Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature‐dependent manner

Aerobic metabolism generates 15–20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water‐breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hen...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 28; no. 19; pp. 5695 - 5707
Main Authors Verberk, Wilco C. E. P., Sandker, Jeroen F., Pol, Iris L. E., Urbina, Mauricio A., Wilson, Rod W., McKenzie, David J., Leiva, Félix P.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.10.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aerobic metabolism generates 15–20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water‐breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish. Whether fish can tolerate low levels of dissolved oxygen is shown here to depend on characteristics of both the fish (body mass, genome size and metabolism) and the water (temperature and salinity). These effects did not act in isolation: In warmer waters, small fishes with small genomes were more tolerant than large fishes with large genomes. We also observed a greater tolerance in freshwater fishes, compared to marine fishes. These findings can help to (i) resolve the scientific debate about oxygen limitation and (ii) predict the impacts of climate change on global fish populations and fisheries.
AbstractList Aerobic metabolism generates 15–20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water‐breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.
Aerobic metabolism generates 15–20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water‐breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish. Whether fish can tolerate low levels of dissolved oxygen is shown here to depend on characteristics of both the fish (body mass, genome size and metabolism) and the water (temperature and salinity). These effects did not act in isolation: In warmer waters, small fishes with small genomes were more tolerant than large fishes with large genomes. We also observed a greater tolerance in freshwater fishes, compared to marine fishes. These findings can help to (i) resolve the scientific debate about oxygen limitation and (ii) predict the impacts of climate change on global fish populations and fisheries.
Abstract Aerobic metabolism generates 15–20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water‐breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions ( P crit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between P crit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.
Author Urbina, Mauricio A.
Verberk, Wilco C. E. P.
Wilson, Rod W.
McKenzie, David J.
Leiva, Félix P.
Sandker, Jeroen F.
Pol, Iris L. E.
Author_xml – sequence: 1
  givenname: Wilco C. E. P.
  orcidid: 0000-0002-0691-583X
  surname: Verberk
  fullname: Verberk, Wilco C. E. P.
  email: w.verberk@science.ru.nl
  organization: Radboud University Nijmegen
– sequence: 2
  givenname: Jeroen F.
  surname: Sandker
  fullname: Sandker, Jeroen F.
  organization: Radboud University Nijmegen
– sequence: 3
  givenname: Iris L. E.
  orcidid: 0000-0002-2962-6686
  surname: Pol
  fullname: Pol, Iris L. E.
  organization: Radboud University Nijmegen
– sequence: 4
  givenname: Mauricio A.
  orcidid: 0000-0001-8040-6147
  surname: Urbina
  fullname: Urbina, Mauricio A.
  organization: Universidad de Concepción
– sequence: 5
  givenname: Rod W.
  orcidid: 0000-0001-8832-0065
  surname: Wilson
  fullname: Wilson, Rod W.
  organization: Biosciences, University of Exeter
– sequence: 6
  givenname: David J.
  orcidid: 0000-0003-0961-9101
  surname: McKenzie
  fullname: McKenzie, David J.
  organization: MARBEC, University of Montpellier, CNRS, IFREMER, IRD
– sequence: 7
  givenname: Félix P.
  orcidid: 0000-0003-0249-9274
  surname: Leiva
  fullname: Leiva, Félix P.
  organization: Radboud University Nijmegen
BackLink https://hal.umontpellier.fr/hal-03823277$$DView record in HAL
BookMark eNp1kc9KAzEQxoMoqNWDbxDwoofVTLLNbo5a_AcFL3oOaXa2Xdkma7JV68lH8Bl9ElMrCoIDYYbhl28y-XbJpvMOCTkAdgIpTqd2cgJSgNogOyDkMON5KTdX9TDPgIHYJrsxPjDGBGdyh0zPfbWkcxMjNa6iFtuWxuYVaZyZDmk_S8e3GIyzSH1N6ybOMKYebf0z9S_LKTraOGpoj_Mucf0i4Mfbe4Udugpdn7Sdw7BHtmrTRtz_zgNyf3lxN7rOxrdXN6OzcWaFUirjWEqGtZRiokoj0AzzGkouc4CJVTmXXE4KBjXYoqxUJbnNLbMKMG1m-NCKATle685Mq7vQzE1Yam8afX021qseEyUXvCieILFHa7YL_nGBsdfzJq5-wDj0i6i5VHkOMo1P6OEf9MEvgkubaF6wUkoFIH-H2-BjDFj_vACYXtmjkz36y57Enq7Z56bF5f-gvhqdr298AlBakbo
CitedBy_id crossref_primary_10_1007_s00360_023_01490_9
crossref_primary_10_1016_j_ecoenv_2024_116653
crossref_primary_10_1111_gcb_16319
crossref_primary_10_1002_lno_12510
crossref_primary_10_3390_fishes8070360
crossref_primary_10_1007_s10641_023_01442_w
crossref_primary_10_1086_722899
crossref_primary_10_5194_bg_21_1785_2024
crossref_primary_10_1016_j_jinsphys_2023_104559
crossref_primary_10_1038_s41598_022_26876_7
crossref_primary_10_1098_rsbl_2022_0611
crossref_primary_10_1016_j_aquaculture_2023_739588
crossref_primary_10_1016_j_jtherbio_2024_103837
crossref_primary_10_3389_fgene_2024_1365285
crossref_primary_10_1016_j_jinsphys_2024_104671
crossref_primary_10_1111_1365_2435_14294
crossref_primary_10_1098_rstb_2022_0490
crossref_primary_10_1016_j_envpol_2023_122989
crossref_primary_10_1111_1365_2435_14485
crossref_primary_10_1016_j_marenvres_2024_106609
crossref_primary_10_1242_jeb_243524
crossref_primary_10_1088_1755_1315_1262_7_072097
crossref_primary_10_1098_rstb_2022_0487
crossref_primary_10_3390_w15040725
Cites_doi 10.1002/cphy.c100079
10.1073/pnas.88.22.10357
10.1111/1365-2435.13449
10.1126/sciadv.abc6050
10.1016/0300-9629(72)90017-5
10.1371/journal.pone.0229468
10.1111/jfb.12833
10.1046/j.1365‐2656.1999.00337.x
10.1007/s10577-011-9248-x
10.1016/j.cbpa.2007.11.004
10.1111/j.1525‐142X.2006.00090.x
10.1038/s41467‐021‐21655‐w
10.1111/gcb.13652
10.1111/j.1365‐2486.2009.01995.x
10.1073/pnas.2100695118
10.1093/molbev/msz240
10.1016/S0022‐5193(83)80002‐2
10.1126/science.aam7240
10.1038/s41586‐021‐03550‐y
10.1111/2041-210X.12628
10.1111/j.1461-0248.2009.01415.x
10.1038/s41559-020-1171-0
10.1086/673727
10.1007/978-1-4842-6876-6_1
10.1002/evl3.243
10.1242/jeb.210492
10.1093/oso/9780195117028.001.0001
10.1890/10‐2369.1
10.1111/gcb.16319
10.1111/brv.12653
10.1126/science.aao6868
10.1007/BFb0030909
10.1126/science.1153847
10.1098/rstb.1989.0106
10.1111/2041-210X.12593
10.1093/bioinformatics/btu181
10.1093/icb/39.2.244
10.1111/brv.12615
10.1002/bies.201700058
10.1111/j.1365‐2435.2011.01870.x
10.1242/jeb.100.1.275
10.1242/jeb.243421
10.1111/jfb.12330
10.1126/sciadv.abe5163
10.1098/rstb.2019.0035
10.1086/685893
10.1016/j.jtherbio.2019.07.029
10.1006/bcmd.2001.0457
10.1098/rspb.2008.1235
10.21105/joss.01541
10.1111/j.1469-185X.1955.tb01208.x
10.1093/bioinformatics/btm538
10.1111/1365-2435.13811
10.1111/j.1469‐185X.2008.00038.x
10.1038/s41586‐020‐2721‐y
10.1111/ele.12413
10.32614/RJ-2018-017
10.1242/jeb.232512
10.1080/00031305.2018.1549100
10.1093/bioinformatics/bty633
10.18637/jss.v080.i01
10.1007/978-3-319-24277-4
10.1146/annurev‐ento‐020117‐043145
10.1111/gcb.16067
10.1111/j.1420‐9101.2009.01915.x
10.1242/jeb.066183
10.1093/conphys/cow012
10.1007/s11222-016-9696-4
10.1111/1365‐2435.12152
10.1111/gcb.13240
10.1111/j.2041-210X.2011.00169.x
10.1242/jeb.227124
10.1073/pnas.86.12.4474
10.1126/science.aaz3658
10.1073/pnas.2003292117
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
WIN
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
1XC
VOOES
DOI 10.1111/gcb.16319
DatabaseName Wiley-Blackwell Titles (Open access)
Wiley-Blackwell Backfiles (Open access)
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Titles (Open access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 5707
ExternalDocumentID oai_HAL_hal_03823277v1
10_1111_gcb_16319
GCB16319
Genre article
GrantInformation_xml – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  funderid: 1210071; 2018‐72190288
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  funderid: 016.161.321
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
1XC
VOOES
ID FETCH-LOGICAL-c3999-2e860ef663b98a3ea54f1826411bc942626b701f1c78d9d62c4c0c91e013a25c3
IEDL.DBID 24P
ISSN 1354-1013
IngestDate Fri Sep 06 12:46:30 EDT 2024
Sat Aug 17 01:59:07 EDT 2024
Fri Sep 13 08:16:44 EDT 2024
Fri Aug 23 00:29:06 EDT 2024
Sat Aug 24 00:54:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Attribution
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3999-2e860ef663b98a3ea54f1826411bc942626b701f1c78d9d62c4c0c91e013a25c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0961-9101
0000-0001-8832-0065
0000-0001-8040-6147
0000-0002-2962-6686
0000-0003-0249-9274
0000-0002-0691-583X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16319
PQID 2708669116
PQPubID 30327
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_03823277v1
proquest_miscellaneous_2694416826
proquest_journals_2708669116
crossref_primary_10_1111_gcb_16319
wiley_primary_10_1111_gcb_16319_GCB16319
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2017; 8
2017; 80
2010; 16
2018; 360
1989; 86
2010; 13
2013; 27
2020; 369
1982; 100
2020; 15
2016; 187
2008; 149
1972; 41
2011; 19
2022; 28
2010; 23
2021; 35
1983; 105
2020; 4
2020; 95
2017; 39
1991; 88
2021; 118
2008; 24
1981
2021; 594
2011; 25
2008; 276
2012; 215
2016; 88
2021; 7
2019; 4
2021; 5
2019; 73
2015; 18
2019; 33
2021; 224
2017; 27
2019; 35
2013; 86
2017; 23
1999; 68
2006; 8
2020; 37
2020; 585
2018; 63
2001; 27
2002
2020; 223
2014; 84
2008; 320
2021; 96
2016; 4
2016; 7
2012; 2
1989; 326
2012; 3
2021; 12
1994; 125
2019; 84
2018; 359
2022
2021
2020
1999; 39
2011; 92
2019
2018
2020; 117
2016
2008; 83
2014; 30
1955; 30
2018; 10
2022; 225
2019; 374
2016; 22
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Dejours P. (e_1_2_8_18_1) 1981
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Hochachka P. W. (e_1_2_8_33_1) 2002
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 4
  start-page: 1541
  issue: 40
  year: 2019
  article-title: bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework
  publication-title: Journal of Open Source Software
– volume: 326
  start-page: 119
  issue: 1233
  year: 1989
  end-page: 157
  article-title: The phylogenetic regression
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 22
  start-page: 1769
  issue: 5
  year: 2016
  end-page: 1778
  article-title: Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms
  publication-title: Global Change Biology
– volume: 23
  start-page: 494
  issue: 3
  year: 2010
  end-page: 508
  article-title: General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi‐trait models for continuous and categorical characters
  publication-title: Journal of Evolutionary Biology
– volume: 3
  start-page: 217
  issue: 2
  year: 2012
  end-page: 223
  article-title: phytools: An R package for phylogenetic comparative biology (and other things)
  publication-title: Methods in Ecology and Evolution
– year: 1981
– volume: 13
  start-page: 184
  issue: 2
  year: 2010
  end-page: 193
  article-title: The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature
  publication-title: Ecology Letters
– volume: 117
  start-page: 31963
  issue: 50
  year: 2020
  end-page: 31968
  article-title: Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 92
  start-page: 1565
  issue: 8
  year: 2011
  end-page: 1572
  article-title: Oxygen supply in aquatic ectotherms: Partial pressure and solubility together explain biodiversity and size patterns
  publication-title: Ecology
– volume: 149
  start-page: 157
  issue: 2
  year: 2008
  end-page: 161
  article-title: Effect of acclimation temperature on routine metabolic rate in triploid salmonids
  publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
– year: 2021
– volume: 585
  start-page: 557
  issue: 7826
  year: 2020
  end-page: 562
  article-title: Metabolic trait diversity shapes marine biogeography
  publication-title: Nature
– volume: 88
  start-page: 232
  issue: 1
  year: 2016
  end-page: 251
  article-title: Responses by fishes to environmental hypoxia: Integration through Fry's concept of aerobic metabolic scope
  publication-title: Journal of Fish Biology
– volume: 8
  start-page: 28
  issue: 1
  year: 2017
  end-page: 36
  article-title: ggtree: An R package for visualisation and annotation of phylogenetic trees with their covariates and other associated data
  publication-title: Methods in Ecology and Evolution
– volume: 30
  start-page: 2216
  issue: 15
  year: 2014
  end-page: 2218
  article-title: geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees
  publication-title: Bioinformatics
– volume: 27
  start-page: 1275
  issue: 6
  year: 2013
  end-page: 1285
  article-title: Why polar gigantism and Palaeozoic gigantism are not equivalent: Effects of oxygen and temperature on the body size of ectotherms
  publication-title: Functional Ecology
– volume: 86
  start-page: 4474
  issue: 12
  year: 1989
  end-page: 4478
  article-title: Oxygen permeability of phosphatidylcholine—Cholesterol membranes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 83
  start-page: 173
  issue: 2
  year: 2008
  article-title: Does size matter for hypoxia tolerance in fish?
  publication-title: Biological Reviews
– year: 2018
– volume: 10
  start-page: 395
  issue: 1
  year: 2018
  end-page: 411
  article-title: Advanced Bayesian multilevel modeling with the R package brms
  publication-title: The R Journal
– volume: 224
  start-page: jeb232512
  year: 2021
  article-title: Do aquatic ectotherms perform better under hypoxia after warm acclimation?
  publication-title: Journal of Experimental Biology
– volume: 320
  start-page: 655
  issue: 5876
  year: 2008
  end-page: 658
  article-title: Expanding oxygen‐minimum zones in the tropical oceans
  publication-title: Science
– volume: 4
  start-page: 809
  issue: 6
  year: 2020
  end-page: 814
  article-title: Fish body sizes change with temperature but not all species shrink with warming
  publication-title: Nature Ecology & Evolution
– volume: 7
  start-page: eabe5163
  issue: 19
  year: 2021
  article-title: Respiratory capacity is twice as important as temperature in explaining patterns of metabolic rate across the vertebrate tree of life
  publication-title: Science Advances
– volume: 84
  start-page: 1210
  year: 2014
  end-page: 1220
  article-title: Effect of salinity on oxygen consumption in fishes: A review
  publication-title: Journal of Fish Biology
– volume: 95
  start-page: 1393
  issue: 5
  year: 2020
  end-page: 1417
  article-title: Coevolution of body size and metabolic rate in vertebrates: A life‐history perspective
  publication-title: Biological Reviews
– volume: 5
  start-page: 306
  issue: 4
  year: 2021
  end-page: 314
  article-title: Larger cells have relatively smaller nuclei across the tree of life
  publication-title: Evolution Letters
– volume: 24
  start-page: 129
  issue: 1
  year: 2008
  end-page: 131
  article-title: GEIGER: Investigating evolutionary radiations
  publication-title: Bioinformatics
– year: 2022
– volume: 16
  start-page: 24
  issue: 1
  year: 2010
  end-page: 35
  article-title: Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change
  publication-title: Global Change Biology
– volume: 360
  start-page: 642
  year: 2018
  end-page: 645
  article-title: Fish reproductive‐energy output increases disproportionately with body size
  publication-title: Science
– volume: 369
  start-page: 65
  issue: 6499
  year: 2020
  end-page: 70
  article-title: Thermal bottlenecks in the life cycle define climate vulnerability of fish
  publication-title: Science
– volume: 224
  start-page: jeb227124
  issue: Pt 1
  year: 2021
  article-title: Are acute and acclimated thermal effects on metabolic rate modulated by cell size? A comparison between diploid and triploid zebrafish larvae
  publication-title: The Journal of Experimental Biology
– volume: 25
  start-page: 1072
  issue: 5
  year: 2011
  end-page: 1078
  article-title: Standard metabolic rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the hybrid complex
  publication-title: Functional Ecology
– volume: 19
  start-page: 925
  issue: 7
  year: 2011
  end-page: 938
  article-title: A guided tour of large genome size in animals: What we know and where we are heading
  publication-title: Chromosome Research
– volume: 8
  start-page: 202
  issue: 2
  year: 2006
  end-page: 214
  article-title: From cells to colonies: At what levels of body organisation does the ‘temperature‐size rule’ apply?
  publication-title: Evolution & Development
– volume: 86
  start-page: 740
  issue: 6
  year: 2013
  end-page: 749
  article-title: Relationship between fish size and metabolic rate in the Oxyconforming Inanga reveals size‐dependent strategies to withstand hypoxia
  publication-title: Physiological and Biochemical Zoology
– year: 2019
– volume: 73
  start-page: 307
  issue: 3
  year: 2019
  end-page: 309
  article-title: R‐squared for Bayesian regression models
  publication-title: The American Statistician
– volume: 41
  start-page: 629
  year: 1972
  end-page: 638
  article-title: The relationship between gas and ion transfer across the gills of fishes
  publication-title: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
– volume: 63
  start-page: 303
  issue: 1
  year: 2018
  end-page: 325
  article-title: Functional hypoxia in insects: Definition, assessment, and consequences for physiology, ecology, and evolution
  publication-title: Annual Review of Entomology
– volume: 27
  start-page: 830
  issue: 5
  year: 2001
  end-page: 843
  article-title: The bigger the ‐value, the larger the cell: Genome size and red blood cell size in vertebrates
  publication-title: Blood Cells, Molecules, and Diseases
– volume: 594
  start-page: 66
  issue: 7861
  year: 2021
  end-page: 70
  article-title: Widespread deoxygenation of temperate lakes
  publication-title: Nature
– volume: 223
  start-page: jeb210492
  issue: 12
  year: 2020
  article-title: Oxygen supply capacity in animals evolves to meet maximum demand at the current oxygen partial pressure regardless of size or temperature
  publication-title: Journal of Experimental Biology
– volume: 359
  start-page: eaam7240
  issue: 6371
  year: 2018
  article-title: Declining oxygen in the global ocean and coastal waters
  publication-title: Science
– volume: 68
  start-page: 893
  issue: 5
  year: 1999
  end-page: 905
  article-title: Scaling of metabolic rate with body mass and temperature in teleost fish
  publication-title: Journal of Animal Ecology
– volume: 39
  start-page: 1700058
  issue: 9
  year: 2017
  article-title: Cell size control—A mechanism for maintaining fitness and function
  publication-title: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology
– volume: 7
  start-page: eabc6050
  issue: 2
  year: 2021
  article-title: The gill‐oxygen limitation theory (GOLT) and its critics
  publication-title: Science Advances
– volume: 12
  start-page: 1701
  issue: 1
  year: 2021
  article-title: Threats of global warming to the world's freshwater fishes
  publication-title: Nature Communications
– volume: 37
  start-page: 599
  issue: 2
  year: 2020
  end-page: 603
  article-title: treeio: An R package for phylogenetic tree input and output with richly annotated and associated data
  publication-title: Molecular Biology and Evolution
– volume: 100
  start-page: 275
  year: 1982
  end-page: 288
  article-title: The control of respiration and circulation in fish during exercise and hypoxia
  publication-title: Journal of Experimental Biology
– volume: 374
  start-page: 20190035
  issue: 1778
  year: 2019
  article-title: Scaling of thermal tolerance with body mass and genome size in ectotherms: A comparison between water‐ and air‐breathers
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 39
  start-page: 244
  issue: 2
  year: 1999
  end-page: 252
  article-title: Egg‐mass size and cell size: Effects of temperature on oxygen distribution
  publication-title: American Zoologist
– volume: 125
  start-page: 43
  year: 1994
  end-page: 147
  article-title: Physiological and metabolic responses to hypoxia in invertebrates
  publication-title: Reviews of Physiology, Biochemistry and Pharmacology
– volume: 33
  start-page: 2142
  year: 2019
  end-page: 2149
  article-title: Warm and out of breath: Thermal phenotypic plasticity in oxygen supply
  publication-title: Functional Ecology
– volume: 23
  start-page: 3449
  issue: 9
  year: 2017
  end-page: 3459
  article-title: Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms
  publication-title: Global Change Biology
– volume: 2
  start-page: 639
  year: 2012
  end-page: 674
  article-title: Phylogenetic analyses: Comparing species to infer adaptations and physiological mechanisms
  publication-title: Comprehensive Physiology
– volume: 35
  start-page: 526
  issue: 3
  year: 2019
  end-page: 528
  article-title: ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R
  publication-title: Bioinformatics
– year: 2016
– volume: 27
  start-page: 1413
  issue: 5
  year: 2017
  end-page: 1432
  article-title: Practical Bayesian model evaluation using leave‐one‐out cross‐validation and WAIC
  publication-title: Statistics and Computing
– volume: 118
  issue: 34
  year: 2021
  article-title: Reproductive hyperallometry and managing the world's fisheries
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 30
  start-page: 229
  issue: 3
  year: 1955
  end-page: 261
  article-title: Physiological variation in animals
  publication-title: Biological Reviews
– volume: 28
  start-page: 2259
  year: 2022
  end-page: 2271
  article-title: Optimum growth temperature declines with body size within fish species
  publication-title: Global Change Biology
– volume: 80
  start-page: 1
  year: 2017
  end-page: 28
  article-title: brms: An R package for Bayesian multilevel models using Stan
  publication-title: Journal of Statistical Software
– volume: 15
  start-page: e0229468
  issue: 3
  year: 2020
  article-title: Triploidy in zebrafish larvae: Effects on gene expression, cell size and cell number, growth, development and swimming performance
  publication-title: PLoS ONE
– volume: 96
  start-page: 247
  issue: 1
  year: 2021
  end-page: 268
  article-title: Shrinking body sizes in response to warming: Explanations for the temperature–size rule with special emphasis on the role of oxygen
  publication-title: Biological Reviews
– volume: 105
  start-page: 201
  issue: 2
  year: 1983
  end-page: 209
  article-title: Cell size and the concept of wasteful and frugal evolutionary strategies
  publication-title: Journal of Theoretical Biology
– year: 2002
– year: 2020
– volume: 4
  start-page: cow012
  issue: 1
  year: 2016
  article-title: A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level ( )
  publication-title: Conservation Physiology
– volume: 18
  start-page: 327
  year: 2015
  end-page: 335
  article-title: Temperature‐size responses match latitudinal‐size clines in arthropods, revealing critical differences between aquatic and terrestrial species
  publication-title: Ecology Letters
– volume: 35
  start-page: 1397
  year: 2021
  end-page: 1407
  article-title: ‘Aerobic scope protection’ reduces ectotherm growth under warming
  publication-title: Functional Ecology
– volume: 215
  start-page: 2273
  year: 2012
  end-page: 2282
  article-title: Differential effects of chronic hypoxia and feed restriction on the expression of leptin and its receptor, food intake regulation and the endocrine stress response in common carp
  publication-title: Journal of Experimental Biology
– volume: 84
  start-page: 460
  year: 2019
  end-page: 468
  article-title: Variation of thermal plasticity in growth and reproduction patterns: Importance of ancestral and developmental temperatures
  publication-title: Journal of Thermal Biology
– volume: 225
  start-page: jeb243421
  year: 2022
  article-title: Linking environmental salinity to respiratory phenotypes and metabolic rate in fishes: A data mining and modeling approach
  publication-title: Journal of Experimental Biology
– volume: 7
  start-page: 1476
  issue: 12
  year: 2016
  end-page: 1481
  article-title: rotl: An R package to interact with the open tree of life data
  publication-title: Methods in Ecology and Evolution
– volume: 88
  start-page: 10357
  issue: 22
  year: 1991
  end-page: 10361
  article-title: The concept of symmorphosis: A testable hypothesis of structure‐function relationship
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 187
  start-page: 592
  issue: 5
  year: 2016
  end-page: 606
  article-title: Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species
  publication-title: The American Naturalist
– volume: 276
  start-page: 735
  year: 2008
  end-page: 744
  article-title: Mechanisms and evolution of hypoxia tolerance in fish
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– ident: e_1_2_8_63_1
  doi: 10.1002/cphy.c100079
– ident: e_1_2_8_79_1
  doi: 10.1073/pnas.88.22.10357
– ident: e_1_2_8_31_1
– ident: e_1_2_8_37_1
– ident: e_1_2_8_38_1
  doi: 10.1111/1365-2435.13449
– ident: e_1_2_8_56_1
  doi: 10.1126/sciadv.abc6050
– ident: e_1_2_8_61_1
  doi: 10.1016/0300-9629(72)90017-5
– ident: e_1_2_8_58_1
  doi: 10.1371/journal.pone.0229468
– ident: e_1_2_8_14_1
  doi: 10.1111/jfb.12833
– ident: e_1_2_8_15_1
  doi: 10.1046/j.1365‐2656.1999.00337.x
– ident: e_1_2_8_20_1
  doi: 10.1007/s10577-011-9248-x
– ident: e_1_2_8_54_1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cbpa.2007.11.004
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1525‐142X.2006.00090.x
– ident: e_1_2_8_5_1
  doi: 10.1038/s41467‐021‐21655‐w
– ident: e_1_2_8_42_1
  doi: 10.1111/gcb.13652
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1365‐2486.2009.01995.x
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.2100695118
– ident: e_1_2_8_78_1
  doi: 10.1093/molbev/msz240
– ident: e_1_2_8_70_1
  doi: 10.1016/S0022‐5193(83)80002‐2
– ident: e_1_2_8_9_1
  doi: 10.1126/science.aam7240
– ident: e_1_2_8_35_1
  doi: 10.1038/s41586‐021‐03550‐y
– ident: e_1_2_8_84_1
  doi: 10.1111/2041-210X.12628
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1461-0248.2009.01415.x
– ident: e_1_2_8_4_1
  doi: 10.1038/s41559-020-1171-0
– ident: e_1_2_8_71_1
  doi: 10.1086/673727
– ident: e_1_2_8_82_1
  doi: 10.1007/978-1-4842-6876-6_1
– ident: e_1_2_8_48_1
  doi: 10.1002/evl3.243
– ident: e_1_2_8_67_1
  doi: 10.1242/jeb.210492
– volume-title: Biochemical adaptation. Mechanism and process in physiological evolution
  year: 2002
  ident: e_1_2_8_33_1
  doi: 10.1093/oso/9780195117028.001.0001
  contributor:
    fullname: Hochachka P. W.
– ident: e_1_2_8_75_1
  doi: 10.1890/10‐2369.1
– ident: e_1_2_8_77_1
  doi: 10.1111/gcb.16319
– ident: e_1_2_8_74_1
  doi: 10.1111/brv.12653
– ident: e_1_2_8_12_1
– ident: e_1_2_8_64_1
– ident: e_1_2_8_6_1
  doi: 10.1126/science.aao6868
– ident: e_1_2_8_26_1
  doi: 10.1007/BFb0030909
– ident: e_1_2_8_68_1
  doi: 10.1126/science.1153847
– ident: e_1_2_8_23_1
  doi: 10.1098/rstb.1989.0106
– ident: e_1_2_8_51_1
  doi: 10.1111/2041-210X.12593
– ident: e_1_2_8_57_1
  doi: 10.1093/bioinformatics/btu181
– ident: e_1_2_8_83_1
  doi: 10.1093/icb/39.2.244
– ident: e_1_2_8_41_1
  doi: 10.1111/brv.12615
– ident: e_1_2_8_52_1
  doi: 10.1002/bies.201700058
– ident: e_1_2_8_81_1
– ident: e_1_2_8_46_1
  doi: 10.1111/j.1365‐2435.2011.01870.x
– ident: e_1_2_8_60_1
  doi: 10.1242/jeb.100.1.275
– ident: e_1_2_8_30_1
  doi: 10.1242/jeb.243421
– ident: e_1_2_8_21_1
  doi: 10.1111/jfb.12330
– ident: e_1_2_8_8_1
  doi: 10.1126/sciadv.abe5163
– ident: e_1_2_8_25_1
– ident: e_1_2_8_43_1
  doi: 10.1098/rstb.2019.0035
– ident: e_1_2_8_40_1
  doi: 10.1086/685893
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jtherbio.2019.07.029
– ident: e_1_2_8_24_1
  doi: 10.1006/bcmd.2001.0457
– ident: e_1_2_8_49_1
  doi: 10.1098/rspb.2008.1235
– ident: e_1_2_8_47_1
  doi: 10.21105/joss.01541
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1469-185X.1955.tb01208.x
– volume-title: Principles of comparative respiratory physiology
  year: 1981
  ident: e_1_2_8_18_1
  contributor:
    fullname: Dejours P.
– ident: e_1_2_8_28_1
  doi: 10.1093/bioinformatics/btm538
– ident: e_1_2_8_36_1
  doi: 10.1111/1365-2435.13811
– ident: e_1_2_8_53_1
  doi: 10.1111/j.1469‐185X.2008.00038.x
– ident: e_1_2_8_19_1
  doi: 10.1038/s41586‐020‐2721‐y
– ident: e_1_2_8_34_1
  doi: 10.1111/ele.12413
– ident: e_1_2_8_11_1
  doi: 10.32614/RJ-2018-017
– ident: e_1_2_8_16_1
  doi: 10.1242/jeb.232512
– ident: e_1_2_8_22_1
  doi: 10.1080/00031305.2018.1549100
– ident: e_1_2_8_55_1
  doi: 10.1093/bioinformatics/bty633
– ident: e_1_2_8_10_1
  doi: 10.18637/jss.v080.i01
– ident: e_1_2_8_80_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_8_29_1
  doi: 10.1146/annurev‐ento‐020117‐043145
– ident: e_1_2_8_44_1
  doi: 10.1111/gcb.16067
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1420‐9101.2009.01915.x
– ident: e_1_2_8_7_1
  doi: 10.1242/jeb.066183
– ident: e_1_2_8_65_1
  doi: 10.1093/conphys/cow012
– ident: e_1_2_8_72_1
  doi: 10.1007/s11222-016-9696-4
– ident: e_1_2_8_73_1
  doi: 10.1111/1365‐2435.12152
– ident: e_1_2_8_76_1
  doi: 10.1111/gcb.13240
– ident: e_1_2_8_62_1
  doi: 10.1111/j.2041-210X.2011.00169.x
– ident: e_1_2_8_32_1
  doi: 10.1242/jeb.227124
– ident: e_1_2_8_69_1
  doi: 10.1073/pnas.86.12.4474
– ident: e_1_2_8_17_1
  doi: 10.1126/science.aaz3658
– ident: e_1_2_8_66_1
  doi: 10.1073/pnas.2003292117
SSID ssj0003206
Score 2.5464401
Snippet Aerobic metabolism generates 15–20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling...
Abstract Aerobic metabolism generates 15–20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals,...
SourceID hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 5695
SubjectTerms Aquatic habitats
ATP
Biodiversity and Ecology
Body mass
Body size
Body temperature
Boundary layers
Cell size
climate change
Dissolved oxygen
Divergence
Energy budget
Energy metabolism
Environmental Sciences
Fish
Freshwater
Freshwater environments
Freshwater fish
Freshwater fishes
genome size
Gills
Global Changes
Hypoxia
Inland water environment
marine
Marine fish
Mass
Metabolic rate
metabolic scaling
Metabolism
Oxygen
Oxygen consumption
Oxygen requirement
Oxygen uptake
Phylogenetics
Phylogeny
Temperature
Temperature dependence
Temperature requirements
Temperature tolerance
Thickness
Uptake
Viscosity
Title Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature‐dependent manner
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16319
https://www.proquest.com/docview/2708669116/abstract/
https://search.proquest.com/docview/2694416826
https://hal.umontpellier.fr/hal-03823277
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKERIXBAsVgbYyCCEuQfFP7ESc2qVlhShCiEq9Rf5Lu1JJqmYLLCcegWfsk3TGm4TlgMQlSuyJlXg89md7_A0hL0rtAoxSNtXO56n0Hvd3tUu9dgz9GjIbwwEdfVSzY_n-JD_ZIG-GszArfohxwQ0tI_bXaODGdmtGfursawATSPl5G2BNgU2ay09jNyx4DKzJRC6hr2GipxVCN57x1b8Go1tn6Aq5hjPX0Wocbg7vk3s9TqR7K8U-IBuhmZA7q8iRywnZOvhzQA3EegvtJiQ5AhTcXkYx-pJOz-cASePTQ3K63_ol_QpwmZrGU1yzp938Z6DdmbkIFKAgBdGAoTYCbWtao798B2n0vP1O2x9LaGx03lBDkdCqZ2O-_vV7CKS7gLIxktcjcnx48GU6S_tAC6kTyELAQ6GyUAP4sGVhRDC5rHHeIRmzrkTOemV1xmrmdOFLr7iTLnMlC1CthudObJHNpm3CY0KFEkIKKFaJTDJjS6MMEz6TwfrahSIhz4cary5WfBrVMA8BtVRRLSAEuhjzkQF7tvehwrQM9y251t9YQrYHVVW93XUV1zBFU9CBq4Q8G7PBYrBKTRPaK5BRJWBABf-XkFdRxf_-kurddD_ePPl_0afkLsczEtHjb5tsLi6vwg4gl4XdjS0Urm8_8xuwjekg
link.rule.ids 230,315,786,790,891,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VIgQXBAtVU0oxCCEuQXHsOBuJS7tqWWC34tBKvUWO7bQrlaRqtoXlxCfwjf2SzniTdDkgcUvsSZR4PONne_wG4G2WGoejVBGmxiahtJb2d1MT2tRwimuICp8OaHqoxsfyy0lysgYfu7MwS36IfsGNLMP7azJwWpBesfJTU3xANEGcn_cpozeZZSy_9X5YxD6zJheJRGfDRcsrRHE8_aN_jUb3zigWcgVorsJVP94cPIHHLVBku0vNPoU1Vw3gwTJ15GIAG_t3J9RQrDXRZgDBFGFwfenF2Ds2Op8hJvV3z-B0r7YL9h3xMtOVZbRoz5rZL8eaM33hGGJBhqKOcm04VpespID5BsvYef2D1T8X2NvYrGKaEaNVS8d88_tPl0l3ju-mVF7P4fhg_2g0DttMC6ERREMQu6GKXInoo8iGWjidyJImHpLzwmREWq-KNOIlN-nQZlbFRprIZNxhs-o4MWID1qu6cpvAhBJCCnytEpHkusi00lzYSLrClsYNA3jTtXh-sSTUyLuJCKol92pBIdRFX08U2OPdSU5lEW1cxml6zQPY7lSVt4bX5HGKczSFHlwF8LqvRpOhJtWVq69QRmUIAhX-XwDvvYr__SX5p9Gev9j6f9FX8HB8NJ3kk8-HX1_Ao5gOTPjwv21Yn19euZcIY-bFju-tt66f65g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VIhCXChYqQgsYhBCXoDh2nESc2qXLAm3VA5V6ixzbaVcqyarZAsuJT-Ab-RJmvElYDkjcEnsSJR6P_cYevwF4kafG4SxVhqmxSSitpf3d1IQ2NZziGqLSpwM6OlbTU_nhLDnbgDf9WZgVP8Sw4EaW4cdrMvC5rdaM_NyUrxFMEOXnTamijDyvWJ4Mw7CIfWJNLhKJYw0XHa0QhfEMj_41Gd24oFDINZy5jlb9dDO5C1sdTmR7K8Xegw1Xj-DWKnPkcgTbB38OqKFYZ6HtCIIjRMHNlRdjL9n4coaQ1N_dh_P9xi7ZZ4TLTNeW0Zo9a2ffHWsv9NwxhIIMRR2l2nCsqVhF8fItlrHL5itrvi2xs7FZzTQjQquOjfnXj599It0FvpsyeT2A08nBp_E07BIthEYQC0HsMhW5CsFHmWdaOJ3IivwOyXlpcuKsV2Ua8YqbNLO5VbGRJjI5d9isOk6M2IbNuqndQ2BCCSEFvlaJSHJd5lppLmwkXWkr47IAnvctXsxXfBpF74egWgqvFhRCXQz1xIA93TssqCyifcs4Tb_wAHZ7VRWd3bVFnKKLpnAAVwE8G6rRYqhJde2aa5RROWJAhf8XwCuv4n9_SfFuvO8vHv2_6FO4ffJ2Uhy-P_64A3diOi7hg_92YXNxde0eI4hZlE98Z_0NYBXqyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Body+mass+and+cell+size+shape+the+tolerance+of+fishes+to+low+oxygen+in+a+temperature%E2%80%90dependent+manner&rft.jtitle=Global+change+biology&rft.au=Verberk%2C+Wilco+C.+E.+P.&rft.au=Sandker%2C+Jeroen+F.&rft.au=Pol%2C+Iris+L.+E.&rft.au=Urbina%2C+Mauricio+A.&rft.date=2022-10-01&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=28&rft.issue=19&rft.spage=5695&rft.epage=5707&rft_id=info:doi/10.1111%2Fgcb.16319&rft.externalDBID=10.1111%252Fgcb.16319&rft.externalDocID=GCB16319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon