A magnetic heat pump with porous magneto caloric material

At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot “production”. It is well known that a refrigerator for cooling and a heat pump for heating are machines based on the same principle. A small review on magnetic heat pump st...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. C Vol. 4; no. 12; pp. 4552 - 4555
Main Authors Vuarnoz, D., Kitanovski, A., Diebold, M., Gendre, F., Egolf, P. W.
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.12.2007
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot “production”. It is well known that a refrigerator for cooling and a heat pump for heating are machines based on the same principle. A small review on magnetic heat pump studies is outlined and a simple engineering calculation scheme to determine the coefficient of performance for a magnetic heat pump with a rotary porous structure heat exchanger is presented. Magnetic heat flux line distributions are calculated by a 2‐d finite element method numerical simulation program with the objective to obtain high field's μ0H with not too heavy permanent magnets assemblies. The porous structures are geometrically optimised to obtain maximal magnetic field inductions. It is shown that for a water/ethylene‐glycol magnetic heat pump the coefficient of performance is higher than that of a conventional heat pump. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
AbstractList At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot production. It is well known that a refrigerator for cooling and a heat pump for heating are machines based on the same principle. A small review on magnetic heat pump studies is outlined and a simple engineering calculation scheme to determine the coefficient of performance for a magnetic heat pump with a rotary porous structure heat exchanger is presented. Magnetic heat flux line distributions are calculated by a 2-d finite element method numerical simulation program with the objective to obtain high field's 0H with not too heavy permanent magnets assemblies. The porous structures are geometrically optimised to obtain maximal magnetic field inductions. It is shown that for a water/ethylene-glycol magnetic heat pump the coefficient of performance is higher than that of a conventional heat pump.
Abstract At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot “production”. It is well known that a refrigerator for cooling and a heat pump for heating are machines based on the same principle. A small review on magnetic heat pump studies is outlined and a simple engineering calculation scheme to determine the coefficient of performance for a magnetic heat pump with a rotary porous structure heat exchanger is presented. Magnetic heat flux line distributions are calculated by a 2‐d finite element method numerical simulation program with the objective to obtain high field's μ 0 H with not too heavy permanent magnets assemblies. The porous structures are geometrically optimised to obtain maximal magnetic field inductions. It is shown that for a water/ethylene‐glycol magnetic heat pump the coefficient of performance is higher than that of a conventional heat pump. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot “production”. It is well known that a refrigerator for cooling and a heat pump for heating are machines based on the same principle. A small review on magnetic heat pump studies is outlined and a simple engineering calculation scheme to determine the coefficient of performance for a magnetic heat pump with a rotary porous structure heat exchanger is presented. Magnetic heat flux line distributions are calculated by a 2‐d finite element method numerical simulation program with the objective to obtain high field's μ0H with not too heavy permanent magnets assemblies. The porous structures are geometrically optimised to obtain maximal magnetic field inductions. It is shown that for a water/ethylene‐glycol magnetic heat pump the coefficient of performance is higher than that of a conventional heat pump. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Author Egolf, P. W.
Gendre, F.
Kitanovski, A.
Vuarnoz, D.
Diebold, M.
Author_xml – sequence: 1
  givenname: D.
  surname: Vuarnoz
  fullname: Vuarnoz, D.
  organization: University of Applied Sciences of Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
– sequence: 2
  givenname: A.
  surname: Kitanovski
  fullname: Kitanovski, A.
  organization: University of Applied Sciences of Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
– sequence: 3
  givenname: M.
  surname: Diebold
  fullname: Diebold, M.
  organization: University of Applied Sciences of Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
– sequence: 4
  givenname: F.
  surname: Gendre
  fullname: Gendre, F.
  organization: University of Applied Sciences of Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
– sequence: 5
  givenname: P. W.
  surname: Egolf
  fullname: Egolf, P. W.
  email: Peter.egolf@heig-vd.ch
  organization: E-mail: Peter.egolf@heig-vd.ch
BookMark eNqFkEtLw0AURgepYFvdus7KXeq8p7MswVahPkqLgpthMpnYaF7OJNT-e1NSijtX94N7zuXyjcCgrEoLwDWCEwQhvq29NxMMoRACMXoGhogjGCJO8aDLU45DThi6ACPvPyEkDCI-BHIWFPqjtE1mgq3VTVC3RR3ssmYb1JWrWn9cV4HReeU6qtCNdZnOL8F5qnNvr45zDDbzu010Hy6fFw_RbBkaIiUNsUziODYmpTKliMZYCypZzLTFUJupxCkVOqGMQIuNSKzhjCRmSmxCOpOSMbjpz9au-m6tb1SReWPzXJe2e08RJCTHBHbgpAeNq7x3NlW1ywrt9gpBdShIHQpSp4I6QfbCLsvt_h9avazX0V837N3MN_bn5Gr3pbgggqm3p4VaRStIHl_n6p38AgdOe_Q
CitedBy_id crossref_primary_10_1016_j_ijrefrig_2019_09_011
crossref_primary_10_1016_j_ijrefrig_2009_12_012
crossref_primary_10_1063_1_4895139
crossref_primary_10_1016_j_ijrefrig_2009_12_016
Cites_doi 10.1016/j.ijrefrig.2005.04.007
10.1088/0034-4885/68/6/R04
ContentType Journal Article
Copyright Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/pssc.200777154
DatabaseName Istex
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1610-1642
EndPage 4555
ExternalDocumentID 10_1002_pssc_200777154
PSSC200777154
ark_67375_WNG_QCQ03MVF_Z
Genre article
GrantInformation_xml – fundername: Swiss Federal Office of Energy (Thomas Kopp and Roland Brüniger)
– fundername: Gebert Rüf Stiftung
– fundername: Hes‐so foundation
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABEML
ABIJN
ABJNI
ACBWZ
ACCFJ
ACIWK
ACSCC
ACXME
ACXQS
ADIYS
ADIZJ
AEEZP
AEIMD
AEQDE
AEUCX
AEUQT
AFBPY
AFFNX
AFZJQ
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
J0M
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LW6
MK4
MRFUL
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WQJ
WRC
WYISQ
WYUIH
XG1
XV2
ZE2
~IA
~WT
ALUQN
AAYXX
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c3994-29dbbbccf49f414b2a7495b5ae20ac892f47ad4530e2c7dec653dc83ed39db43
IEDL.DBID DR2
ISSN 1862-6351
1610-1634
IngestDate Fri Aug 16 07:30:22 EDT 2024
Fri Aug 23 01:03:06 EDT 2024
Sat Aug 24 00:53:28 EDT 2024
Wed Jan 17 05:18:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3994-29dbbbccf49f414b2a7495b5ae20ac892f47ad4530e2c7dec653dc83ed39db43
Notes ark:/67375/WNG-QCQ03MVF-Z
Hes-so foundation
ArticleID:PSSC200777154
istex:400E4A0AAF73969CACFB5CE3EC7C70C7360A459E
Gebert Rüf Stiftung
Swiss Federal Office of Energy (Thomas Kopp and Roland Brüniger)
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 31796230
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_31796230
crossref_primary_10_1002_pssc_200777154
wiley_primary_10_1002_pssc_200777154_PSSC200777154
istex_primary_ark_67375_WNG_QCQ03MVF_Z
PublicationCentury 2000
PublicationDate December 2007
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: December 2007
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Physica status solidi. C
PublicationTitleAlternate Phys. Status Solidi (c)
PublicationYear 2007
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).
A. Kitanovski and P. W. Egolf, Int. J. Refr. 29, 3 (2005) (Review Article).
2005; 68
2005; 29
e_1_2_1_6_2
Kitanovski A. (e_1_2_1_4_2) 2005; 29
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_3_2
References_xml – volume: 29
  start-page: 3
  year: 2005
  publication-title: Int. J. Refr.
– volume: 68
  start-page: 1479
  year: 2005
  publication-title: Rep. Prog. Phys.
– volume: 29
  start-page: 3
  year: 2005
  ident: e_1_2_1_4_2
  publication-title: Int. J. Refr.
  doi: 10.1016/j.ijrefrig.2005.04.007
  contributor:
    fullname: Kitanovski A.
– ident: e_1_2_1_5_2
– ident: e_1_2_1_3_2
– ident: e_1_2_1_2_2
  doi: 10.1088/0034-4885/68/6/R04
– ident: e_1_2_1_6_2
SSID ssj0035016
Score 1.8102591
Snippet At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot “production”. It is well known...
Abstract At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot “production”. It is...
At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot production. It is well known...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 4552
SubjectTerms 75.30.Sg
85.80.Lp
Title A magnetic heat pump with porous magneto caloric material
URI https://api.istex.fr/ark:/67375/WNG-QCQ03MVF-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssc.200777154
https://search.proquest.com/docview/31796230
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yEbz4Lc7PHkRPdW2SLs1xDKcIG-rmB15CkqYeht1YOxD_el_SrTovgh5D82j78vLeL8l7vyB0GjCupA6Jz1Md-VQGyoee3KeR0jRlKsWxLU7u9prXD_TmOXr-VsVf8kNUG252Zjh_bSe4VHnjizR0nOclBSFjAAPACVs2PYuK7iv-KHto5sqLALb7EFnDOWtjgBuL4gtRadkq-H0Bcn4Hri7ydNaRnH9zmXAyvJgW6kJ__KBz_M9PbaC1GSz1WqUdbaIlk22hFZceqvNtxFvem3zNbMGjZ723NwYr8Owergf4fTTNZ49HHgy5ZR2BduFsewcNOpeD9rU_u3TB18TSBGOeKKW0TilPaUgVlgzWUCqSBgdSxxynlMmERiQwWLPE6GZEEh0TkxCQpGQX1bJRZvaQR9I4VYDOsDaw_k7CWAUmMmADknHTDOM6Op_rXIxLag1RkihjYfUgKj3U0ZkbkqqbnAxtQhqLxFPvSty17wLSfeyIlzo6mY-ZgGlizz5kZkALAmASB6QX1BF2-v_ljeK2329Xrf2_CB2gVbcP7FJfDlGtmEzNEQCYQh07I_0EbBvpKg
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_iQ9O4MLaBVmA0h2k7BRJ_1PERVesKtNUYZZu4WLbj7IBIK9pK0_76PTtNRrkgjaMVW0neh_3z83s_A3xIhDTapjSWheUx04mJsaeMGTeWFcIUJPPFycNRp3_Nzn_yOpvQ18JU_BBNwM17RpivvYP7gPTJP9bQ6WxWcRAKgThgHTbR53nYVX1rGKT8sVkoMELgHuPamta8jQk5WR2_si5tehH_XgGdD6FrWHt6r8DUX12lnNweL-bm2P55ROj4rN_age0lMo1OK1N6DWuufAMvQoaonb0FeRrd6V-lr3mM_AQeTdEQIh_GjRDCTxaz5eNJhFr3xCPYngfz3oVx7_O424-X9y7ElnqmYCJzY4y1BZMFS5khWuA2ynDtSKJtJknBhM4Zp4kjVuTOdjjNbUZdTnEko3uwUU5K9w4iWmSFQYBGrMMteJ5mJnHcoRloIV0nzVrwqRa6mlbsGqriUSbKy0E1cmjBx6CTppu-v_U5aYKrH6Mv6rJ7mdDh9566aUG7VppCT_HHH7p0KAWFSEki2EtaQIICnnij-np11W1a-_8zqA0v--PhQA3ORhcHsBXCwiET5hA25vcL9x7xzNwcBYv9CxrQ7Uw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xUFEvQAuIpS3kUJVTILGddXxEC8urrHgWxMWyHbuHFdnVPiTUX9-xs5uyXCrB0YpHScZjz-fxzGeA7wkXWpmUxsKZLGYq0TH2FDHLtGGOa0dyX5x80Wme3LGzh-zhRRV_xQ9RB9z8zAjrtZ_g_cLt_yMN7Q-HFQUh5wgD5mGRNSnxdn14XRNI-VOzUF-EuD1G15pOaRsTsj8rP-OWFr2Gn2cw50vkGlxPewXU9KOrjJPu3nik98yfV3yO7_mrVVie4NLooDKkTzBny8_wIeSHmuEaiIPoSf0ufcVj5JfvqI9mEPkgboQAvjceTh73IhxzTzuC7VEw7nW4bR_dtk7iya0LsaGeJ5iIQmttjGPCsZRpojhuonSmLEmUyQVxjKuCZTSxxPDCmmZGC5NTW1CUZHQDFspeaTchoi53GuEZMRY34EWa68RmFo1AcWGbad6A3anOZb_i1pAVizKRXg-y1kMDfoQhqbupQddnpPFM3neO5VXrKqEXv9rysQE70zGTOE_84YcqLWpBIk4SCPWSBpCg__-8UV7e3LTq1tZbhHZg6fKwLX-eds6_wMcQEw5pMF9hYTQY228IZkZ6O9jrX2HY6_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+magnetic+heat+pump+with+porous+magneto+caloric+material&rft.jtitle=Physica+status+solidi.+C&rft.au=Vuarnoz%2C+D.&rft.au=Kitanovski%2C+A.&rft.au=Diebold%2C+M.&rft.au=Gendre%2C+F.&rft.date=2007-12-01&rft.issn=1862-6351&rft.eissn=1610-1642&rft.volume=4&rft.issue=12&rft.spage=4552&rft.epage=4555&rft_id=info:doi/10.1002%2Fpssc.200777154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssc_200777154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6351&client=summon