Analysis, synthesis, and design of a one-step dimethyl ether production via a thermodynamic approach
► We analyze a one-step DME production via a thermodynamic approach. ► We synthesize a one-step DME process. ► We design a one-step DME process with pinch technology. In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be...
Saved in:
Published in | Applied energy Vol. 101; pp. 449 - 456 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.01.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► We analyze a one-step DME production via a thermodynamic approach. ► We synthesize a one-step DME process. ► We design a one-step DME process with pinch technology.
In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number booster for diesel, in addition to being capable of a substitute for liquefied petroleum gas (LPG). In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are found: (1) CO2+H2=H2O+CO, (2) CO+2H2=CH3OH, and (3) 3CO+3H2=(CH3)2O+CO2. To gain an insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-constant method and the minimization of Gibbs free energy. Additionally, we have also united the pinch technology with the base-case design for heat exchanger network synthesis in order to compare the energy consumption and capital costs of the process with/without heat integration. Two kinds of software were used in the research–Aspen Plus and SuperTarget. The former was used for the process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the synthesis of heat exchanger network. |
---|---|
AbstractList | In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number booster for diesel, in addition to being capable of a substitute for liquefied petroleum gas (LPG). In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are found: (1) CO₂+H₂=H₂O+CO, (2) CO+2H₂=CH₃OH, and (3) 3CO+3H₂=(CH₃)₂O+CO₂. To gain an insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-constant method and the minimization of Gibbs free energy. Additionally, we have also united the pinch technology with the base-case design for heat exchanger network synthesis in order to compare the energy consumption and capital costs of the process with/without heat integration. Two kinds of software were used in the research–Aspen Plus and SuperTarget. The former was used for the process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the synthesis of heat exchanger network. In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number booster for diesel, in addition to being capable of a substitute for liquefied petroleum gas (LPG). In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are found: (1) CO2 + H2 = H2O + CO, (2) CO + 2H2 = CH3OH, and (3) 3CO + 3H2 = (CH3)2O + CO2. To gain an insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-constant method and the minimization of Gibbs free energy. Additionally, we have also united the pinch technology with the base-case design for heat exchanger network synthesis in order to compare the energy consumption and capital costs of the process with/without heat integration. Two kinds of software were used in the researchaAspen Plus and SuperTarget. The former was used for the process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the synthesis of heat exchanger network. ► We analyze a one-step DME production via a thermodynamic approach. ► We synthesize a one-step DME process. ► We design a one-step DME process with pinch technology. In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number booster for diesel, in addition to being capable of a substitute for liquefied petroleum gas (LPG). In order to analyze the independent chemical reactions involved in the reactor, it is necessary to carry out a study of the chemical reaction stoichiometry. And with a specific syngas feed, the following reactions are found: (1) CO2+H2=H2O+CO, (2) CO+2H2=CH3OH, and (3) 3CO+3H2=(CH3)2O+CO2. To gain an insight into the reactor design, we have also utilized the concept of thermodynamics, including equilibrium-constant method and the minimization of Gibbs free energy. Additionally, we have also united the pinch technology with the base-case design for heat exchanger network synthesis in order to compare the energy consumption and capital costs of the process with/without heat integration. Two kinds of software were used in the research–Aspen Plus and SuperTarget. The former was used for the process synthesis, design, and simulation; the latter was used to carry out the pinch analysis and the synthesis of heat exchanger network. |
Author | Chen, Hsi-Jen Yu, Chiou-Shia Fan, Chei-Wei |
Author_xml | – sequence: 1 givenname: Hsi-Jen surname: Chen fullname: Chen, Hsi-Jen email: hjchen@mail.tku.edu.tw – sequence: 2 givenname: Chei-Wei surname: Fan fullname: Fan, Chei-Wei – sequence: 3 givenname: Chiou-Shia surname: Yu fullname: Yu, Chiou-Shia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26685978$$DView record in Pascal Francis |
BookMark | eNqFkE1v1DAQhi1UJLaFvwC-IHEgwR-J49yoKr6kShygZ2tiT3a9SuxgZyvl3-NlC1cuMyPrmXmt55pchRiQkNec1Zxx9eFYw4IB036rBeOiZrpmon1Gdlx3ouo511dkxyRTlVC8f0Gucz4yxgQXbEfcbYBpyz6_p3kL6wH_jBAcdWXcBxpHCrQEVnnFhTo_43rYJloqJrqk6E529THQRw8FPL_O0W0BZm8pLAUAe3hJno8wZXz11G_Iw-dPP---Vvffv3y7u72vrOz7teIC3NggH5hsZQ9D2zR6EHYE1jXDwAaGA0fkje471QLIzvWS21Z1nR20c07ekHeXuyX21wnzamafLU4TBIynbLjQUrW6WCiouqA2xZwTjmZJfoa0Gc7MWas5mr9azVmrYdoUrWXx7VMGZAvTmCBYn_9tC6V023e6cG8u3AjRwD4V5uFHOaTY2X3XyEJ8vBBYlDx6TCZbj8Gi8wntalz0__vMbxz6nb4 |
CODEN | APENDX |
CitedBy_id | crossref_primary_10_1016_j_jtice_2014_10_013 crossref_primary_10_1016_j_cjche_2016_09_008 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121063 crossref_primary_10_1016_j_cep_2014_06_007 crossref_primary_10_1134_S0965544115080022 crossref_primary_10_1016_j_energy_2024_131688 crossref_primary_10_1021_acs_iecr_2c01339 crossref_primary_10_1016_j_jece_2023_111800 crossref_primary_10_1016_j_ijhydene_2017_01_063 crossref_primary_10_1016_j_rser_2017_01_011 crossref_primary_10_1002_cjce_24906 crossref_primary_10_1016_j_jclepro_2024_141060 crossref_primary_10_1016_j_biombioe_2018_01_016 crossref_primary_10_1016_j_jngse_2013_03_001 crossref_primary_10_3390_catal8070262 crossref_primary_10_3390_molecules23010031 crossref_primary_10_1021_ie503663h crossref_primary_10_1016_j_jiec_2021_07_019 crossref_primary_10_1002_ente_201500349 crossref_primary_10_1016_j_jcat_2016_02_025 crossref_primary_10_1016_j_enconman_2014_06_067 crossref_primary_10_1002_anie_201604753 crossref_primary_10_1002_cctc_201901938 crossref_primary_10_1016_j_apenergy_2015_03_135 crossref_primary_10_1016_j_ijhydene_2017_09_104 crossref_primary_10_1016_j_jcou_2019_02_003 crossref_primary_10_1016_j_jpowsour_2016_07_007 crossref_primary_10_1016_j_fuel_2023_128120 crossref_primary_10_1016_j_energy_2016_11_129 crossref_primary_10_1515_jnet_2017_0050 crossref_primary_10_1016_j_fuel_2023_128504 crossref_primary_10_1039_C3CY01089A crossref_primary_10_1016_j_fuproc_2018_02_025 crossref_primary_10_1134_S0036024416020084 crossref_primary_10_1002_ange_201604753 crossref_primary_10_1002_aic_17353 crossref_primary_10_1016_j_apenergy_2017_06_085 crossref_primary_10_1016_j_fuproc_2022_107310 crossref_primary_10_1063_1_4918733 crossref_primary_10_1016_j_cattod_2020_02_011 crossref_primary_10_1016_j_micromeso_2021_111138 crossref_primary_10_1016_j_energy_2016_04_097 crossref_primary_10_1016_j_ijhydene_2017_06_033 |
Cites_doi | 10.1016/j.apenergy.2011.06.028 10.1016/j.jcice.2006.12.003 10.1016/j.apenergy.2010.10.023 10.1016/j.apenergy.2011.02.017 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ IQODW AAYXX CITATION 7TA 8FD F28 FR3 JG9 |
DOI | 10.1016/j.apenergy.2012.08.025 |
DatabaseName | AGRIS Pascal-Francis CrossRef Materials Business File Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering Materials Business File |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1872-9118 |
EndPage | 456 |
ExternalDocumentID | 10_1016_j_apenergy_2012_08_025 26685978 US201600002743 S030626191200596X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZY4 ~02 ~G- ABPIF ABPTK FBQ 8W4 AALMO AAPBV ADALY IPNFZ IQODW AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION 7TA 8FD F28 FR3 JG9 |
ID | FETCH-LOGICAL-c399t-12adf4e1b03539ab5448b2cfa074bb0b0eb1ee1489765aa37d931c5677cb8ddd3 |
IEDL.DBID | AIKHN |
ISSN | 0306-2619 |
IngestDate | Fri Oct 25 22:13:13 EDT 2024 Thu Sep 26 18:56:48 EDT 2024 Fri Nov 25 01:11:52 EST 2022 Wed Dec 27 19:18:04 EST 2023 Fri Feb 23 02:36:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Process synthesis and design Dimethyl ether Clean energy Energy savings Pinch technology |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-12adf4e1b03539ab5448b2cfa074bb0b0eb1ee1489765aa37d931c5677cb8ddd3 |
Notes | http://dx.doi.org/10.1016/j.apenergy.2012.08.025 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1283658619 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1283658619 crossref_primary_10_1016_j_apenergy_2012_08_025 pascalfrancis_primary_26685978 fao_agris_US201600002743 elsevier_sciencedirect_doi_10_1016_j_apenergy_2012_08_025 |
PublicationCentury | 2000 |
PublicationDate | January 2013 2013 2013-01-00 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied energy |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ogawa, Inoue, Shikada, Ohno (b0035) 2003; 12 Seider, Seader, Lewin, Widagdo (b0040) 2010 Arab Aboosadi, Jahanmiri, Rahimpour (b0010) 2011; 88 Pellegrini, Soave, Gamba, Lange (b0015) 2011; 88 Turton, Bailie, Whiting, Shaeiwitz (b0020) 2009 SuperTarget user’s guide: version 6.1.05. Cheshire: KBC/Linnhoff; March 2010. Vakili, Pourazadi, Setoodeh, Eslamloueyan, Rahimpour (b0005) 2011; 88 Smith (b0045) 2005 Aspen Plus user’s guide: version 7.2. Massachussets: Aspen Tech.; 2010. Chen, Yang, Huang, Chyou (b0050) 2007; 3 Smith (10.1016/j.apenergy.2012.08.025_b0045) 2005 Pellegrini (10.1016/j.apenergy.2012.08.025_b0015) 2011; 88 Arab Aboosadi (10.1016/j.apenergy.2012.08.025_b0010) 2011; 88 10.1016/j.apenergy.2012.08.025_b0025 10.1016/j.apenergy.2012.08.025_b0030 Ogawa (10.1016/j.apenergy.2012.08.025_b0035) 2003; 12 Chen (10.1016/j.apenergy.2012.08.025_b0050) 2007; 3 Vakili (10.1016/j.apenergy.2012.08.025_b0005) 2011; 88 Seider (10.1016/j.apenergy.2012.08.025_b0040) 2010 Turton (10.1016/j.apenergy.2012.08.025_b0020) 2009 |
References_xml | – year: 2009 ident: b0020 article-title: Analysis, synthesis, and design of chemical processes contributor: fullname: Shaeiwitz – volume: 88 start-page: 2691 year: 2011 end-page: 2701 ident: b0010 article-title: Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method publication-title: Appl Energy contributor: fullname: Rahimpour – volume: 3 start-page: 185 year: 2007 end-page: 190 ident: b0050 article-title: A paraffin-fueled SOFC system design and integration publication-title: J Chin Inst Chem Eng contributor: fullname: Chyou – volume: 88 start-page: 4891 year: 2011 end-page: 4897 ident: b0015 article-title: Economic analysis of a combined energy-methanol production plant publication-title: Appl Energy contributor: fullname: Lange – volume: 12 start-page: 219 year: 2003 end-page: 227 ident: b0035 article-title: Direct dimethyl ether synthesis publication-title: J Nat Gas Chem contributor: fullname: Ohno – year: 2005 ident: b0045 article-title: Chemical process design and integration contributor: fullname: Smith – year: 2010 ident: b0040 article-title: Product and process design principles contributor: fullname: Widagdo – volume: 88 start-page: 1211 year: 2011 end-page: 1223 ident: b0005 article-title: Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor publication-title: Appl Energy contributor: fullname: Rahimpour – year: 2009 ident: 10.1016/j.apenergy.2012.08.025_b0020 contributor: fullname: Turton – year: 2005 ident: 10.1016/j.apenergy.2012.08.025_b0045 contributor: fullname: Smith – year: 2010 ident: 10.1016/j.apenergy.2012.08.025_b0040 contributor: fullname: Seider – ident: 10.1016/j.apenergy.2012.08.025_b0025 – volume: 12 start-page: 219 year: 2003 ident: 10.1016/j.apenergy.2012.08.025_b0035 article-title: Direct dimethyl ether synthesis publication-title: J Nat Gas Chem contributor: fullname: Ogawa – volume: 88 start-page: 4891 year: 2011 ident: 10.1016/j.apenergy.2012.08.025_b0015 article-title: Economic analysis of a combined energy-methanol production plant publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.06.028 contributor: fullname: Pellegrini – ident: 10.1016/j.apenergy.2012.08.025_b0030 – volume: 3 start-page: 185 year: 2007 ident: 10.1016/j.apenergy.2012.08.025_b0050 article-title: A paraffin-fueled SOFC system design and integration publication-title: J Chin Inst Chem Eng doi: 10.1016/j.jcice.2006.12.003 contributor: fullname: Chen – volume: 88 start-page: 1211 year: 2011 ident: 10.1016/j.apenergy.2012.08.025_b0005 article-title: Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.10.023 contributor: fullname: Vakili – volume: 88 start-page: 2691 year: 2011 ident: 10.1016/j.apenergy.2012.08.025_b0010 article-title: Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.02.017 contributor: fullname: Arab Aboosadi |
SSID | ssj0002120 |
Score | 2.3184702 |
Snippet | ► We analyze a one-step DME production via a thermodynamic approach. ► We synthesize a one-step DME process. ► We design a one-step DME process with pinch... In this work, we have developed a direct one-step process design on an oxygenate production, namely, dimethyl ether (DME). DME can be used as a cetane-number... |
SourceID | proquest crossref pascalfrancis fao elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 449 |
SubjectTerms | Alternative fuels. Production and utilization Applied sciences capital Carbon dioxide Carbon monoxide Chemical reactions Clean energy computer software Design engineering Dimethyl ether Energy Energy savings Exact sciences and technology Fuels Gibbs free energy heat Heat exchangers Hydrogen liquid petroleum gas Miscellaneous Pinch technology process design Process synthesis and design stoichiometry Synthesis synthesis gas Thermodynamics |
Title | Analysis, synthesis, and design of a one-step dimethyl ether production via a thermodynamic approach |
URI | https://dx.doi.org/10.1016/j.apenergy.2012.08.025 https://search.proquest.com/docview/1283658619 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB2RcKGHquVDBGhkJI5dEtv7kRwRAgWqcqGRcrPGay8KKrsrEipx6W_vjHeXglqph95Wlm1ZHnv8vJ55D-BESu9UHseR8yxhJpM8QpX6yGeukLG0Y-f4h_7Xm3Q2j68XyWIDzrtcGA6rbH1_49ODt25LRu1sjurlcnTLaJfxv1RBQ2bRg83wSNSHzbOrL7ObF4esWnZGqh9xg1eJwvenWPuQZMdRXiqwebJq9t_PqF6BFQdP4ormr2iEL_7w4eFguvwA71tEKc6aQX-EDV9uw7tXPIPbsHfxO52Nqrb7ebUDruMk-SxWzyVhwfCJpRMuRHaIqhAoqtJHtBhq4ZYsOP38XYQsYVE3bLFkWfFjiVSRSx8q14jci46ufBfmlxffzmdRq7sQ5QRX1pFU6IrYk6F0oqdoE7rCWZUXSHDD2rEdk3_3nu5RBGUSRJ25qZZ5kmZZbifOOb0H_ZKGtg-iQGZsnyikLuNUOzumXlKtfCJtlmkcwKibaVM39Bqmizu7N51tDNvGsFymSgYw7Qxi3iwUQ2fAP9vukwUN3pH_NPNbxex6DYOPHsDwjVlfRkMAZkKXrskAjjs7G9qB_KyCpa-eVoZOeE04jhbWwX-M7RC2VFDa4L87R9BfPz75T4R31nYIvdOfctiu6l_WdABT |
link.rule.ids | 315,783,787,4033,4511,24130,27937,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOLQcqpYWsZRSI3Fsums7j90jQqClwF5gpb1Z49ipFkESsQsS_54ZJ-GhVuqhtyiyLcszGX92Zr4P4EBK71Qex5HzLGEmkzxClfrIZ66QsbQD5_hC_2KSjqfxr1kyW4GjrhaG0yrb2N_E9BCt2zf9djX79Xzev2S0y_hfqqAhM1uFdUIDI3L29cPTs_HkOSCrlp2R2kfc4VWh8PVPrH0osuMsLxXYPFk1--971GqBFSdP4oLWr2iEL_6I4WFjOvkIH1pEKQ6bSX-CFV9uwsYrnsFN2Dp-KWejpu33vPgMruMk-SEWjyVhwfCIpRMuZHaIqhAoqtJH5Ay1cHMWnH68EaFKWNQNWyxZVjzMkRry29vKNSL3oqMr_wLTk-Oro3HU6i5EOcGVZSQVuiL2ZCid6BHahI5wVuUFEtywdmAHFN-9p3MUQZkEUWdupGWepFmW26FzTm_BWklT2wZRIDO2DxXSkHGqnR3QKKlWPpE2yzT2oN-ttKkbeg3T5Z1dm842hm1jWC5TJT0YdQYxbxzF0B7wz77bZEGDvyl-mumlYna9hsFH92DvjVmfZ0MAZkiHrmEP9js7G_oC-bcKlr66Xxja4TXhOHKsnf-Y23d4N766ODfnp5Ozr_BeBdUNvunZhbXl3b3_Rthnafda334CIvgCUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis%2C+synthesis%2C+and+design+of+a+one-step+dimethyl+ether+production+via+a+thermodynamic+approach&rft.jtitle=Applied+energy&rft.au=Chen%2C+Hsi-Jen&rft.au=Fan%2C+Chei-Wei&rft.au=Yu%2C+Chiou-Shia&rft.date=2013&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=101&rft.spage=449&rft.epage=456&rft_id=info:doi/10.1016%2Fj.apenergy.2012.08.025&rft.externalDocID=US201600002743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |