Analysis, synthesis, and design of a one-step dimethyl ether production via a thermodynamic approach

► We analyze a one-step DME production via a thermodynamic approach. ► We synthesize a one-step DME process. ► We design a one-step DME process with pinch technology. In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 101; pp. 449 - 456
Main Authors Chen, Hsi-Jen, Fan, Chei-Wei, Yu, Chiou-Shia
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► We analyze a one-step DME production via a thermodynamic approach. ► We synthesize a one-step DME process. ► We design a one-step DME process with pinch technology. In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number booster for diesel, in addition to being capable of a substitute for liquefied petroleum gas (LPG). In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are found: (1) CO2+H2=H2O+CO, (2) CO+2H2=CH3OH, and (3) 3CO+3H2=(CH3)2O+CO2. To gain an insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-constant method and the minimization of Gibbs free energy. Additionally, we have also united the pinch technology with the base-case design for heat exchanger network synthesis in order to compare the energy consumption and capital costs of the process with/without heat integration. Two kinds of software were used in the research–Aspen Plus and SuperTarget. The former was used for the process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the synthesis of heat exchanger network.
AbstractList In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number booster for diesel, in addition to being capable of a substitute for liquefied petroleum gas (LPG). In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are found: (1) CO₂+H₂=H₂O+CO, (2) CO+2H₂=CH₃OH, and (3) 3CO+3H₂=(CH₃)₂O+CO₂. To gain an insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-constant method and the minimization of Gibbs free energy. Additionally, we have also united the pinch technology with the base-case design for heat exchanger network synthesis in order to compare the energy consumption and capital costs of the process with/without heat integration. Two kinds of software were used in the research–Aspen Plus and SuperTarget. The former was used for the process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the synthesis of heat exchanger network.
In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number booster for diesel, in addition to being capable of a substitute for liquefied petroleum gas (LPG). In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are found: (1) CO2 + H2 = H2O + CO, (2) CO + 2H2 = CH3OH, and (3) 3CO + 3H2 = (CH3)2O + CO2. To gain an insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-constant method and the minimization of Gibbs free energy. Additionally, we have also united the pinch technology with the base-case design for heat exchanger network synthesis in order to compare the energy consumption and capital costs of the process with/without heat integration. Two kinds of software were used in the researchaAspen Plus and SuperTarget. The former was used for the process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the synthesis of heat exchanger network.
► We analyze a one-step DME production via a thermodynamic approach. ► We synthesize a one-step DME process. ► We design a one-step DME process with pinch technology. In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number booster for diesel, in addition to being capable of a substitute for liquefied petroleum gas (LPG). In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are found: (1) CO2+H2=H2O+CO, (2) CO+2H2=CH3OH, and (3) 3CO+3H2=(CH3)2O+CO2. To gain an insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-constant method and the minimization of Gibbs free energy. Additionally, we have also united the pinch technology with the base-case design for heat exchanger network synthesis in order to compare the energy consumption and capital costs of the process with/without heat integration. Two kinds of software were used in the research–Aspen Plus and SuperTarget. The former was used for the process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the synthesis of heat exchanger network.
Author Chen, Hsi-Jen
Yu, Chiou-Shia
Fan, Chei-Wei
Author_xml – sequence: 1
  givenname: Hsi-Jen
  surname: Chen
  fullname: Chen, Hsi-Jen
  email: hjchen@mail.tku.edu.tw
– sequence: 2
  givenname: Chei-Wei
  surname: Fan
  fullname: Fan, Chei-Wei
– sequence: 3
  givenname: Chiou-Shia
  surname: Yu
  fullname: Yu, Chiou-Shia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26685978$$DView record in Pascal Francis
BookMark eNqFkE1v1DAQhi1UJLaFvwC-IHEgwR-J49yoKr6kShygZ2tiT3a9SuxgZyvl3-NlC1cuMyPrmXmt55pchRiQkNec1Zxx9eFYw4IB036rBeOiZrpmon1Gdlx3ouo511dkxyRTlVC8f0Gucz4yxgQXbEfcbYBpyz6_p3kL6wH_jBAcdWXcBxpHCrQEVnnFhTo_43rYJloqJrqk6E529THQRw8FPL_O0W0BZm8pLAUAe3hJno8wZXz11G_Iw-dPP---Vvffv3y7u72vrOz7teIC3NggH5hsZQ9D2zR6EHYE1jXDwAaGA0fkje471QLIzvWS21Z1nR20c07ekHeXuyX21wnzamafLU4TBIynbLjQUrW6WCiouqA2xZwTjmZJfoa0Gc7MWas5mr9azVmrYdoUrWXx7VMGZAvTmCBYn_9tC6V023e6cG8u3AjRwD4V5uFHOaTY2X3XyEJ8vBBYlDx6TCZbj8Gi8wntalz0__vMbxz6nb4
CODEN APENDX
CitedBy_id crossref_primary_10_1016_j_jtice_2014_10_013
crossref_primary_10_1016_j_cjche_2016_09_008
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121063
crossref_primary_10_1016_j_cep_2014_06_007
crossref_primary_10_1134_S0965544115080022
crossref_primary_10_1016_j_energy_2024_131688
crossref_primary_10_1021_acs_iecr_2c01339
crossref_primary_10_1016_j_jece_2023_111800
crossref_primary_10_1016_j_ijhydene_2017_01_063
crossref_primary_10_1016_j_rser_2017_01_011
crossref_primary_10_1002_cjce_24906
crossref_primary_10_1016_j_jclepro_2024_141060
crossref_primary_10_1016_j_biombioe_2018_01_016
crossref_primary_10_1016_j_jngse_2013_03_001
crossref_primary_10_3390_catal8070262
crossref_primary_10_3390_molecules23010031
crossref_primary_10_1021_ie503663h
crossref_primary_10_1016_j_jiec_2021_07_019
crossref_primary_10_1002_ente_201500349
crossref_primary_10_1016_j_jcat_2016_02_025
crossref_primary_10_1016_j_enconman_2014_06_067
crossref_primary_10_1002_anie_201604753
crossref_primary_10_1002_cctc_201901938
crossref_primary_10_1016_j_apenergy_2015_03_135
crossref_primary_10_1016_j_ijhydene_2017_09_104
crossref_primary_10_1016_j_jcou_2019_02_003
crossref_primary_10_1016_j_jpowsour_2016_07_007
crossref_primary_10_1016_j_fuel_2023_128120
crossref_primary_10_1016_j_energy_2016_11_129
crossref_primary_10_1515_jnet_2017_0050
crossref_primary_10_1016_j_fuel_2023_128504
crossref_primary_10_1039_C3CY01089A
crossref_primary_10_1016_j_fuproc_2018_02_025
crossref_primary_10_1134_S0036024416020084
crossref_primary_10_1002_ange_201604753
crossref_primary_10_1002_aic_17353
crossref_primary_10_1016_j_apenergy_2017_06_085
crossref_primary_10_1016_j_fuproc_2022_107310
crossref_primary_10_1063_1_4918733
crossref_primary_10_1016_j_cattod_2020_02_011
crossref_primary_10_1016_j_micromeso_2021_111138
crossref_primary_10_1016_j_energy_2016_04_097
crossref_primary_10_1016_j_ijhydene_2017_06_033
Cites_doi 10.1016/j.apenergy.2011.06.028
10.1016/j.jcice.2006.12.003
10.1016/j.apenergy.2010.10.023
10.1016/j.apenergy.2011.02.017
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
IQODW
AAYXX
CITATION
7TA
8FD
F28
FR3
JG9
DOI 10.1016/j.apenergy.2012.08.025
DatabaseName AGRIS
Pascal-Francis
CrossRef
Materials Business File
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Materials Business File
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 456
ExternalDocumentID 10_1016_j_apenergy_2012_08_025
26685978
US201600002743
S030626191200596X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
8W4
AALMO
AAPBV
ADALY
IPNFZ
IQODW
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TA
8FD
F28
FR3
JG9
ID FETCH-LOGICAL-c399t-12adf4e1b03539ab5448b2cfa074bb0b0eb1ee1489765aa37d931c5677cb8ddd3
IEDL.DBID AIKHN
ISSN 0306-2619
IngestDate Fri Oct 25 22:13:13 EDT 2024
Thu Sep 26 18:56:48 EDT 2024
Fri Nov 25 01:11:52 EST 2022
Wed Dec 27 19:18:04 EST 2023
Fri Feb 23 02:36:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Process synthesis and design
Dimethyl ether
Clean energy
Energy savings
Pinch technology
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-12adf4e1b03539ab5448b2cfa074bb0b0eb1ee1489765aa37d931c5677cb8ddd3
Notes http://dx.doi.org/10.1016/j.apenergy.2012.08.025
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1283658619
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1283658619
crossref_primary_10_1016_j_apenergy_2012_08_025
pascalfrancis_primary_26685978
fao_agris_US201600002743
elsevier_sciencedirect_doi_10_1016_j_apenergy_2012_08_025
PublicationCentury 2000
PublicationDate January 2013
2013
2013-01-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied energy
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ogawa, Inoue, Shikada, Ohno (b0035) 2003; 12
Seider, Seader, Lewin, Widagdo (b0040) 2010
Arab Aboosadi, Jahanmiri, Rahimpour (b0010) 2011; 88
Pellegrini, Soave, Gamba, Lange (b0015) 2011; 88
Turton, Bailie, Whiting, Shaeiwitz (b0020) 2009
SuperTarget user’s guide: version 6.1.05. Cheshire: KBC/Linnhoff; March 2010.
Vakili, Pourazadi, Setoodeh, Eslamloueyan, Rahimpour (b0005) 2011; 88
Smith (b0045) 2005
Aspen Plus user’s guide: version 7.2. Massachussets: Aspen Tech.; 2010.
Chen, Yang, Huang, Chyou (b0050) 2007; 3
Smith (10.1016/j.apenergy.2012.08.025_b0045) 2005
Pellegrini (10.1016/j.apenergy.2012.08.025_b0015) 2011; 88
Arab Aboosadi (10.1016/j.apenergy.2012.08.025_b0010) 2011; 88
10.1016/j.apenergy.2012.08.025_b0025
10.1016/j.apenergy.2012.08.025_b0030
Ogawa (10.1016/j.apenergy.2012.08.025_b0035) 2003; 12
Chen (10.1016/j.apenergy.2012.08.025_b0050) 2007; 3
Vakili (10.1016/j.apenergy.2012.08.025_b0005) 2011; 88
Seider (10.1016/j.apenergy.2012.08.025_b0040) 2010
Turton (10.1016/j.apenergy.2012.08.025_b0020) 2009
References_xml – year: 2009
  ident: b0020
  article-title: Analysis, synthesis, and design of chemical processes
  contributor:
    fullname: Shaeiwitz
– volume: 88
  start-page: 2691
  year: 2011
  end-page: 2701
  ident: b0010
  article-title: Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method
  publication-title: Appl Energy
  contributor:
    fullname: Rahimpour
– volume: 3
  start-page: 185
  year: 2007
  end-page: 190
  ident: b0050
  article-title: A paraffin-fueled SOFC system design and integration
  publication-title: J Chin Inst Chem Eng
  contributor:
    fullname: Chyou
– volume: 88
  start-page: 4891
  year: 2011
  end-page: 4897
  ident: b0015
  article-title: Economic analysis of a combined energy-methanol production plant
  publication-title: Appl Energy
  contributor:
    fullname: Lange
– volume: 12
  start-page: 219
  year: 2003
  end-page: 227
  ident: b0035
  article-title: Direct dimethyl ether synthesis
  publication-title: J Nat Gas Chem
  contributor:
    fullname: Ohno
– year: 2005
  ident: b0045
  article-title: Chemical process design and integration
  contributor:
    fullname: Smith
– year: 2010
  ident: b0040
  article-title: Product and process design principles
  contributor:
    fullname: Widagdo
– volume: 88
  start-page: 1211
  year: 2011
  end-page: 1223
  ident: b0005
  article-title: Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor
  publication-title: Appl Energy
  contributor:
    fullname: Rahimpour
– year: 2009
  ident: 10.1016/j.apenergy.2012.08.025_b0020
  contributor:
    fullname: Turton
– year: 2005
  ident: 10.1016/j.apenergy.2012.08.025_b0045
  contributor:
    fullname: Smith
– year: 2010
  ident: 10.1016/j.apenergy.2012.08.025_b0040
  contributor:
    fullname: Seider
– ident: 10.1016/j.apenergy.2012.08.025_b0025
– volume: 12
  start-page: 219
  year: 2003
  ident: 10.1016/j.apenergy.2012.08.025_b0035
  article-title: Direct dimethyl ether synthesis
  publication-title: J Nat Gas Chem
  contributor:
    fullname: Ogawa
– volume: 88
  start-page: 4891
  year: 2011
  ident: 10.1016/j.apenergy.2012.08.025_b0015
  article-title: Economic analysis of a combined energy-methanol production plant
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.06.028
  contributor:
    fullname: Pellegrini
– ident: 10.1016/j.apenergy.2012.08.025_b0030
– volume: 3
  start-page: 185
  year: 2007
  ident: 10.1016/j.apenergy.2012.08.025_b0050
  article-title: A paraffin-fueled SOFC system design and integration
  publication-title: J Chin Inst Chem Eng
  doi: 10.1016/j.jcice.2006.12.003
  contributor:
    fullname: Chen
– volume: 88
  start-page: 1211
  year: 2011
  ident: 10.1016/j.apenergy.2012.08.025_b0005
  article-title: Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.10.023
  contributor:
    fullname: Vakili
– volume: 88
  start-page: 2691
  year: 2011
  ident: 10.1016/j.apenergy.2012.08.025_b0010
  article-title: Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.02.017
  contributor:
    fullname: Arab Aboosadi
SSID ssj0002120
Score 2.3184702
Snippet ► We analyze a one-step DME production via a thermodynamic approach. ► We synthesize a one-step DME process. ► We design a one-step DME process with pinch...
In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number...
SourceID proquest
crossref
pascalfrancis
fao
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 449
SubjectTerms Alternative fuels. Production and utilization
Applied sciences
capital
Carbon dioxide
Carbon monoxide
Chemical reactions
Clean energy
computer software
Design engineering
Dimethyl ether
Energy
Energy savings
Exact sciences and technology
Fuels
Gibbs free energy
heat
Heat exchangers
Hydrogen
liquid petroleum gas
Miscellaneous
Pinch technology
process design
Process synthesis and design
stoichiometry
Synthesis
synthesis gas
Thermodynamics
Title Analysis, synthesis, and design of a one-step dimethyl ether production via a thermodynamic approach
URI https://dx.doi.org/10.1016/j.apenergy.2012.08.025
https://search.proquest.com/docview/1283658619
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB2RcKGHquVDBGhkJI5dEtv7kRwRAgWqcqGRcrPGay8KKrsrEipx6W_vjHeXglqph95Wlm1ZHnv8vJ55D-BESu9UHseR8yxhJpM8QpX6yGeukLG0Y-f4h_7Xm3Q2j68XyWIDzrtcGA6rbH1_49ODt25LRu1sjurlcnTLaJfxv1RBQ2bRg83wSNSHzbOrL7ObF4esWnZGqh9xg1eJwvenWPuQZMdRXiqwebJq9t_PqF6BFQdP4ormr2iEL_7w4eFguvwA71tEKc6aQX-EDV9uw7tXPIPbsHfxO52Nqrb7ebUDruMk-SxWzyVhwfCJpRMuRHaIqhAoqtJHtBhq4ZYsOP38XYQsYVE3bLFkWfFjiVSRSx8q14jci46ufBfmlxffzmdRq7sQ5QRX1pFU6IrYk6F0oqdoE7rCWZUXSHDD2rEdk3_3nu5RBGUSRJ25qZZ5kmZZbifOOb0H_ZKGtg-iQGZsnyikLuNUOzumXlKtfCJtlmkcwKibaVM39Bqmizu7N51tDNvGsFymSgYw7Qxi3iwUQ2fAP9vukwUN3pH_NPNbxex6DYOPHsDwjVlfRkMAZkKXrskAjjs7G9qB_KyCpa-eVoZOeE04jhbWwX-M7RC2VFDa4L87R9BfPz75T4R31nYIvdOfctiu6l_WdABT
link.rule.ids 315,783,787,4033,4511,24130,27937,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOLQcqpYWsZRSI3Fsums7j90jQqClwF5gpb1Z49ipFkESsQsS_54ZJ-GhVuqhtyiyLcszGX92Zr4P4EBK71Qex5HzLGEmkzxClfrIZ66QsbQD5_hC_2KSjqfxr1kyW4GjrhaG0yrb2N_E9BCt2zf9djX79Xzev2S0y_hfqqAhM1uFdUIDI3L29cPTs_HkOSCrlp2R2kfc4VWh8PVPrH0osuMsLxXYPFk1--971GqBFSdP4oLWr2iEL_6I4WFjOvkIH1pEKQ6bSX-CFV9uwsYrnsFN2Dp-KWejpu33vPgMruMk-SEWjyVhwfCIpRMuZHaIqhAoqtJH5Ay1cHMWnH68EaFKWNQNWyxZVjzMkRry29vKNSL3oqMr_wLTk-Oro3HU6i5EOcGVZSQVuiL2ZCid6BHahI5wVuUFEtywdmAHFN-9p3MUQZkEUWdupGWepFmW26FzTm_BWklT2wZRIDO2DxXSkHGqnR3QKKlWPpE2yzT2oN-ttKkbeg3T5Z1dm842hm1jWC5TJT0YdQYxbxzF0B7wz77bZEGDvyl-mumlYna9hsFH92DvjVmfZ0MAZkiHrmEP9js7G_oC-bcKlr66Xxja4TXhOHKsnf-Y23d4N766ODfnp5Ozr_BeBdUNvunZhbXl3b3_Rthnafda334CIvgCUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis%2C+synthesis%2C+and+design+of+a+one-step+dimethyl+ether+production+via+a+thermodynamic+approach&rft.jtitle=Applied+energy&rft.au=Chen%2C+Hsi-Jen&rft.au=Fan%2C+Chei-Wei&rft.au=Yu%2C+Chiou-Shia&rft.date=2013&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=101&rft.spage=449&rft.epage=456&rft_id=info:doi/10.1016%2Fj.apenergy.2012.08.025&rft.externalDocID=US201600002743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon