The open circuit potential of hydrogen peroxide at noble and glassy carbon electrodes in acidic and basic electrolytes
► OCP of H2O2 is a mixed potential of H2O2 electrooxidation and electroreduction. ► OCP of H2O2 is closer to the equilibrium potential of H2O2 electrooxidation. ► OCP of H2O2 is around 0.8V in acidic solution and around 0V in basic solution. The open circuit potentials (OCPs) of H2O2 at Pt, Pd, Au,...
Saved in:
Published in | Journal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 658; no. 1-2; pp. 46 - 51 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
15.07.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► OCP of H2O2 is a mixed potential of H2O2 electrooxidation and electroreduction. ► OCP of H2O2 is closer to the equilibrium potential of H2O2 electrooxidation. ► OCP of H2O2 is around 0.8V in acidic solution and around 0V in basic solution.
The open circuit potentials (OCPs) of H2O2 at Pt, Pd, Au, and glassy carbon electrodes are measured in H2SO4 and NaOH electrolyte solutions. Effects of concentration of H+, OH− and H2O2 as well as temperature on the OCP of H2O2 are investigated. The OCP of H2O2 is much lower than its theoretical reduction potential in both acidic and basic medium. The OCP is actually a mixed potential of H2O2 electroreduction and electrooxidation simultaneously occurring at electrode surfaces and it is more close to the equilibrium potential of H2O2 electrooxidation rather than electroreduction. The OCP of H2O2 is around 0.77–0.80V at [H+]=[H2O2]=1.0moldm−3 in H2SO4 solution and is about 0–0.06V at [OH−]=[H2O2]=1.0moldm−3 in NaOH at 298K on Pt, Pd, Au and GC electrodes. The OCP of H2O2 is independent of H2O2 concentration within the range of 0.01 to 1.0moldm−3. It increases approximately linearly with the logarithm of H+ concentration from 0.02 to 2.0moldm−3, decreases with the logarithm of OH− concentration from 0.01 to 1.0moldm−3 and decreases with increase of temperature from 278K to 333K. The linear equations were presented and discussed. |
---|---|
AbstractList | ► OCP of H2O2 is a mixed potential of H2O2 electrooxidation and electroreduction. ► OCP of H2O2 is closer to the equilibrium potential of H2O2 electrooxidation. ► OCP of H2O2 is around 0.8V in acidic solution and around 0V in basic solution.
The open circuit potentials (OCPs) of H2O2 at Pt, Pd, Au, and glassy carbon electrodes are measured in H2SO4 and NaOH electrolyte solutions. Effects of concentration of H+, OH− and H2O2 as well as temperature on the OCP of H2O2 are investigated. The OCP of H2O2 is much lower than its theoretical reduction potential in both acidic and basic medium. The OCP is actually a mixed potential of H2O2 electroreduction and electrooxidation simultaneously occurring at electrode surfaces and it is more close to the equilibrium potential of H2O2 electrooxidation rather than electroreduction. The OCP of H2O2 is around 0.77–0.80V at [H+]=[H2O2]=1.0moldm−3 in H2SO4 solution and is about 0–0.06V at [OH−]=[H2O2]=1.0moldm−3 in NaOH at 298K on Pt, Pd, Au and GC electrodes. The OCP of H2O2 is independent of H2O2 concentration within the range of 0.01 to 1.0moldm−3. It increases approximately linearly with the logarithm of H+ concentration from 0.02 to 2.0moldm−3, decreases with the logarithm of OH− concentration from 0.01 to 1.0moldm−3 and decreases with increase of temperature from 278K to 333K. The linear equations were presented and discussed. The open circuit potentials (OCPs) of H₂O₂ at Pt, Pd, Au, and glassy carbon electrodes are measured in H₂SO₄ and NaOH electrolyte solutions. Effects of concentration of H⁺, OH⁻ and H₂O₂ as well as temperature on the OCP of H₂O₂ are investigated. The OCP of H₂O₂ is much lower than its theoretical reduction potential in both acidic and basic medium. The OCP is actually a mixed potential of H₂O₂ electroreduction and electrooxidation simultaneously occurring at electrode surfaces and it is more close to the equilibrium potential of H₂O₂ electrooxidation rather than electroreduction. The OCP of H₂O₂ is around 0.77–0.80V at [H⁺]=[H₂O₂]=1.0moldm⁻³ in H₂SO₄ solution and is about 0–0.06V at [OH⁻]=[H₂O₂]=1.0moldm⁻³ in NaOH at 298K on Pt, Pd, Au and GC electrodes. The OCP of H₂O₂ is independent of H₂O₂ concentration within the range of 0.01 to 1.0moldm⁻³. It increases approximately linearly with the logarithm of H⁺ concentration from 0.02 to 2.0moldm⁻³, decreases with the logarithm of OH⁻ concentration from 0.01 to 1.0moldm⁻³ and decreases with increase of temperature from 278K to 333K. The linear equations were presented and discussed. |
Author | Liu, Yao Wen, Qing Yin, Jinling Jing, Xia Wang, Guiling Gao, Yinyi Cao, Dianxue |
Author_xml | – sequence: 1 givenname: Xia surname: Jing fullname: Jing, Xia – sequence: 2 givenname: Dianxue surname: Cao fullname: Cao, Dianxue email: caodianxue@hrbeu.edu.cn – sequence: 3 givenname: Yao surname: Liu fullname: Liu, Yao – sequence: 4 givenname: Guiling surname: Wang fullname: Wang, Guiling – sequence: 5 givenname: Jinling surname: Yin fullname: Yin, Jinling – sequence: 6 givenname: Qing surname: Wen fullname: Wen, Qing – sequence: 7 givenname: Yinyi surname: Gao fullname: Gao, Yinyi |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24274051$$DView record in Pascal Francis |
BookMark | eNqFkUtv1DAUhSNUJPrgL4A3SGwS_IoTSyxAFbRIlbqgXVuOfTPjkccOtqfq_Hs8zHTDpisf-X7H9_qei-YsxABN84HgjmAivmy6DXgwa9h2FBPSYd5h2r9pzsk4sJb2Qp5V3Q-0FaIf3jUXOW8wpuNI6Hnz9LAGFBcIyLhkdq6gJRYIxWmP4ozWe5viqlYXSPHZWUC6oBAnX0WwaOV1zntkdJpiQIcpSooWMnIBaeOsM_-wSeeqTmW_L5Cvmrez9hnen87L5vHnj4fr2_bu_ubX9fe71jApS0uxJLPhZJKWzESamY6UWG4HLHAvRqsFZVWyHvP6QTlikCOno2D1nrBpYJfN5-O7S4p_dpCL2rpswHsdIO6yImIYe4El4xX9dEJ1NtrPSQfjslqS2-q0V5TTgeOeVO7rkTMp5pxgVsYVXVwMJWnnFcHqEIvaqJdY1CEWhbmqsVS7-M_-0uFV48ejcdZR6VWqsz3-rkCPKyTZcJjs25GAutEnB0ll4yAYsC7V1Ssb3WtN_gKueLYf |
CitedBy_id | crossref_primary_10_1039_C5RA04644K crossref_primary_10_1016_j_elecom_2021_107055 crossref_primary_10_1021_ja211656g crossref_primary_10_1002_fuce_202100109 crossref_primary_10_1016_j_ijhydene_2012_01_038 crossref_primary_10_1016_j_ijhydene_2020_01_077 crossref_primary_10_1007_s41061_018_0219_y crossref_primary_10_3139_146_111066 crossref_primary_10_1007_s11434_014_0694_7 crossref_primary_10_1016_j_electacta_2012_03_132 crossref_primary_10_1071_CH13436 crossref_primary_10_1016_j_ijhydene_2017_07_200 crossref_primary_10_20964_2020_04_15 crossref_primary_10_1016_j_apcatb_2023_123458 crossref_primary_10_1021_ja209978q crossref_primary_10_1016_j_ijhydene_2014_02_169 crossref_primary_10_1016_j_jpowsour_2013_12_068 crossref_primary_10_1016_j_jpowsour_2022_232114 crossref_primary_10_1002_anie_202418792 crossref_primary_10_1016_j_jpowsour_2012_06_079 crossref_primary_10_1002_fuce_201600009 crossref_primary_10_1149_2_003212jes crossref_primary_10_3390_w15132467 crossref_primary_10_1039_c3ra47616b crossref_primary_10_1016_j_electacta_2016_05_152 crossref_primary_10_5796_electrochemistry_24_00113 crossref_primary_10_1002_aenm_201200975 crossref_primary_10_1007_s11837_023_06318_z crossref_primary_10_1016_j_renene_2022_10_076 crossref_primary_10_1021_ja312523u crossref_primary_10_1016_j_electacta_2013_05_007 crossref_primary_10_1021_ic503012s crossref_primary_10_1039_C5RA19478D crossref_primary_10_1149_2_0011702jes crossref_primary_10_1016_j_jpowsour_2012_07_019 crossref_primary_10_1071_CH18328 crossref_primary_10_1002_er_4176 crossref_primary_10_1016_j_cej_2021_129480 crossref_primary_10_1021_acs_analchem_8b00933 crossref_primary_10_3390_nano14191592 crossref_primary_10_1039_C4RA00874J crossref_primary_10_1002_ange_202418792 crossref_primary_10_1002_fuce_201300299 crossref_primary_10_1016_j_ijhydene_2013_11_072 crossref_primary_10_1021_ja312199h |
Cites_doi | 10.1016/S0013-4686(98)00256-4 10.1002/elan.1140091411 10.1016/j.jpowsour.2007.05.005 10.1016/j.jpowsour.2005.07.021 10.1149/1.2901043 10.1021/bp050225j 10.1016/j.elecom.2008.08.006 10.1016/j.jelechem.2008.04.007 10.1016/j.electacta.2006.03.066 10.1016/0013-4686(66)80061-0 10.1016/j.jpowsour.2007.07.012 10.1016/S0378-7753(01)00492-X 10.1016/j.jpowsour.2004.03.024 10.1016/j.jpowsour.2008.12.134 10.1007/s10008-009-0860-z 10.1038/213592a0 10.1016/j.jpowsour.2006.07.059 10.1016/j.ijhydene.2009.11.026 10.1016/j.ijhydene.2009.11.073 10.1021/la7013557 10.1016/j.ijhydene.2010.09.038 10.1016/j.jpowsour.2007.12.013 10.1016/S0378-7753(03)00824-3 10.1016/j.jpowsour.2004.08.059 10.1016/0013-4686(66)87001-9 10.1016/j.jpowsour.2006.10.069 10.1149/1.2423617 10.1016/j.ijhydene.2009.04.020 10.1016/S0378-7753(98)00265-1 10.1016/S0306-2619(02)00139-3 10.1016/j.jpowsour.2010.01.059 10.1021/cm901928b 10.1016/j.jpowsour.2006.10.062 10.1039/tf9555100249 10.1021/la0508745 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.jelechem.2011.04.025 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Applied Sciences |
EISSN | 1873-2569 |
EndPage | 51 |
ExternalDocumentID | 24274051 10_1016_j_jelechem_2011_04_025 US201500119371 S157266571100227X |
GroupedDBID | --K --M -~X .~1 1B1 1RT 1~. 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM M23 M2Z M41 MO0 N9A NQ- O-L OAUVE OZT P-8 P-9 P2P PC. Q38 RNS RPZ SCB SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT YQT ~02 186 29K AAQXK AATTM AAXKI AAYWO ABFNM ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV D-I EFKBS FBQ FEDTE FGOYB HMU HVGLF R2- RIG ROL SCH SEW WUQ AAYXX CITATION SSH IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c399t-2091fc41b9d1f19cf2821d4d7060568da6230603504157980e984286362313b73 |
IEDL.DBID | .~1 |
ISSN | 1572-6657 |
IngestDate | Fri Jul 11 08:59:44 EDT 2025 Mon Jul 21 09:18:00 EDT 2025 Tue Jul 01 00:21:43 EDT 2025 Thu Apr 24 22:54:22 EDT 2025 Tue Jul 29 07:45:08 EDT 2025 Fri Feb 23 02:32:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Glassy carbon electrode Hydrogen peroxide Noble metal electrodes Open circuit potential Fuel cell Gold Basic solution Transition metal Palladium Carbon Acidic solution Open circuit voltage Electrodes Chemical reduction Platinum Reaction mechanism Noble metal Oxidation Electrochemical reaction Platinoid Glassy state |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-2091fc41b9d1f19cf2821d4d7060568da6230603504157980e984286362313b73 |
Notes | http://dx.doi.org/10.1016/j.jelechem.2011.04.025 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1678560934 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1678560934 pascalfrancis_primary_24274051 crossref_citationtrail_10_1016_j_jelechem_2011_04_025 crossref_primary_10_1016_j_jelechem_2011_04_025 fao_agris_US201500119371 elsevier_sciencedirect_doi_10_1016_j_jelechem_2011_04_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-15 |
PublicationDateYYYYMMDD | 2011-07-15 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of electroanalytical chemistry (Lausanne, Switzerland) |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bessette, Medeiros, Patrissi, Deschenes, LaFratta (b0045) 2001; 96 Pournaghi-Azar, Ahour (b0110) 2010; 14 Savinova, Wasle, Doblhofer (b0155) 1998; 44 Stewart, Gewirth (b0130) 2007; 23 Li, Heryadi, Gewirth (b0135) 2005; 21 Wu, Wang, Liu, Mao (b0025) 2010; 35 Lao, Qin, Ye, Liu, Li (b0085) 2010; 195 Hoare (b0150) 1966; 11 Cao, Chen, Lan, Wang (b0030) 2009; 190 Ponce de Leon, Walsh, Patrissi, Medeiros, Bessette, Reeve, Lakeman, Rose, Browning (b0020) 2008; 10 Bockris, Oldfield (b0165) 1955; 51 Medeiros, Bessette, Deschenes, Patrissi, Carreiro, Tucker, Atwater (b0060) 2004; 136 Raman, Prashant, Shukla (b0015) 2006; 162 Gerlache, Senturk, Quarin, Kauffmann (b0140) 1997; 9 Wang, Cao, Yin, Gao, Yin, Cheng (b0115) 2009; 21 Sung, Choi (b0070) 2007; 172 Disselkamp (b0095) 2010; 35 Bewer, Beckmann, Dohle, Mergel, Stolten (b0075) 2004; 125 Cao, Sun, Wang, Lv, Zhang (b0105) 2008; 621 Ponce de Leon, Walsh, Rose, Lakeman, Browning, Reeve (b0005) 2007; 164 Hoare (b0120) 1965; 112 Miley, Luo, Mather, Burton, Hawkins, Gu, Byrd, Gimlin, Shrestha, Benavides, Laystrom, Carroll (b0010) 2007; 165 Yamazaki, Siroma, Senoh, Ioroi, Fujiwara, Yasuda (b0145) 2008; 178 Prater, Rusek (b0080) 2003; 74 Tartakovsky, Guiot (b0090) 2006; 22 Charles, Russell, Yong, Christian (b0040) 2008; 155 Gu, Luo, Miley (b0160) 2007; 173 Hasvold, Storkersen, Forseth, Lian (b0055) 2006; 162 Hurlen, Sandler, Pantier (b0175) 1966; 11 Sanli, Ayta (b0100) 2011; 36 Bowen, Urbach, Harrison (b0125) 1967; 213 Yang, Yang, Sun, Sun, Xin (b0065) 2006; 52 Choudhury, Raman, Sampath, Shukla (b0170) 2005; 143 Cao, Gao, Wang, Miao, Liu (b0035) 2010; 35 Bessette, Cichon, Dischert, Dow (b0050) 1999; 80 Sung (10.1016/j.jelechem.2011.04.025_b0070) 2007; 172 Gerlache (10.1016/j.jelechem.2011.04.025_b0140) 1997; 9 Cao (10.1016/j.jelechem.2011.04.025_b0030) 2009; 190 Bowen (10.1016/j.jelechem.2011.04.025_b0125) 1967; 213 Stewart (10.1016/j.jelechem.2011.04.025_b0130) 2007; 23 Gu (10.1016/j.jelechem.2011.04.025_b0160) 2007; 173 Cao (10.1016/j.jelechem.2011.04.025_b0035) 2010; 35 Charles (10.1016/j.jelechem.2011.04.025_b0040) 2008; 155 Hoare (10.1016/j.jelechem.2011.04.025_b0150) 1966; 11 Yamazaki (10.1016/j.jelechem.2011.04.025_b0145) 2008; 178 Savinova (10.1016/j.jelechem.2011.04.025_b0155) 1998; 44 Lao (10.1016/j.jelechem.2011.04.025_b0085) 2010; 195 Yang (10.1016/j.jelechem.2011.04.025_b0065) 2006; 52 Cao (10.1016/j.jelechem.2011.04.025_b0105) 2008; 621 Hasvold (10.1016/j.jelechem.2011.04.025_b0055) 2006; 162 Pournaghi-Azar (10.1016/j.jelechem.2011.04.025_b0110) 2010; 14 Ponce de Leon (10.1016/j.jelechem.2011.04.025_b0020) 2008; 10 Medeiros (10.1016/j.jelechem.2011.04.025_b0060) 2004; 136 Prater (10.1016/j.jelechem.2011.04.025_b0080) 2003; 74 Tartakovsky (10.1016/j.jelechem.2011.04.025_b0090) 2006; 22 Raman (10.1016/j.jelechem.2011.04.025_b0015) 2006; 162 Disselkamp (10.1016/j.jelechem.2011.04.025_b0095) 2010; 35 Bessette (10.1016/j.jelechem.2011.04.025_b0050) 1999; 80 Wang (10.1016/j.jelechem.2011.04.025_b0115) 2009; 21 Bewer (10.1016/j.jelechem.2011.04.025_b0075) 2004; 125 Hoare (10.1016/j.jelechem.2011.04.025_b0120) 1965; 112 Bessette (10.1016/j.jelechem.2011.04.025_b0045) 2001; 96 Hurlen (10.1016/j.jelechem.2011.04.025_b0175) 1966; 11 Bockris (10.1016/j.jelechem.2011.04.025_b0165) 1955; 51 Wu (10.1016/j.jelechem.2011.04.025_b0025) 2010; 35 Ponce de Leon (10.1016/j.jelechem.2011.04.025_b0005) 2007; 164 Choudhury (10.1016/j.jelechem.2011.04.025_b0170) 2005; 143 Li (10.1016/j.jelechem.2011.04.025_b0135) 2005; 21 Sanli (10.1016/j.jelechem.2011.04.025_b0100) 2011; 36 Miley (10.1016/j.jelechem.2011.04.025_b0010) 2007; 165 |
References_xml | – volume: 11 start-page: 549 year: 1966 end-page: 554 ident: b0150 article-title: Oxygen overvoltage on bright gold–II: bright gold in H2O2-stabilized acid solutions publication-title: Electrochim. Acta – volume: 195 start-page: 4135 year: 2010 end-page: 4138 ident: b0085 article-title: A development of direct hydrazine/hydrogen peroxide fuel cell publication-title: J. Power Sources – volume: 155 start-page: B558 year: 2008 end-page: B562 ident: b0040 article-title: Fabrication and rate performance of a microfiber cathode in a Mg–H2O2 Flowing electrolyte semi-fuel cell publication-title: J. Electrochem. Soc. – volume: 35 start-page: 1049 year: 2010 end-page: 1053 ident: b0095 article-title: Can aqueous hydrogen peroxide be used as a stand-alone energy source? publication-title: Int. J. Hydrogen Energy – volume: 9 start-page: 1088 year: 1997 end-page: 1092 ident: b0140 article-title: Electrochemical behavior of H publication-title: Electroanalysis – volume: 621 start-page: 31 year: 2008 end-page: 37 ident: b0105 article-title: Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium publication-title: J. Electroanal. Chem. – volume: 80 start-page: 248 year: 1999 end-page: 253 ident: b0050 article-title: A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell publication-title: J. Power Sources – volume: 74 start-page: 135 year: 2003 end-page: 140 ident: b0080 article-title: Energy density of a methanol/hydrogen-peroxide fuel cell publication-title: Appl. Energy – volume: 21 start-page: 9251 year: 2005 end-page: 9259 ident: b0135 article-title: Electroreduction activity of hydrogen peroxide on Pt and Au electrodes publication-title: Langmuir – volume: 162 start-page: 935 year: 2006 end-page: 942 ident: b0055 article-title: Power sources for autonomous underwater vehicles publication-title: J. Power Sources – volume: 51 start-page: 249 year: 1955 end-page: 259 ident: b0165 article-title: The oxidation-reduction of hydrogen peroxide at inter metal electrodes and mercury cathodes publication-title: Trans. Faraday Soc. – volume: 22 start-page: 241 year: 2006 end-page: 246 ident: b0090 article-title: A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors publication-title: Biotechnol. Prog. – volume: 112 start-page: 608 year: 1965 end-page: 611 ident: b0120 article-title: Oxygen Overvoltage Measurements on Bright Platinum in Acid Solutions publication-title: J. Electrochem. Soc. – volume: 35 start-page: 2648 year: 2010 end-page: 2651 ident: b0025 article-title: Influence of operation conditions on direct NaBH publication-title: Int. J. Hydrogen Energy – volume: 136 start-page: 226 year: 2004 end-page: 231 ident: b0060 article-title: Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles publication-title: J. Power Sources – volume: 178 start-page: 20 year: 2008 end-page: 25 ident: b0145 article-title: A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel publication-title: J. Power Sources – volume: 143 start-page: 1 year: 2005 end-page: 8 ident: b0170 article-title: An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant publication-title: J. Power Sources – volume: 14 start-page: 823 year: 2010 end-page: 828 ident: b0110 article-title: Electrochemical reduction and kinetics of hydrogen peroxide on the rotating disk palladium-plated aluminum electrode modified by Prussian blue film as an improved electrocatalyst publication-title: J. Solid State Electrochem. – volume: 23 start-page: 9911 year: 2007 end-page: 9918 ident: b0130 article-title: Mechanism of electrochemical reduction of hydrogen peroxide on copper in acidic sulfate solutions publication-title: Langmuir – volume: 44 start-page: 1341 year: 1998 end-page: 1348 ident: b0155 article-title: Structure and activity relations in the hydrogen peroxide reduction at silver electrodes in alkaline NaF/NaOH electrolytes publication-title: Electrochim. Acta – volume: 173 start-page: 77 year: 2007 end-page: 85 ident: b0160 article-title: Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell publication-title: J. Power Sources – volume: 11 start-page: 1463 year: 1966 end-page: 1473 ident: b0175 article-title: Reactions of oxygen and hydrogen peroxide at silver electrodes in alkaline solutions publication-title: Electrochim. Acta – volume: 10 start-page: 1610 year: 2008 end-page: 1613 ident: b0020 article-title: A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode publication-title: Electrochem. Commun. – volume: 125 start-page: 1 year: 2004 end-page: 9 ident: b0075 article-title: Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution publication-title: J. Power Sources – volume: 190 start-page: 346 year: 2009 end-page: 350 ident: b0030 article-title: An alkaline direct NaBH4–H2O2 fuel cell with high power density publication-title: J. Power Sources – volume: 36 start-page: 869 year: 2011 end-page: 875 ident: b0100 article-title: Response to disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell publication-title: Int. J. Hydrogen Energy – volume: 165 start-page: 509 year: 2007 end-page: 516 ident: b0010 article-title: Direct NaBH publication-title: J. Power Sources – volume: 172 start-page: 198 year: 2007 ident: b0070 article-title: A membraneless microscale fuel cell using non-noble catalysts in alkaline solution publication-title: J. Power Sources – volume: 213 start-page: 592 year: 1967 end-page: 593 ident: b0125 article-title: Oxygen–peroxide couple on platinum publication-title: Nature – volume: 164 start-page: 441 year: 2007 end-page: 448 ident: b0005 article-title: A direct borohydride – acid peroxide fuel cell publication-title: J. Power Sources – volume: 35 start-page: 807 year: 2010 end-page: 813 ident: b0035 article-title: A direct NaBH4–H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes publication-title: Int. J. Hydrogen Energy – volume: 21 start-page: 5112 year: 2009 end-page: 5118 ident: b0115 article-title: Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction publication-title: Chem. Mater. – volume: 52 start-page: 9 year: 2006 end-page: 14 ident: b0065 article-title: Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells publication-title: Electrochim. Acta – volume: 162 start-page: 1073 year: 2006 end-page: 1076 ident: b0015 article-title: A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack publication-title: J. Power Sources – volume: 96 start-page: 240 year: 2001 end-page: 244 ident: b0045 article-title: Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications publication-title: J. Power Sources – volume: 44 start-page: 1341 year: 1998 ident: 10.1016/j.jelechem.2011.04.025_b0155 article-title: Structure and activity relations in the hydrogen peroxide reduction at silver electrodes in alkaline NaF/NaOH electrolytes publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(98)00256-4 – volume: 9 start-page: 1088 year: 1997 ident: 10.1016/j.jelechem.2011.04.025_b0140 article-title: Electrochemical behavior of H2O2 on gold publication-title: Electroanalysis doi: 10.1002/elan.1140091411 – volume: 173 start-page: 77 year: 2007 ident: 10.1016/j.jelechem.2011.04.025_b0160 article-title: Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.05.005 – volume: 162 start-page: 935 year: 2006 ident: 10.1016/j.jelechem.2011.04.025_b0055 article-title: Power sources for autonomous underwater vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.07.021 – volume: 155 start-page: B558 year: 2008 ident: 10.1016/j.jelechem.2011.04.025_b0040 article-title: Fabrication and rate performance of a microfiber cathode in a Mg–H2O2 Flowing electrolyte semi-fuel cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2901043 – volume: 22 start-page: 241 year: 2006 ident: 10.1016/j.jelechem.2011.04.025_b0090 article-title: A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors publication-title: Biotechnol. Prog. doi: 10.1021/bp050225j – volume: 10 start-page: 1610 year: 2008 ident: 10.1016/j.jelechem.2011.04.025_b0020 article-title: A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.08.006 – volume: 621 start-page: 31 year: 2008 ident: 10.1016/j.jelechem.2011.04.025_b0105 article-title: Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2008.04.007 – volume: 52 start-page: 9 year: 2006 ident: 10.1016/j.jelechem.2011.04.025_b0065 article-title: Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.066 – volume: 11 start-page: 1463 year: 1966 ident: 10.1016/j.jelechem.2011.04.025_b0175 article-title: Reactions of oxygen and hydrogen peroxide at silver electrodes in alkaline solutions publication-title: Electrochim. Acta doi: 10.1016/0013-4686(66)80061-0 – volume: 172 start-page: 198 year: 2007 ident: 10.1016/j.jelechem.2011.04.025_b0070 article-title: A membraneless microscale fuel cell using non-noble catalysts in alkaline solution publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.07.012 – volume: 96 start-page: 240 year: 2001 ident: 10.1016/j.jelechem.2011.04.025_b0045 article-title: Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00492-X – volume: 136 start-page: 226 year: 2004 ident: 10.1016/j.jelechem.2011.04.025_b0060 article-title: Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.03.024 – volume: 190 start-page: 346 year: 2009 ident: 10.1016/j.jelechem.2011.04.025_b0030 article-title: An alkaline direct NaBH4–H2O2 fuel cell with high power density publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.12.134 – volume: 14 start-page: 823 year: 2010 ident: 10.1016/j.jelechem.2011.04.025_b0110 article-title: Electrochemical reduction and kinetics of hydrogen peroxide on the rotating disk palladium-plated aluminum electrode modified by Prussian blue film as an improved electrocatalyst publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-009-0860-z – volume: 213 start-page: 592 year: 1967 ident: 10.1016/j.jelechem.2011.04.025_b0125 article-title: Oxygen–peroxide couple on platinum publication-title: Nature doi: 10.1038/213592a0 – volume: 162 start-page: 1073 year: 2006 ident: 10.1016/j.jelechem.2011.04.025_b0015 article-title: A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.07.059 – volume: 35 start-page: 807 year: 2010 ident: 10.1016/j.jelechem.2011.04.025_b0035 article-title: A direct NaBH4–H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.026 – volume: 35 start-page: 1049 year: 2010 ident: 10.1016/j.jelechem.2011.04.025_b0095 article-title: Can aqueous hydrogen peroxide be used as a stand-alone energy source? publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.073 – volume: 23 start-page: 9911 year: 2007 ident: 10.1016/j.jelechem.2011.04.025_b0130 article-title: Mechanism of electrochemical reduction of hydrogen peroxide on copper in acidic sulfate solutions publication-title: Langmuir doi: 10.1021/la7013557 – volume: 36 start-page: 869 year: 2011 ident: 10.1016/j.jelechem.2011.04.025_b0100 article-title: Response to disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.09.038 – volume: 178 start-page: 20 year: 2008 ident: 10.1016/j.jelechem.2011.04.025_b0145 article-title: A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.12.013 – volume: 125 start-page: 1 year: 2004 ident: 10.1016/j.jelechem.2011.04.025_b0075 article-title: Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00824-3 – volume: 143 start-page: 1 year: 2005 ident: 10.1016/j.jelechem.2011.04.025_b0170 article-title: An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.08.059 – volume: 11 start-page: 549 year: 1966 ident: 10.1016/j.jelechem.2011.04.025_b0150 article-title: Oxygen overvoltage on bright gold–II: bright gold in H2O2-stabilized acid solutions publication-title: Electrochim. Acta doi: 10.1016/0013-4686(66)87001-9 – volume: 164 start-page: 441 year: 2007 ident: 10.1016/j.jelechem.2011.04.025_b0005 article-title: A direct borohydride – acid peroxide fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.10.069 – volume: 112 start-page: 608 year: 1965 ident: 10.1016/j.jelechem.2011.04.025_b0120 article-title: Oxygen Overvoltage Measurements on Bright Platinum in Acid Solutions publication-title: J. Electrochem. Soc. doi: 10.1149/1.2423617 – volume: 35 start-page: 2648 year: 2010 ident: 10.1016/j.jelechem.2011.04.025_b0025 article-title: Influence of operation conditions on direct NaBH4/H2O2 fuel cell performance publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.04.020 – volume: 80 start-page: 248 year: 1999 ident: 10.1016/j.jelechem.2011.04.025_b0050 article-title: A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell publication-title: J. Power Sources doi: 10.1016/S0378-7753(98)00265-1 – volume: 74 start-page: 135 year: 2003 ident: 10.1016/j.jelechem.2011.04.025_b0080 article-title: Energy density of a methanol/hydrogen-peroxide fuel cell publication-title: Appl. Energy doi: 10.1016/S0306-2619(02)00139-3 – volume: 195 start-page: 4135 year: 2010 ident: 10.1016/j.jelechem.2011.04.025_b0085 article-title: A development of direct hydrazine/hydrogen peroxide fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.01.059 – volume: 21 start-page: 5112 year: 2009 ident: 10.1016/j.jelechem.2011.04.025_b0115 article-title: Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction publication-title: Chem. Mater. doi: 10.1021/cm901928b – volume: 165 start-page: 509 year: 2007 ident: 10.1016/j.jelechem.2011.04.025_b0010 article-title: Direct NaBH4/H2O2 fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.10.062 – volume: 51 start-page: 249 year: 1955 ident: 10.1016/j.jelechem.2011.04.025_b0165 article-title: The oxidation-reduction of hydrogen peroxide at inter metal electrodes and mercury cathodes publication-title: Trans. Faraday Soc. doi: 10.1039/tf9555100249 – volume: 21 start-page: 9251 year: 2005 ident: 10.1016/j.jelechem.2011.04.025_b0135 article-title: Electroreduction activity of hydrogen peroxide on Pt and Au electrodes publication-title: Langmuir doi: 10.1021/la0508745 |
SSID | ssj0028812 |
Score | 2.218959 |
Snippet | ► OCP of H2O2 is a mixed potential of H2O2 electrooxidation and electroreduction. ► OCP of H2O2 is closer to the equilibrium potential of H2O2... The open circuit potentials (OCPs) of H₂O₂ at Pt, Pd, Au, and glassy carbon electrodes are measured in H₂SO₄ and NaOH electrolyte solutions. Effects of... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 46 |
SubjectTerms | Applied sciences carbon chemistry electrodes electrolytes Energy Energy. Thermal use of fuels equations Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cell Fuel cells Glassy carbon electrode gold Hydrogen peroxide Noble metal electrodes Open circuit potential protons sodium hydroxide sulfuric acid temperature |
Title | The open circuit potential of hydrogen peroxide at noble and glassy carbon electrodes in acidic and basic electrolytes |
URI | https://dx.doi.org/10.1016/j.jelechem.2011.04.025 https://www.proquest.com/docview/1678560934 |
Volume | 658 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECbSdGiXoE8kTWOwQFfZpkSJ4hgYCdwazdDUqDeC4qORkUqGLQfx0t_eO4kyGrRAhk4SJB5A8U53H8njfYR8zHyCJ5V1FFtfRByma5EGs4ogWAvpfKETiwv6X66y6Zx_XqSLAzLpz8JgWmXw_Z1Pb711eDIKozlaleXomqUixn0DLHoWx2KBJ9i5QCsf_tqnecR53u14QuMIW_9xSng5XCLXzI37GUp58uEYKbP_HaCeeF1j5qTewOD5jvXiLwfeRqXLF-QowEl63vX4JTlw1SvybNKzuL0md2AHFCmyqCnXZls2dFU3mCEEUrWnNzu7rsGGKNYLvy-to7qhFXLMUF1Z2mLrHTV6XdQVDZQ51m1oWVFtSluathmEQrgLr293gF7fkPnlxbfJNApcC5EBiNLAzyKZN5wV0jLPpPEwFWOWWyyuk2a51RnOVXAbEiK-kPnYyRxmLhnEv4QlhUjeksOqrtwxoVaaRGcFluEpuJZcOx4LnwNUEE6C-AlJ-wFWJhQiRz6MW9VnnC1VrxiFilFjrkAxJ2S0l1t1pTgelZC9_tQDo1IQLx6VPQaFK_0DfK2aX8e4MoT18RIBHzB4YAX73gDcEQCAocGH3iwUqBu3YHTl6u1GMcAGgDFlwt_9R99OyfNuaVtELH1PDpv11p0BNmqKQWv8A_L0_NNseoXX2dfvs9-mmQ3N |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELegPLAXtE_BYMyT9hpaJ04cP6JqqAzoC1Tqm-X4Y6RiSdWmiP733DVONbRJPOwtSnyS4zvf_c4f9yPke-YTvKmso9j6IuKQrkUazCqCYC2k84VOLC7o34yz0YT_nKbTHTLs7sLgscrg-1ufvvHW4U0_jGZ_Xpb9W5aKGPcNsOhZHIvpLtnD6lRpj-ydX16Nxtu8K8_bTU9oH6HAHxeFZ2czpJu5d79DNU9-NkDW7H_HqF2vazw8qZcwfr4lvvjLh28C08VbchAQJT1vO_2O7LjqPdkfdkRuH8gjmAJFlixqyoVZlQ2d1w0eEgKp2tP7tV3UYEYUS4Y_ldZR3dAKaWaorizdwOs1NXpR1BUNrDnWLWlZUW1KW5pNM4iG8BQ-P6wBwH4kk4sfd8NRFOgWIgMopYH5Ipk3nBXSMs-k8ZCNMcst1tdJs9zqDNMV3ImEoC9kPnAyh-QlgxCYsKQQySfSq-rKHRJqpUl0VmAlnoJrybXjsfA5oAXhJIgfkbQbYGVCLXKkxHhQ3aGzmeoUo1AxasAVKOaI9Ldy87Yax6sSstOfemFXCkLGq7KHoHClf4G7VZPbGBeHsEReIuAHTl9YwbY3gHgEYGBo8K0zCwXqxl0YXbl6tVQM4AHATJnwz__Rt69kf3R3c62uL8dXx-RNu9ItIpaekF6zWLkvAJWa4jRMhWdqgg7b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+open+circuit+potential+of+hydrogen+peroxide+at+noble+and+glassy+carbon+electrodes+in+acidic+and+basic+electrolytes&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=XIA+JING&rft.au=DIANXUE+CAO&rft.au=YAO+LIU&rft.au=GUILING+WANG&rft.date=2011-07-15&rft.pub=Elsevier&rft.issn=1572-6657&rft.volume=658&rft.issue=1-2&rft.spage=46&rft.epage=51&rft_id=info:doi/10.1016%2Fj.jelechem.2011.04.025&rft.externalDBID=n%2Fa&rft.externalDocID=24274051 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon |