Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters
Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 10; no. 1; p. 144 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district. |
---|---|
AbstractList | Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district. |
Author | Xu, Yongyang Wu, Liang Xie, Zhong Chen, Zhanlong |
Author_xml | – sequence: 1 givenname: Yongyang orcidid: 0000-0001-7421-4915 surname: Xu fullname: Xu, Yongyang – sequence: 2 givenname: Liang surname: Wu fullname: Wu, Liang – sequence: 3 givenname: Zhong surname: Xie fullname: Xie, Zhong – sequence: 4 givenname: Zhanlong surname: Chen fullname: Chen, Zhanlong |
BookMark | eNptUE1LAzEQDaJgrb34C3IWqpNk226OWvsFBaFar2E2ma0p292SbMH-e7utoohzmXlv5j2Gd8XOy6okxm4E3Cml4T5EASBAJMkZa0kYyG4itTz_NV-yToxrOJRSQkPSYv5x5wvnyxUffdQBbe2rkvuSv1HY86lfvfMFxarYHfkFbaqa-AuVsVHMNrhqzpZH9ES05XPCUDYIS8cnO-_I8bEvagrxml3kWETqfPU2W45Hr8Npd_48mQ0f5l2rtK67EnoAA8hBCQSBTiplLWRaU8-SVZlUNhdWJn0UwiVpStDs-8rlGtK-cKrNZidfV-HabIPfYNibCr05ElVYGQy1twUZkaNDlaeUoU0oFVqq1DkJCjLbz5AOXnDysqGKMVBurK-xyeKQlS-MANMkb36SP0hu_0i-X_jn-BMnjoYe |
CitedBy_id | crossref_primary_10_1007_s12145_023_01200_7 crossref_primary_10_3390_rs13081429 crossref_primary_10_1109_TGRS_2020_3014312 crossref_primary_10_3390_rs16040715 crossref_primary_10_1080_10106049_2019_1568587 crossref_primary_10_3390_rs14102425 crossref_primary_10_3390_s21051794 crossref_primary_10_4236_ars_2023_123004 crossref_primary_10_3390_rs13193814 crossref_primary_10_1109_TIP_2021_3134455 crossref_primary_10_1016_j_isprsjprs_2024_08_008 crossref_primary_10_1109_JSTARS_2021_3078631 crossref_primary_10_3390_rs12061050 crossref_primary_10_1016_j_ijdrr_2024_104859 crossref_primary_10_3390_en14237982 crossref_primary_10_1016_j_isprsjprs_2022_08_008 crossref_primary_10_3390_rs12162659 crossref_primary_10_3390_s18113921 crossref_primary_10_3390_sym11010003 crossref_primary_10_3390_rs12244162 crossref_primary_10_3390_s24061876 crossref_primary_10_1080_15481603_2022_2076382 crossref_primary_10_1016_j_jag_2023_103510 crossref_primary_10_1016_j_jag_2023_103632 crossref_primary_10_3390_rs16122222 crossref_primary_10_1109_TGRS_2023_3328339 crossref_primary_10_1109_ACCESS_2022_3164401 crossref_primary_10_1109_TGRS_2023_3344122 crossref_primary_10_3390_rs13071292 crossref_primary_10_1016_j_jag_2022_103137 crossref_primary_10_1080_01431161_2022_2115864 crossref_primary_10_1080_01431161_2023_2285742 crossref_primary_10_1080_15481603_2023_2220525 crossref_primary_10_1142_S0218001423520079 crossref_primary_10_3390_heritage5040159 crossref_primary_10_61186_jgit_11_3_43 crossref_primary_10_1002_arp_1886 crossref_primary_10_1016_j_isprsjprs_2023_11_007 crossref_primary_10_1117_1_JRS_12_046018 crossref_primary_10_1016_j_isprsjprs_2021_11_005 crossref_primary_10_3390_data7040050 crossref_primary_10_1109_TGRS_2022_3225843 crossref_primary_10_3390_rs14020265 crossref_primary_10_1016_j_apenergy_2021_117407 crossref_primary_10_3390_rs12244149 crossref_primary_10_51489_tuzal_830052 crossref_primary_10_1109_JSTARS_2024_3392757 crossref_primary_10_3390_rs11010020 crossref_primary_10_3390_rs14133144 crossref_primary_10_1016_j_jag_2022_103107 crossref_primary_10_1109_JSTARS_2021_3109237 crossref_primary_10_1117_1_JRS_13_024508 crossref_primary_10_3390_rs10122008 crossref_primary_10_3390_rs13132524 crossref_primary_10_1016_j_rse_2019_05_016 crossref_primary_10_3390_s20010141 crossref_primary_10_1109_ACCESS_2024_3355154 crossref_primary_10_1080_13658816_2024_2351546 crossref_primary_10_1109_ACCESS_2021_3097630 crossref_primary_10_1016_j_rse_2022_113203 crossref_primary_10_14358_PERS_22_00103R1 crossref_primary_10_1080_01431161_2020_1734251 crossref_primary_10_3390_s18113717 crossref_primary_10_1109_TGRS_2024_3389110 crossref_primary_10_1016_j_isprsjprs_2020_08_004 crossref_primary_10_1016_j_jag_2024_104241 crossref_primary_10_3390_rs14092061 crossref_primary_10_3390_rs13152986 crossref_primary_10_1016_j_scs_2024_105393 crossref_primary_10_1109_TGRS_2022_3174399 crossref_primary_10_3390_rs17050933 crossref_primary_10_2166_hydro_2023_162 crossref_primary_10_1016_j_cja_2020_10_032 crossref_primary_10_1016_j_procs_2025_02_138 crossref_primary_10_1071_WF19041 crossref_primary_10_3390_rs11091040 crossref_primary_10_1080_01431161_2023_2292016 crossref_primary_10_1016_j_eswa_2020_114417 crossref_primary_10_1109_JSTARS_2022_3209682 crossref_primary_10_1109_JSTARS_2024_3357216 crossref_primary_10_1109_JSTARS_2023_3337140 crossref_primary_10_1109_JSTARS_2020_3017934 crossref_primary_10_1109_JSTARS_2023_3328315 crossref_primary_10_1111_tgis_12934 crossref_primary_10_3390_rs11070830 crossref_primary_10_3390_rs14040849 crossref_primary_10_1109_ACCESS_2020_3003914 crossref_primary_10_26833_ijeg_681312 crossref_primary_10_3390_ijgi10090606 crossref_primary_10_3390_rs13040760 crossref_primary_10_3390_ijgi10010022 crossref_primary_10_1007_s10661_024_13431_2 crossref_primary_10_1109_TPAMI_2021_3094662 crossref_primary_10_1080_22797254_2021_2018944 crossref_primary_10_14358_PERS_21_00053R2 crossref_primary_10_1016_j_scitotenv_2021_145191 crossref_primary_10_1109_JSTARS_2022_3197760 crossref_primary_10_3390_rs15020488 crossref_primary_10_1080_01431161_2020_1763496 crossref_primary_10_3390_ijgi10100697 crossref_primary_10_32628_CSEIT206532 crossref_primary_10_1007_s00521_021_06027_1 crossref_primary_10_1016_j_iswcr_2023_11_004 crossref_primary_10_1109_TGRS_2024_3484526 crossref_primary_10_1080_20964471_2019_1657720 crossref_primary_10_1080_01431161_2020_1841324 crossref_primary_10_1109_JSTARS_2024_3393531 crossref_primary_10_1080_01431161_2022_2048319 crossref_primary_10_7780_kjrs_2024_40_5_1_11 crossref_primary_10_3390_rs12182910 crossref_primary_10_3390_su12114375 crossref_primary_10_1109_JSTARS_2023_3329773 crossref_primary_10_3390_rs12152495 crossref_primary_10_3390_rs11151774 crossref_primary_10_3390_rs13214411 crossref_primary_10_3390_rs15051391 crossref_primary_10_1080_10106049_2020_1778100 crossref_primary_10_3390_rs15205048 crossref_primary_10_3390_rs10111768 crossref_primary_10_3390_rs14092276 crossref_primary_10_3390_s19122792 crossref_primary_10_4236_jcc_2022_106011 crossref_primary_10_1007_s11042_022_13493_9 crossref_primary_10_3390_rs13112031 crossref_primary_10_3390_rs12091515 crossref_primary_10_1080_2150704X_2021_1925372 crossref_primary_10_3390_rs11121444 crossref_primary_10_3390_s22176611 crossref_primary_10_3390_rs11242912 crossref_primary_10_3390_rs12091400 crossref_primary_10_1007_s12518_019_00285_4 crossref_primary_10_1109_TGRS_2020_2973720 crossref_primary_10_1109_TGRS_2024_3370826 crossref_primary_10_3390_rs13040742 crossref_primary_10_1088_1361_6501_ac4d5f crossref_primary_10_1109_TGRS_2022_3152575 crossref_primary_10_3390_en13246742 crossref_primary_10_1016_j_isprsjprs_2019_02_019 crossref_primary_10_1016_j_rsase_2024_101336 crossref_primary_10_3390_rs14225657 crossref_primary_10_3390_rs11040403 crossref_primary_10_1016_j_eswa_2024_124751 crossref_primary_10_1109_ACCESS_2020_3038225 crossref_primary_10_3390_buildings14113353 crossref_primary_10_1109_JSTARS_2020_2992298 crossref_primary_10_1109_ACCESS_2019_2957825 crossref_primary_10_1080_01431161_2023_2224101 crossref_primary_10_3390_rs12142240 crossref_primary_10_1109_LGRS_2018_2880986 crossref_primary_10_3390_rs12233983 crossref_primary_10_1109_ACCESS_2019_2912822 crossref_primary_10_1007_s13369_023_08593_z crossref_primary_10_3390_rs10111782 crossref_primary_10_1080_15481603_2022_2101727 crossref_primary_10_1016_j_culher_2023_11_005 crossref_primary_10_1109_JSTARS_2025_3542194 crossref_primary_10_3390_rs11243020 crossref_primary_10_1080_01431161_2020_1788742 crossref_primary_10_1080_01431161_2021_1982155 crossref_primary_10_32604_cmc_2022_026881 crossref_primary_10_1016_j_isprsjprs_2023_05_026 crossref_primary_10_1016_j_asej_2021_10_017 crossref_primary_10_1109_LGRS_2020_3020098 crossref_primary_10_3390_ijgi9080486 crossref_primary_10_3390_rs10030407 crossref_primary_10_3390_rs12071128 crossref_primary_10_3390_rs13091741 crossref_primary_10_3390_rs14051272 crossref_primary_10_1016_j_isprsjprs_2022_03_013 crossref_primary_10_1109_JPROC_2019_2948454 crossref_primary_10_3390_rs11242970 crossref_primary_10_3390_rs13030364 crossref_primary_10_1016_j_mlwa_2021_100194 crossref_primary_10_1109_JSTARS_2023_3336929 crossref_primary_10_3390_rs13214441 crossref_primary_10_1080_10106049_2025_2454940 crossref_primary_10_29252_jgit_7_2_241 crossref_primary_10_3390_rs11232813 crossref_primary_10_3390_su141912178 crossref_primary_10_1080_17538947_2024_2310092 crossref_primary_10_1109_ACCESS_2020_2964043 crossref_primary_10_3390_s24196198 crossref_primary_10_61186_jgit_12_1_83 crossref_primary_10_1109_ACCESS_2020_3047915 crossref_primary_10_3390_rs11161897 crossref_primary_10_1109_TGRS_2021_3106697 crossref_primary_10_1109_JSTARS_2024_3452640 crossref_primary_10_1080_14498596_2022_2037473 crossref_primary_10_3390_rs13234843 crossref_primary_10_3390_rs10091350 crossref_primary_10_1016_j_isprsjprs_2023_05_013 crossref_primary_10_1080_01431161_2021_1973685 crossref_primary_10_1080_01431161_2024_2313991 crossref_primary_10_1109_TGRS_2024_3505595 crossref_primary_10_3390_rs12101668 crossref_primary_10_3390_rs14030564 crossref_primary_10_1109_JSTARS_2022_3201380 crossref_primary_10_1109_TGRS_2023_3242284 crossref_primary_10_26599_TST_2023_9010090 crossref_primary_10_1117_1_JRS_18_034517 crossref_primary_10_3390_app12199900 crossref_primary_10_1029_2022EA002626 crossref_primary_10_1109_TGRS_2023_3321791 crossref_primary_10_3390_ijgi9090504 crossref_primary_10_1007_s11707_022_0985_2 crossref_primary_10_1109_TGRS_2022_3186634 crossref_primary_10_1109_TPAMI_2023_3296757 crossref_primary_10_1109_TGRS_2023_3310534 crossref_primary_10_3390_rs15143687 crossref_primary_10_1109_ACCESS_2020_3022407 crossref_primary_10_7717_peerj_cs_772 crossref_primary_10_3390_rs11070888 crossref_primary_10_1109_JSTARS_2024_3477606 crossref_primary_10_3390_app11115069 crossref_primary_10_1016_j_isprsjprs_2021_12_007 crossref_primary_10_1007_s12145_024_01270_1 crossref_primary_10_3390_drones8070297 crossref_primary_10_3390_technologies10010019 crossref_primary_10_3390_rs10091461 crossref_primary_10_3390_rs13173393 crossref_primary_10_1155_2022_7927659 crossref_primary_10_1109_JSTARS_2022_3166929 crossref_primary_10_1109_JSTARS_2020_3024776 crossref_primary_10_1117_1_JRS_18_034504 crossref_primary_10_1016_j_rse_2021_112589 crossref_primary_10_1016_j_enbenv_2023_07_008 crossref_primary_10_1117_1_JRS_14_034503 crossref_primary_10_1016_j_isprsjprs_2019_07_009 crossref_primary_10_15576_GLL_194414 crossref_primary_10_1080_10106049_2021_1992022 crossref_primary_10_1016_j_isprsjprs_2019_11_004 crossref_primary_10_1007_s00371_024_03787_4 crossref_primary_10_1109_LGRS_2020_3005018 crossref_primary_10_1109_JSTARS_2022_3178470 crossref_primary_10_3390_rs13030475 crossref_primary_10_3390_w10111666 crossref_primary_10_1007_s12145_024_01267_w crossref_primary_10_1080_01431161_2020_1742944 crossref_primary_10_3390_rs13214237 crossref_primary_10_1080_01431161_2024_2334812 crossref_primary_10_3390_app14177499 crossref_primary_10_1109_TGRS_2022_3192614 crossref_primary_10_3390_rs13081507 crossref_primary_10_3390_en16186563 crossref_primary_10_1117_1_JRS_14_016506 crossref_primary_10_1016_j_scs_2023_104653 crossref_primary_10_1109_TGRS_2023_3287298 crossref_primary_10_3390_ijgi9060397 crossref_primary_10_1007_s12145_022_00840_5 crossref_primary_10_1080_17538947_2023_2210312 crossref_primary_10_3390_rs10121970 crossref_primary_10_3390_rs13132620 crossref_primary_10_3390_su152316220 crossref_primary_10_3390_rs15051443 crossref_primary_10_3390_rs14092207 crossref_primary_10_3390_rs14163864 crossref_primary_10_3390_app9152972 crossref_primary_10_1109_ACCESS_2022_3194919 crossref_primary_10_3390_rs14051235 crossref_primary_10_3390_rs12183053 crossref_primary_10_1109_LGRS_2023_3250091 crossref_primary_10_1109_ACCESS_2020_2964760 crossref_primary_10_3390_rs13193871 crossref_primary_10_1109_ACCESS_2022_3231362 crossref_primary_10_1109_TGRS_2021_3093004 crossref_primary_10_1109_JSTARS_2020_3006772 crossref_primary_10_3390_s19173737 crossref_primary_10_1016_j_oregeorev_2021_104316 crossref_primary_10_3390_ijgi8110478 crossref_primary_10_3390_rs14143283 crossref_primary_10_1007_s11676_021_01375_z crossref_primary_10_1016_j_landurbplan_2023_104691 crossref_primary_10_3390_rs13061172 crossref_primary_10_3390_ijgi11070393 crossref_primary_10_3390_rs13122257 crossref_primary_10_3390_a17020084 crossref_primary_10_3390_rs11010068 crossref_primary_10_1109_JSTARS_2023_3255541 crossref_primary_10_3390_rs13183710 crossref_primary_10_61186_jgit_11_1_105 crossref_primary_10_1109_JSTARS_2023_3312820 crossref_primary_10_1080_15481603_2023_2196162 crossref_primary_10_1007_s12524_024_01992_1 crossref_primary_10_1109_JSTARS_2021_3079459 crossref_primary_10_1007_s12145_024_01306_6 crossref_primary_10_1109_ACCESS_2019_2958983 crossref_primary_10_1109_JSTARS_2022_3188515 crossref_primary_10_1109_MGRS_2019_2927260 crossref_primary_10_3390_rs14010024 crossref_primary_10_3390_rs13061049 crossref_primary_10_1109_TGRS_2024_3383057 crossref_primary_10_3390_rs11161938 crossref_primary_10_3390_rs12132159 crossref_primary_10_3390_app11136072 crossref_primary_10_1002_cpe_5305 crossref_primary_10_1080_10106049_2020_1740949 crossref_primary_10_1109_JSTARS_2021_3084805 crossref_primary_10_3390_s20247241 crossref_primary_10_1002_rse2_111 crossref_primary_10_1007_s12517_020_06347_x crossref_primary_10_21523_gcj1_18020103 crossref_primary_10_3390_rs12132161 crossref_primary_10_1016_j_isprsjprs_2019_04_015 crossref_primary_10_3390_rs13214271 crossref_primary_10_3390_rs14215476 crossref_primary_10_3390_app12125960 crossref_primary_10_3390_rs12223794 crossref_primary_10_3390_rs14153622 crossref_primary_10_1016_j_cviu_2024_104253 crossref_primary_10_1109_JSTARS_2022_3144176 crossref_primary_10_1109_ACCESS_2020_3026658 crossref_primary_10_3390_rs11030227 crossref_primary_10_1080_01431161_2022_2122892 crossref_primary_10_1080_17538947_2022_2159550 crossref_primary_10_1080_15481603_2023_2196154 crossref_primary_10_3390_s22010207 crossref_primary_10_1109_TGRS_2023_3320146 crossref_primary_10_1038_s41598_024_65430_5 crossref_primary_10_3390_rs10091496 crossref_primary_10_1109_JSTARS_2021_3058097 crossref_primary_10_3390_rs12213630 crossref_primary_10_3390_rs12060990 crossref_primary_10_3390_s19020333 crossref_primary_10_3233_JIFS_235150 crossref_primary_10_3390_rs11171986 |
Cites_doi | 10.1007/978-3-319-24574-4_28 10.1080/01431160802559046 10.1109/CVPR.2016.350 10.20944/preprints201608.0022.v1 10.1109/CVPR.2017.106 10.1109/CVPRW.2015.7301382 10.1109/JURSE.2017.7924536 10.3390/rs9050498 10.3390/rs9050446 10.1109/TGRS.2014.2321423 10.3390/rs71114680 10.1109/TGRS.2016.2616585 10.1007/978-3-319-54181-5_12 10.1109/CVPRW.2015.7301381 10.1109/TGRS.2016.2514504 10.1109/IGARSS.2016.7729406 10.1109/JSTARS.2016.2602439 10.1109/IGARSS.2015.7326158 10.1109/TGRS.2010.2048116 10.1016/j.rse.2012.03.013 10.1109/CVPRW.2014.131 10.1109/TGRS.2011.2165548 10.1109/ICCV.2015.179 10.1109/JSTARS.2016.2582921 10.1016/S0924-2716(98)00027-6 10.1007/978-3-642-15567-3_16 10.1117/1.JRS.8.083616 10.1109/CVPR.2015.7298965 10.1080/01431161.2015.1054049 10.1109/TPAMI.2012.231 10.1109/ICCV.2015.316 10.1109/TGRS.2004.837325 10.1109/CVPR.2014.81 10.1109/TGRS.2016.2612821 10.3390/rs8110954 10.1109/TPAMI.2012.213 10.1109/IGARSS.2015.7326745 10.3390/rs8100814 10.5194/isprs-annals-III-3-473-2016 10.1109/JPROC.2012.2211551 10.1109/JSTARS.2014.2328618 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/rs10010144 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_1fada3f8ebac4e819238dd2030bc6bae 10_3390_rs10010144 |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS RIG TR2 TUS PQGLB PUEGO |
ID | FETCH-LOGICAL-c399t-2050070f031a01ad233cc0b99e5cec3b23cf1c246a11d488e03cc063df90861d3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:29:01 EDT 2025 Tue Jul 01 04:14:28 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-2050070f031a01ad233cc0b99e5cec3b23cf1c246a11d488e03cc063df90861d3 |
ORCID | 0000-0001-7421-4915 |
OpenAccessLink | https://doaj.org/article/1fada3f8ebac4e819238dd2030bc6bae |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fada3f8ebac4e819238dd2030bc6bae crossref_citationtrail_10_3390_rs10010144 crossref_primary_10_3390_rs10010144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2018 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Benediktsson (ref_38) 2010; 48 Paisitkriangkrai (ref_29) 2016; 9 Liu (ref_11) 2016; 54 ref_12 ref_10 ref_52 ref_51 ref_19 ref_18 ref_17 Wang (ref_8) 2015; 36 ref_16 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 Wilkinson (ref_27) 2005; 43 He (ref_49) 2013; 35 Hu (ref_45) 2015; 7 ref_28 Konstantinidis (ref_9) 2017; 10 Lv (ref_15) 2015; 7 Farabet (ref_26) 2012; 35 ref_36 ref_34 Maggiori (ref_32) 2017; 55 ref_33 ref_31 ref_30 Marmanis (ref_35) 2016; 3 Dalponte (ref_4) 2012; 123 ref_37 Volpi (ref_41) 2016; 55 Moser (ref_1) 2013; 101 Huang (ref_14) 2009; 30 Kumar (ref_7) 2014; 8 ref_47 ref_46 ref_44 ref_43 ref_42 ref_40 Longbotham (ref_2) 2012; 50 ref_3 Tokarczyk (ref_39) 2014; 53 ref_48 ref_5 Zhang (ref_13) 1999; 54 ref_6 |
References_xml | – ident: ref_47 doi: 10.1007/978-3-319-24574-4_28 – volume: 30 start-page: 3205 year: 2009 ident: ref_14 article-title: A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802559046 – ident: ref_51 – ident: ref_40 doi: 10.1109/CVPR.2016.350 – ident: ref_16 doi: 10.20944/preprints201608.0022.v1 – ident: ref_42 – ident: ref_48 doi: 10.1109/CVPR.2017.106 – ident: ref_23 doi: 10.1109/CVPRW.2015.7301382 – ident: ref_24 doi: 10.1109/JURSE.2017.7924536 – ident: ref_31 doi: 10.3390/rs9050498 – ident: ref_52 doi: 10.3390/rs9050446 – volume: 53 start-page: 280 year: 2014 ident: ref_39 article-title: Features, Color Spaces, and Boosting: New Insights on Semantic Classification of Remote Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2321423 – volume: 7 start-page: 14680 year: 2015 ident: ref_45 article-title: Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 55 start-page: 881 year: 2016 ident: ref_41 article-title: Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2616585 – ident: ref_33 doi: 10.1007/978-3-319-54181-5_12 – ident: ref_28 doi: 10.1109/CVPRW.2015.7301381 – volume: 54 start-page: 3292 year: 2016 ident: ref_11 article-title: POL-SAR Image Classification Based on Wishart DBN and Local Spatial Information publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2514504 – ident: ref_30 doi: 10.1109/IGARSS.2016.7729406 – ident: ref_10 – volume: 10 start-page: 888 year: 2017 ident: ref_9 article-title: Building Detection Using Enhanced HOG–LBP Features and Region Refinement Processes publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2602439 – ident: ref_25 doi: 10.1109/IGARSS.2015.7326158 – volume: 48 start-page: 3747 year: 2010 ident: ref_38 article-title: Morphological attribute profiles for the analysis of very high resolution images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2048116 – volume: 123 start-page: 258 year: 2012 ident: ref_4 article-title: Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.03.013 – ident: ref_17 doi: 10.1109/CVPRW.2014.131 – volume: 50 start-page: 1155 year: 2012 ident: ref_2 article-title: Very High Resolution Multiangle Urban Classification Analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2165548 – ident: ref_21 doi: 10.1109/ICCV.2015.179 – ident: ref_20 – volume: 9 start-page: 2868 year: 2016 ident: ref_29 article-title: Semantic Labeling of Aerial and Satellite Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2016.2582921 – volume: 54 start-page: 50 year: 1999 ident: ref_13 article-title: Optimisation of building detection in satellite images by combining multispectral classification and texture filtering publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(98)00027-6 – ident: ref_22 doi: 10.1109/JURSE.2017.7924536 – ident: ref_37 – ident: ref_3 doi: 10.1007/978-3-642-15567-3_16 – ident: ref_44 – volume: 8 start-page: 083616 year: 2014 ident: ref_7 article-title: Improving image classification in a complex wetland ecosystem through image fusion techniques publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.8.083616 – ident: ref_19 doi: 10.1109/CVPR.2015.7298965 – volume: 36 start-page: 3144 year: 2015 ident: ref_8 article-title: Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1054049 – volume: 35 start-page: 1915 year: 2012 ident: ref_26 article-title: Learning Hierarchical Features for Scene Labeling publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.231 – ident: ref_34 doi: 10.1109/ICCV.2015.316 – ident: ref_50 – ident: ref_12 – volume: 43 start-page: 433 year: 2005 ident: ref_27 article-title: Results and implications of a study of fifteen years of satellite image classification experiments publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.837325 – ident: ref_18 doi: 10.1109/CVPR.2014.81 – volume: 55 start-page: 645 year: 2017 ident: ref_32 article-title: Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2612821 – ident: ref_6 doi: 10.3390/rs8110954 – volume: 35 start-page: 1397 year: 2013 ident: ref_49 article-title: Guided Image Filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – ident: ref_46 doi: 10.1109/IGARSS.2015.7326745 – ident: ref_5 doi: 10.3390/rs8100814 – volume: 3 start-page: 473 year: 2016 ident: ref_35 article-title: Semantic Segmentation of Aerial Images with an Ensemble of CNSS publication-title: ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-annals-III-3-473-2016 – ident: ref_36 – ident: ref_43 – volume: 101 start-page: 631 year: 2013 ident: ref_1 article-title: Land-Cover Mapping by Markov Modeling of Spatial-Contextual Information in Very-High-Resolution Remote Sensing Images publication-title: Proc. IEEE. doi: 10.1109/JPROC.2012.2211551 – volume: 7 start-page: 4644 year: 2015 ident: ref_15 article-title: Morphological Profiles Based on Differently Shaped Structuring Elements for Classification of Images With Very High Spatial Resolution publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2328618 |
SSID | ssj0000331904 |
Score | 2.6182735 |
Snippet | Very high resolution (VHR) remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 144 |
SubjectTerms | building extraction deep learning guided filter very high resolution |
Title | Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters |
URI | https://doaj.org/article/1fada3f8ebac4e819238dd2030bc6bae |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4YPOjF-Iz4IJvoxQOh7W4LPYKAaMQLYrg1-5hVEq2klET-vbPdipiYePHWtNOm-WZmd2Z39htCLiXG9JEyQV0p9CYufHQpbZp10FzyQEvJi4O0w4doMOZ3k3Cy1urL1oQ5emAHXMM3QgtmWiCF4mDpu1hL6wBtU6pICrCjL855a8lUMQYzNC2POz5Shnl9I5v7rjEt_zEDrRH1FzNKf5fslKEgbbtf2CMbkO6TrbIr-cvygEw7Zc9q2vvIM3cCgU5T-gTZktoCDWoX353p4CWCDnRkC9Lxjds3S06xpEVJAO0CzGhJpfpMRarpzWKqQdP-1O6Wzw_JuN97vB7Uy9YIdYURRY62HVqiHoMuKTxf6IAxpTwZxxAqUEwGTBlfoRqE72v0UfDs84hpE2MO42t2RCrpewrHhHoIrfGaUsSCcWZU7EWgQtnCPCpWGkSVXH3BlaiSN9y2r3hNMH-w0Cbf0FbJxUp25tgyfpXqWNRXEpbhuriBek9KvSd_6f3kPz5ySrYxAGq5JZUzUsmzBZxjkJHLGtlsd4f3o1phV5-Z1NRh |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+Extraction+in+Very+High+Resolution+Remote+Sensing+Imagery+Using+Deep+Learning+and+Guided+Filters&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Yongyang&rft.au=Wu%2C+Liang&rft.au=Xie%2C+Zhong&rft.au=Chen%2C+Zhanlong&rft.date=2018-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=10&rft.issue=1&rft.spage=144&rft_id=info:doi/10.3390%2Frs10010144&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs10010144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |