From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise

Relative sea level rise (RSLR) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal flooding elevation thresholds established by the National Weather Service (NWS) at U.S. tide gauges over the last half‐century. For threshold leve...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 2; no. 12; pp. 579 - 600
Main Authors Sweet, William V., Park, Joseph
Format Journal Article
LanguageEnglish
Published Hoboken, USA Wiley Periodicals, Inc 01.12.2014
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Relative sea level rise (RSLR) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal flooding elevation thresholds established by the National Weather Service (NWS) at U.S. tide gauges over the last half‐century. For threshold levels below 0.5 m above high tide, the rates of annual exceedances are accelerating along the U.S. East and Gulf Coasts, primarily from evolution of tidal water level distributions to higher elevations impinging on the flood threshold. These accelerations are quantified in terms of the local RSLR rate and tidal range through multiple regression analysis. Along the U.S. West Coast, annual exceedance rates are linearly increasing, complicated by sharp punctuations in RSLR anomalies during El Niño Southern Oscillation (ENSO) phases, and we account for annual exceedance variability along the U.S. West and East Coasts from ENSO forcing. Projections of annual exceedances above local NWS nuisance levels at U.S. tide gauges are estimated by shifting probability estimates of daily maximum water levels over a contemporary 5‐year period following probabilistic RSLR projections of Kopp et al. (2014) for representative concentration pathways (RCP) 2.6, 4.5, and 8.5. We suggest a tipping point for coastal inundation (30 days/per year with a threshold exceedance) based on the evolution of exceedance probabilities. Under forcing associated with the local‐median projections of RSLR, the majority of locations surpass the tipping point over the next several decades regardless of specific RCP. Key Points Nuisance coastal flooding is increasing along U.S. coastlines Event rates accelerate as water level distributions exceed elevation thresholds Tipping points for coastal inundation are surpassed in the coming decades
AbstractList Relative sea level rise ( RSLR ) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal flooding elevation thresholds established by the National Weather Service ( NWS ) at U.S. tide gauges over the last half‐century. For threshold levels below 0.5 m above high tide, the rates of annual exceedances are accelerating along the U.S. East and Gulf Coasts, primarily from evolution of tidal water level distributions to higher elevations impinging on the flood threshold. These accelerations are quantified in terms of the local RSLR rate and tidal range through multiple regression analysis. Along the U.S. West Coast, annual exceedance rates are linearly increasing, complicated by sharp punctuations in RSLR anomalies during El Niño Southern Oscillation ( ENSO ) phases, and we account for annual exceedance variability along the U.S. West and East Coasts from ENSO forcing. Projections of annual exceedances above local NWS nuisance levels at U.S. tide gauges are estimated by shifting probability estimates of daily maximum water levels over a contemporary 5‐year period following probabilistic RSLR projections of Kopp et al. (2014) for representative concentration pathways ( RCP ) 2.6, 4.5, and 8.5. We suggest a tipping point for coastal inundation (30 days/per year with a threshold exceedance) based on the evolution of exceedance probabilities. Under forcing associated with the local‐median projections of RSLR , the majority of locations surpass the tipping point over the next several decades regardless of specific RCP . Nuisance coastal flooding is increasing along U.S. coastlines Event rates accelerate as water level distributions exceed elevation thresholds Tipping points for coastal inundation are surpassed in the coming decades
Relative sea level rise (RSLR) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal flooding elevation thresholds established by the National Weather Service (NWS) at U.S. tide gauges over the last half-century. For threshold levels below 0.5m above high tide, the rates of annual exceedances are accelerating along the U.S. East and Gulf Coasts, primarily from evolution of tidal water level distributions to higher elevations impinging on the flood threshold. These accelerations are quantified in terms of the local RSLR rate and tidal range through multiple regression analysis. Along the U.S. West Coast, annual exceedance rates are linearly increasing, complicated by sharp punctuations in RSLR anomalies during El Niño Southern Oscillation (ENSO) phases, and we account for annual exceedance variability along the U.S. West and East Coasts from ENSO forcing. Projections of annual exceedances above local NWS nuisance levels at U.S. tide gauges are estimated by shifting probability estimates of daily maximum water levels over a contemporary 5-year period following probabilistic RSLR projections of Kopp et al. (2014) for representative concentration pathways (RCP) 2.6, 4.5, and 8.5. We suggest a tipping point for coastal inundation (30days/per year with a threshold exceedance) based on the evolution of exceedance probabilities. Under forcing associated with the local-median projections of RSLR, the majority of locations surpass the tipping point over the next several decades regardless of specific RCP. Key Points Nuisance coastal flooding is increasing along U.S. coastlines Event rates accelerate as water level distributions exceed elevation thresholds Tipping points for coastal inundation are surpassed in the coming decades
Relative sea level rise (RSLR) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal flooding elevation thresholds established by the National Weather Service (NWS) at U.S. tide gauges over the last half‐century. For threshold levels below 0.5 m above high tide, the rates of annual exceedances are accelerating along the U.S. East and Gulf Coasts, primarily from evolution of tidal water level distributions to higher elevations impinging on the flood threshold. These accelerations are quantified in terms of the local RSLR rate and tidal range through multiple regression analysis. Along the U.S. West Coast, annual exceedance rates are linearly increasing, complicated by sharp punctuations in RSLR anomalies during El Niño Southern Oscillation (ENSO) phases, and we account for annual exceedance variability along the U.S. West and East Coasts from ENSO forcing. Projections of annual exceedances above local NWS nuisance levels at U.S. tide gauges are estimated by shifting probability estimates of daily maximum water levels over a contemporary 5‐year period following probabilistic RSLR projections of Kopp et al. (2014) for representative concentration pathways (RCP) 2.6, 4.5, and 8.5. We suggest a tipping point for coastal inundation (30 days/per year with a threshold exceedance) based on the evolution of exceedance probabilities. Under forcing associated with the local‐median projections of RSLR, the majority of locations surpass the tipping point over the next several decades regardless of specific RCP.
Relative sea level rise (RSLR) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal flooding elevation thresholds established by the National Weather Service (NWS) at U.S. tide gauges over the last half-century. For threshold levels below 0.5m above high tide, the rates of annual exceedances are accelerating along the U.S. East and Gulf Coasts, primarily from evolution of tidal water level distributions to higher elevations impinging on the flood threshold. These accelerations are quantified in terms of the local RSLR rate and tidal range through multiple regression analysis. Along the U.S. West Coast, annual exceedance rates are linearly increasing, complicated by sharp punctuations in RSLR anomalies during El Nino Southern Oscillation (ENSO) phases, and we account for annual exceedance variability along the U.S. West and East Coasts from ENSO forcing. Projections of annual exceedances above local NWS nuisance levels at U.S. tide gauges are estimated by shifting probability estimates of daily maximum water levels over a contemporary 5-year period following probabilistic RSLR projections of Kopp et al. (2014) for representative concentration pathways (RCP) 2.6, 4.5, and 8.5. We suggest a tipping point for coastal inundation (30days/per year with a threshold exceedance) based on the evolution of exceedance probabilities. Under forcing associated with the local-median projections of RSLR, the majority of locations surpass the tipping point over the next several decades regardless of specific RCP. Key Points * Nuisance coastal flooding is increasing along U.S. coastlines * Event rates accelerate as water level distributions exceed elevation thresholds * Tipping points for coastal inundation are surpassed in the coming decades
Relative sea level rise (RSLR) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal flooding elevation thresholds established by the National Weather Service (NWS) at U.S. tide gauges over the last half‐century. For threshold levels below 0.5 m above high tide, the rates of annual exceedances are accelerating along the U.S. East and Gulf Coasts, primarily from evolution of tidal water level distributions to higher elevations impinging on the flood threshold. These accelerations are quantified in terms of the local RSLR rate and tidal range through multiple regression analysis. Along the U.S. West Coast, annual exceedance rates are linearly increasing, complicated by sharp punctuations in RSLR anomalies during El Niño Southern Oscillation (ENSO) phases, and we account for annual exceedance variability along the U.S. West and East Coasts from ENSO forcing. Projections of annual exceedances above local NWS nuisance levels at U.S. tide gauges are estimated by shifting probability estimates of daily maximum water levels over a contemporary 5‐year period following probabilistic RSLR projections of Kopp et al. (2014) for representative concentration pathways (RCP) 2.6, 4.5, and 8.5. We suggest a tipping point for coastal inundation (30 days/per year with a threshold exceedance) based on the evolution of exceedance probabilities. Under forcing associated with the local‐median projections of RSLR, the majority of locations surpass the tipping point over the next several decades regardless of specific RCP. Key Points Nuisance coastal flooding is increasing along U.S. coastlines Event rates accelerate as water level distributions exceed elevation thresholds Tipping points for coastal inundation are surpassed in the coming decades
Author Park, Joseph
Sweet, William V.
Author_xml – sequence: 1
  givenname: William V.
  surname: Sweet
  fullname: Sweet, William V.
  organization: NOAA National Ocean Service
– sequence: 2
  givenname: Joseph
  surname: Park
  fullname: Park, Joseph
  organization: NOAA National Ocean Service
BookMark eNp9kTlPwzAUgC0EEufGD7DEwkDBdnwkbAi1gFSJBebIcV7AKLGD7QL997gtQ4UEy7v0vfsQ7TrvAKFTSi4pIeyKEcqnM5JNxXbQAStYOeFMqd0tex-dxPiWGVIpUgh1gF5mwQ84vQKGrxRgAJz82h1Au2t8Ywz0EHSy3mHtWpzsOFr3gkdvXYrYd9h4HZPusXUL127AblUzgsY9fECPg41wjPY63Uc4-dFH6Hk2fbq9n8wf7x5ub-YTU1QVz7LloApaVlI3lAlJGkWoMFxyIxumWqNL2bKukaSomoZKIbsuR5mWlWrKqjhC55u6Y_DvC4ipHmzMO_TagV_EmiolJZeC8oye_ULf_CK4PF3NWEVkmS9G_qOoEqIUnDKWqYsNZYKPMUBXj8EOOixrSurVe-rt92Sc_cKNTevbpaBt_1cS2SR92h6W_zaop7MnJnjxDWfen5A
CitedBy_id crossref_primary_10_1016_j_geosus_2024_01_004
crossref_primary_10_1016_j_compenvurbsys_2019_101417
crossref_primary_10_1371_journal_pone_0218430
crossref_primary_10_1002_2017JC013065
crossref_primary_10_1029_2018EF001089
crossref_primary_10_3390_jmse5030031
crossref_primary_10_1175_EI_D_21_0013_1
crossref_primary_10_1016_j_oceaneng_2024_118340
crossref_primary_10_1007_s11829_024_10062_9
crossref_primary_10_1016_j_landusepol_2020_104829
crossref_primary_10_1029_2019JC015312
crossref_primary_10_1111_risa_13240
crossref_primary_10_3390_jmse8090725
crossref_primary_10_1038_s41598_020_62188_4
crossref_primary_10_1088_1748_9326_11_9_094004
crossref_primary_10_1088_1748_9326_aa6cb3
crossref_primary_10_3390_hydrology9120221
crossref_primary_10_1029_2021GL096820
crossref_primary_10_2112_JCOASTRES_D_15_00100_1
crossref_primary_10_3390_jmse9020151
crossref_primary_10_1371_journal_pone_0280126
crossref_primary_10_1029_2019RG000672
crossref_primary_10_3390_jmse5030040
crossref_primary_10_1175_JCLI_D_16_0896_1
crossref_primary_10_3390_jmse9091011
crossref_primary_10_1038_s41598_018_25410_y
crossref_primary_10_1002_2017JC013165
crossref_primary_10_1177_1087724X18798380
crossref_primary_10_1016_j_crm_2020_100233
crossref_primary_10_1111_mice_12853
crossref_primary_10_1016_j_uclim_2020_100752
crossref_primary_10_3390_jmse10111715
crossref_primary_10_1093_pnasnexus_pgad426
crossref_primary_10_1126_sciadv_aau2736
crossref_primary_10_1002_2017GL072845
crossref_primary_10_1016_j_jad_2021_12_124
crossref_primary_10_1016_j_ijdrr_2021_102612
crossref_primary_10_3390_w11051098
crossref_primary_10_1002_2016EF000494
crossref_primary_10_3390_rs13173431
crossref_primary_10_1371_journal_pone_0170949
crossref_primary_10_3389_fmars_2019_00437
crossref_primary_10_1007_s11069_021_04600_4
crossref_primary_10_1007_s10712_019_09550_y
crossref_primary_10_1016_j_coastaleng_2023_104448
crossref_primary_10_1029_2020JC016604
crossref_primary_10_1029_2022JB025993
crossref_primary_10_1002_2016EF000363
crossref_primary_10_1088_2515_7620_ab21fe
crossref_primary_10_3390_jmse5020024
crossref_primary_10_1038_s41467_019_13935_3
crossref_primary_10_1029_2023EF004149
crossref_primary_10_1029_2021EF002285
crossref_primary_10_1177_0361198118774234
crossref_primary_10_1038_s41598_020_60762_4
crossref_primary_10_3390_w15234167
crossref_primary_10_1038_s41598_023_48807_w
crossref_primary_10_1007_s42421_022_00056_5
crossref_primary_10_2112_JCOASTRES_D_22A_00006_1
crossref_primary_10_1016_j_wace_2023_100596
crossref_primary_10_1002_2014JC010602
crossref_primary_10_3390_jmse5040049
crossref_primary_10_1038_s41467_018_02985_8
crossref_primary_10_1016_j_ocecoaman_2017_08_007
crossref_primary_10_1016_j_scs_2023_104822
crossref_primary_10_4031_MTSJ_52_2_6
crossref_primary_10_1061__ASCE_IS_1943_555X_0000652
crossref_primary_10_1007_s00267_017_0952_y
crossref_primary_10_1038_s41598_018_37017_4
crossref_primary_10_1039_D1EW00582K
crossref_primary_10_1175_JTECH_D_21_0027_1
crossref_primary_10_1007_s10236_017_1057_0
crossref_primary_10_1029_2023JC020498
crossref_primary_10_5194_os_15_853_2019
crossref_primary_10_1007_s10113_017_1156_y
crossref_primary_10_1146_annurev_marine_020923_120737
crossref_primary_10_1080_21681163_2018_1488223
crossref_primary_10_2298_CSIS210313058S
crossref_primary_10_1016_j_landusepol_2023_106754
crossref_primary_10_1029_2018WR022828
crossref_primary_10_1071_ES22023
crossref_primary_10_1007_s10113_023_02138_8
crossref_primary_10_1038_s43247_020_0008_8
crossref_primary_10_1257_jep_32_4_3
crossref_primary_10_3390_su12041513
crossref_primary_10_1016_j_envsoft_2019_07_009
crossref_primary_10_1061__ASCE_WR_1943_5452_0001245
crossref_primary_10_1177_1087724X20915918
crossref_primary_10_1016_j_coastaleng_2019_03_012
crossref_primary_10_3389_fmars_2022_1073792
crossref_primary_10_1029_2020JC017060
crossref_primary_10_1029_2022WR033144
crossref_primary_10_3390_hydrology12010002
crossref_primary_10_1007_s11069_023_06225_1
crossref_primary_10_1007_s13753_020_00288_5
crossref_primary_10_1029_2022JC019410
crossref_primary_10_1016_j_coastaleng_2020_103718
crossref_primary_10_1016_j_physrep_2020_09_005
crossref_primary_10_1007_s10712_019_09531_1
crossref_primary_10_1007_s10236_016_0928_0
crossref_primary_10_3389_fenvs_2023_1083282
crossref_primary_10_1016_j_advwatres_2019_07_007
crossref_primary_10_5194_esurf_7_429_2019
crossref_primary_10_1016_j_jdmm_2021_100634
crossref_primary_10_3389_frwa_2024_1359196
crossref_primary_10_2112_JCOASTRES_D_15_00041_1
crossref_primary_10_1038_s41467_024_48545_1
crossref_primary_10_1016_j_ocemod_2016_05_008
crossref_primary_10_1029_2018JC014694
crossref_primary_10_1038_s41558_021_01077_8
crossref_primary_10_1525_elementa_234
crossref_primary_10_3389_fmars_2020_581769
crossref_primary_10_1007_s10236_024_01656_1
crossref_primary_10_1016_j_coastaleng_2025_104725
crossref_primary_10_2139_ssrn_4162085
crossref_primary_10_1002_2016JC012084
crossref_primary_10_1007_s11069_023_06247_9
crossref_primary_10_3390_jmse11050945
crossref_primary_10_1029_2021JC017730
crossref_primary_10_1017_cft_2024_12
crossref_primary_10_1007_s10669_015_9546_5
crossref_primary_10_1016_j_ecss_2021_107555
crossref_primary_10_1177_03611981241287539
crossref_primary_10_3390_jmse6030076
crossref_primary_10_1080_08920753_2019_1551012
crossref_primary_10_3390_geosciences8120450
crossref_primary_10_1088_1748_9326_aadf96
crossref_primary_10_1038_s41598_017_15309_5
crossref_primary_10_1029_2024GL108864
crossref_primary_10_1007_s10236_022_01536_6
crossref_primary_10_1029_2023EF004123
crossref_primary_10_1029_2018EF001145
crossref_primary_10_1029_2021EF002581
crossref_primary_10_3390_jmse3030591
crossref_primary_10_1016_j_jhydrol_2018_01_044
crossref_primary_10_1007_s00442_023_05395_w
crossref_primary_10_3390_jmse11071420
crossref_primary_10_1038_s41598_019_49822_6
crossref_primary_10_1016_j_marpol_2020_103987
crossref_primary_10_1007_s00382_016_3464_1
crossref_primary_10_1002_2015GL066030
crossref_primary_10_1146_annurev_marine_010419_010727
crossref_primary_10_5194_nhess_20_783_2020
crossref_primary_10_1016_j_cities_2018_10_007
crossref_primary_10_1016_j_earscirev_2020_103166
crossref_primary_10_1016_j_envsoft_2019_06_002
crossref_primary_10_1038_s41598_017_17056_z
crossref_primary_10_1016_j_wace_2023_100575
crossref_primary_10_1088_1755_1315_1224_1_012019
crossref_primary_10_3390_w15142671
crossref_primary_10_1038_s41467_021_27260_1
crossref_primary_10_3389_fenvs_2022_1045743
crossref_primary_10_1016_j_coastaleng_2016_01_014
crossref_primary_10_1371_journal_pone_0238770
crossref_primary_10_3390_jmse12020277
crossref_primary_10_1061__ASCE_WW_1943_5460_0000579
crossref_primary_10_1029_2019WR027038
crossref_primary_10_1029_2020GL090013
crossref_primary_10_1038_s41598_017_11544_y
crossref_primary_10_5194_nhess_21_703_2021
crossref_primary_10_1016_j_watres_2017_02_035
crossref_primary_10_3390_rs14174339
crossref_primary_10_1029_2020EF001652
crossref_primary_10_1029_2023GC011060
crossref_primary_10_1016_j_csr_2017_09_009
crossref_primary_10_1002_2016GL071020
crossref_primary_10_3390_jmse8110920
crossref_primary_10_1029_2022EF002786
crossref_primary_10_1126_sciadv_abe2412
crossref_primary_10_5194_nhess_22_1287_2022
crossref_primary_10_1007_s10712_019_09562_8
crossref_primary_10_1007_s13157_020_01387_1
crossref_primary_10_1111_nyas_14006
crossref_primary_10_1177_0361198118756366
crossref_primary_10_3390_w12113222
crossref_primary_10_1007_s10712_022_09757_6
crossref_primary_10_1175_BAMS_D_18_0298_1
crossref_primary_10_1680_jmaen_15_00015
crossref_primary_10_1038_nclimate2957
crossref_primary_10_1029_2020EF001607
crossref_primary_10_1038_s41612_023_00538_5
crossref_primary_10_1029_2021EF002436
crossref_primary_10_3390_w13081124
crossref_primary_10_1016_j_coastaleng_2018_08_003
crossref_primary_10_1080_10527001_2020_1840131
crossref_primary_10_1002_aqc_3493
crossref_primary_10_1002_2016EF000423
crossref_primary_10_1016_j_csr_2015_11_005
crossref_primary_10_5194_nhess_22_3663_2022
crossref_primary_10_1002_2015GL064580
crossref_primary_10_1007_s11356_024_32902_0
crossref_primary_10_1007_s10236_019_01326_7
crossref_primary_10_1007_s10236_024_01605_y
crossref_primary_10_2166_hydro_2020_080
crossref_primary_10_3389_fmars_2024_1338626
crossref_primary_10_1007_s11069_020_04096_4
crossref_primary_10_1073_pnas_1620325114
crossref_primary_10_1126_science_aat5982
crossref_primary_10_1089_env_2021_0034
crossref_primary_10_1016_j_envsci_2018_10_006
crossref_primary_10_5194_nhess_18_207_2018
crossref_primary_10_1177_0361198120940680
crossref_primary_10_1002_2017JC012713
crossref_primary_10_1038_s41467_021_27445_8
crossref_primary_10_1016_j_uclim_2023_101576
crossref_primary_10_1007_s11069_023_05962_7
crossref_primary_10_1002_2015GL066072
crossref_primary_10_1029_2022JC019012
crossref_primary_10_1038_nclimate2736
crossref_primary_10_1111_disa_12296
crossref_primary_10_1016_j_envsoft_2021_105124
crossref_primary_10_1080_10527001_2020_1836915
crossref_primary_10_1029_2023JC020737
crossref_primary_10_1007_s10980_020_01136_z
crossref_primary_10_1016_j_scitotenv_2021_146470
crossref_primary_10_1017_sus_2020_3
crossref_primary_10_1007_s10584_021_03288_6
crossref_primary_10_1051_e3sconf_20160701012
crossref_primary_10_3389_fmars_2024_1381228
crossref_primary_10_1111_nyas_14011
crossref_primary_10_1088_1748_9326_abb266
crossref_primary_10_1029_2019EF001174
crossref_primary_10_3390_cli11040080
crossref_primary_10_1029_2018GL079572
crossref_primary_10_1038_s43017_019_0002_9
crossref_primary_10_1007_s11069_024_06791_y
crossref_primary_10_3390_w12092481
crossref_primary_10_1038_s41586_024_07038_3
crossref_primary_10_3390_jmse10020262
crossref_primary_10_1038_s41598_021_94942_7
Cites_doi 10.1016/j.gloplacha.2013.06.006
10.1175/MWR-D-10-05043.1
10.1002/GRL.50781
10.1111/eft2.2014EF000239
10.1088/1748-9326/9/10/104008
10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2
10.1007/s10584-011-0079-8
10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2
10.1038/ncomms4635
10.1002/2013EF000188
10.1175/1520-0485(1997)027
10.1175/1520-0485(1982)012
10.1016/S0012-821X(98)00198-8
10.1175/JCLI-D-12-00561.1
10.1175/JCLI3725.1
10.2112/JCOASTRES-D-12-00102.1
10.1017/CBO9781139177245.006
10.1038/nclimate1597
10.1007/s10584-009-9671-6
10.1002/JGRC.20091
10.1029/2012GL052885
10.5194/os-9-535-2013
10.1007/s10712-011-9119-1
10.1073/pnas.0705414105
10.1088/1748-9326/7/1/014032
10.1007/s10584-011-0156-z
10.1029/2010JC006759
10.1002/2014EF000252
10.1073/pnas.1015619108
10.1029/2012GL053435
10.1061/(ASCE)WW.1943-5460.0000052
10.1002/2013EF000135
10.1016/j.quascirev.2004.10.005
10.1029/2012GL052032
10.1061/(ASCE)WW.1943-5460.0000172
10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2
10.1007/s10021-003-0142-z
10.2112/JCOASTRES-D-13-00068.1
ContentType Journal Article
Copyright 2014 The Authors.
2014 American Geophysical Union
2014. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2014 The Authors.
– notice: 2014 American Geophysical Union
– notice: 2014. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7U6
DOI 10.1002/2014EF000272
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Sustainability Science Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database
Publicly Available Content Database
Meteorological & Geoastrophysical Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage 600
ExternalDocumentID 3918180741
10_1002_2014EF000272
EFT254
Genre article
GeographicLocations United States--US
New York City New York
GeographicLocations_xml – name: New York City New York
– name: United States--US
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
7ST
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7U6
ID FETCH-LOGICAL-c3994-c3d4e731896ab12560b7015c464c6b27dca86d2fb6039bb1656ff7dc2a697b893
IEDL.DBID 24P
ISSN 2328-4277
IngestDate Fri Jul 11 06:36:16 EDT 2025
Fri Jul 25 06:27:49 EDT 2025
Sun Jul 13 04:36:30 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 02:48:19 EDT 2025
Wed Jan 22 16:57:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3994-c3d4e731896ab12560b7015c464c6b27dca86d2fb6039bb1656ff7dc2a697b893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014EF000272
PQID 1755854122
PQPubID 2034575
PageCount 22
ParticipantIDs proquest_miscellaneous_1776646514
proquest_journals_2290684270
proquest_journals_1755854122
crossref_primary_10_1002_2014EF000272
crossref_citationtrail_10_1002_2014EF000272
wiley_primary_10_1002_2014EF000272_EFT254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2014
2014-12-00
20141201
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2014
Publisher Wiley Periodicals, Inc
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Periodicals, Inc
– name: John Wiley & Sons, Inc
References 2011; 116
1982; 12
2010; 99
2013; 26
2013; 1
2013; 2
2011; 139
2012
2013; 108
2011
2013; 40
2006; 9
2009
2011; 32
2006; 19
1997; 27
2008; 105
2012; 39
2005; 24
2013; 9
2014; 5
2011; 109
2012; 2
2011; 108
2011; 107
2014; 2
2001
2000; 13
2010; 136
2013; 94
2013; 118
1980; 10
2013; 30
2013; 139
2012; 28
2014
2013
2014; 9
2012; 7
2001; 14
1998; 163
e_1_2_12_4_1
e_1_2_12_6_1
Church J. A. (e_1_2_12_8_1) 2013
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_49_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_35_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_44_1
e_1_2_12_23_1
Merrifield M. A. (e_1_2_12_31_1) 2013; 94
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_40_1
e_1_2_12_27_1
Sweet W. V. (e_1_2_12_45_1) 2013; 94
e_1_2_12_29_1
Marcy D. (e_1_2_12_28_1) 2011
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
IPCC (e_1_2_12_21_1) 2013
e_1_2_12_34_1
e_1_2_12_36_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – volume: 94
  start-page: S68
  issue: 8
  year: 2013
  end-page: S72
  article-title: [Global Oceans] Sea level variability and change [in “State of the Climate in 2012”]
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 19
  start-page: 2076
  year: 2006
  end-page: 2093
  article-title: Climatology and ENSO‐related variability of North American extratropical cyclone activity
  publication-title: J. Clim.
– year: 2009
– volume: 13
  start-page: 1748
  year: 2000
  end-page: 1760
  article-title: Twentieth century storm activity along the U.S. East coast
  publication-title: J. Clim.
– volume: 163
  start-page: 327
  issue: 1‐4
  year: 1998
  end-page: 342
  article-title: Refining the eustatic sea‐level curve since the Last Glacial Maximum using far‐ and intermediate‐field sites
  publication-title: Earth Planet. Sci. Lett.
– volume: 27
  start-page: 2023
  issue: 9
  year: 1997
  end-page: 2039
  article-title: North Pacific thermocline variations on ENSO timescales
  publication-title: J. Phys. Oceanogr.
– volume: 107
  start-page: 109
  issue: 1‐2
  year: 2011
  end-page: 128
  article-title: Storm Surge Projections and Implications for Water Management in South Florida
  publication-title: Clim. Change
– volume: 28
  start-page: 1437
  year: 2012
  end-page: 1445
  article-title: Evidence of sea level acceleration at U.S. and Canadian tide stations, Atlantic Coast, North America
  publication-title: J. Coastal Res.
– year: 2001
– volume: 1
  start-page: 3
  year: 2013
  end-page: 18
  article-title: A geological perspective on sea‐level rise and its impacts along the U.S. mid‐Atlantic coast
  publication-title: Earth's Future
– volume: 9
  start-page: 104008
  issue: 10
  year: 2014
  article-title: Upper limit for sea level projections by 2100
  publication-title: Environ. Res. Lett.
– volume: 2
  start-page: 884
  year: 2012
  end-page: 888
  article-title: Hotspot of accelerated sea‐level rise on the Atlantic coast of North America
  publication-title: Nat. Clim. Change
– volume: 108
  start-page: 11017
  year: 2011
  end-page: 11022
  article-title: Climate related sea level variations over the past two millennia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  start-page: 3635
  year: 2014
  article-title: Timescales for detecting a significant acceleration in sea level rise
  publication-title: Nat. Commun.
– volume: 94
  start-page: S17
  issue: 9
  year: 2013
  end-page: S20
  article-title: Hurricane sandy inundation probabilities of today and tomorrow (in explaining extreme events of 2012 from a climate perspective)
  publication-title: Bull. Am. Meteorol. Soc.
– start-page: 474
  year: 2011
  end-page: 90
– volume: 32
  start-page: 585
  issue: 4
  year: 2011
  end-page: 602
  article-title: Sea‐level rise from the late 19th to the early 21st century
  publication-title: Surv. Geophys.
– volume: 30
  start-page: 1017
  issue: 5
  year: 2013
  end-page: 1024
  article-title: A coastal flood stage to define existing and future sea‐level hazards
  publication-title: J. Coastal Res.
– volume: 12
  start-page: 757
  issue: 8
  year: 1982
  end-page: 784
  article-title: Monthly mean sea level variability along the west coast of North America
  publication-title: J. Phys. Oceanogr.
– volume: 7
  start-page: 014032
  year: 2012
  article-title: Modeling sea level rise impacts on storm surges along US coasts
  publication-title: Environ. Res. Lett.
– year: 2014
– volume: 118
  start-page: 685
  year: 2013
  end-page: 697
  article-title: Gulf Stream's induced sea level rise and variability along the U.S. mid‐Atlantic coast
  publication-title: J. Geophys. Res. Atmos.
– volume: 40
  start-page: 3981
  year: 2013
  end-page: 3985
  article-title: Does the mid‐Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability?
  publication-title: Geophys. Res. Lett.
– year: 2012
– volume: 2
  start-page: 383
  year: 2014
  end-page: 406
  article-title: Probabilistic 21st and 22nd century sea‐level projections at a global network of tide gauge sites
  publication-title: Earth's Future
– volume: 139
  start-page: 2290
  year: 2011
  end-page: 2299
  article-title: Cool‐season sea level anomalies and storm surges along the U.S. East Coast: Climatology and comparison with the 2009/10El Niño
  publication-title: Mon. Weather Rev.
– volume: 2
  start-page: 15
  year: 2013
  end-page: 34
  article-title: Sea level rise and its coastal impacts
  publication-title: Earth's Future
– volume: 10
  start-page: 557
  year: 1980
  end-page: 578
  article-title: On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America
  publication-title: J. Phys. Oceanogr.
– volume: 139
  start-page: 88
  year: 2013
  end-page: 97
  article-title: Is the intensifying wave climate of the U.S. Pacific northwest increasing flooding and erosion risk faster than sea‐level rise?
  publication-title: J. Waterw Port, Coastal Ocean Eng.
– start-page: 1137
  year: 2013
  end-page: 1216
– volume: 136
  start-page: 350
  issue: 6
  year: 2010
  end-page: 356
  article-title: Climate Links and Variability of Extreme Sea Level Events at Key West, Pensacola, and Mayport Florida
  publication-title: ASCE J. Port Coastal, Waterw. Ocean Eng.
– volume: 109
  start-page: 213
  issue: 1‐2
  year: 2011
  end-page: 241
  article-title: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300
  publication-title: Clim. Change
– volume: 39
  start-page: L13602
  year: 2012
  article-title: Multidecadal sea level anomalies and trends in the western tropical Pacific
  publication-title: Geophys. Res. Lett.
– volume: 116
  start-page: C07005
  year: 2011
  article-title: Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration
  publication-title: J. Geophys. Res.
– volume: 108
  start-page: 128
  year: 2013
  end-page: 138
  article-title: Widespread inundation of Pacific islands by distant‐source wind‐waves
  publication-title: Global Env. Change
– volume: 39
  start-page: L18607
  year: 2012
  article-title: Is there a 60‐year oscillation in global mean sea level?
  publication-title: Geophys. Res. Lett.
– volume: 105
  start-page: 1786
  issue: 6
  year: 2008
  article-title: Inaugural article: Tipping elements in the Earth's climate system
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 24
  start-page: 1183
  issue: 10‐11
  year: 2005
  end-page: 1202
  article-title: Modelling Holocene relative sea‐level observations from the Caribbean and South America
  publication-title: Quat. Sci. Rev.
– volume: 14
  start-page: 882
  year: 2001
  end-page: 899
  article-title: An East Coast winter storm climatology
  publication-title: J. Clim.
– volume: 9
  start-page: 535
  year: 2013
  end-page: 543
  article-title: ENSO components of the Atlantic multidecadal oscillation and their relation to North Atlantic interannual coastal sea level anomalies
  publication-title: Ocean Sci.
– volume: 39
  start-page: L19605
  year: 2012
  article-title: Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data
  publication-title: Geophys. Res. Lett.
– volume: 26
  start-page: 9713
  year: 2013
  end-page: 9726
  article-title: Variability of winter storminess in the eastern United States during the twentieth century from tide gauges
  publication-title: J. Clim.
– volume: 2
  start-page: 362
  year: 2014
  end-page: 382
  article-title: Accelerated flooding along the U. S. East Coast: On the impact of sea level rise, tides, storms, the Gulf Stream and NAO
  publication-title: Earth's Future
– volume: 9
  start-page: 1
  year: 2006
  end-page: 13
  article-title: Ecological thresholds: The key to successful environmental management or an important concept with no practical application?
  publication-title: Ecosystems
– start-page: 109
  year: 2012
  end-page: 230
– volume: 99
  start-page: 331
  year: 2010
  end-page: 350
  article-title: Estimating sea‐level extremes under conditions of uncertain sea‐level rise
  publication-title: Clim. Change
– year: 2013
– ident: e_1_2_12_19_1
  doi: 10.1016/j.gloplacha.2013.06.006
– ident: e_1_2_12_52_1
– ident: e_1_2_12_44_1
  doi: 10.1175/MWR-D-10-05043.1
– ident: e_1_2_12_24_1
  doi: 10.1002/GRL.50781
– ident: e_1_2_12_25_1
  doi: 10.1111/eft2.2014EF000239
– ident: e_1_2_12_22_1
  doi: 10.1088/1748-9326/9/10/104008
– ident: e_1_2_12_11_1
  doi: 10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2
– ident: e_1_2_12_39_1
  doi: 10.1007/s10584-011-0079-8
– ident: e_1_2_12_18_1
  doi: 10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2
– ident: e_1_2_12_51_1
– ident: e_1_2_12_35_1
– ident: e_1_2_12_17_1
  doi: 10.1038/ncomms4635
– ident: e_1_2_12_4_1
  doi: 10.1002/2013EF000188
– ident: e_1_2_12_32_1
  doi: 10.1175/1520-0485(1997)027
– ident: e_1_2_12_49_1
– ident: e_1_2_12_6_1
  doi: 10.1175/1520-0485(1982)012
– ident: e_1_2_12_15_1
  doi: 10.1016/S0012-821X(98)00198-8
– ident: e_1_2_12_48_1
  doi: 10.1175/JCLI-D-12-00561.1
– ident: e_1_2_12_10_1
  doi: 10.1175/JCLI3725.1
– ident: e_1_2_12_2_1
  doi: 10.2112/JCOASTRES-D-12-00102.1
– ident: e_1_2_12_43_1
  doi: 10.1017/CBO9781139177245.006
– ident: e_1_2_12_42_1
  doi: 10.1038/nclimate1597
– ident: e_1_2_12_20_1
  doi: 10.1007/s10584-009-9671-6
– ident: e_1_2_12_13_1
  doi: 10.1002/JGRC.20091
– ident: e_1_2_12_5_1
  doi: 10.1029/2012GL052885
– ident: e_1_2_12_50_1
– ident: e_1_2_12_37_1
  doi: 10.5194/os-9-535-2013
– ident: e_1_2_12_7_1
  doi: 10.1007/s10712-011-9119-1
– ident: e_1_2_12_27_1
  doi: 10.1073/pnas.0705414105
– ident: e_1_2_12_47_1
  doi: 10.1088/1748-9326/7/1/014032
– ident: e_1_2_12_29_1
  doi: 10.1007/s10584-011-0156-z
– volume: 94
  start-page: S68
  issue: 8
  year: 2013
  ident: e_1_2_12_31_1
  article-title: [Global Oceans] Sea level variability and change [in “State of the Climate in 2012”]
  publication-title: Bull. Am. Meteorol. Soc.
– ident: e_1_2_12_3_1
  doi: 10.1029/2010JC006759
– ident: e_1_2_12_14_1
  doi: 10.1002/2014EF000252
– ident: e_1_2_12_23_1
  doi: 10.1073/pnas.1015619108
– start-page: 1137
  volume-title: Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_12_8_1
– ident: e_1_2_12_46_1
– ident: e_1_2_12_12_1
  doi: 10.1029/2012GL053435
– ident: e_1_2_12_38_1
  doi: 10.1061/(ASCE)WW.1943-5460.0000052
– ident: e_1_2_12_40_1
– ident: e_1_2_12_33_1
  doi: 10.1002/2013EF000135
– volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_12_21_1
– ident: e_1_2_12_34_1
  doi: 10.1016/j.quascirev.2004.10.005
– ident: e_1_2_12_30_1
  doi: 10.1029/2012GL052032
– ident: e_1_2_12_41_1
  doi: 10.1061/(ASCE)WW.1943-5460.0000172
– ident: e_1_2_12_53_1
  doi: 10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2
– ident: e_1_2_12_16_1
  doi: 10.1007/s10021-003-0142-z
– ident: e_1_2_12_9_1
– volume: 94
  start-page: S17
  issue: 9
  year: 2013
  ident: e_1_2_12_45_1
  article-title: Hurricane sandy inundation probabilities of today and tomorrow (in explaining extreme events of 2012 from a climate perspective)
  publication-title: Bull. Am. Meteorol. Soc.
– ident: e_1_2_12_36_1
– start-page: 474
  volume-title: Proceedings of the 2011 Solutions to Coastal Disasters Conference, Anchorage, Alaska, June 26 to June 29, 2011
  year: 2011
  ident: e_1_2_12_28_1
– ident: e_1_2_12_26_1
  doi: 10.2112/JCOASTRES-D-13-00068.1
SSID ssj0000970357
Score 2.4263668
Snippet Relative sea level rise (RSLR) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal...
Relative sea level rise ( RSLR ) has driven large increases in annual water level exceedances (duration and frequency) above minor (nuisance level) coastal...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 579
SubjectTerms 21st century
Acceleration
Anomalies
Climate change
Coastal flooding
coastal inundation
Coasts
El Nino
El Nino-Southern Oscillation event
Evolution
Flooding
Floods
Gauges
High tide
Meteorological services
Multiple regression analysis
Nuisance
nuisance flooding
Probability
Regression analysis
Sea level
Sea level rise
Southern Oscillation
Statistical analysis
Storms
Tidal range
Tidal waves
Tidewater
Water levels
Weather
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgifuJ0SgR9ECl2aZa0vsiUliEoIhv4VvJVEWY7bff_e2nTTUF9bJOGkvv63eVyh9BZBHziay48GTFwUNSQemFotGcAynLJhchCexv54ZGNp_T-ZfjiAm6lS6tsdWKtqHWhbIz8CswcIFs6IORm_uHZrlH2dNW10FhHXVDBIThf3dv48el5GWXxI-DoIXcZ7yD94OwPaJzUJ27kpy1aAczvMLW2M8kW2nQAEY8aim6jNZPvoP14dR8NBp1AlrvoNfks3jGAOAxK1ob6cFXUj-9G5Nd4pBSYlYbIWOQaV3U9hlc8L97yqsRFhlUhSrvmW972V8L2ygkGEcAzm1GEQQ2YPTRN4snd2HO9EzwV2Gq_KtDUcCBExIQcWFwjOVh-RRlVTBKulQiZJplkfhBJaWvwZBm8JYJFXAKI2UedvMjNAcKa-QqcJG4CX1ImMkn8KFR8oMH8B4plPXTZ7mKqXGFx299iljYlkUn6fc976Hw5e94U1PhjXr8lSOrEqkxXTPDrcF27PqSE-z10uhwGebGHICI3xcIuwRmzDeBpD13UdP73N9I4mYAPffj_3xyhDftRk-bSR53qc2GOAaxU8sRx5BfxmeYS
  priority: 102
  providerName: ProQuest
Title From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014EF000272
https://www.proquest.com/docview/1755854122
https://www.proquest.com/docview/2290684270
https://www.proquest.com/docview/1776646514
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iL76Inzg_RgR9ECnr2ixpfVNpEcExRGFvJUnTMdhaWbv_37u06yao4GObNJRc7u53l9wvhFyHsE7cVEhHhRwCFD1gThCY1DEAZYUSUmYBViO_DvnzB3sZD8ZNwg1rYWp-iDbhhpph7TUquFRlb00aCp6LRbHdOgMTvIPVtcid77FRm2NxQ1jPluwTcEPgME-I5uw7fNXbHOC7V1pDzU3Aaj1OvE_2GqhIH2rZHpAtkx-Sk2hdmQaNjWqWR2QSL4o5BThHwdxi0o9WhX2cG5nf0wetwcHU4qYyT2llmRkm9LOY5lVJi4zqQpY45jRf3bREsfiEgjLQGZ4tomAQzDH5iKP3p2enuUXB0T7y_mo_ZUaASEIuVR8RjhKAATRMl-bKE6mWAU-9THHXD5VCNp4sg7ee5KFQAGdOyHZe5OaU0JS7GsIlYXxXMS4z5blhoEU_BSDga551yN1qFhPdUIzjTRezpCZH9pLNOe-Qm7b3Z02t8Uu_i5VAkkbBygRQDwQ6rO_93GxZ7AMQuNshV20zaA5uh8jcFEscQnCOV8GzDrm1cv7zN5Iofodo-uwffc_JLr6tT79ckO1qsTSXgGEq1bULtUt2HqPh6K1rMwFfVoLosQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_K9UFfxK_iadUV7INIaG6zt5sIIlUTrrY9RK7Qt7hfKYU2OZsU8Z_yb3QmH3cVtG99THZZltn53J35DcDrBPkkdEoHJpEYoNipCOLYu8CjK6uM0rqIqRr5aC5nx-LLyfRkA34PtTCUVjnoxFZRu8rSHfkumjn0bMWE8w_LHwF1jaLX1aGFRscWB_7XTwzZ6vf7n_F8dzjP0sWnWdB3FQhsRDi4NnLCK9xiIrWZkMU3Cm2iFVJYabhyVsfS8cLIMEqMIXSaosC_XMtEmZjAl1Dlb4oIQ5kRbH5M51-_rW51wgQlaKr6DHvUNrtoYEWatS98_G_bt3Zor7vFrV3L7sO93iFlex0HPYANXz6ErXRd_4aDvQKoH8FpdlldMHQaGSp1ulpkTdV-XnhdvmN71qIZ65iK6dKxpsV_OGXL6qxsalYVzFa6pjXPyqGfE6MSF4a0ZeeUwcRQ7fjHcHwrVN2CUVmV_gkwJ0OLQZnyUWiE1IXhYRJbNXHobkRWFmN4O1Axtz2QOfXTOM87CGaeX6f5GHZWs5cdgMd_5m0PB5L3Ylzna6b753CLlR8LrsIxvFoNo3zSo4sufXVFSygpqeG8GMOb9pxv3EaeZguM2Z_evJuXcGe2ODrMD_fnB8_gLi3Qpdhsw6i5vPLP0VFqzIueOxl8v22B-ANTuiIE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6ULYgvYtXiaqsj2AeRsNnJ7EwiiFSb0FpdirTQtzi3lEKbrE2K-Nf8dZ6Ty24F7Vsfk5mE4cy5fGfmXABeJ8gnoVM6MIlEB8XORBDH3gUeoawySusipmzkr3O5fyI-n85O1-D3kAtDYZWDTmwVtassnZFP0MwhshVTzidFHxZxtJd9WPwIqIMU3bQO7TQ6Fjn0v36i-1a_P9jDvd7hPEuPP-0HfYeBwEZUE9dGTniFy02kNlOy_kahfbRCCisNV87qWDpeGBlGiTFUqaYo8C3XMlEmpkJMqP7XFXpF4QjWP6bzo2_LE54wQWmaqT7aHjXPBI2tSLP2to__bQdX4PYmRG5tXPYQHvTglO123LQBa758BJvpKhcOB3tlUD-Gs-yqumQIIBlSiY4ZWVO1j5del-_YrrVo0joGY7p0rGlrQZyxRXVeNjWrCmYrXdM_z8uhtxOjdBeGtGUXFM3EUAX5J3ByJ1TdhFFZlf4pMCdDiw6a8lFohNSF4WESWzV1CD0iK4sxvB2omNu-qDn11rjIu3LMPL9J8zHsLGcvumIe_5m3NWxI3ot0na8Y8J_Dbd38WHAVjuHVchhllS5gdOmra_qFkpKaz4sxvGn3-dZl5Gl2jP77s9tX8xLuoSDkXw7mh8_hPn3fRdtswai5uvbbiJka86JnTgbf71oe_gDh2iY5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+the+extreme+to+the+mean%3A+Acceleration+and+tipping+points+of+coastal+inundation+from+sea+level+rise&rft.jtitle=Earth%27s+future&rft.au=Sweet%2C+William+V&rft.au=Park%2C+Joseph&rft.date=2014-12-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=2&rft.issue=12&rft.spage=579&rft.epage=600&rft_id=info:doi/10.1002%2F2014EF000272&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon