Limit analysis of plates using the EFG method and second-order cone programming

The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least‐squares technique is developed. Only one displacement variable is required for each EFG node...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 78; no. 13; pp. 1532 - 1552
Main Authors Le, Canh V., Gilbert, Matthew, Askes, Harm
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 25.06.2009
Wiley
Subjects
Online AccessGet full text
ISSN0029-5981
1097-0207
DOI10.1002/nme.2535

Cover

Loading…
Abstract The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least‐squares technique is developed. Only one displacement variable is required for each EFG node, ensuring that the total number of variables in the resulting optimization problem is kept to a minimum, with far fewer variables being required compared with finite element formulations using compatible elements. A stabilized conforming nodal integration scheme is extended to plastic plate bending problems. The evaluation of integrals at nodal points using curvature smoothing stabilization both keeps the size of the optimization problem small and also results in stable and accurate solutions. Difficulties imposing essential boundary conditions are overcome by enforcing displacements at the nodes directly. The formulation can be expressed as the problem of minimizing a sum of Euclidean norms subject to a set of equality constraints. This non‐smooth minimization problem can be transformed into a form suitable for solution using second‐order cone programming. The procedure is applied to several benchmark beam and plate problems and is found in practice to generate good upper‐bound solutions for benchmark problems. Copyright © 2009 John Wiley & Sons, Ltd.
AbstractList The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least‐squares technique is developed. Only one displacement variable is required for each EFG node, ensuring that the total number of variables in the resulting optimization problem is kept to a minimum, with far fewer variables being required compared with finite element formulations using compatible elements. A stabilized conforming nodal integration scheme is extended to plastic plate bending problems. The evaluation of integrals at nodal points using curvature smoothing stabilization both keeps the size of the optimization problem small and also results in stable and accurate solutions. Difficulties imposing essential boundary conditions are overcome by enforcing displacements at the nodes directly. The formulation can be expressed as the problem of minimizing a sum of Euclidean norms subject to a set of equality constraints. This non‐smooth minimization problem can be transformed into a form suitable for solution using second‐order cone programming. The procedure is applied to several benchmark beam and plate problems and is found in practice to generate good upper‐bound solutions for benchmark problems. Copyright © 2009 John Wiley & Sons, Ltd.
The meshless element-free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least-squares technique is developed. Only one displacement variable is required for each EFG node, ensuring that the total number of variables in the resulting optimization problem is kept to a minimum, with far fewer variables being required compared with finite element formulations using compatible elements. A stabilized conforming nodal integration scheme is extended to plastic plate bending problems. The evaluation of integrals at nodal points using curvature smoothing stabilization both keeps the size of the optimization problem small and also results in stable and accurate solutions. Difficulties imposing essential boundary conditions are overcome by enforcing displacements at the nodes directly. The formulation can be expressed as the problem of minimizing a sum of Euclidean norms subject to a set of equality constraints. This non-smooth minimization problem can be transformed into a form suitable for solution using second-order cone programming. The procedure is applied to several benchmark beam and plate problems and is found in practice to generate good upper-bound solutions for benchmark problems.
Author Askes, Harm
Gilbert, Matthew
Le, Canh V.
Author_xml – sequence: 1
  givenname: Canh V.
  surname: Le
  fullname: Le, Canh V.
  organization: Department of Civil and Structural Engineering, University of Sheffield, Sheffield, U.K
– sequence: 2
  givenname: Matthew
  surname: Gilbert
  fullname: Gilbert, Matthew
  organization: Department of Civil and Structural Engineering, University of Sheffield, Sheffield, U.K
– sequence: 3
  givenname: Harm
  surname: Askes
  fullname: Askes, Harm
  email: h.askes@sheffield.ac.uk
  organization: Department of Civil and Structural Engineering, University of Sheffield, Sheffield, U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21568013$$DView record in Pascal Francis
BookMark eNp10F1rFDEUBuAgFdxWwZ-QG9GbWfMx2UwupWy3pWtLUdG7cCZzpo3OJNtkFt1_35QthRZ7lQN53nPgPSQHIQYk5D1nc86Y-BxGnAsl1Ssy48zoigmmD8isfJlKmYa_IYc5_2aMc8XkjFyu_egnCgGGXfaZxp5uBpgw02324ZpON0iXJys64nQTu-I6mtHF0FUxdZhoGZFuUrxOMI4l8Ja87mHI-O7hPSI_Tpbfj0-r9eXq7PjLunLSGFUZ6UBoJZzoNDa67g20ddO2utZMtU6xWrcOWsd070wPXDWAzaKtjZLMNdjLI_Jxv7fcvt1inuzos8NhgIBxm61WciG0kabIDw8SsoOhTxCcz3aT_AhpZwVXi4ZxWdynvXMp5pywfySc2ftqbanW3ldb6PwZdX6CyccwJfDD_wLVPvDXD7h7cbG9-Lp86n2e8N-jh_THLrTUyv68WNmrc_3r_PSbsEzeAQ4Lmoo
CODEN IJNMBH
CitedBy_id crossref_primary_10_1002_nme_3317
crossref_primary_10_1007_s00707_024_04199_0
crossref_primary_10_1002_nme_6985
crossref_primary_10_1016_j_tws_2021_108852
crossref_primary_10_1142_S0219876213501053
crossref_primary_10_1002_nme_3081
crossref_primary_10_1186_s40540_014_0012_5
crossref_primary_10_1061_JENMDT_EMENG_7628
crossref_primary_10_1016_j_compstruc_2016_04_004
crossref_primary_10_1142_S0219876218400133
crossref_primary_10_1016_j_apm_2021_03_004
crossref_primary_10_1155_2020_6616067
crossref_primary_10_1007_s00419_025_02771_1
crossref_primary_10_1142_S0219876213430081
crossref_primary_10_1016_j_compstruc_2013_08_011
crossref_primary_10_1016_j_ijsolstr_2014_04_016
crossref_primary_10_1080_17486025_2014_887229
crossref_primary_10_1142_S1758825123500710
crossref_primary_10_1016_j_compstruc_2012_03_012
crossref_primary_10_1016_j_ijmecsci_2013_01_017
crossref_primary_10_1142_S0219876213400045
crossref_primary_10_1002_nme_2897
crossref_primary_10_1002_nme_4997
crossref_primary_10_1016_j_compstruc_2023_107271
crossref_primary_10_1177_1081286512444749
crossref_primary_10_1007_s00466_011_0656_8
crossref_primary_10_1016_j_compstruc_2015_02_009
crossref_primary_10_1016_j_engstruct_2022_114034
crossref_primary_10_1016_j_compgeo_2021_104473
crossref_primary_10_1002_cae_20555
crossref_primary_10_1016_j_tafmec_2019_102426
crossref_primary_10_1016_j_cam_2014_12_006
crossref_primary_10_1002_nme_4560
crossref_primary_10_1016_j_cma_2010_04_004
crossref_primary_10_1016_j_compstruc_2019_106157
crossref_primary_10_1002_nme_2887
crossref_primary_10_1016_j_apm_2020_09_056
crossref_primary_10_1016_j_engstruct_2020_111762
crossref_primary_10_1016_j_ijmecsci_2016_04_001
crossref_primary_10_1016_j_enganabound_2022_07_021
crossref_primary_10_1007_s00466_012_0688_8
crossref_primary_10_1016_j_euromechsol_2017_01_004
crossref_primary_10_1016_j_ijmecsci_2017_06_005
crossref_primary_10_1016_j_ijnonlinmec_2012_12_004
crossref_primary_10_1186_2196_1166_1_6
crossref_primary_10_1007_s10409_012_0149_9
crossref_primary_10_1016_j_ast_2016_09_017
crossref_primary_10_1016_j_ijpvp_2018_11_012
crossref_primary_10_1016_j_compstruc_2024_107585
crossref_primary_10_1002_nme_4476
crossref_primary_10_1016_j_ijnonlinmec_2024_104932
crossref_primary_10_1051_m2an_2015040
crossref_primary_10_1002_nme_2796
crossref_primary_10_1016_j_enganabound_2025_106123
crossref_primary_10_1002_nme_4616
crossref_primary_10_1016_j_enganabound_2016_07_010
crossref_primary_10_1016_j_cma_2014_12_014
crossref_primary_10_1016_j_compgeo_2018_06_008
crossref_primary_10_1016_j_cma_2018_12_017
crossref_primary_10_1098_rspa_2021_0509
crossref_primary_10_48084_etasr_5671
crossref_primary_10_1016_j_finel_2013_06_005
crossref_primary_10_1007_s10338_020_00193_w
crossref_primary_10_1016_j_compstruc_2009_08_011
crossref_primary_10_1002_nme_5273
crossref_primary_10_1002_nme_4460
crossref_primary_10_1002_nme_3053
crossref_primary_10_1142_S0219876216500043
Cites_doi 10.12989/sem.1999.8.4.325
10.1002/nme.2177
10.1016/S0024-3795(98)10032-0
10.1016/0022-5096(55)90055-7
10.1137/S1064827598343954
10.1016/S0997-7538(03)00065-2
10.1007/s10107-002-0349-3
10.1016/0045-7825(76)90054-2
10.1016/0377-0427(91)90147-C
10.1002/nme.2061
10.1016/S0020-7683(00)00131-1
10.1016/j.ijsolstr.2006.06.036
10.1016/0020-7683(93)90220-2
10.1016/0045-7825(91)90255-5
10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N
10.1002/nag.567
10.1016/j.finel.2004.05.003
10.1098/rspa.2006.1788
10.1016/j.cma.2003.12.006
10.1137/0806006
10.1002/(SICI)1097-0207(19970615)40:11<2063::AID-NME159>3.0.CO;2-#
10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
10.1002/nme.1314
10.1016/S0045-7825(96)01079-1
10.1007/s004660050296
10.1137/S1064827594275303
10.1002/nme.1620370205
10.1002/nme.2275
10.1016/S0045-7825(96)01078-X
10.1002/1097-0207(20010228)50:6<1331::AID-NME46>3.0.CO;2-S
10.1007/BF00356476
10.1115/1.3601308
10.1016/0020-7683(94)00230-T
10.1016/S0965-9978(03)00032-2
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.2535
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 1552
ExternalDocumentID 21568013
10_1002_nme_2535
NME2535
ark_67375_WNG_QK7XKHS2_0
Genre article
GrantInformation_xml – fundername: Ho Chi Minh City Government (300 Masters and Doctors Project)
– fundername: University of Sheffield
– fundername: EPSRC
  funderid: GR/S53329/01
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
TUS
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3995-93ca2752c2d7e874f9ab48bb74705bc5047bcabc07fc9fa158ae86b49530c8ef3
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Thu Jul 10 18:51:13 EDT 2025
Mon Jul 21 09:17:46 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Tue Jul 01 04:31:53 EDT 2025
Wed Aug 20 07:27:43 EDT 2025
Wed Oct 30 09:56:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords second-order cone programming
nodal integration
conic programming
Stabilization
Euclidean theory
limit analysis
Minimization
Optimization
Dimensioning
Galerkin-Petrov method
Finite element method
Smoothing
Meshless method
Kinematics
EFG method
Modelling
Least square fit
Curvature
Plastic hinge
Plates
Ultimate load
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3995-93ca2752c2d7e874f9ab48bb74705bc5047bcabc07fc9fa158ae86b49530c8ef3
Notes ArticleID:NME2535
Ho Chi Minh City Government (300 Masters and Doctors Project)
University of Sheffield
istex:4FA9529231E0B99FE32D7BAEE76B6E52CE395092
ark:/67375/WNG-QK7XKHS2-0
EPSRC - No. GR/S53329/01
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.2535
PQID 753627939
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_753627939
pascalfrancis_primary_21568013
crossref_primary_10_1002_nme_2535
crossref_citationtrail_10_1002_nme_2535
wiley_primary_10_1002_nme_2535_NME2535
istex_primary_ark_67375_WNG_QK7XKHS2_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 June 2009
PublicationDateYYYYMMDD 2009-06-25
PublicationDate_xml – month: 06
  year: 2009
  text: 25 June 2009
  day: 25
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Franco JRQ, Ponter ARS, Barros FB. Adaptive F.E. method for the shakedown and limit analysis of pressure vessels. European Journal of Mechanics-A/Solids 2003; 22:525-533.
Christiansen E, Andersen KD. Computation of collapse states with von Mises type yield condition. International Journal for Numerical Methods in Engineering 1999; 46:1185-1202.
Gaudrat VF. A Newton type algorithm for plastic limit analysis. Computer Methods in Applied Mechanics and Engineering 1991; 88:207-224.
Capsoni A, Corradi L. Limit analysis of plates-a finite element formulation. Structural Engineering and Mechanics 1999; 8:325-341.
Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 1994; 37:229-256.
Christiansen E, Pedersen OS. Automatic mesh refinement in limit analysis. International Journal for Numerical Methods in Engineering 2001; 50:1331-1346.
Lobo MS, Vandenberghe L, Boyd S, Lebret H. Applications of second-order cone programming. Linear Algebra and its Applications 1998; 284:193-228.
Andersen KD. An efficient Newton barrier method for minimizing a sum of Euclidean norms. SIAM Journal on Optimization 1996; 6:74-95.
Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering 1996; 139:49-74.
Krabbenhoft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 2006; 44:1533-1549.
Smith CC, Gilbert M. Application of discontinuity layout optimization to plane plasticity problems. Proceedings of the Royal Society, Series A 2007; 463:2461-2484.
Sze KY, Chen JS, Sheng N, Liu XH. Stabilized conforming nodal integration: exactness and variational justification. Finite Elements in Analysis and Design 2004; 41:147-171.
Hodge PG, Belytschko T. Numerical methods for the limit analysis of plates. Journal of Applied Mechanics 1968; 35:796-802.
Vicente da Silva M, Antao AN. A non-linear programming method approach for upper bound limit analysis. International Journal for Numerical Methods in Engineering 2007; 72:1192-1218.
Hopkins HG, Wang AJ. Load-carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition. Journal of the Mechanics and Physics of Solids 1954; 3:117-129.
Chen JS, Wux CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering 2001; 50:435-466.
Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering 1996; 139:3-47.
Chen JS, Wang D. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Computer Methods in Applied Mechanics and Engineering 2004; 193:1065-1083.
Zhu T, Atluri SN. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics 1998; 21:211-222.
Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering 2005; 63:1069-1088.
Lyamin AV, Sloan SW. Mesh generation for lower bound limit analysis. Advances in Engineering Software 2003; 34:321-338.
Andersen KD, Christiansen E, Overton ML. An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM Journal on Scientific Computing 2001; 22:243-262.
Nguyen HD. Direct limit analysis via rigid-plastic finite elements. Computer Methods in Applied Mechanics and Engineering 1976; 8:81-116.
Zouain N, Herskovits J, Borges LA, Feijoo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30:1397-1417.
Makrodimopoulos A, Martin CM. Upper bound limit analysis using simplex strain elements and second-order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 31:835-865.
Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic programming. Mathematical Programming 2003; 95:249-277.
Chen S, Liu Y, Cen Z. Lower-bound limit analysis by using the EFG method and non-linear programming. International Journal for Numerical Methods in Engineering 2008; 74:391-415.
Capsoni A, Corradi L. A finite element formulation of the rigid-plastic limit analysis problem. International Journal for Numerical Methods in Engineering 1997; 40:2063-2086.
Liu YH, Zen ZZ, Xu BY. A numerical method for plastic limit analysis of 3-D structures. International Journal of Solids and Structures 1995; 32:1645-1658.
Ciria H, Peraire J, Bonet J. Mesh adaptive computation of upper and lower bounds in limit analysis. International Journal for Numerical Methods in Engineering 2008; 75:899-944.
Andersen KD, Christiansen E, Overton ML. Computing limit loads by minimizing a sum of norms. SIAM Journal on Scientific Computing 1998; 19:1046-1062.
Christiansen E, Kortanek KO. Computation of the collapse state in limit analysis using the LP affine scaling algorithm. Journal of Computational and Applied Mathematics 1991; 34:47-63.
Lubliner J. Plasticity Theory. Macmillan: New York, 1990.
Krysl P, Belytschko T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics 1995; 17:26-35.
Borges LA, Zouain N, Costa C, Feijoo R. An adaptive approach to limit analysis. International Journal of Solids and Structures 2001; 38:1707-1720.
2004; 41
2001; 50
1997; 40
2006; 31
1991; 34
1995; 17
2007; 463
1995; 32
1999; 46
2005; 63
2008
2007; 72
2008; 74
2008; 75
2001; 22
1999; 8
1976; 8
2003; 95
1998; 21
2003; 34
1968; 35
1998; 19
1990
1991; 88
2006; 44
1993; 30
2004; 193
2001; 38
1994; 37
1996; 6
2003; 22
1996; 139
1998; 284
1954; 3
Lubliner J (e_1_2_1_36_2) 1990
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Hodge PG, Belytschko T. Numerical methods for the limit analysis of plates. Journal of Applied Mechanics 1968; 35:796-802.
– reference: Hopkins HG, Wang AJ. Load-carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition. Journal of the Mechanics and Physics of Solids 1954; 3:117-129.
– reference: Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering 2005; 63:1069-1088.
– reference: Andersen KD, Christiansen E, Overton ML. Computing limit loads by minimizing a sum of norms. SIAM Journal on Scientific Computing 1998; 19:1046-1062.
– reference: Smith CC, Gilbert M. Application of discontinuity layout optimization to plane plasticity problems. Proceedings of the Royal Society, Series A 2007; 463:2461-2484.
– reference: Andersen KD, Christiansen E, Overton ML. An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM Journal on Scientific Computing 2001; 22:243-262.
– reference: Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic programming. Mathematical Programming 2003; 95:249-277.
– reference: Sze KY, Chen JS, Sheng N, Liu XH. Stabilized conforming nodal integration: exactness and variational justification. Finite Elements in Analysis and Design 2004; 41:147-171.
– reference: Lobo MS, Vandenberghe L, Boyd S, Lebret H. Applications of second-order cone programming. Linear Algebra and its Applications 1998; 284:193-228.
– reference: Borges LA, Zouain N, Costa C, Feijoo R. An adaptive approach to limit analysis. International Journal of Solids and Structures 2001; 38:1707-1720.
– reference: Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 1994; 37:229-256.
– reference: Krysl P, Belytschko T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics 1995; 17:26-35.
– reference: Christiansen E, Andersen KD. Computation of collapse states with von Mises type yield condition. International Journal for Numerical Methods in Engineering 1999; 46:1185-1202.
– reference: Vicente da Silva M, Antao AN. A non-linear programming method approach for upper bound limit analysis. International Journal for Numerical Methods in Engineering 2007; 72:1192-1218.
– reference: Ciria H, Peraire J, Bonet J. Mesh adaptive computation of upper and lower bounds in limit analysis. International Journal for Numerical Methods in Engineering 2008; 75:899-944.
– reference: Gaudrat VF. A Newton type algorithm for plastic limit analysis. Computer Methods in Applied Mechanics and Engineering 1991; 88:207-224.
– reference: Christiansen E, Kortanek KO. Computation of the collapse state in limit analysis using the LP affine scaling algorithm. Journal of Computational and Applied Mathematics 1991; 34:47-63.
– reference: Nguyen HD. Direct limit analysis via rigid-plastic finite elements. Computer Methods in Applied Mechanics and Engineering 1976; 8:81-116.
– reference: Andersen KD. An efficient Newton barrier method for minimizing a sum of Euclidean norms. SIAM Journal on Optimization 1996; 6:74-95.
– reference: Zouain N, Herskovits J, Borges LA, Feijoo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30:1397-1417.
– reference: Capsoni A, Corradi L. Limit analysis of plates-a finite element formulation. Structural Engineering and Mechanics 1999; 8:325-341.
– reference: Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering 1996; 139:3-47.
– reference: Makrodimopoulos A, Martin CM. Upper bound limit analysis using simplex strain elements and second-order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 31:835-865.
– reference: Liu YH, Zen ZZ, Xu BY. A numerical method for plastic limit analysis of 3-D structures. International Journal of Solids and Structures 1995; 32:1645-1658.
– reference: Lyamin AV, Sloan SW. Mesh generation for lower bound limit analysis. Advances in Engineering Software 2003; 34:321-338.
– reference: Krabbenhoft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 2006; 44:1533-1549.
– reference: Lubliner J. Plasticity Theory. Macmillan: New York, 1990.
– reference: Capsoni A, Corradi L. A finite element formulation of the rigid-plastic limit analysis problem. International Journal for Numerical Methods in Engineering 1997; 40:2063-2086.
– reference: Chen JS, Wang D. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Computer Methods in Applied Mechanics and Engineering 2004; 193:1065-1083.
– reference: Chen JS, Wux CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering 2001; 50:435-466.
– reference: Chen S, Liu Y, Cen Z. Lower-bound limit analysis by using the EFG method and non-linear programming. International Journal for Numerical Methods in Engineering 2008; 74:391-415.
– reference: Zhu T, Atluri SN. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics 1998; 21:211-222.
– reference: Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering 1996; 139:49-74.
– reference: Christiansen E, Pedersen OS. Automatic mesh refinement in limit analysis. International Journal for Numerical Methods in Engineering 2001; 50:1331-1346.
– reference: Franco JRQ, Ponter ARS, Barros FB. Adaptive F.E. method for the shakedown and limit analysis of pressure vessels. European Journal of Mechanics-A/Solids 2003; 22:525-533.
– volume: 46
  start-page: 1185
  year: 1999
  end-page: 1202
  article-title: Computation of collapse states with von Mises type yield condition
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 41
  start-page: 147
  year: 2004
  end-page: 171
  article-title: Stabilized conforming nodal integration: exactness and variational justification
  publication-title: Finite Elements in Analysis and Design
– volume: 38
  start-page: 1707
  year: 2001
  end-page: 1720
  article-title: An adaptive approach to limit analysis
  publication-title: International Journal of Solids and Structures
– volume: 139
  start-page: 3
  year: 1996
  end-page: 47
  article-title: Meshless methods: an overview and recent developments
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 30
  start-page: 1397
  year: 1993
  end-page: 1417
  article-title: An iterative algorithm for limit analysis with nonlinear yield functions
  publication-title: International Journal of Solids and Structures
– volume: 44
  start-page: 1533
  year: 2006
  end-page: 1549
  article-title: Formulation and solution of some plasticity problems as conic programs
  publication-title: International Journal of Solids and Structures
– volume: 88
  start-page: 207
  year: 1991
  end-page: 224
  article-title: A Newton type algorithm for plastic limit analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 63
  start-page: 1069
  year: 2005
  end-page: 1088
  article-title: A new discontinuous upper bound limit analysis formulation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 3
  start-page: 117
  year: 1954
  end-page: 129
  article-title: Load‐carrying capacities for circular plates of perfectly‐plastic material with arbitrary yield condition
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 139
  start-page: 49
  year: 1996
  end-page: 74
  article-title: Nodal integration of the element‐free Galerkin method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 34
  start-page: 321
  year: 2003
  end-page: 338
  article-title: Mesh generation for lower bound limit analysis
  publication-title: Advances in Engineering Software
– volume: 34
  start-page: 47
  year: 1991
  end-page: 63
  article-title: Computation of the collapse state in limit analysis using the LP affine scaling algorithm
  publication-title: Journal of Computational and Applied Mathematics
– volume: 31
  start-page: 835
  year: 2006
  end-page: 865
  article-title: Upper bound limit analysis using simplex strain elements and second‐order cone programming
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 40
  start-page: 2063
  year: 1997
  end-page: 2086
  article-title: A finite element formulation of the rigid‐plastic limit analysis problem
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1990
– volume: 75
  start-page: 899
  year: 2008
  end-page: 944
  article-title: Mesh adaptive computation of upper and lower bounds in limit analysis
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 463
  start-page: 2461
  year: 2007
  end-page: 2484
  article-title: Application of discontinuity layout optimization to plane plasticity problems
  publication-title: Proceedings of the Royal Society, Series A
– volume: 6
  start-page: 74
  year: 1996
  end-page: 95
  article-title: An efficient Newton barrier method for minimizing a sum of Euclidean norms
  publication-title: SIAM Journal on Optimization
– volume: 21
  start-page: 211
  year: 1998
  end-page: 222
  article-title: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method
  publication-title: Computational Mechanics
– volume: 22
  start-page: 243
  year: 2001
  end-page: 262
  article-title: An efficient primal‐dual interior‐point method for minimizing a sum of Euclidean norms
  publication-title: SIAM Journal on Scientific Computing
– volume: 17
  start-page: 26
  year: 1995
  end-page: 35
  article-title: Analysis of thin plates by the element‐free Galerkin method
  publication-title: Computational Mechanics
– volume: 74
  start-page: 391
  year: 2008
  end-page: 415
  article-title: Lower‐bound limit analysis by using the EFG method and non‐linear programming
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 50
  start-page: 1331
  year: 2001
  end-page: 1346
  article-title: Automatic mesh refinement in limit analysis
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 35
  start-page: 796
  year: 1968
  end-page: 802
  article-title: Numerical methods for the limit analysis of plates
  publication-title: Journal of Applied Mechanics
– volume: 8
  start-page: 81
  year: 1976
  end-page: 116
  article-title: Direct limit analysis via rigid‐plastic finite elements
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2008
– volume: 32
  start-page: 1645
  year: 1995
  end-page: 1658
  article-title: A numerical method for plastic limit analysis of 3‐D structures
  publication-title: International Journal of Solids and Structures
– volume: 19
  start-page: 1046
  year: 1998
  end-page: 1062
  article-title: Computing limit loads by minimizing a sum of norms
  publication-title: SIAM Journal on Scientific Computing
– volume: 95
  start-page: 249
  year: 2003
  end-page: 277
  article-title: On implementing a primal‐dual interior‐point method for conic quadratic programming
  publication-title: Mathematical Programming
– volume: 193
  start-page: 1065
  year: 2004
  end-page: 1083
  article-title: Locking‐free stabilized conforming nodal integration for meshfree Mindlin‐Reissner plate formulation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 50
  start-page: 435
  year: 2001
  end-page: 466
  article-title: A stabilized conforming nodal integration for Galerkin mesh‐free methods
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 284
  start-page: 193
  year: 1998
  end-page: 228
  article-title: Applications of second‐order cone programming
  publication-title: Linear Algebra and its Applications
– volume: 8
  start-page: 325
  year: 1999
  end-page: 341
  article-title: Limit analysis of plates—a finite element formulation
  publication-title: Structural Engineering and Mechanics
– volume: 72
  start-page: 1192
  year: 2007
  end-page: 1218
  article-title: A non‐linear programming method approach for upper bound limit analysis
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 22
  start-page: 525
  year: 2003
  end-page: 533
  article-title: Adaptive F.E. method for the shakedown and limit analysis of pressure vessels
  publication-title: European Journal of Mechanics—A/Solids
– volume: 37
  start-page: 229
  year: 1994
  end-page: 256
  article-title: Element‐free Galerkin methods
  publication-title: International Journal for Numerical Methods in Engineering
– ident: e_1_2_1_34_2
  doi: 10.12989/sem.1999.8.4.325
– ident: e_1_2_1_26_2
  doi: 10.1002/nme.2177
– ident: e_1_2_1_35_2
  doi: 10.1016/S0024-3795(98)10032-0
– ident: e_1_2_1_22_2
– ident: e_1_2_1_37_2
  doi: 10.1016/0022-5096(55)90055-7
– ident: e_1_2_1_20_2
  doi: 10.1137/S1064827598343954
– ident: e_1_2_1_17_2
  doi: 10.1016/S0997-7538(03)00065-2
– ident: e_1_2_1_21_2
  doi: 10.1007/s10107-002-0349-3
– ident: e_1_2_1_3_2
  doi: 10.1016/0045-7825(76)90054-2
– ident: e_1_2_1_7_2
  doi: 10.1016/0377-0427(91)90147-C
– volume-title: Plasticity Theory
  year: 1990
  ident: e_1_2_1_36_2
– ident: e_1_2_1_12_2
  doi: 10.1002/nme.2061
– ident: e_1_2_1_16_2
  doi: 10.1016/S0020-7683(00)00131-1
– ident: e_1_2_1_24_2
  doi: 10.1016/j.ijsolstr.2006.06.036
– ident: e_1_2_1_8_2
  doi: 10.1016/0020-7683(93)90220-2
– ident: e_1_2_1_6_2
  doi: 10.1016/0045-7825(91)90255-5
– ident: e_1_2_1_5_2
  doi: 10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N
– ident: e_1_2_1_23_2
  doi: 10.1002/nag.567
– ident: e_1_2_1_31_2
  doi: 10.1016/j.finel.2004.05.003
– ident: e_1_2_1_14_2
  doi: 10.1098/rspa.2006.1788
– ident: e_1_2_1_32_2
  doi: 10.1016/j.cma.2003.12.006
– ident: e_1_2_1_10_2
  doi: 10.1137/0806006
– ident: e_1_2_1_4_2
  doi: 10.1002/(SICI)1097-0207(19970615)40:11<2063::AID-NME159>3.0.CO;2-#
– ident: e_1_2_1_30_2
  doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
– ident: e_1_2_1_13_2
  doi: 10.1002/nme.1314
– ident: e_1_2_1_29_2
  doi: 10.1016/S0045-7825(96)01079-1
– ident: e_1_2_1_33_2
  doi: 10.1007/s004660050296
– ident: e_1_2_1_11_2
  doi: 10.1137/S1064827594275303
– ident: e_1_2_1_25_2
  doi: 10.1002/nme.1620370205
– ident: e_1_2_1_19_2
  doi: 10.1002/nme.2275
– ident: e_1_2_1_28_2
  doi: 10.1016/S0045-7825(96)01078-X
– ident: e_1_2_1_15_2
  doi: 10.1002/1097-0207(20010228)50:6<1331::AID-NME46>3.0.CO;2-S
– ident: e_1_2_1_27_2
  doi: 10.1007/BF00356476
– ident: e_1_2_1_2_2
  doi: 10.1115/1.3601308
– ident: e_1_2_1_9_2
  doi: 10.1016/0020-7683(94)00230-T
– ident: e_1_2_1_18_2
  doi: 10.1016/S0965-9978(03)00032-2
SSID ssj0011503
Score 2.2164025
Snippet The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves...
The meshless element-free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1532
SubjectTerms Computational techniques
Curvature
Displacement
EFG method
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
limit analysis
Limit load
Mathematical analysis
Mathematical methods in physics
Mathematical models
nodal integration
Optimization
Physics
Plates
Programming
second-order cone programming
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Title Limit analysis of plates using the EFG method and second-order cone programming
URI https://api.istex.fr/ark:/67375/WNG-QK7XKHS2-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.2535
https://www.proquest.com/docview/753627939
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PaxQxFH5IvejB1qq4WksE0dNsp8lkMjmK7HZp2YWqxQUPIckkPbTdls4uiCf_BP9G_xLfm1_sikLxNAReyEySl3xv8r0vAG8wRpZaq5hkpRdJVoSYaBfTRNFu4kMUpaDk5Oksn5xlx3M5b1mVlAvT6EP0P9zIM-r1mhzcuupgTTT0Kgy5FJRfTlQtwkMfe-UowjmiY3dIXRx2urMpP-gqbuxE96lTvxEz0lbYObG51WIDdq6D13r3GW_D1-69G9LJxXC1dEP__Q9Jx__7sB141IJS9r6ZRY_hXljswnYLUFnr_tUuPFxTL8TStJd8rZ7AaZ0qxWwrcsKuI7u5JCDLiFp_ztCUjcZHrLmyGu1KVlEwXv768bPW_2RYCKzli11hladwNh59_jBJ2vsaEk8JsokW3nIlueelCoXKorYuK5zDiCWVzss0U85b51MVvY72UBY2FLkjhmvqcZaIZ7C1wKaeA3PaF9ZjqMVjwADe2zxaLl2hIxfWhjiAd93YGd-KmdOdGpemkWHmBnvRUC8O4HVvedMIePzF5m09_L2Bvb0gwpuS5svsyJyeqPnJ5BM36QD2N-ZHXwGBU457vRgA6yaMQT-lwxe7CNerymBYmHNcDDU2Vo_-P9_GzKYjer64q-FLeNCcceUJl3uwtbxdhVcIlZZuv3aK36GHEdo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB6V9gAcKBQQ4acYCcFp06293l2LE4KkgTSRCq3IAcmyvTaHtmnVTSTEiUfgGXkSZvZPCQIJcVpZGsve8Yw9Y898A_AcfWSpVBaipHAiSnIfImVDHGV0mjgfRCEoOXkyTUcnyfuZnG3AqzYXpsaH6C7cSDOq_ZoUnC6k91ZQQ899n0shr8EWFfSm8gVvP3TYUWTpiDa-Q6p8v0Wejfle23PtLNoitn6l2EhTIntCXddizfBcNV-r82e4DZ_bmddhJ6f95cL23bffQB3_89duw63GLmWva0G6Axt-vgPbjY3Kmh2g3IGbKwCG2Jp0qK_lXTiqsqWYaXBO2EVgl2dkyzKKrv_CkJQNhgesrlqNdAUryR8vfn7_UUGAMmx41oSMnWOXe3AyHBy_GUVNyYbIUY5spIQzPJPc8SLzeZYEZWySW4tOSyytk3GSWWesi7PgVDD7Mjc-Ty0FucYOBUXch805DvUAmFUuNw69LR48-vDOpMFwaXMVuDDGhx68bBdPuwbPnMpqnOkaiZlr5KImLvbgWUd5WWN4_IHmRbX-HYG5OqWYt0zqT9MDfTTOZuPRR67jHuyuCUjXAW2nFI970QPWSoxGVaX3FzP3F8tSo2eYctwPFQ5WLf9fZ6OnkwF9H_4r4VO4PjqeHOrDd9PxI7hRP3mlEZePYXNxtfRP0HJa2N1KQ34BnZ0V9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB5BKyE4UCggwk8xEoLTplt7vbs-IkgaCIkoUBGpB8v22hzaplE3kRAnHoFn5EmY2T8lCCTEaWVpLO-OPZ5v1uNvAJ5hjCyVykKUFE5ESe5DpGyIo4y8ifNBFIIuJ0-m6eg4eTuTsyarku7C1PwQ3Q83soxqvyYDXxRhf4009Nz3uRTyKmwnKdoKAaIPHXUUAR3RpndIlR-0xLMx3297briibdLqV0qNNCVqJ9RlLTZw5zp6rdzPcAdO2hevs05O-6ul7btvv3E6_t-X3YKbDSplL-tldBuu-Pku7DQIlTX2X-7CjTX6QmxNOs7X8g4cVXelmGlYTthFYIszQrKMcuu_MBRlg-Ehq2tWo1zBSorGi5_ff1QEoAwbnjUJY-fY5S4cDwefXo2ipmBD5OiGbKSEMzyT3PEi83mWBGVskluLIUssrZNxkllnrIuz4FQwBzI3Pk8tpbjGDpeJuAdbcxzqPjCrXG4cxlo8eIzgnUmD4dLmKnBhjA89eNHOnXYNmzkV1TjTNQ8z16hFTVrswdNOclEzePxB5nk1_Z2AuTyljLdM6s_TQ300zmbj0Ueu4x7sbayPrgMipxSdvegBaxeMRkOl0xcz9xerUmNcmHLcDRUOVs3-X99GTycDej74V8EncO3966F-92Y6fgjX6_OuNOLyEWwtL1f-McKmpd2r7OMXc-QUrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limit+analysis+of+plates+using+the+EFG+method+and+second%E2%80%90order+cone+programming&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Le%2C+Canh+V.&rft.au=Gilbert%2C+Matthew&rft.au=Askes%2C+Harm&rft.date=2009-06-25&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=78&rft.issue=13&rft.spage=1532&rft.epage=1552&rft_id=info:doi/10.1002%2Fnme.2535&rft.externalDBID=10.1002%252Fnme.2535&rft.externalDocID=NME2535
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon