Global Optimization by Generalized Random Tunneling Algorithm (4th Report Application to the Nonlinear Optimum Design Problem of the Mixed Design Variables)
This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random Tunneling Algorithm (MGRTA). By handling the discrete design variables as penalty function, the augmented objective function is constructed. A...
Saved in:
Published in | Journal of Computational Science and Technology Vol. 2; no. 1; pp. 258 - 267 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Japan Society of Mechanical Engineers
2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1881-6894 1881-6894 |
DOI | 10.1299/jcst.2.258 |
Cover
Loading…
Abstract | This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random Tunneling Algorithm (MGRTA). By handling the discrete design variables as penalty function, the augmented objective function is constructed. As a result, all design variables can be treated as the continuous design variables. The augmented objective function becomes non-convex, and has many local minima. That is, finding optimum of discrete design variables is transformed into finding global optimum of this augmented objective function. Then the MGRTA is applied to this augmented objective function, subject to the behavior and side constraints. We also propose the new update scheme of penalty parameter for the penalty function of discrete design variables in this paper. The proposed update scheme of penalty parameter utilizes the information of the penalty function value of discrete design variables. By utilizing the characteristics of MGRTA, some optima are obtained. The validity of the proposed method is examined through typical benchmark problems. |
---|---|
AbstractList | This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random Tunneling Algorithm (MGRTA). By handling the discrete design variables as penalty function, the augmented objective function is constructed. As a result, all design variables can be treated as the continuous design variables. The augmented objective function becomes non-convex, and has many local minima. That is, finding optimum of discrete design variables is transformed into finding global optimum of this augmented objective function. Then the MGRTA is applied to this augmented objective function, subject to the behavior and side constraints. We also propose the new update scheme of penalty parameter for the penalty function of discrete design variables in this paper. The proposed update scheme of penalty parameter utilizes the information of the penalty function value of discrete design variables. By utilizing the characteristics of MGRTA, some optima are obtained. The validity of the proposed method is examined through typical benchmark problems. |
Author | YAMAZAKI, Koetsu KITAYAMA, Satoshi |
Author_xml | – sequence: 1 fullname: YAMAZAKI, Koetsu organization: Kanazawa Unviersity – sequence: 1 fullname: KITAYAMA, Satoshi organization: Kanazawa Unviersity |
BookMark | eNp9kd1qVDEUhYNUsK3e-AS5sxZmmp_zk9wIQ21HoVqpxduQk9mZyZCTHJMMtH0WH9bTnraIiBebbFjfWhuyDtBeiAEQekvJnDIpT7Ymlzmbs1q8QPtUCDprhKz2_thfoYOct4Q0TcvYPvq19LHTHl8OxfXuThcXA-5u8RICJO3dHazwlQ6r2OPrXQjgXVjjhV_H5Mqmx0dV2eArGGIqeDEM3pkpoURcNoC_xjAaQKcpf9fjj5DdOuBvKXYeehztA_fF3Yx3HrUfOjk9qvn9a_TSap_hzeN7iL6fn12ffppdXC4_ny4uZoZLKWZds-K0s7Y20mhmGAHbtU1dmdZY4FXHSN1IDhI4XUElbN10na5bXtnKipofondT6pDizx3konqXDXivA8RdVoJTRljbViN59F-SNpJVhIhWjiiZUJNizgmsMq48_E1J2nlFibovTN0XppgaCxstx39ZhuR6nW7_DX-Y4G0ueg3PqE7FGQ9PKJ2mFs-C2eikIPDfKtuzrg |
CitedBy_id | crossref_primary_10_1016_j_rimni_2013_06_005 |
Cites_doi | 10.1080/03052159108941075 10.1115/DETC1995-0026 10.1115/1.2919393 10.2514/3.7739 10.1115/1.2912786 10.1115/1.1864078 10.1299/kikaic.64.1626 10.1017/CBO9780511626418 10.2514/6.2002-5646 10.1007/BF01743302 10.1080/03052159008941163 10.2514/3.10305 10.1115/DETC1993-0339 10.1115/1.2912596 |
ContentType | Journal Article |
Copyright | 2008 by The Japan Society of Mechanical Engineers |
Copyright_xml | – notice: 2008 by The Japan Society of Mechanical Engineers |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1299/jcst.2.258 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1881-6894 |
EndPage | 267 |
ExternalDocumentID | 10_1299_jcst_2_258 article_jcst_2_1_2_1_258_article_char_en |
GroupedDBID | 2WC 5GY AAKPC ADDVE ALMA_UNASSIGNED_HOLDINGS CS3 E3Z F5P JSF JSH KQ8 OK1 RJT RZJ TKC TR2 AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3998-b6d31bff5c9ca2c20efb7654c7cfe34b205693e9e31de48f56bba5734f4f853 |
ISSN | 1881-6894 |
IngestDate | Fri Jul 11 07:50:50 EDT 2025 Fri Jul 11 02:53:07 EDT 2025 Thu Apr 24 23:04:01 EDT 2025 Tue Jul 01 04:22:19 EDT 2025 Wed Sep 03 06:30:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3998-b6d31bff5c9ca2c20efb7654c7cfe34b205693e9e31de48f56bba5734f4f853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jcst/2/1/2_1_258/_article/-char/en |
PQID | 1692400879 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_831202774 proquest_miscellaneous_1692400879 crossref_citationtrail_10_1299_jcst_2_258 crossref_primary_10_1299_jcst_2_258 jstage_primary_article_jcst_2_1_2_1_258_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008 2008-00-00 20080101 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008 |
PublicationDecade | 2000 |
PublicationTitle | Journal of Computational Science and Technology |
PublicationTitleAlternate | JCST |
PublicationYear | 2008 |
Publisher | The Japan Society of Mechanical Engineers |
Publisher_xml | – name: The Japan Society of Mechanical Engineers |
References | 14. Papalambros, P. Y., Wilde, D. J., Principle of Optimal Design, (2000), CAMBRIDGE UNIVERSITY PRESS. 6. Rao, S. S., Engineering Optimization: Theory and Application,(1996), Wiley Interscience. 10. Kannan, B. K., Kramer, S. N., An Augmented Lagrange Multiplier Based Method for Mixed Intger Discrete Continuous Optimization and Its Applications to Mechanical Design, Trans. of the ASME/Journal of Mechanical Design, 116, (1994), 405-411. 5. Schmit, L. A., Fleury, C., Discrete-Continuous Variable Structural Synthesis Using Dual Method, AIAA Journal, Vol. 18, (1980), 1515-1524. 2. Kitayama, S., Yamazaki, K., Global Optimization by Generalized Random Tunneling Algorithm (3rd report: Search of some local minima by branching), Nihon Kikai Gakkai Ronbunshu A(Trans. of the JSME, Series A), 70-695,(2004), 970-977. (in Japanese). 9. Fu, J. F., et al., A Mixed Integer-Discrete-Continuous Programming Method and its Application to Engineering Design Optimization, Engineering Optimization, 17, (1991), 263-280. 11. Shin, D. K., et al., A Penalty Approach for Nonlinear Optimization with Discrete Design Variables, Engineering Optimization, 16, (1990), 29-42. 18. He, S., et al., An Improved Particle Swarm Optimizer for Mechanical Design Optimization Problems, Engineering Optimization, Vol. 35-5, (2004), pp. 585-605. 3. Sakawa, M., Optimization of Discrete Systems, (2000), Morikita shuppan, Co., Ltd.(in Japanese) 4. Sandgren, E., Nonlinear and Discrete Programming in Mechanical Design Optimization, Trans. of the ASME/Journal of Mechanical Design, Vol. 112,(1990), 223-229. 17. Arora, J. S. Huang, M. W., Methods for optimization of nonlinear problems with discrete variables: a review, Structural Optimization, 8, (1994), 69-85. 7. Olsen, G. N., Vanderplaats, G. N., Method for Nonlinear Optimization with Discrete Variables, AIAA Journal, 27-11,(1989), 1584-1589. 8. Arakawa, M., Hagiwara, I., Nonlinear Mixed Variable Optimum Design Applying Adaptive Range Genetic Algorithms, Nihon Kikai Gakkai Ronbunshu C(Trans. of the JSME, Series C), 64-621,(1998), 1626-1635. (in Japanese). 16. Hsu, Y. H., et al., A Two Stage Sequential Approximation Method for Non-linear Discrete Variable Optimization, ASME/DETC/DAC MA, 197-202. 1. Kitayama, S., Yamazaki, K., Generalized Random Tunneling Algorithm for Continuous Design Variables, Trans. of the ASME/ Journal of Mechanical Design, Vol. 127, No. 3, (2005), 408-414. 13. Loh, H. T., Papalambros, P. Y., A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems, Trans. of the ASME/Journal of Mechanical Design, 113, (1991), 325-334. 12. Rastogi, N., et al., Discrete Optimization Capabilities in Genesis Structural Analysis and Optimization Software, 9TH AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA2002-5646. 15. Qian, Z., et al., A Genetic Algorithm for Solving Mixed Discrete Optimization Problems, DE-65-1, Advances in Design Automation, 1, (1993), 499-503. 11 12 13 14 15 16 (7) 1989; 27 17 (5) 1980; 18 18 1 2 3 4 6 8 9 10 |
References_xml | – reference: 9. Fu, J. F., et al., A Mixed Integer-Discrete-Continuous Programming Method and its Application to Engineering Design Optimization, Engineering Optimization, 17, (1991), 263-280. – reference: 1. Kitayama, S., Yamazaki, K., Generalized Random Tunneling Algorithm for Continuous Design Variables, Trans. of the ASME/ Journal of Mechanical Design, Vol. 127, No. 3, (2005), 408-414. – reference: 7. Olsen, G. N., Vanderplaats, G. N., Method for Nonlinear Optimization with Discrete Variables, AIAA Journal, 27-11,(1989), 1584-1589. – reference: 11. Shin, D. K., et al., A Penalty Approach for Nonlinear Optimization with Discrete Design Variables, Engineering Optimization, 16, (1990), 29-42. – reference: 2. Kitayama, S., Yamazaki, K., Global Optimization by Generalized Random Tunneling Algorithm (3rd report: Search of some local minima by branching), Nihon Kikai Gakkai Ronbunshu A(Trans. of the JSME, Series A), 70-695,(2004), 970-977. (in Japanese). – reference: 5. Schmit, L. A., Fleury, C., Discrete-Continuous Variable Structural Synthesis Using Dual Method, AIAA Journal, Vol. 18, (1980), 1515-1524. – reference: 3. Sakawa, M., Optimization of Discrete Systems, (2000), Morikita shuppan, Co., Ltd.(in Japanese) – reference: 12. Rastogi, N., et al., Discrete Optimization Capabilities in Genesis Structural Analysis and Optimization Software, 9TH AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA2002-5646. – reference: 14. Papalambros, P. Y., Wilde, D. J., Principle of Optimal Design, (2000), CAMBRIDGE UNIVERSITY PRESS. – reference: 16. Hsu, Y. H., et al., A Two Stage Sequential Approximation Method for Non-linear Discrete Variable Optimization, ASME/DETC/DAC MA, 197-202. – reference: 17. Arora, J. S. Huang, M. W., Methods for optimization of nonlinear problems with discrete variables: a review, Structural Optimization, 8, (1994), 69-85. – reference: 8. Arakawa, M., Hagiwara, I., Nonlinear Mixed Variable Optimum Design Applying Adaptive Range Genetic Algorithms, Nihon Kikai Gakkai Ronbunshu C(Trans. of the JSME, Series C), 64-621,(1998), 1626-1635. (in Japanese). – reference: 18. He, S., et al., An Improved Particle Swarm Optimizer for Mechanical Design Optimization Problems, Engineering Optimization, Vol. 35-5, (2004), pp. 585-605. – reference: 4. Sandgren, E., Nonlinear and Discrete Programming in Mechanical Design Optimization, Trans. of the ASME/Journal of Mechanical Design, Vol. 112,(1990), 223-229. – reference: 6. Rao, S. S., Engineering Optimization: Theory and Application,(1996), Wiley Interscience. – reference: 10. Kannan, B. K., Kramer, S. N., An Augmented Lagrange Multiplier Based Method for Mixed Intger Discrete Continuous Optimization and Its Applications to Mechanical Design, Trans. of the ASME/Journal of Mechanical Design, 116, (1994), 405-411. – reference: 13. Loh, H. T., Papalambros, P. Y., A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems, Trans. of the ASME/Journal of Mechanical Design, 113, (1991), 325-334. – reference: 15. Qian, Z., et al., A Genetic Algorithm for Solving Mixed Discrete Optimization Problems, DE-65-1, Advances in Design Automation, 1, (1993), 499-503. – ident: 2 – ident: 3 – ident: 18 – ident: 9 doi: 10.1080/03052159108941075 – ident: 16 doi: 10.1115/DETC1995-0026 – ident: 10 doi: 10.1115/1.2919393 – volume: 18 start-page: 1515 issn: 0001-1452 issue: 12 year: 1980 ident: 5 doi: 10.2514/3.7739 – ident: 13 doi: 10.1115/1.2912786 – ident: 1 doi: 10.1115/1.1864078 – ident: 8 doi: 10.1299/kikaic.64.1626 – ident: 14 doi: 10.1017/CBO9780511626418 – ident: 12 doi: 10.2514/6.2002-5646 – ident: 17 doi: 10.1007/BF01743302 – ident: 11 doi: 10.1080/03052159008941163 – volume: 27 start-page: 1584 issn: 0001-1452 issue: 11 year: 1989 ident: 7 doi: 10.2514/3.10305 – ident: 15 doi: 10.1115/DETC1993-0339 – ident: 6 – ident: 4 doi: 10.1115/1.2912596 |
SSID | ssj0066722 |
Score | 1.6502929 |
Snippet | This paper presents a method to obtain the global or quasi-optimum for the discrete and continuous design variables, based on the Modified Generalized Random... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 258 |
SubjectTerms | Algorithms Benchmarking Discrete and Continuous Variables Generalized Random Tunneling Algorithm Global Optimization Mathematical analysis Mathematical models Minima Optimization Optimum Design Penalty function System Engineering Tunneling |
Title | Global Optimization by Generalized Random Tunneling Algorithm (4th Report Application to the Nonlinear Optimum Design Problem of the Mixed Design Variables) |
URI | https://www.jstage.jst.go.jp/article/jcst/2/1/2_1_258/_article/-char/en https://www.proquest.com/docview/1692400879 https://www.proquest.com/docview/831202774 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Computational Science and Technology, 2008, Vol.2(1), pp.258-267 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK4IEXBAJEx0VG8MA0pSy2kziPFQJtVAwBBQ1eIttx1qI1QW0iwX4Lv4BfyXHsmECKNHhoVPnSRD2fj78cnwtCj1WuGJeFgoUkeMCYioI0F3mQcBVLElGgvK2D7HF8-J69PIlORqMfPa-lppYTdb41ruR_pAptIFcTJfsPkvU_Cg3wHeQLV5AwXC8kY5uwf_81LPuVi6c0dNKlkl6eA5l8K8q8Wu3PG-PP0ppAzk6r9bJerAy3ZPXCUXBLR639ruOjxzaNhljbOzQr0E7G38NEF5gqNJ1_wavlV513fR_g5duEY206G8OQ-aq2kkRnhewCi1pXzoGhf3Y0n340xwCt9bquNoulV1TQ_Gk6O2p1VaVrW8LFmzD6-pbzMIi5rXM80VvanJImAyw6hWsTv7u9m9jSHoNtAfZcsy2oTT0hEz-ln3v7jz3ReyqadySYnZm5Gclg7iV0mSRJaNxHZ2_8iVUc26Sb_uFdKlyY-_TXfX8jP1c-A_8_HZKAltnMr6NrTjB4avF1A410eRN9t9jCfWxh-Q33sIUttrDHFvbYwk8AWdgiC_eQhesKA2KwRxZ2yMIWPdghC1dFO65FVtfnkbV3C7178Xz-7DBwlTwCRU0Mp4xzGsqiiFSqBFHkQBcyiSOmElVoyiQBGp5SnWoa5prxIoqlFFFCWcEK4JO30U5ZlfoOwipOBRVhlKeCsIQKEWl-INOcU1UwrukY7XV_cKZckntTa-UsGwpyjB75sV9sapetoxIrJz_GLfduTGg_EfcdJl4S1NMYPewEm4HONgdxotRVs8nCODWu2zxJxwj_ZQynobFLJmz3Qo95F121nkzGOHgP7dTrRt8HulzLBy1OfwIIlsza |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Optimization+by+Generalized+Random+Tunneling+Algorithm+%284th+Report+Application+to+the+Nonlinear+Optimum+Design+Problem+of+the+Mixed+Design+Variables%29&rft.jtitle=Journal+of+computational+science+and+technology&rft.au=KITAYAMA%2C+Satoshi&rft.au=YAMAZAKI%2C+Koetsu&rft.date=2008&rft.issn=1881-6894&rft.eissn=1881-6894&rft.volume=2&rft.issue=1&rft.spage=258&rft.epage=267&rft_id=info:doi/10.1299%2Fjcst.2.258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1299_jcst_2_258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-6894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-6894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-6894&client=summon |