Limit analysis of plates using the EFG method and second-order cone programming
The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least‐squares technique is developed. Only one displacement variable is required for each EFG node...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 78; no. 13; pp. 1532 - 1552 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
25.06.2009
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0029-5981 1097-0207 |
DOI | 10.1002/nme.2535 |
Cover
Loading…
Abstract | The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least‐squares technique is developed. Only one displacement variable is required for each EFG node, ensuring that the total number of variables in the resulting optimization problem is kept to a minimum, with far fewer variables being required compared with finite element formulations using compatible elements. A stabilized conforming nodal integration scheme is extended to plastic plate bending problems. The evaluation of integrals at nodal points using curvature smoothing stabilization both keeps the size of the optimization problem small and also results in stable and accurate solutions. Difficulties imposing essential boundary conditions are overcome by enforcing displacements at the nodes directly. The formulation can be expressed as the problem of minimizing a sum of Euclidean norms subject to a set of equality constraints. This non‐smooth minimization problem can be transformed into a form suitable for solution using second‐order cone programming. The procedure is applied to several benchmark beam and plate problems and is found in practice to generate good upper‐bound solutions for benchmark problems. Copyright © 2009 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least‐squares technique is developed. Only one displacement variable is required for each EFG node, ensuring that the total number of variables in the resulting optimization problem is kept to a minimum, with far fewer variables being required compared with finite element formulations using compatible elements. A stabilized conforming nodal integration scheme is extended to plastic plate bending problems. The evaluation of integrals at nodal points using curvature smoothing stabilization both keeps the size of the optimization problem small and also results in stable and accurate solutions. Difficulties imposing essential boundary conditions are overcome by enforcing displacements at the nodes directly. The formulation can be expressed as the problem of minimizing a sum of Euclidean norms subject to a set of equality constraints. This non‐smooth minimization problem can be transformed into a form suitable for solution using second‐order cone programming. The procedure is applied to several benchmark beam and plate problems and is found in practice to generate good upper‐bound solutions for benchmark problems. Copyright © 2009 John Wiley & Sons, Ltd. The meshless element-free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least-squares technique is developed. Only one displacement variable is required for each EFG node, ensuring that the total number of variables in the resulting optimization problem is kept to a minimum, with far fewer variables being required compared with finite element formulations using compatible elements. A stabilized conforming nodal integration scheme is extended to plastic plate bending problems. The evaluation of integrals at nodal points using curvature smoothing stabilization both keeps the size of the optimization problem small and also results in stable and accurate solutions. Difficulties imposing essential boundary conditions are overcome by enforcing displacements at the nodes directly. The formulation can be expressed as the problem of minimizing a sum of Euclidean norms subject to a set of equality constraints. This non-smooth minimization problem can be transformed into a form suitable for solution using second-order cone programming. The procedure is applied to several benchmark beam and plate problems and is found in practice to generate good upper-bound solutions for benchmark problems. |
Author | Askes, Harm Gilbert, Matthew Le, Canh V. |
Author_xml | – sequence: 1 givenname: Canh V. surname: Le fullname: Le, Canh V. organization: Department of Civil and Structural Engineering, University of Sheffield, Sheffield, U.K – sequence: 2 givenname: Matthew surname: Gilbert fullname: Gilbert, Matthew organization: Department of Civil and Structural Engineering, University of Sheffield, Sheffield, U.K – sequence: 3 givenname: Harm surname: Askes fullname: Askes, Harm email: h.askes@sheffield.ac.uk organization: Department of Civil and Structural Engineering, University of Sheffield, Sheffield, U.K |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21568013$$DView record in Pascal Francis |
BookMark | eNp10F1rFDEUBuAgFdxWwZ-QG9GbWfMx2UwupWy3pWtLUdG7cCZzpo3OJNtkFt1_35QthRZ7lQN53nPgPSQHIQYk5D1nc86Y-BxGnAsl1Ssy48zoigmmD8isfJlKmYa_IYc5_2aMc8XkjFyu_egnCgGGXfaZxp5uBpgw02324ZpON0iXJys64nQTu-I6mtHF0FUxdZhoGZFuUrxOMI4l8Ja87mHI-O7hPSI_Tpbfj0-r9eXq7PjLunLSGFUZ6UBoJZzoNDa67g20ddO2utZMtU6xWrcOWsd070wPXDWAzaKtjZLMNdjLI_Jxv7fcvt1inuzos8NhgIBxm61WciG0kabIDw8SsoOhTxCcz3aT_AhpZwVXi4ZxWdynvXMp5pywfySc2ftqbanW3ldb6PwZdX6CyccwJfDD_wLVPvDXD7h7cbG9-Lp86n2e8N-jh_THLrTUyv68WNmrc_3r_PSbsEzeAQ4Lmoo |
CODEN | IJNMBH |
CitedBy_id | crossref_primary_10_1002_nme_3317 crossref_primary_10_1007_s00707_024_04199_0 crossref_primary_10_1002_nme_6985 crossref_primary_10_1016_j_tws_2021_108852 crossref_primary_10_1142_S0219876213501053 crossref_primary_10_1002_nme_3081 crossref_primary_10_1186_s40540_014_0012_5 crossref_primary_10_1061_JENMDT_EMENG_7628 crossref_primary_10_1016_j_compstruc_2016_04_004 crossref_primary_10_1142_S0219876218400133 crossref_primary_10_1016_j_apm_2021_03_004 crossref_primary_10_1155_2020_6616067 crossref_primary_10_1007_s00419_025_02771_1 crossref_primary_10_1142_S0219876213430081 crossref_primary_10_1016_j_compstruc_2013_08_011 crossref_primary_10_1016_j_ijsolstr_2014_04_016 crossref_primary_10_1080_17486025_2014_887229 crossref_primary_10_1142_S1758825123500710 crossref_primary_10_1016_j_compstruc_2012_03_012 crossref_primary_10_1016_j_ijmecsci_2013_01_017 crossref_primary_10_1142_S0219876213400045 crossref_primary_10_1002_nme_2897 crossref_primary_10_1002_nme_4997 crossref_primary_10_1016_j_compstruc_2023_107271 crossref_primary_10_1177_1081286512444749 crossref_primary_10_1007_s00466_011_0656_8 crossref_primary_10_1016_j_compstruc_2015_02_009 crossref_primary_10_1016_j_engstruct_2022_114034 crossref_primary_10_1016_j_compgeo_2021_104473 crossref_primary_10_1002_cae_20555 crossref_primary_10_1016_j_tafmec_2019_102426 crossref_primary_10_1016_j_cam_2014_12_006 crossref_primary_10_1002_nme_4560 crossref_primary_10_1016_j_cma_2010_04_004 crossref_primary_10_1016_j_compstruc_2019_106157 crossref_primary_10_1002_nme_2887 crossref_primary_10_1016_j_apm_2020_09_056 crossref_primary_10_1016_j_engstruct_2020_111762 crossref_primary_10_1016_j_ijmecsci_2016_04_001 crossref_primary_10_1016_j_enganabound_2022_07_021 crossref_primary_10_1007_s00466_012_0688_8 crossref_primary_10_1016_j_euromechsol_2017_01_004 crossref_primary_10_1016_j_ijmecsci_2017_06_005 crossref_primary_10_1016_j_ijnonlinmec_2012_12_004 crossref_primary_10_1186_2196_1166_1_6 crossref_primary_10_1007_s10409_012_0149_9 crossref_primary_10_1016_j_ast_2016_09_017 crossref_primary_10_1016_j_ijpvp_2018_11_012 crossref_primary_10_1016_j_compstruc_2024_107585 crossref_primary_10_1002_nme_4476 crossref_primary_10_1016_j_ijnonlinmec_2024_104932 crossref_primary_10_1051_m2an_2015040 crossref_primary_10_1002_nme_2796 crossref_primary_10_1016_j_enganabound_2025_106123 crossref_primary_10_1002_nme_4616 crossref_primary_10_1016_j_enganabound_2016_07_010 crossref_primary_10_1016_j_cma_2014_12_014 crossref_primary_10_1016_j_compgeo_2018_06_008 crossref_primary_10_1016_j_cma_2018_12_017 crossref_primary_10_1098_rspa_2021_0509 crossref_primary_10_48084_etasr_5671 crossref_primary_10_1016_j_finel_2013_06_005 crossref_primary_10_1007_s10338_020_00193_w crossref_primary_10_1016_j_compstruc_2009_08_011 crossref_primary_10_1002_nme_5273 crossref_primary_10_1002_nme_4460 crossref_primary_10_1002_nme_3053 crossref_primary_10_1142_S0219876216500043 |
Cites_doi | 10.12989/sem.1999.8.4.325 10.1002/nme.2177 10.1016/S0024-3795(98)10032-0 10.1016/0022-5096(55)90055-7 10.1137/S1064827598343954 10.1016/S0997-7538(03)00065-2 10.1007/s10107-002-0349-3 10.1016/0045-7825(76)90054-2 10.1016/0377-0427(91)90147-C 10.1002/nme.2061 10.1016/S0020-7683(00)00131-1 10.1016/j.ijsolstr.2006.06.036 10.1016/0020-7683(93)90220-2 10.1016/0045-7825(91)90255-5 10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N 10.1002/nag.567 10.1016/j.finel.2004.05.003 10.1098/rspa.2006.1788 10.1016/j.cma.2003.12.006 10.1137/0806006 10.1002/(SICI)1097-0207(19970615)40:11<2063::AID-NME159>3.0.CO;2-# 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A 10.1002/nme.1314 10.1016/S0045-7825(96)01079-1 10.1007/s004660050296 10.1137/S1064827594275303 10.1002/nme.1620370205 10.1002/nme.2275 10.1016/S0045-7825(96)01078-X 10.1002/1097-0207(20010228)50:6<1331::AID-NME46>3.0.CO;2-S 10.1007/BF00356476 10.1115/1.3601308 10.1016/0020-7683(94)00230-T 10.1016/S0965-9978(03)00032-2 |
ContentType | Journal Article |
Copyright | Copyright © 2009 John Wiley & Sons, Ltd. 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2009 John Wiley & Sons, Ltd. – notice: 2009 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.2535 |
DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics Physics |
EISSN | 1097-0207 |
EndPage | 1552 |
ExternalDocumentID | 21568013 10_1002_nme_2535 NME2535 ark_67375_WNG_QK7XKHS2_0 |
Genre | article |
GrantInformation_xml | – fundername: Ho Chi Minh City Government (300 Masters and Doctors Project) – fundername: University of Sheffield – fundername: EPSRC funderid: GR/S53329/01 |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWS RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION .4S 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. ARCSS GBZZK IQODW M6O PALCI RIWAO SAMSI TUS VH1 VOH ZY4 ~A~ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3995-93ca2752c2d7e874f9ab48bb74705bc5047bcabc07fc9fa158ae86b49530c8ef3 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Thu Jul 10 18:51:13 EDT 2025 Mon Jul 21 09:17:46 EDT 2025 Thu Apr 24 23:00:38 EDT 2025 Tue Jul 01 04:31:53 EDT 2025 Wed Aug 20 07:27:43 EDT 2025 Wed Oct 30 09:56:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | second-order cone programming nodal integration conic programming Stabilization Euclidean theory limit analysis Minimization Optimization Dimensioning Galerkin-Petrov method Finite element method Smoothing Meshless method Kinematics EFG method Modelling Least square fit Curvature Plastic hinge Plates Ultimate load |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3995-93ca2752c2d7e874f9ab48bb74705bc5047bcabc07fc9fa158ae86b49530c8ef3 |
Notes | ArticleID:NME2535 Ho Chi Minh City Government (300 Masters and Doctors Project) University of Sheffield istex:4FA9529231E0B99FE32D7BAEE76B6E52CE395092 ark:/67375/WNG-QK7XKHS2-0 EPSRC - No. GR/S53329/01 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.2535 |
PQID | 753627939 |
PQPubID | 23500 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_753627939 pascalfrancis_primary_21568013 crossref_primary_10_1002_nme_2535 crossref_citationtrail_10_1002_nme_2535 wiley_primary_10_1002_nme_2535_NME2535 istex_primary_ark_67375_WNG_QK7XKHS2_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 25 June 2009 |
PublicationDateYYYYMMDD | 2009-06-25 |
PublicationDate_xml | – month: 06 year: 2009 text: 25 June 2009 day: 25 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | International journal for numerical methods in engineering |
PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
PublicationYear | 2009 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Franco JRQ, Ponter ARS, Barros FB. Adaptive F.E. method for the shakedown and limit analysis of pressure vessels. European Journal of Mechanics-A/Solids 2003; 22:525-533. Christiansen E, Andersen KD. Computation of collapse states with von Mises type yield condition. International Journal for Numerical Methods in Engineering 1999; 46:1185-1202. Gaudrat VF. A Newton type algorithm for plastic limit analysis. Computer Methods in Applied Mechanics and Engineering 1991; 88:207-224. Capsoni A, Corradi L. Limit analysis of plates-a finite element formulation. Structural Engineering and Mechanics 1999; 8:325-341. Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 1994; 37:229-256. Christiansen E, Pedersen OS. Automatic mesh refinement in limit analysis. International Journal for Numerical Methods in Engineering 2001; 50:1331-1346. Lobo MS, Vandenberghe L, Boyd S, Lebret H. Applications of second-order cone programming. Linear Algebra and its Applications 1998; 284:193-228. Andersen KD. An efficient Newton barrier method for minimizing a sum of Euclidean norms. SIAM Journal on Optimization 1996; 6:74-95. Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering 1996; 139:49-74. Krabbenhoft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 2006; 44:1533-1549. Smith CC, Gilbert M. Application of discontinuity layout optimization to plane plasticity problems. Proceedings of the Royal Society, Series A 2007; 463:2461-2484. Sze KY, Chen JS, Sheng N, Liu XH. Stabilized conforming nodal integration: exactness and variational justification. Finite Elements in Analysis and Design 2004; 41:147-171. Hodge PG, Belytschko T. Numerical methods for the limit analysis of plates. Journal of Applied Mechanics 1968; 35:796-802. Vicente da Silva M, Antao AN. A non-linear programming method approach for upper bound limit analysis. International Journal for Numerical Methods in Engineering 2007; 72:1192-1218. Hopkins HG, Wang AJ. Load-carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition. Journal of the Mechanics and Physics of Solids 1954; 3:117-129. Chen JS, Wux CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering 2001; 50:435-466. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering 1996; 139:3-47. Chen JS, Wang D. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Computer Methods in Applied Mechanics and Engineering 2004; 193:1065-1083. Zhu T, Atluri SN. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics 1998; 21:211-222. Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering 2005; 63:1069-1088. Lyamin AV, Sloan SW. Mesh generation for lower bound limit analysis. Advances in Engineering Software 2003; 34:321-338. Andersen KD, Christiansen E, Overton ML. An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM Journal on Scientific Computing 2001; 22:243-262. Nguyen HD. Direct limit analysis via rigid-plastic finite elements. Computer Methods in Applied Mechanics and Engineering 1976; 8:81-116. Zouain N, Herskovits J, Borges LA, Feijoo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30:1397-1417. Makrodimopoulos A, Martin CM. Upper bound limit analysis using simplex strain elements and second-order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 31:835-865. Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic programming. Mathematical Programming 2003; 95:249-277. Chen S, Liu Y, Cen Z. Lower-bound limit analysis by using the EFG method and non-linear programming. International Journal for Numerical Methods in Engineering 2008; 74:391-415. Capsoni A, Corradi L. A finite element formulation of the rigid-plastic limit analysis problem. International Journal for Numerical Methods in Engineering 1997; 40:2063-2086. Liu YH, Zen ZZ, Xu BY. A numerical method for plastic limit analysis of 3-D structures. International Journal of Solids and Structures 1995; 32:1645-1658. Ciria H, Peraire J, Bonet J. Mesh adaptive computation of upper and lower bounds in limit analysis. International Journal for Numerical Methods in Engineering 2008; 75:899-944. Andersen KD, Christiansen E, Overton ML. Computing limit loads by minimizing a sum of norms. SIAM Journal on Scientific Computing 1998; 19:1046-1062. Christiansen E, Kortanek KO. Computation of the collapse state in limit analysis using the LP affine scaling algorithm. Journal of Computational and Applied Mathematics 1991; 34:47-63. Lubliner J. Plasticity Theory. Macmillan: New York, 1990. Krysl P, Belytschko T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics 1995; 17:26-35. Borges LA, Zouain N, Costa C, Feijoo R. An adaptive approach to limit analysis. International Journal of Solids and Structures 2001; 38:1707-1720. 2004; 41 2001; 50 1997; 40 2006; 31 1991; 34 1995; 17 2007; 463 1995; 32 1999; 46 2005; 63 2008 2007; 72 2008; 74 2008; 75 2001; 22 1999; 8 1976; 8 2003; 95 1998; 21 2003; 34 1968; 35 1998; 19 1990 1991; 88 2006; 44 1993; 30 2004; 193 2001; 38 1994; 37 1996; 6 2003; 22 1996; 139 1998; 284 1954; 3 Lubliner J (e_1_2_1_36_2) 1990 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 |
References_xml | – reference: Hodge PG, Belytschko T. Numerical methods for the limit analysis of plates. Journal of Applied Mechanics 1968; 35:796-802. – reference: Hopkins HG, Wang AJ. Load-carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition. Journal of the Mechanics and Physics of Solids 1954; 3:117-129. – reference: Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering 2005; 63:1069-1088. – reference: Andersen KD, Christiansen E, Overton ML. Computing limit loads by minimizing a sum of norms. SIAM Journal on Scientific Computing 1998; 19:1046-1062. – reference: Smith CC, Gilbert M. Application of discontinuity layout optimization to plane plasticity problems. Proceedings of the Royal Society, Series A 2007; 463:2461-2484. – reference: Andersen KD, Christiansen E, Overton ML. An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM Journal on Scientific Computing 2001; 22:243-262. – reference: Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic programming. Mathematical Programming 2003; 95:249-277. – reference: Sze KY, Chen JS, Sheng N, Liu XH. Stabilized conforming nodal integration: exactness and variational justification. Finite Elements in Analysis and Design 2004; 41:147-171. – reference: Lobo MS, Vandenberghe L, Boyd S, Lebret H. Applications of second-order cone programming. Linear Algebra and its Applications 1998; 284:193-228. – reference: Borges LA, Zouain N, Costa C, Feijoo R. An adaptive approach to limit analysis. International Journal of Solids and Structures 2001; 38:1707-1720. – reference: Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 1994; 37:229-256. – reference: Krysl P, Belytschko T. Analysis of thin plates by the element-free Galerkin method. Computational Mechanics 1995; 17:26-35. – reference: Christiansen E, Andersen KD. Computation of collapse states with von Mises type yield condition. International Journal for Numerical Methods in Engineering 1999; 46:1185-1202. – reference: Vicente da Silva M, Antao AN. A non-linear programming method approach for upper bound limit analysis. International Journal for Numerical Methods in Engineering 2007; 72:1192-1218. – reference: Ciria H, Peraire J, Bonet J. Mesh adaptive computation of upper and lower bounds in limit analysis. International Journal for Numerical Methods in Engineering 2008; 75:899-944. – reference: Gaudrat VF. A Newton type algorithm for plastic limit analysis. Computer Methods in Applied Mechanics and Engineering 1991; 88:207-224. – reference: Christiansen E, Kortanek KO. Computation of the collapse state in limit analysis using the LP affine scaling algorithm. Journal of Computational and Applied Mathematics 1991; 34:47-63. – reference: Nguyen HD. Direct limit analysis via rigid-plastic finite elements. Computer Methods in Applied Mechanics and Engineering 1976; 8:81-116. – reference: Andersen KD. An efficient Newton barrier method for minimizing a sum of Euclidean norms. SIAM Journal on Optimization 1996; 6:74-95. – reference: Zouain N, Herskovits J, Borges LA, Feijoo RA. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures 1993; 30:1397-1417. – reference: Capsoni A, Corradi L. Limit analysis of plates-a finite element formulation. Structural Engineering and Mechanics 1999; 8:325-341. – reference: Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering 1996; 139:3-47. – reference: Makrodimopoulos A, Martin CM. Upper bound limit analysis using simplex strain elements and second-order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics 2006; 31:835-865. – reference: Liu YH, Zen ZZ, Xu BY. A numerical method for plastic limit analysis of 3-D structures. International Journal of Solids and Structures 1995; 32:1645-1658. – reference: Lyamin AV, Sloan SW. Mesh generation for lower bound limit analysis. Advances in Engineering Software 2003; 34:321-338. – reference: Krabbenhoft K, Lyamin AV, Sloan SW. Formulation and solution of some plasticity problems as conic programs. International Journal of Solids and Structures 2006; 44:1533-1549. – reference: Lubliner J. Plasticity Theory. Macmillan: New York, 1990. – reference: Capsoni A, Corradi L. A finite element formulation of the rigid-plastic limit analysis problem. International Journal for Numerical Methods in Engineering 1997; 40:2063-2086. – reference: Chen JS, Wang D. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Computer Methods in Applied Mechanics and Engineering 2004; 193:1065-1083. – reference: Chen JS, Wux CT, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering 2001; 50:435-466. – reference: Chen S, Liu Y, Cen Z. Lower-bound limit analysis by using the EFG method and non-linear programming. International Journal for Numerical Methods in Engineering 2008; 74:391-415. – reference: Zhu T, Atluri SN. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics 1998; 21:211-222. – reference: Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering 1996; 139:49-74. – reference: Christiansen E, Pedersen OS. Automatic mesh refinement in limit analysis. International Journal for Numerical Methods in Engineering 2001; 50:1331-1346. – reference: Franco JRQ, Ponter ARS, Barros FB. Adaptive F.E. method for the shakedown and limit analysis of pressure vessels. European Journal of Mechanics-A/Solids 2003; 22:525-533. – volume: 46 start-page: 1185 year: 1999 end-page: 1202 article-title: Computation of collapse states with von Mises type yield condition publication-title: International Journal for Numerical Methods in Engineering – volume: 41 start-page: 147 year: 2004 end-page: 171 article-title: Stabilized conforming nodal integration: exactness and variational justification publication-title: Finite Elements in Analysis and Design – volume: 38 start-page: 1707 year: 2001 end-page: 1720 article-title: An adaptive approach to limit analysis publication-title: International Journal of Solids and Structures – volume: 139 start-page: 3 year: 1996 end-page: 47 article-title: Meshless methods: an overview and recent developments publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 30 start-page: 1397 year: 1993 end-page: 1417 article-title: An iterative algorithm for limit analysis with nonlinear yield functions publication-title: International Journal of Solids and Structures – volume: 44 start-page: 1533 year: 2006 end-page: 1549 article-title: Formulation and solution of some plasticity problems as conic programs publication-title: International Journal of Solids and Structures – volume: 88 start-page: 207 year: 1991 end-page: 224 article-title: A Newton type algorithm for plastic limit analysis publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 63 start-page: 1069 year: 2005 end-page: 1088 article-title: A new discontinuous upper bound limit analysis formulation publication-title: International Journal for Numerical Methods in Engineering – volume: 3 start-page: 117 year: 1954 end-page: 129 article-title: Load‐carrying capacities for circular plates of perfectly‐plastic material with arbitrary yield condition publication-title: Journal of the Mechanics and Physics of Solids – volume: 139 start-page: 49 year: 1996 end-page: 74 article-title: Nodal integration of the element‐free Galerkin method publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 34 start-page: 321 year: 2003 end-page: 338 article-title: Mesh generation for lower bound limit analysis publication-title: Advances in Engineering Software – volume: 34 start-page: 47 year: 1991 end-page: 63 article-title: Computation of the collapse state in limit analysis using the LP affine scaling algorithm publication-title: Journal of Computational and Applied Mathematics – volume: 31 start-page: 835 year: 2006 end-page: 865 article-title: Upper bound limit analysis using simplex strain elements and second‐order cone programming publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 40 start-page: 2063 year: 1997 end-page: 2086 article-title: A finite element formulation of the rigid‐plastic limit analysis problem publication-title: International Journal for Numerical Methods in Engineering – year: 1990 – volume: 75 start-page: 899 year: 2008 end-page: 944 article-title: Mesh adaptive computation of upper and lower bounds in limit analysis publication-title: International Journal for Numerical Methods in Engineering – volume: 463 start-page: 2461 year: 2007 end-page: 2484 article-title: Application of discontinuity layout optimization to plane plasticity problems publication-title: Proceedings of the Royal Society, Series A – volume: 6 start-page: 74 year: 1996 end-page: 95 article-title: An efficient Newton barrier method for minimizing a sum of Euclidean norms publication-title: SIAM Journal on Optimization – volume: 21 start-page: 211 year: 1998 end-page: 222 article-title: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method publication-title: Computational Mechanics – volume: 22 start-page: 243 year: 2001 end-page: 262 article-title: An efficient primal‐dual interior‐point method for minimizing a sum of Euclidean norms publication-title: SIAM Journal on Scientific Computing – volume: 17 start-page: 26 year: 1995 end-page: 35 article-title: Analysis of thin plates by the element‐free Galerkin method publication-title: Computational Mechanics – volume: 74 start-page: 391 year: 2008 end-page: 415 article-title: Lower‐bound limit analysis by using the EFG method and non‐linear programming publication-title: International Journal for Numerical Methods in Engineering – volume: 50 start-page: 1331 year: 2001 end-page: 1346 article-title: Automatic mesh refinement in limit analysis publication-title: International Journal for Numerical Methods in Engineering – volume: 35 start-page: 796 year: 1968 end-page: 802 article-title: Numerical methods for the limit analysis of plates publication-title: Journal of Applied Mechanics – volume: 8 start-page: 81 year: 1976 end-page: 116 article-title: Direct limit analysis via rigid‐plastic finite elements publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2008 – volume: 32 start-page: 1645 year: 1995 end-page: 1658 article-title: A numerical method for plastic limit analysis of 3‐D structures publication-title: International Journal of Solids and Structures – volume: 19 start-page: 1046 year: 1998 end-page: 1062 article-title: Computing limit loads by minimizing a sum of norms publication-title: SIAM Journal on Scientific Computing – volume: 95 start-page: 249 year: 2003 end-page: 277 article-title: On implementing a primal‐dual interior‐point method for conic quadratic programming publication-title: Mathematical Programming – volume: 193 start-page: 1065 year: 2004 end-page: 1083 article-title: Locking‐free stabilized conforming nodal integration for meshfree Mindlin‐Reissner plate formulation publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 50 start-page: 435 year: 2001 end-page: 466 article-title: A stabilized conforming nodal integration for Galerkin mesh‐free methods publication-title: International Journal for Numerical Methods in Engineering – volume: 284 start-page: 193 year: 1998 end-page: 228 article-title: Applications of second‐order cone programming publication-title: Linear Algebra and its Applications – volume: 8 start-page: 325 year: 1999 end-page: 341 article-title: Limit analysis of plates—a finite element formulation publication-title: Structural Engineering and Mechanics – volume: 72 start-page: 1192 year: 2007 end-page: 1218 article-title: A non‐linear programming method approach for upper bound limit analysis publication-title: International Journal for Numerical Methods in Engineering – volume: 22 start-page: 525 year: 2003 end-page: 533 article-title: Adaptive F.E. method for the shakedown and limit analysis of pressure vessels publication-title: European Journal of Mechanics—A/Solids – volume: 37 start-page: 229 year: 1994 end-page: 256 article-title: Element‐free Galerkin methods publication-title: International Journal for Numerical Methods in Engineering – ident: e_1_2_1_34_2 doi: 10.12989/sem.1999.8.4.325 – ident: e_1_2_1_26_2 doi: 10.1002/nme.2177 – ident: e_1_2_1_35_2 doi: 10.1016/S0024-3795(98)10032-0 – ident: e_1_2_1_22_2 – ident: e_1_2_1_37_2 doi: 10.1016/0022-5096(55)90055-7 – ident: e_1_2_1_20_2 doi: 10.1137/S1064827598343954 – ident: e_1_2_1_17_2 doi: 10.1016/S0997-7538(03)00065-2 – ident: e_1_2_1_21_2 doi: 10.1007/s10107-002-0349-3 – ident: e_1_2_1_3_2 doi: 10.1016/0045-7825(76)90054-2 – ident: e_1_2_1_7_2 doi: 10.1016/0377-0427(91)90147-C – volume-title: Plasticity Theory year: 1990 ident: e_1_2_1_36_2 – ident: e_1_2_1_12_2 doi: 10.1002/nme.2061 – ident: e_1_2_1_16_2 doi: 10.1016/S0020-7683(00)00131-1 – ident: e_1_2_1_24_2 doi: 10.1016/j.ijsolstr.2006.06.036 – ident: e_1_2_1_8_2 doi: 10.1016/0020-7683(93)90220-2 – ident: e_1_2_1_6_2 doi: 10.1016/0045-7825(91)90255-5 – ident: e_1_2_1_5_2 doi: 10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N – ident: e_1_2_1_23_2 doi: 10.1002/nag.567 – ident: e_1_2_1_31_2 doi: 10.1016/j.finel.2004.05.003 – ident: e_1_2_1_14_2 doi: 10.1098/rspa.2006.1788 – ident: e_1_2_1_32_2 doi: 10.1016/j.cma.2003.12.006 – ident: e_1_2_1_10_2 doi: 10.1137/0806006 – ident: e_1_2_1_4_2 doi: 10.1002/(SICI)1097-0207(19970615)40:11<2063::AID-NME159>3.0.CO;2-# – ident: e_1_2_1_30_2 doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A – ident: e_1_2_1_13_2 doi: 10.1002/nme.1314 – ident: e_1_2_1_29_2 doi: 10.1016/S0045-7825(96)01079-1 – ident: e_1_2_1_33_2 doi: 10.1007/s004660050296 – ident: e_1_2_1_11_2 doi: 10.1137/S1064827594275303 – ident: e_1_2_1_25_2 doi: 10.1002/nme.1620370205 – ident: e_1_2_1_19_2 doi: 10.1002/nme.2275 – ident: e_1_2_1_28_2 doi: 10.1016/S0045-7825(96)01078-X – ident: e_1_2_1_15_2 doi: 10.1002/1097-0207(20010228)50:6<1331::AID-NME46>3.0.CO;2-S – ident: e_1_2_1_27_2 doi: 10.1007/BF00356476 – ident: e_1_2_1_2_2 doi: 10.1115/1.3601308 – ident: e_1_2_1_9_2 doi: 10.1016/0020-7683(94)00230-T – ident: e_1_2_1_18_2 doi: 10.1016/S0965-9978(03)00032-2 |
SSID | ssj0011503 |
Score | 2.2164025 |
Snippet | The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves... The meshless element-free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1532 |
SubjectTerms | Computational techniques Curvature Displacement EFG method Exact sciences and technology Fundamental areas of phenomenology (including applications) limit analysis Limit load Mathematical analysis Mathematical methods in physics Mathematical models nodal integration Optimization Physics Plates Programming second-order cone programming Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics |
Title | Limit analysis of plates using the EFG method and second-order cone programming |
URI | https://api.istex.fr/ark:/67375/WNG-QK7XKHS2-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.2535 https://www.proquest.com/docview/753627939 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PaxQxFH5IvejB1qq4WksE0dNsp8lkMjmK7HZp2YWqxQUPIckkPbTdls4uiCf_BP9G_xLfm1_sikLxNAReyEySl3xv8r0vAG8wRpZaq5hkpRdJVoSYaBfTRNFu4kMUpaDk5Oksn5xlx3M5b1mVlAvT6EP0P9zIM-r1mhzcuupgTTT0Kgy5FJRfTlQtwkMfe-UowjmiY3dIXRx2urMpP-gqbuxE96lTvxEz0lbYObG51WIDdq6D13r3GW_D1-69G9LJxXC1dEP__Q9Jx__7sB141IJS9r6ZRY_hXljswnYLUFnr_tUuPFxTL8TStJd8rZ7AaZ0qxWwrcsKuI7u5JCDLiFp_ztCUjcZHrLmyGu1KVlEwXv768bPW_2RYCKzli11hladwNh59_jBJ2vsaEk8JsokW3nIlueelCoXKorYuK5zDiCWVzss0U85b51MVvY72UBY2FLkjhmvqcZaIZ7C1wKaeA3PaF9ZjqMVjwADe2zxaLl2hIxfWhjiAd93YGd-KmdOdGpemkWHmBnvRUC8O4HVvedMIePzF5m09_L2Bvb0gwpuS5svsyJyeqPnJ5BM36QD2N-ZHXwGBU457vRgA6yaMQT-lwxe7CNerymBYmHNcDDU2Vo_-P9_GzKYjer64q-FLeNCcceUJl3uwtbxdhVcIlZZuv3aK36GHEdo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB6V9gAcKBQQ4acYCcFp06293l2LE4KkgTSRCq3IAcmyvTaHtmnVTSTEiUfgGXkSZvZPCQIJcVpZGsve8Yw9Y898A_AcfWSpVBaipHAiSnIfImVDHGV0mjgfRCEoOXkyTUcnyfuZnG3AqzYXpsaH6C7cSDOq_ZoUnC6k91ZQQ899n0shr8EWFfSm8gVvP3TYUWTpiDa-Q6p8v0Wejfle23PtLNoitn6l2EhTIntCXddizfBcNV-r82e4DZ_bmddhJ6f95cL23bffQB3_89duw63GLmWva0G6Axt-vgPbjY3Kmh2g3IGbKwCG2Jp0qK_lXTiqsqWYaXBO2EVgl2dkyzKKrv_CkJQNhgesrlqNdAUryR8vfn7_UUGAMmx41oSMnWOXe3AyHBy_GUVNyYbIUY5spIQzPJPc8SLzeZYEZWySW4tOSyytk3GSWWesi7PgVDD7Mjc-Ty0FucYOBUXch805DvUAmFUuNw69LR48-vDOpMFwaXMVuDDGhx68bBdPuwbPnMpqnOkaiZlr5KImLvbgWUd5WWN4_IHmRbX-HYG5OqWYt0zqT9MDfTTOZuPRR67jHuyuCUjXAW2nFI970QPWSoxGVaX3FzP3F8tSo2eYctwPFQ5WLf9fZ6OnkwF9H_4r4VO4PjqeHOrDd9PxI7hRP3mlEZePYXNxtfRP0HJa2N1KQ34BnZ0V9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB5BKyE4UCggwk8xEoLTplt7vbs-IkgaCIkoUBGpB8v22hzaplE3kRAnHoFn5EmY2T8lCCTEaWVpLO-OPZ5v1uNvAJ5hjCyVykKUFE5ESe5DpGyIo4y8ifNBFIIuJ0-m6eg4eTuTsyarku7C1PwQ3Q83soxqvyYDXxRhf4009Nz3uRTyKmwnKdoKAaIPHXUUAR3RpndIlR-0xLMx3297briibdLqV0qNNCVqJ9RlLTZw5zp6rdzPcAdO2hevs05O-6ul7btvv3E6_t-X3YKbDSplL-tldBuu-Pku7DQIlTX2X-7CjTX6QmxNOs7X8g4cVXelmGlYTthFYIszQrKMcuu_MBRlg-Ehq2tWo1zBSorGi5_ff1QEoAwbnjUJY-fY5S4cDwefXo2ipmBD5OiGbKSEMzyT3PEi83mWBGVskluLIUssrZNxkllnrIuz4FQwBzI3Pk8tpbjGDpeJuAdbcxzqPjCrXG4cxlo8eIzgnUmD4dLmKnBhjA89eNHOnXYNmzkV1TjTNQ8z16hFTVrswdNOclEzePxB5nk1_Z2AuTyljLdM6s_TQ300zmbj0Ueu4x7sbayPrgMipxSdvegBaxeMRkOl0xcz9xerUmNcmHLcDRUOVs3-X99GTycDej74V8EncO3966F-92Y6fgjX6_OuNOLyEWwtL1f-McKmpd2r7OMXc-QUrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limit+analysis+of+plates+using+the+EFG+method+and+second%E2%80%90order+cone+programming&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Le%2C+Canh+V.&rft.au=Gilbert%2C+Matthew&rft.au=Askes%2C+Harm&rft.date=2009-06-25&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=78&rft.issue=13&rft.spage=1532&rft.epage=1552&rft_id=info:doi/10.1002%2Fnme.2535&rft.externalDBID=10.1002%252Fnme.2535&rft.externalDocID=NME2535 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |