem.2011.04.025_b0035
  article-title: A direct NaBH4–H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.026
– volume: 35
  start-page: 1049
  year: 2010
  ident: 10.1016/j.jelechem.2011.04.025_b0095
  article-title: Can aqueous hydrogen peroxide be used as a stand-alone energy source?
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.073
– volume: 23
  start-page: 9911
  year: 2007
  ident: 10.1016/j.jelechem.2011.04.025_b0130
  article-title: Mechanism of electrochemical reduction of hydrogen peroxide on copper in acidic sulfate solutions
  publication-title: Langmuir
  doi: 10.1021/la7013557
– volume: 36
  start-page: 869
  year: 2011
  ident: 10.1016/j.jelechem.2011.04.025_b0100
  article-title: Response to disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.09.038
– volume: 178
  start-page: 20
  year: 2008
  ident: 10.1016/j.jelechem.2011.04.025_b0145
  article-title: A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.12.013
– volume: 125
  start-page: 1
  year: 2004
  ident: 10.1016/j.jelechem.2011.04.025_b0075
  article-title: Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00824-3
– volume: 143
  start-page: 1
  year: 2005
  ident: 10.1016/j.jelechem.2011.04.025_b0170
  article-title: An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.08.059
– volume: 11
  start-page: 549
  year: 1966
  ident: 10.1016/j.jelechem.2011.04.025_b0150
  article-title: Oxygen overvoltage on bright gold–II: bright gold in H2O2-stabilized acid solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(66)87001-9
– volume: 164
  start-page: 441
  year: 2007
  ident: 10.1016/j.jelechem.2011.04.025_b0005
  article-title: A direct borohydride – acid peroxide fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.10.069
– volume: 112
  start-page: 608
  year: 1965
  ident: 10.1016/j.jelechem.2011.04.025_b0120
  article-title: Oxygen Overvoltage Measurements on Bright Platinum in Acid Solutions
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2423617
– volume: 35
  start-page: 2648
  year: 2010
  ident: 10.1016/j.jelechem.2011.04.025_b0025
  article-title: Influence of operation conditions on direct NaBH4/H2O2 fuel cell performance
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.04.020
– volume: 80
  start-page: 248
  year: 1999
  ident: 10.1016/j.jelechem.2011.04.025_b0050
  article-title: A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(98)00265-1
– volume: 74
  start-page: 135
  year: 2003
  ident: 10.1016/j.jelechem.2011.04.025_b0080
  article-title: Energy density of a methanol/hydrogen-peroxide fuel cell
  publication-title: Appl. Energy
  doi: 10.1016/S0306-2619(02)00139-3
– volume: 195
  start-page: 4135
  year: 2010
  ident: 10.1016/j.jelechem.2011.04.025_b0085
  article-title: A development of direct hydrazine/hydrogen peroxide fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.01.059
– volume: 21
  start-page: 5112
  year: 2009
  ident: 10.1016/j.jelechem.2011.04.025_b0115
  article-title: Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction
  publication-title: Chem. Mater.
  doi: 10.1021/cm901928b
– volume: 165
  start-page: 509
  year: 2007
  ident: 10.1016/j.jelechem.2011.04.025_b0010
  article-title: Direct NaBH4/H2O2 fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.10.062
– volume: 51
  start-page: 249
  year: 1955
  ident: 10.1016/j.jelechem.2011.04.025_b0165
  article-title: The oxidation-reduction of hydrogen peroxide at inter metal electrodes and mercury cathodes
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9555100249
– volume: 21
  start-page: 9251
  year: 2005
  ident: 10.1016/j.jelechem.2011.04.025_b0135
  article-title: Electroreduction activity of hydrogen peroxide on Pt and Au electrodes
  publication-title: Langmuir
  doi: 10.1021/la0508745
SSID ssj0028812
Score 2.218959
Snippet ► OCP of H2O2 is a mixed potential of H2O2 electrooxidation and electroreduction. ► OCP of H2O2 is closer to the equilibrium potential of H2O2...
The open circuit potentials (OCPs) of H₂O₂ at Pt, Pd, Au, and glassy carbon electrodes are measured in H₂SO₄ and NaOH electrolyte solutions. Effects of...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 46
SubjectTerms Applied sciences
carbon
chemistry
electrodes
electrolytes
Energy
Energy. Thermal use of fuels
equations
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cell
Fuel cells
Glassy carbon electrode
gold
Hydrogen peroxide
Noble metal electrodes
Open circuit potential
protons
sodium hydroxide
sulfuric acid
temperature
Title The open circuit potential of hydrogen peroxide at noble and glassy carbon electrodes in acidic and basic electrolytes
URI https://dx.doi.org/10.1016/j.jelechem.2011.04.025
https://www.proquest.com/docview/1678560934
Volume 658
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSdGiXoE8kTWOwQFfZpkSJ4hgYCdwazdDUqDeC4qORkUqGLQfx0t_eO4kyGrRAhk4SJB5A8U53H8njfYR8zHyCJ5V1FFtfRByma5EGs4ogWAvpfKETiwv6X66y6Zx_XqSLAzLpz8JgWmXw_Z1Pb711eDIKozlaleXomqUixn0DLHoWx2KBJ9i5QCsf_tqnecR53u14QuMIW_9xSng5XCLXzI37GUp58uEYKbP_HaCeeF1j5qTewOD5jvXiLwfeRqXLF-QowEl63vX4JTlw1SvybNKzuL0md2AHFCmyqCnXZls2dFU3mCEEUrWnNzu7rsGGKNYLvy-to7qhFXLMUF1Z2mLrHTV6XdQVDZQ51m1oWVFtSluathmEQrgLr293gF7fkPnlxbfJNApcC5EBiNLAzyKZN5wV0jLPpPEwFWOWWyyuk2a51RnOVXAbEiK-kPnYyRxmLhnEv4QlhUjeksOqrtwxoVaaRGcFluEpuJZcOx4LnwNUEE6C-AlJ-wFWJhQiRz6MW9VnnC1VrxiFilFjrkAxJ2S0l1t1pTgelZC9_tQDo1IQLx6VPQaFK_0DfK2aX8e4MoT18RIBHzB4YAX73gDcEQCAocGH3iwUqBu3YHTl6u1GMcAGgDFlwt_9R99OyfNuaVtELH1PDpv11p0BNmqKQWv8A_L0_NNseoXX2dfvs9-mmQ3N
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELegPLAXtE_BYMyT9hpaJ04cP6JqqAzoC1Tqm-X4Y6RiSdWmiP733DVONbRJPOwtSnyS4zvf_c4f9yPke-YTvKmso9j6IuKQrkUazCqCYC2k84VOLC7o34yz0YT_nKbTHTLs7sLgscrg-1ufvvHW4U0_jGZ_Xpb9W5aKGPcNsOhZHIvpLtnD6lRpj-ydX16Nxtu8K8_bTU9oH6HAHxeFZ2czpJu5d79DNU9-NkDW7H_HqF2vazw8qZcwfr4lvvjLh28C08VbchAQJT1vO_2O7LjqPdkfdkRuH8gjmAJFlixqyoVZlQ2d1w0eEgKp2tP7tV3UYEYUS4Y_ldZR3dAKaWaorizdwOs1NXpR1BUNrDnWLWlZUW1KW5pNM4iG8BQ-P6wBwH4kk4sfd8NRFOgWIgMopYH5Ipk3nBXSMs-k8ZCNMcst1tdJs9zqDNMV3ImEoC9kPnAyh-QlgxCYsKQQySfSq-rKHRJqpUl0VmAlnoJrybXjsfA5oAXhJIgfkbQbYGVCLXKkxHhQ3aGzmeoUo1AxasAVKOaI9Ldy87Yax6sSstOfemFXCkLGq7KHoHClf4G7VZPbGBeHsEReIuAHTl9YwbY3gHgEYGBo8K0zCwXqxl0YXbl6tVQM4AHATJnwz__Rt69kf3R3c62uL8dXx-RNu9ItIpaekF6zWLkvAJWa4jRMhWdqgg7b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+open+circuit+potential+of+hydrogen+peroxide+at+noble+and+glassy+carbon+electrodes+in+acidic+and+basic+electrolytes&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=XIA+JING&rft.au=DIANXUE+CAO&rft.au=YAO+LIU&rft.au=GUILING+WANG&rft.date=2011-07-15&rft.pub=Elsevier&rft.issn=1572-6657&rft.volume=658&rft.issue=1-2&rft.spage=46&rft.epage=51&rft_id=info:doi/10.1016%2Fj.jelechem.2011.04.025&rft.externalDBID=n%2Fa&rft.externalDocID=24274051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon