Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters

Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 10; no. 1; p. 144
Main Authors Xu, Yongyang, Wu, Liang, Xie, Zhong, Chen, Zhanlong
Format Journal Article
LanguageEnglish
Published MDPI AG 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district.
AbstractList Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district.
Author Xu, Yongyang
Wu, Liang
Xie, Zhong
Chen, Zhanlong
Author_xml – sequence: 1
  givenname: Yongyang
  orcidid: 0000-0001-7421-4915
  surname: Xu
  fullname: Xu, Yongyang
– sequence: 2
  givenname: Liang
  surname: Wu
  fullname: Wu, Liang
– sequence: 3
  givenname: Zhong
  surname: Xie
  fullname: Xie, Zhong
– sequence: 4
  givenname: Zhanlong
  surname: Chen
  fullname: Chen, Zhanlong
BookMark eNptUE1LAzEQDaJgrb34C3IWqpNk226OWvsFBaFar2E2ma0p292SbMH-e7utoohzmXlv5j2Gd8XOy6okxm4E3Cml4T5EASBAJMkZa0kYyG4itTz_NV-yToxrOJRSQkPSYv5x5wvnyxUffdQBbe2rkvuSv1HY86lfvfMFxarYHfkFbaqa-AuVsVHMNrhqzpZH9ES05XPCUDYIS8cnO-_I8bEvagrxml3kWETqfPU2W45Hr8Npd_48mQ0f5l2rtK67EnoAA8hBCQSBTiplLWRaU8-SVZlUNhdWJn0UwiVpStDs-8rlGtK-cKrNZidfV-HabIPfYNibCr05ElVYGQy1twUZkaNDlaeUoU0oFVqq1DkJCjLbz5AOXnDysqGKMVBurK-xyeKQlS-MANMkb36SP0hu_0i-X_jn-BMnjoYe
CitedBy_id crossref_primary_10_1007_s12145_023_01200_7
crossref_primary_10_3390_rs13081429
crossref_primary_10_1109_TGRS_2020_3014312
crossref_primary_10_3390_rs16040715
crossref_primary_10_1080_10106049_2019_1568587
crossref_primary_10_3390_rs14102425
crossref_primary_10_3390_s21051794
crossref_primary_10_4236_ars_2023_123004
crossref_primary_10_3390_rs13193814
crossref_primary_10_1109_TIP_2021_3134455
crossref_primary_10_1016_j_isprsjprs_2024_08_008
crossref_primary_10_1109_JSTARS_2021_3078631
crossref_primary_10_3390_rs12061050
crossref_primary_10_1016_j_ijdrr_2024_104859
crossref_primary_10_3390_en14237982
crossref_primary_10_1016_j_isprsjprs_2022_08_008
crossref_primary_10_3390_rs12162659
crossref_primary_10_3390_s18113921
crossref_primary_10_3390_sym11010003
crossref_primary_10_3390_rs12244162
crossref_primary_10_3390_s24061876
crossref_primary_10_1080_15481603_2022_2076382
crossref_primary_10_1016_j_jag_2023_103510
crossref_primary_10_1016_j_jag_2023_103632
crossref_primary_10_3390_rs16122222
crossref_primary_10_1109_TGRS_2023_3328339
crossref_primary_10_1109_ACCESS_2022_3164401
crossref_primary_10_1109_TGRS_2023_3344122
crossref_primary_10_3390_rs13071292
crossref_primary_10_1016_j_jag_2022_103137
crossref_primary_10_1080_01431161_2022_2115864
crossref_primary_10_1080_01431161_2023_2285742
crossref_primary_10_1080_15481603_2023_2220525
crossref_primary_10_1142_S0218001423520079
crossref_primary_10_3390_heritage5040159
crossref_primary_10_61186_jgit_11_3_43
crossref_primary_10_1002_arp_1886
crossref_primary_10_1016_j_isprsjprs_2023_11_007
crossref_primary_10_1117_1_JRS_12_046018
crossref_primary_10_1016_j_isprsjprs_2021_11_005
crossref_primary_10_3390_data7040050
crossref_primary_10_1109_TGRS_2022_3225843
crossref_primary_10_3390_rs14020265
crossref_primary_10_1016_j_apenergy_2021_117407
crossref_primary_10_3390_rs12244149
crossref_primary_10_51489_tuzal_830052
crossref_primary_10_1109_JSTARS_2024_3392757
crossref_primary_10_3390_rs11010020
crossref_primary_10_3390_rs14133144
crossref_primary_10_1016_j_jag_2022_103107
crossref_primary_10_1109_JSTARS_2021_3109237
crossref_primary_10_1117_1_JRS_13_024508
crossref_primary_10_3390_rs10122008
crossref_primary_10_3390_rs13132524
crossref_primary_10_1016_j_rse_2019_05_016
crossref_primary_10_3390_s20010141
crossref_primary_10_1109_ACCESS_2024_3355154
crossref_primary_10_1080_13658816_2024_2351546
crossref_primary_10_1109_ACCESS_2021_3097630
crossref_primary_10_1016_j_rse_2022_113203
crossref_primary_10_14358_PERS_22_00103R1
crossref_primary_10_1080_01431161_2020_1734251
crossref_primary_10_3390_s18113717
crossref_primary_10_1109_TGRS_2024_3389110
crossref_primary_10_1016_j_isprsjprs_2020_08_004
crossref_primary_10_1016_j_jag_2024_104241
crossref_primary_10_3390_rs14092061
crossref_primary_10_3390_rs13152986
crossref_primary_10_1016_j_scs_2024_105393
crossref_primary_10_1109_TGRS_2022_3174399
crossref_primary_10_3390_rs17050933
crossref_primary_10_2166_hydro_2023_162
crossref_primary_10_1016_j_cja_2020_10_032
crossref_primary_10_1016_j_procs_2025_02_138
crossref_primary_10_1071_WF19041
crossref_primary_10_3390_rs11091040
crossref_primary_10_1080_01431161_2023_2292016
crossref_primary_10_1016_j_eswa_2020_114417
crossref_primary_10_1109_JSTARS_2022_3209682
crossref_primary_10_1109_JSTARS_2024_3357216
crossref_primary_10_1109_JSTARS_2023_3337140
crossref_primary_10_1109_JSTARS_2020_3017934
crossref_primary_10_1109_JSTARS_2023_3328315
crossref_primary_10_1111_tgis_12934
crossref_primary_10_3390_rs11070830
crossref_primary_10_3390_rs14040849
crossref_primary_10_1109_ACCESS_2020_3003914
crossref_primary_10_26833_ijeg_681312
crossref_primary_10_3390_ijgi10090606
crossref_primary_10_3390_rs13040760
crossref_primary_10_3390_ijgi10010022
crossref_primary_10_1007_s10661_024_13431_2
crossref_primary_10_1109_TPAMI_2021_3094662
crossref_primary_10_1080_22797254_2021_2018944
crossref_primary_10_14358_PERS_21_00053R2
crossref_primary_10_1016_j_scitotenv_2021_145191
crossref_primary_10_1109_JSTARS_2022_3197760
crossref_primary_10_3390_rs15020488
crossref_primary_10_1080_01431161_2020_1763496
crossref_primary_10_3390_ijgi10100697
crossref_primary_10_32628_CSEIT206532
crossref_primary_10_1007_s00521_021_06027_1
crossref_primary_10_1016_j_iswcr_2023_11_004
crossref_primary_10_1109_TGRS_2024_3484526
crossref_primary_10_1080_20964471_2019_1657720
crossref_primary_10_1080_01431161_2020_1841324
crossref_primary_10_1109_JSTARS_2024_3393531
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_7780_kjrs_2024_40_5_1_11
crossref_primary_10_3390_rs12182910
crossref_primary_10_3390_su12114375
crossref_primary_10_1109_JSTARS_2023_3329773
crossref_primary_10_3390_rs12152495
crossref_primary_10_3390_rs11151774
crossref_primary_10_3390_rs13214411
crossref_primary_10_3390_rs15051391
crossref_primary_10_1080_10106049_2020_1778100
crossref_primary_10_3390_rs15205048
crossref_primary_10_3390_rs10111768
crossref_primary_10_3390_rs14092276
crossref_primary_10_3390_s19122792
crossref_primary_10_4236_jcc_2022_106011
crossref_primary_10_1007_s11042_022_13493_9
crossref_primary_10_3390_rs13112031
crossref_primary_10_3390_rs12091515
crossref_primary_10_1080_2150704X_2021_1925372
crossref_primary_10_3390_rs11121444
crossref_primary_10_3390_s22176611
crossref_primary_10_3390_rs11242912
crossref_primary_10_3390_rs12091400
crossref_primary_10_1007_s12518_019_00285_4
crossref_primary_10_1109_TGRS_2020_2973720
crossref_primary_10_1109_TGRS_2024_3370826
crossref_primary_10_3390_rs13040742
crossref_primary_10_1088_1361_6501_ac4d5f
crossref_primary_10_1109_TGRS_2022_3152575
crossref_primary_10_3390_en13246742
crossref_primary_10_1016_j_isprsjprs_2019_02_019
crossref_primary_10_1016_j_rsase_2024_101336
crossref_primary_10_3390_rs14225657
crossref_primary_10_3390_rs11040403
crossref_primary_10_1016_j_eswa_2024_124751
crossref_primary_10_1109_ACCESS_2020_3038225
crossref_primary_10_3390_buildings14113353
crossref_primary_10_1109_JSTARS_2020_2992298
crossref_primary_10_1109_ACCESS_2019_2957825
crossref_primary_10_1080_01431161_2023_2224101
crossref_primary_10_3390_rs12142240
crossref_primary_10_1109_LGRS_2018_2880986
crossref_primary_10_3390_rs12233983
crossref_primary_10_1109_ACCESS_2019_2912822
crossref_primary_10_1007_s13369_023_08593_z
crossref_primary_10_3390_rs10111782
crossref_primary_10_1080_15481603_2022_2101727
crossref_primary_10_1016_j_culher_2023_11_005
crossref_primary_10_1109_JSTARS_2025_3542194
crossref_primary_10_3390_rs11243020
crossref_primary_10_1080_01431161_2020_1788742
crossref_primary_10_1080_01431161_2021_1982155
crossref_primary_10_32604_cmc_2022_026881
crossref_primary_10_1016_j_isprsjprs_2023_05_026
crossref_primary_10_1016_j_asej_2021_10_017
crossref_primary_10_1109_LGRS_2020_3020098
crossref_primary_10_3390_ijgi9080486
crossref_primary_10_3390_rs10030407
crossref_primary_10_3390_rs12071128
crossref_primary_10_3390_rs13091741
crossref_primary_10_3390_rs14051272
crossref_primary_10_1016_j_isprsjprs_2022_03_013
crossref_primary_10_1109_JPROC_2019_2948454
crossref_primary_10_3390_rs11242970
crossref_primary_10_3390_rs13030364
crossref_primary_10_1016_j_mlwa_2021_100194
crossref_primary_10_1109_JSTARS_2023_3336929
crossref_primary_10_3390_rs13214441
crossref_primary_10_1080_10106049_2025_2454940
crossref_primary_10_29252_jgit_7_2_241
crossref_primary_10_3390_rs11232813
crossref_primary_10_3390_su141912178
crossref_primary_10_1080_17538947_2024_2310092
crossref_primary_10_1109_ACCESS_2020_2964043
crossref_primary_10_3390_s24196198
crossref_primary_10_61186_jgit_12_1_83
crossref_primary_10_1109_ACCESS_2020_3047915
crossref_primary_10_3390_rs11161897
crossref_primary_10_1109_TGRS_2021_3106697
crossref_primary_10_1109_JSTARS_2024_3452640
crossref_primary_10_1080_14498596_2022_2037473
crossref_primary_10_3390_rs13234843
crossref_primary_10_3390_rs10091350
crossref_primary_10_1016_j_isprsjprs_2023_05_013
crossref_primary_10_1080_01431161_2021_1973685
crossref_primary_10_1080_01431161_2024_2313991
crossref_primary_10_1109_TGRS_2024_3505595
crossref_primary_10_3390_rs12101668
crossref_primary_10_3390_rs14030564
crossref_primary_10_1109_JSTARS_2022_3201380
crossref_primary_10_1109_TGRS_2023_3242284
crossref_primary_10_26599_TST_2023_9010090
crossref_primary_10_1117_1_JRS_18_034517
crossref_primary_10_3390_app12199900
crossref_primary_10_1029_2022EA002626
crossref_primary_10_1109_TGRS_2023_3321791
crossref_primary_10_3390_ijgi9090504
crossref_primary_10_1007_s11707_022_0985_2
crossref_primary_10_1109_TGRS_2022_3186634
crossref_primary_10_1109_TPAMI_2023_3296757
crossref_primary_10_1109_TGRS_2023_3310534
crossref_primary_10_3390_rs15143687
crossref_primary_10_1109_ACCESS_2020_3022407
crossref_primary_10_7717_peerj_cs_772
crossref_primary_10_3390_rs11070888
crossref_primary_10_1109_JSTARS_2024_3477606
crossref_primary_10_3390_app11115069
crossref_primary_10_1016_j_isprsjprs_2021_12_007
crossref_primary_10_1007_s12145_024_01270_1
crossref_primary_10_3390_drones8070297
crossref_primary_10_3390_technologies10010019
crossref_primary_10_3390_rs10091461
crossref_primary_10_3390_rs13173393
crossref_primary_10_1155_2022_7927659
crossref_primary_10_1109_JSTARS_2022_3166929
crossref_primary_10_1109_JSTARS_2020_3024776
crossref_primary_10_1117_1_JRS_18_034504
crossref_primary_10_1016_j_rse_2021_112589
crossref_primary_10_1016_j_enbenv_2023_07_008
crossref_primary_10_1117_1_JRS_14_034503
crossref_primary_10_1016_j_isprsjprs_2019_07_009
crossref_primary_10_15576_GLL_194414
crossref_primary_10_1080_10106049_2021_1992022
crossref_primary_10_1016_j_isprsjprs_2019_11_004
crossref_primary_10_1007_s00371_024_03787_4
crossref_primary_10_1109_LGRS_2020_3005018
crossref_primary_10_1109_JSTARS_2022_3178470
crossref_primary_10_3390_rs13030475
crossref_primary_10_3390_w10111666
crossref_primary_10_1007_s12145_024_01267_w
crossref_primary_10_1080_01431161_2020_1742944
crossref_primary_10_3390_rs13214237
crossref_primary_10_1080_01431161_2024_2334812
crossref_primary_10_3390_app14177499
crossref_primary_10_1109_TGRS_2022_3192614
crossref_primary_10_3390_rs13081507
crossref_primary_10_3390_en16186563
crossref_primary_10_1117_1_JRS_14_016506
crossref_primary_10_1016_j_scs_2023_104653
crossref_primary_10_1109_TGRS_2023_3287298
crossref_primary_10_3390_ijgi9060397
crossref_primary_10_1007_s12145_022_00840_5
crossref_primary_10_1080_17538947_2023_2210312
crossref_primary_10_3390_rs10121970
crossref_primary_10_3390_rs13132620
crossref_primary_10_3390_su152316220
crossref_primary_10_3390_rs15051443
crossref_primary_10_3390_rs14092207
crossref_primary_10_3390_rs14163864
crossref_primary_10_3390_app9152972
crossref_primary_10_1109_ACCESS_2022_3194919
crossref_primary_10_3390_rs14051235
crossref_primary_10_3390_rs12183053
crossref_primary_10_1109_LGRS_2023_3250091
crossref_primary_10_1109_ACCESS_2020_2964760
crossref_primary_10_3390_rs13193871
crossref_primary_10_1109_ACCESS_2022_3231362
crossref_primary_10_1109_TGRS_2021_3093004
crossref_primary_10_1109_JSTARS_2020_3006772
crossref_primary_10_3390_s19173737
crossref_primary_10_1016_j_oregeorev_2021_104316
crossref_primary_10_3390_ijgi8110478
crossref_primary_10_3390_rs14143283
crossref_primary_10_1007_s11676_021_01375_z
crossref_primary_10_1016_j_landurbplan_2023_104691
crossref_primary_10_3390_rs13061172
crossref_primary_10_3390_ijgi11070393
crossref_primary_10_3390_rs13122257
crossref_primary_10_3390_a17020084
crossref_primary_10_3390_rs11010068
crossref_primary_10_1109_JSTARS_2023_3255541
crossref_primary_10_3390_rs13183710
crossref_primary_10_61186_jgit_11_1_105
crossref_primary_10_1109_JSTARS_2023_3312820
crossref_primary_10_1080_15481603_2023_2196162
crossref_primary_10_1007_s12524_024_01992_1
crossref_primary_10_1109_JSTARS_2021_3079459
crossref_primary_10_1007_s12145_024_01306_6
crossref_primary_10_1109_ACCESS_2019_2958983
crossref_primary_10_1109_JSTARS_2022_3188515
crossref_primary_10_1109_MGRS_2019_2927260
crossref_primary_10_3390_rs14010024
crossref_primary_10_3390_rs13061049
crossref_primary_10_1109_TGRS_2024_3383057
crossref_primary_10_3390_rs11161938
crossref_primary_10_3390_rs12132159
crossref_primary_10_3390_app11136072
crossref_primary_10_1002_cpe_5305
crossref_primary_10_1080_10106049_2020_1740949
crossref_primary_10_1109_JSTARS_2021_3084805
crossref_primary_10_3390_s20247241
crossref_primary_10_1002_rse2_111
crossref_primary_10_1007_s12517_020_06347_x
crossref_primary_10_21523_gcj1_18020103
crossref_primary_10_3390_rs12132161
crossref_primary_10_1016_j_isprsjprs_2019_04_015
crossref_primary_10_3390_rs13214271
crossref_primary_10_3390_rs14215476
crossref_primary_10_3390_app12125960
crossref_primary_10_3390_rs12223794
crossref_primary_10_3390_rs14153622
crossref_primary_10_1016_j_cviu_2024_104253
crossref_primary_10_1109_JSTARS_2022_3144176
crossref_primary_10_1109_ACCESS_2020_3026658
crossref_primary_10_3390_rs11030227
crossref_primary_10_1080_01431161_2022_2122892
crossref_primary_10_1080_17538947_2022_2159550
crossref_primary_10_1080_15481603_2023_2196154
crossref_primary_10_3390_s22010207
crossref_primary_10_1109_TGRS_2023_3320146
crossref_primary_10_1038_s41598_024_65430_5
crossref_primary_10_3390_rs10091496
crossref_primary_10_1109_JSTARS_2021_3058097
crossref_primary_10_3390_rs12213630
crossref_primary_10_3390_rs12060990
crossref_primary_10_3390_s19020333
crossref_primary_10_3233_JIFS_235150
crossref_primary_10_3390_rs11171986
Cites_doi 10.1007/978-3-319-24574-4_28
10.1080/01431160802559046
10.1109/CVPR.2016.350
10.20944/preprints201608.0022.v1
10.1109/CVPR.2017.106
10.1109/CVPRW.2015.7301382
10.1109/JURSE.2017.7924536
10.3390/rs9050498
10.3390/rs9050446
10.1109/TGRS.2014.2321423
10.3390/rs71114680
10.1109/TGRS.2016.2616585
10.1007/978-3-319-54181-5_12
10.1109/CVPRW.2015.7301381
10.1109/TGRS.2016.2514504
10.1109/IGARSS.2016.7729406
10.1109/JSTARS.2016.2602439
10.1109/IGARSS.2015.7326158
10.1109/TGRS.2010.2048116
10.1016/j.rse.2012.03.013
10.1109/CVPRW.2014.131
10.1109/TGRS.2011.2165548
10.1109/ICCV.2015.179
10.1109/JSTARS.2016.2582921
10.1016/S0924-2716(98)00027-6
10.1007/978-3-642-15567-3_16
10.1117/1.JRS.8.083616
10.1109/CVPR.2015.7298965
10.1080/01431161.2015.1054049
10.1109/TPAMI.2012.231
10.1109/ICCV.2015.316
10.1109/TGRS.2004.837325
10.1109/CVPR.2014.81
10.1109/TGRS.2016.2612821
10.3390/rs8110954
10.1109/TPAMI.2012.213
10.1109/IGARSS.2015.7326745
10.3390/rs8100814
10.5194/isprs-annals-III-3-473-2016
10.1109/JPROC.2012.2211551
10.1109/JSTARS.2014.2328618
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/rs10010144
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_1fada3f8ebac4e819238dd2030bc6bae
10_3390_rs10010144
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
PQGLB
PUEGO
ID FETCH-LOGICAL-c399t-2050070f031a01ad233cc0b99e5cec3b23cf1c246a11d488e03cc063df90861d3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:29:01 EDT 2025
Tue Jul 01 04:14:28 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-2050070f031a01ad233cc0b99e5cec3b23cf1c246a11d488e03cc063df90861d3
ORCID 0000-0001-7421-4915
OpenAccessLink https://doaj.org/article/1fada3f8ebac4e819238dd2030bc6bae
ParticipantIDs doaj_primary_oai_doaj_org_article_1fada3f8ebac4e819238dd2030bc6bae
crossref_citationtrail_10_3390_rs10010144
crossref_primary_10_3390_rs10010144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Benediktsson (ref_38) 2010; 48
Paisitkriangkrai (ref_29) 2016; 9
Liu (ref_11) 2016; 54
ref_12
ref_10
ref_52
ref_51
ref_19
ref_18
ref_17
Wang (ref_8) 2015; 36
ref_16
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
Wilkinson (ref_27) 2005; 43
He (ref_49) 2013; 35
Hu (ref_45) 2015; 7
ref_28
Konstantinidis (ref_9) 2017; 10
Lv (ref_15) 2015; 7
Farabet (ref_26) 2012; 35
ref_36
ref_34
Maggiori (ref_32) 2017; 55
ref_33
ref_31
ref_30
Marmanis (ref_35) 2016; 3
Dalponte (ref_4) 2012; 123
ref_37
Volpi (ref_41) 2016; 55
Moser (ref_1) 2013; 101
Huang (ref_14) 2009; 30
Kumar (ref_7) 2014; 8
ref_47
ref_46
ref_44
ref_43
ref_42
ref_40
Longbotham (ref_2) 2012; 50
ref_3
Tokarczyk (ref_39) 2014; 53
ref_48
ref_5
Zhang (ref_13) 1999; 54
ref_6
References_xml – ident: ref_47
  doi: 10.1007/978-3-319-24574-4_28
– volume: 30
  start-page: 3205
  year: 2009
  ident: ref_14
  article-title: A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802559046
– ident: ref_51
– ident: ref_40
  doi: 10.1109/CVPR.2016.350
– ident: ref_16
  doi: 10.20944/preprints201608.0022.v1
– ident: ref_42
– ident: ref_48
  doi: 10.1109/CVPR.2017.106
– ident: ref_23
  doi: 10.1109/CVPRW.2015.7301382
– ident: ref_24
  doi: 10.1109/JURSE.2017.7924536
– ident: ref_31
  doi: 10.3390/rs9050498
– ident: ref_52
  doi: 10.3390/rs9050446
– volume: 53
  start-page: 280
  year: 2014
  ident: ref_39
  article-title: Features, Color Spaces, and Boosting: New Insights on Semantic Classification of Remote Sensing Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2321423
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref_45
  article-title: Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 55
  start-page: 881
  year: 2016
  ident: ref_41
  article-title: Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2616585
– ident: ref_33
  doi: 10.1007/978-3-319-54181-5_12
– ident: ref_28
  doi: 10.1109/CVPRW.2015.7301381
– volume: 54
  start-page: 3292
  year: 2016
  ident: ref_11
  article-title: POL-SAR Image Classification Based on Wishart DBN and Local Spatial Information
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2514504
– ident: ref_30
  doi: 10.1109/IGARSS.2016.7729406
– ident: ref_10
– volume: 10
  start-page: 888
  year: 2017
  ident: ref_9
  article-title: Building Detection Using Enhanced HOG–LBP Features and Region Refinement Processes
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2602439
– ident: ref_25
  doi: 10.1109/IGARSS.2015.7326158
– volume: 48
  start-page: 3747
  year: 2010
  ident: ref_38
  article-title: Morphological attribute profiles for the analysis of very high resolution images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2048116
– volume: 123
  start-page: 258
  year: 2012
  ident: ref_4
  article-title: Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.03.013
– ident: ref_17
  doi: 10.1109/CVPRW.2014.131
– volume: 50
  start-page: 1155
  year: 2012
  ident: ref_2
  article-title: Very High Resolution Multiangle Urban Classification Analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2165548
– ident: ref_21
  doi: 10.1109/ICCV.2015.179
– ident: ref_20
– volume: 9
  start-page: 2868
  year: 2016
  ident: ref_29
  article-title: Semantic Labeling of Aerial and Satellite Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2016.2582921
– volume: 54
  start-page: 50
  year: 1999
  ident: ref_13
  article-title: Optimisation of building detection in satellite images by combining multispectral classification and texture filtering
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(98)00027-6
– ident: ref_22
  doi: 10.1109/JURSE.2017.7924536
– ident: ref_37
– ident: ref_3
  doi: 10.1007/978-3-642-15567-3_16
– ident: ref_44
– volume: 8
  start-page: 083616
  year: 2014
  ident: ref_7
  article-title: Improving image classification in a complex wetland ecosystem through image fusion techniques
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.8.083616
– ident: ref_19
  doi: 10.1109/CVPR.2015.7298965
– volume: 36
  start-page: 3144
  year: 2015
  ident: ref_8
  article-title: Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1054049
– volume: 35
  start-page: 1915
  year: 2012
  ident: ref_26
  article-title: Learning Hierarchical Features for Scene Labeling
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.231
– ident: ref_34
  doi: 10.1109/ICCV.2015.316
– ident: ref_50
– ident: ref_12
– volume: 43
  start-page: 433
  year: 2005
  ident: ref_27
  article-title: Results and implications of a study of fifteen years of satellite image classification experiments
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.837325
– ident: ref_18
  doi: 10.1109/CVPR.2014.81
– volume: 55
  start-page: 645
  year: 2017
  ident: ref_32
  article-title: Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2612821
– ident: ref_6
  doi: 10.3390/rs8110954
– volume: 35
  start-page: 1397
  year: 2013
  ident: ref_49
  article-title: Guided Image Filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– ident: ref_46
  doi: 10.1109/IGARSS.2015.7326745
– ident: ref_5
  doi: 10.3390/rs8100814
– volume: 3
  start-page: 473
  year: 2016
  ident: ref_35
  article-title: Semantic Segmentation of Aerial Images with an Ensemble of CNSS
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-annals-III-3-473-2016
– ident: ref_36
– ident: ref_43
– volume: 101
  start-page: 631
  year: 2013
  ident: ref_1
  article-title: Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images
  publication-title: Proc. IEEE.
  doi: 10.1109/JPROC.2012.2211551
– volume: 7
  start-page: 4644
  year: 2015
  ident: ref_15
  article-title: Morphological Profiles Based on Differently Shaped Structuring Elements for Classification of Images With Very High Spatial Resolution
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2328618
SSID ssj0000331904
Score 2.6182735
Snippet Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 144
SubjectTerms building extraction
deep learning
guided filter
very high resolution
Title Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters
URI https://doaj.org/article/1fada3f8ebac4e819238dd2030bc6bae
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4YPOjF-Iz4IJvoxQOh7W4LPYKAaMQLYrg1-5hVEq2klET-vbPdipiYePHWtNOm-WZmd2Z39htCLiXG9JEyQV0p9CYufHQpbZp10FzyQEvJi4O0w4doMOZ3k3Cy1urL1oQ5emAHXMM3QgtmWiCF4mDpu1hL6wBtU6pICrCjL855a8lUMQYzNC2POz5Shnl9I5v7rjEt_zEDrRH1FzNKf5fslKEgbbtf2CMbkO6TrbIr-cvygEw7Zc9q2vvIM3cCgU5T-gTZktoCDWoX353p4CWCDnRkC9Lxjds3S06xpEVJAO0CzGhJpfpMRarpzWKqQdP-1O6Wzw_JuN97vB7Uy9YIdYURRY62HVqiHoMuKTxf6IAxpTwZxxAqUEwGTBlfoRqE72v0UfDs84hpE2MO42t2RCrpewrHhHoIrfGaUsSCcWZU7EWgQtnCPCpWGkSVXH3BlaiSN9y2r3hNMH-w0Cbf0FbJxUp25tgyfpXqWNRXEpbhuriBek9KvSd_6f3kPz5ySrYxAGq5JZUzUsmzBZxjkJHLGtlsd4f3o1phV5-Z1NRh
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Extraction+in+Very+High+Resolution+Remote+Sensing+Imagery+Using+Deep+Learning+and+Guided+Filters&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Yongyang&rft.au=Wu%2C+Liang&rft.au=Xie%2C+Zhong&rft.au=Chen%2C+Zhanlong&rft.date=2018-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=10&rft.issue=1&rft.spage=144&rft_id=info:doi/10.3390%2Frs10010144&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs10010144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon