Global Optimization by Generalized Random Tunneling Algorithm (4th Report Application to the Nonlinear Optimum Design Problem of the Mixed Design Variables)

This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random Tunneling Algorithm (MGRTA). By handling the discrete design variables as penalty function, the augmented objective function is constructed. A...

Full description

Saved in:
Bibliographic Details
Published inJournal of Computational Science and Technology Vol. 2; no. 1; pp. 258 - 267
Main Authors YAMAZAKI, Koetsu, KITAYAMA, Satoshi
Format Journal Article
LanguageEnglish
Published The Japan Society of Mechanical Engineers 2008
Subjects
Online AccessGet full text
ISSN1881-6894
1881-6894
DOI10.1299/jcst.2.258

Cover

Loading…
Abstract This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random Tunneling Algorithm (MGRTA). By handling the discrete design variables as penalty function, the augmented objective function is constructed. As a result, all design variables can be treated as the continuous design variables. The augmented objective function becomes non-convex, and has many local minima. That is, finding optimum of discrete design variables is transformed into finding global optimum of this augmented objective function. Then the MGRTA is applied to this augmented objective function, subject to the behavior and side constraints. We also propose the new update scheme of penalty parameter for the penalty function of discrete design variables in this paper. The proposed update scheme of penalty parameter utilizes the information of the penalty function value of discrete design variables. By utilizing the characteristics of MGRTA, some optima are obtained. The validity of the proposed method is examined through typical benchmark problems.
AbstractList This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random Tunneling Algorithm (MGRTA). By handling the discrete design variables as penalty function, the augmented objective function is constructed. As a result, all design variables can be treated as the continuous design variables. The augmented objective function becomes non-convex, and has many local minima. That is, finding optimum of discrete design variables is transformed into finding global optimum of this augmented objective function. Then the MGRTA is applied to this augmented objective function, subject to the behavior and side constraints. We also propose the new update scheme of penalty parameter for the penalty function of discrete design variables in this paper. The proposed update scheme of penalty parameter utilizes the information of the penalty function value of discrete design variables. By utilizing the characteristics of MGRTA, some optima are obtained. The validity of the proposed method is examined through typical benchmark problems.
Author YAMAZAKI, Koetsu
KITAYAMA, Satoshi
Author_xml – sequence: 1
  fullname: YAMAZAKI, Koetsu
  organization: Kanazawa Unviersity
– sequence: 1
  fullname: KITAYAMA, Satoshi
  organization: Kanazawa Unviersity
BookMark eNp9kd1qVDEUhYNUsK3e-AS5sxZmmp_zk9wIQ21HoVqpxduQk9mZyZCTHJMMtH0WH9bTnraIiBebbFjfWhuyDtBeiAEQekvJnDIpT7Ymlzmbs1q8QPtUCDprhKz2_thfoYOct4Q0TcvYPvq19LHTHl8OxfXuThcXA-5u8RICJO3dHazwlQ6r2OPrXQjgXVjjhV_H5Mqmx0dV2eArGGIqeDEM3pkpoURcNoC_xjAaQKcpf9fjj5DdOuBvKXYeehztA_fF3Yx3HrUfOjk9qvn9a_TSap_hzeN7iL6fn12ffppdXC4_ny4uZoZLKWZds-K0s7Y20mhmGAHbtU1dmdZY4FXHSN1IDhI4XUElbN10na5bXtnKipofondT6pDizx3konqXDXivA8RdVoJTRljbViN59F-SNpJVhIhWjiiZUJNizgmsMq48_E1J2nlFibovTN0XppgaCxstx39ZhuR6nW7_DX-Y4G0ueg3PqE7FGQ9PKJ2mFs-C2eikIPDfKtuzrg
CitedBy_id crossref_primary_10_1016_j_rimni_2013_06_005
Cites_doi 10.1080/03052159108941075
10.1115/DETC1995-0026
10.1115/1.2919393
10.2514/3.7739
10.1115/1.2912786
10.1115/1.1864078
10.1299/kikaic.64.1626
10.1017/CBO9780511626418
10.2514/6.2002-5646
10.1007/BF01743302
10.1080/03052159008941163
10.2514/3.10305
10.1115/DETC1993-0339
10.1115/1.2912596
ContentType Journal Article
Copyright 2008 by The Japan Society of Mechanical Engineers
Copyright_xml – notice: 2008 by The Japan Society of Mechanical Engineers
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1299/jcst.2.258
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
EISSN 1881-6894
EndPage 267
ExternalDocumentID 10_1299_jcst_2_258
article_jcst_2_1_2_1_258_article_char_en
GroupedDBID 2WC
5GY
AAKPC
ADDVE
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
F5P
JSF
JSH
KQ8
OK1
RJT
RZJ
TKC
TR2
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3998-b6d31bff5c9ca2c20efb7654c7cfe34b205693e9e31de48f56bba5734f4f853
ISSN 1881-6894
IngestDate Fri Jul 11 07:50:50 EDT 2025
Fri Jul 11 02:53:07 EDT 2025
Thu Apr 24 23:04:01 EDT 2025
Tue Jul 01 04:22:19 EDT 2025
Wed Sep 03 06:30:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3998-b6d31bff5c9ca2c20efb7654c7cfe34b205693e9e31de48f56bba5734f4f853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.jstage.jst.go.jp/article/jcst/2/1/2_1_258/_article/-char/en
PQID 1692400879
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_831202774
proquest_miscellaneous_1692400879
crossref_citationtrail_10_1299_jcst_2_258
crossref_primary_10_1299_jcst_2_258
jstage_primary_article_jcst_2_1_2_1_258_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008
2008-00-00
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationTitle Journal of Computational Science and Technology
PublicationTitleAlternate JCST
PublicationYear 2008
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References 14. Papalambros, P. Y., Wilde, D. J., Principle of Optimal Design, (2000), CAMBRIDGE UNIVERSITY PRESS.
6. Rao, S. S., Engineering Optimization: Theory and Application,(1996), Wiley Interscience.
10. Kannan, B. K., Kramer, S. N., An Augmented Lagrange Multiplier Based Method for Mixed Intger Discrete Continuous Optimization and Its Applications to Mechanical Design, Trans. of the ASME/Journal of Mechanical Design, 116, (1994), 405-411.
5. Schmit, L. A., Fleury, C., Discrete-Continuous Variable Structural Synthesis Using Dual Method, AIAA Journal, Vol. 18, (1980), 1515-1524.
2. Kitayama, S., Yamazaki, K., Global Optimization by Generalized Random Tunneling Algorithm (3rd report: Search of some local minima by branching), Nihon Kikai Gakkai Ronbunshu A(Trans. of the JSME, Series A), 70-695,(2004), 970-977. (in Japanese).
9. Fu, J. F., et al., A Mixed Integer-Discrete-Continuous Programming Method and its Application to Engineering Design Optimization, Engineering Optimization, 17, (1991), 263-280.
11. Shin, D. K., et al., A Penalty Approach for Nonlinear Optimization with Discrete Design Variables, Engineering Optimization, 16, (1990), 29-42.
18. He, S., et al., An Improved Particle Swarm Optimizer for Mechanical Design Optimization Problems, Engineering Optimization, Vol. 35-5, (2004), pp. 585-605.
3. Sakawa, M., Optimization of Discrete Systems, (2000), Morikita shuppan, Co., Ltd.(in Japanese)
4. Sandgren, E., Nonlinear and Discrete Programming in Mechanical Design Optimization, Trans. of the ASME/Journal of Mechanical Design, Vol. 112,(1990), 223-229.
17. Arora, J. S. Huang, M. W., Methods for optimization of nonlinear problems with discrete variables: a review, Structural Optimization, 8, (1994), 69-85.
7. Olsen, G. N., Vanderplaats, G. N., Method for Nonlinear Optimization with Discrete Variables, AIAA Journal, 27-11,(1989), 1584-1589.
8. Arakawa, M., Hagiwara, I., Nonlinear Mixed Variable Optimum Design Applying Adaptive Range Genetic Algorithms, Nihon Kikai Gakkai Ronbunshu C(Trans. of the JSME, Series C), 64-621,(1998), 1626-1635. (in Japanese).
16. Hsu, Y. H., et al., A Two Stage Sequential Approximation Method for Non-linear Discrete Variable Optimization, ASME/DETC/DAC MA, 197-202.
1. Kitayama, S., Yamazaki, K., Generalized Random Tunneling Algorithm for Continuous Design Variables, Trans. of the ASME/ Journal of Mechanical Design, Vol. 127, No. 3, (2005), 408-414.
13. Loh, H. T., Papalambros, P. Y., A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems, Trans. of the ASME/Journal of Mechanical Design, 113, (1991), 325-334.
12. Rastogi, N., et al., Discrete Optimization Capabilities in Genesis Structural Analysis and Optimization Software, 9TH AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA2002-5646.
15. Qian, Z., et al., A Genetic Algorithm for Solving Mixed Discrete Optimization Problems, DE-65-1, Advances in Design Automation, 1, (1993), 499-503.
11
12
13
14
15
16
(7) 1989; 27
17
(5) 1980; 18
18
1
2
3
4
6
8
9
10
References_xml – reference: 9. Fu, J. F., et al., A Mixed Integer-Discrete-Continuous Programming Method and its Application to Engineering Design Optimization, Engineering Optimization, 17, (1991), 263-280.
– reference: 1. Kitayama, S., Yamazaki, K., Generalized Random Tunneling Algorithm for Continuous Design Variables, Trans. of the ASME/ Journal of Mechanical Design, Vol. 127, No. 3, (2005), 408-414.
– reference: 7. Olsen, G. N., Vanderplaats, G. N., Method for Nonlinear Optimization with Discrete Variables, AIAA Journal, 27-11,(1989), 1584-1589.
– reference: 11. Shin, D. K., et al., A Penalty Approach for Nonlinear Optimization with Discrete Design Variables, Engineering Optimization, 16, (1990), 29-42.
– reference: 2. Kitayama, S., Yamazaki, K., Global Optimization by Generalized Random Tunneling Algorithm (3rd report: Search of some local minima by branching), Nihon Kikai Gakkai Ronbunshu A(Trans. of the JSME, Series A), 70-695,(2004), 970-977. (in Japanese).
– reference: 5. Schmit, L. A., Fleury, C., Discrete-Continuous Variable Structural Synthesis Using Dual Method, AIAA Journal, Vol. 18, (1980), 1515-1524.
– reference: 3. Sakawa, M., Optimization of Discrete Systems, (2000), Morikita shuppan, Co., Ltd.(in Japanese)
– reference: 12. Rastogi, N., et al., Discrete Optimization Capabilities in Genesis Structural Analysis and Optimization Software, 9TH AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA2002-5646.
– reference: 14. Papalambros, P. Y., Wilde, D. J., Principle of Optimal Design, (2000), CAMBRIDGE UNIVERSITY PRESS.
– reference: 16. Hsu, Y. H., et al., A Two Stage Sequential Approximation Method for Non-linear Discrete Variable Optimization, ASME/DETC/DAC MA, 197-202.
– reference: 17. Arora, J. S. Huang, M. W., Methods for optimization of nonlinear problems with discrete variables: a review, Structural Optimization, 8, (1994), 69-85.
– reference: 8. Arakawa, M., Hagiwara, I., Nonlinear Mixed Variable Optimum Design Applying Adaptive Range Genetic Algorithms, Nihon Kikai Gakkai Ronbunshu C(Trans. of the JSME, Series C), 64-621,(1998), 1626-1635. (in Japanese).
– reference: 18. He, S., et al., An Improved Particle Swarm Optimizer for Mechanical Design Optimization Problems, Engineering Optimization, Vol. 35-5, (2004), pp. 585-605.
– reference: 4. Sandgren, E., Nonlinear and Discrete Programming in Mechanical Design Optimization, Trans. of the ASME/Journal of Mechanical Design, Vol. 112,(1990), 223-229.
– reference: 6. Rao, S. S., Engineering Optimization: Theory and Application,(1996), Wiley Interscience.
– reference: 10. Kannan, B. K., Kramer, S. N., An Augmented Lagrange Multiplier Based Method for Mixed Intger Discrete Continuous Optimization and Its Applications to Mechanical Design, Trans. of the ASME/Journal of Mechanical Design, 116, (1994), 405-411.
– reference: 13. Loh, H. T., Papalambros, P. Y., A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems, Trans. of the ASME/Journal of Mechanical Design, 113, (1991), 325-334.
– reference: 15. Qian, Z., et al., A Genetic Algorithm for Solving Mixed Discrete Optimization Problems, DE-65-1, Advances in Design Automation, 1, (1993), 499-503.
– ident: 2
– ident: 3
– ident: 18
– ident: 9
  doi: 10.1080/03052159108941075
– ident: 16
  doi: 10.1115/DETC1995-0026
– ident: 10
  doi: 10.1115/1.2919393
– volume: 18
  start-page: 1515
  issn: 0001-1452
  issue: 12
  year: 1980
  ident: 5
  doi: 10.2514/3.7739
– ident: 13
  doi: 10.1115/1.2912786
– ident: 1
  doi: 10.1115/1.1864078
– ident: 8
  doi: 10.1299/kikaic.64.1626
– ident: 14
  doi: 10.1017/CBO9780511626418
– ident: 12
  doi: 10.2514/6.2002-5646
– ident: 17
  doi: 10.1007/BF01743302
– ident: 11
  doi: 10.1080/03052159008941163
– volume: 27
  start-page: 1584
  issn: 0001-1452
  issue: 11
  year: 1989
  ident: 7
  doi: 10.2514/3.10305
– ident: 15
  doi: 10.1115/DETC1993-0339
– ident: 6
– ident: 4
  doi: 10.1115/1.2912596
SSID ssj0066722
Score 1.6502929
Snippet This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 258
SubjectTerms Algorithms
Benchmarking
Discrete and Continuous Variables
Generalized Random Tunneling Algorithm
Global Optimization
Mathematical analysis
Mathematical models
Minima
Optimization
Optimum Design
Penalty function
System Engineering
Tunneling
Title Global Optimization by Generalized Random Tunneling Algorithm (4th Report Application to the Nonlinear Optimum Design Problem of the Mixed Design Variables)
URI https://www.jstage.jst.go.jp/article/jcst/2/1/2_1_258/_article/-char/en
https://www.proquest.com/docview/1692400879
https://www.proquest.com/docview/831202774
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computational Science and Technology, 2008, Vol.2(1), pp.258-267
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK4IEXBAJEx0VG8MA0pSy2kziPFQJtVAwBBQ1eIttx1qI1QW0iwX4Lv4BfyXHsmECKNHhoVPnSRD2fj78cnwtCj1WuGJeFgoUkeMCYioI0F3mQcBVLElGgvK2D7HF8-J69PIlORqMfPa-lppYTdb41ruR_pAptIFcTJfsPkvU_Cg3wHeQLV5AwXC8kY5uwf_81LPuVi6c0dNKlkl6eA5l8K8q8Wu3PG-PP0ppAzk6r9bJerAy3ZPXCUXBLR639ruOjxzaNhljbOzQr0E7G38NEF5gqNJ1_wavlV513fR_g5duEY206G8OQ-aq2kkRnhewCi1pXzoGhf3Y0n340xwCt9bquNoulV1TQ_Gk6O2p1VaVrW8LFmzD6-pbzMIi5rXM80VvanJImAyw6hWsTv7u9m9jSHoNtAfZcsy2oTT0hEz-ln3v7jz3ReyqadySYnZm5Gclg7iV0mSRJaNxHZ2_8iVUc26Sb_uFdKlyY-_TXfX8jP1c-A_8_HZKAltnMr6NrTjB4avF1A410eRN9t9jCfWxh-Q33sIUttrDHFvbYwk8AWdgiC_eQhesKA2KwRxZ2yMIWPdghC1dFO65FVtfnkbV3C7178Xz-7DBwlTwCRU0Mp4xzGsqiiFSqBFHkQBcyiSOmElVoyiQBGp5SnWoa5prxIoqlFFFCWcEK4JO30U5ZlfoOwipOBRVhlKeCsIQKEWl-INOcU1UwrukY7XV_cKZckntTa-UsGwpyjB75sV9sapetoxIrJz_GLfduTGg_EfcdJl4S1NMYPewEm4HONgdxotRVs8nCODWu2zxJxwj_ZQynobFLJmz3Qo95F121nkzGOHgP7dTrRt8HulzLBy1OfwIIlsza
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Optimization+by+Generalized+Random+Tunneling+Algorithm+%284th+Report+Application+to+the+Nonlinear+Optimum+Design+Problem+of+the+Mixed+Design+Variables%29&rft.jtitle=Journal+of+computational+science+and+technology&rft.au=KITAYAMA%2C+Satoshi&rft.au=YAMAZAKI%2C+Koetsu&rft.date=2008&rft.issn=1881-6894&rft.eissn=1881-6894&rft.volume=2&rft.issue=1&rft.spage=258&rft.epage=267&rft_id=info:doi/10.1299%2Fjcst.2.258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1299_jcst_2_258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-6894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-6894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-6894&client=summon