Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways

Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects...

Full description

Saved in:
Bibliographic Details
Published inPreventive nutrition and food science Vol. 20; no. 4; pp. 221 - 229
Main Author Kim, D.K., Kyungnam University, Changwon, Republic of Korea
Format Journal Article
LanguageEnglish
Published Korea (South) 한국식품영양과학회 01.12.2015
The Korean Society of Food Science and Nutrition
Subjects
Online AccessGet full text
ISSN2287-1098
2287-8602
DOI10.3746/pnf.2015.20.4.221

Cover

Abstract Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 mM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial- like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P¡Õ0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.
AbstractList Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.
Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. KCI Citation Count: 0
Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs ( P <0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.
Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 mM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial- like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P¡Õ0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.
Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.
Author Kim, D.K., Kyungnam University, Changwon, Republic of Korea
Author_xml – sequence: 1
  fullname: Kim, D.K., Kyungnam University, Changwon, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26770908$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002066686$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UktvEzEQtlARLaE_gANoL0hcktreXT8uSGlpadSKoBC4WmPHm5jseoO9C8q_x3m0PA5cZiz7e4zm83N04ltvEXpJ8CjnBbvY-GpEMSlTGRUjSskTdEap4EPBMD05ngmW4hSdx_gNY0wIlSXlz9ApZZxjicUZmt3auLHBLZzPJn7ltOti9hWi6WsI2U0bGuhc6zO9zS7r1qydX2bdymbju_lFM5_Oss9u6aHeXX-CbvUTtvEFelpBHe35sQ_Ql5vr-dXt8H76YXI1vh-aXEoyZJKVQLQgEgxfGCHz3GBamIVhhDBNBRijK11YTSoDFDSVWkClSZ5DVRYmH6C3B10fKrU2TrXg9n3ZqnVQ49l8onjOcyYS9N0Buul1YxfG-i5ArTbBNRC2e-LfL96tkswPVXCMJcG_vTah_d7b2KnGRWPrGrxt-6gIZ1hwwdJwA_T6T69Hk4edJwA_AExoYwy2UsZ1-y0na1crgtUuYJUCVruAU1GFSgEnJvmH-SD-P86b45b6hLULB4-kj9P315iVPM0uE-7VAVdBq2AZXFR3syTFdh9HsvwXrDy-rA
CitedBy_id crossref_primary_10_1007_s12011_016_0770_8
crossref_primary_10_1016_j_onano_2022_100081
crossref_primary_10_1080_10790268_2018_1507805
crossref_primary_10_3390_ijms26010316
crossref_primary_10_1080_09205063_2022_2099668
crossref_primary_10_3390_nu9121312
crossref_primary_10_1002_jbt_22253
crossref_primary_10_1177_1535370220903671
crossref_primary_10_2174_0113816128314974240724045220
Cites_doi 10.1016/0887-2333(93)90064-C
10.1016/j.canlet.2004.07.013
10.1159/000016700
10.1038/sj.onc.1206921
10.1002/med.20060
10.1074/jbc.M109.029637
10.1016/j.phymed.2007.07.061
10.3892/or.2015.4166
10.1242/dev.102.3.471
10.1152/ajpcell.00491.2005
10.1038/nprot.2011.435
10.4161/cbt.7.12.6967
10.1096/fj.01-0300rev
10.1016/j.toxlet.2008.05.023
10.1016/j.cardiores.2005.09.019
10.1111/j.1538-7836.2009.03427.x
10.1038/nrc1628
10.1016/S0955-2863(02)00204-8
10.1159/000341455
10.2174/092986708784310459
10.1074/jbc.M302967200
10.1021/jf901718u
10.1038/sj.onc.1203533
10.1124/mol.105.020537
10.1161/01.RES.0000022200.71892.9F
10.1016/j.gde.2009.09.004
10.1002/ijc.25026
10.1021/jf8006568
10.1093/jn/133.10.3248S
10.1006/bbrc.1999.2018
10.1016/S0092-8674(00)81683-9
10.1158/0008-5472.CAN-14-2312
10.1136/jcp.2004.025536
ContentType Journal Article
Copyright Copyright © 2015 by The Korean Society of Food Science and Nutrition. All rights Reserved. 2015
Copyright_xml – notice: Copyright © 2015 by The Korean Society of Food Science and Nutrition. All rights Reserved. 2015
DBID FBQ
DBRKI
TDB
AAYXX
CITATION
NPM
7X8
5PM
ACYCR
DOI 10.3746/pnf.2015.20.4.221
DatabaseName AGRIS
DBPIA - 디비피아
누리미디어 DBpia
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2287-8602
EndPage 229
ExternalDocumentID oai_kci_go_kr_ARTI_737368
PMC4700910
26770908
10_3746_pnf_2015_20_4_221
NODE06577609
KR2016000196
Genre Journal Article
GroupedDBID .UV
9ZL
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
DBRKI
DIK
FBQ
HYE
JDI
KVFHK
OK1
RPM
TDB
GW5
AAYXX
CITATION
NPM
7X8
5PM
ACYCR
ID FETCH-LOGICAL-c3991-6965a1b819ac7dc8933c024cdc6116b28accbfb4eb1fca2ab29b8afb133af54c3
ISSN 2287-1098
IngestDate Wed Jan 22 07:36:46 EST 2025
Thu Aug 21 18:05:43 EDT 2025
Thu Jul 10 23:46:36 EDT 2025
Thu Apr 03 07:06:33 EDT 2025
Tue Jul 01 03:44:00 EDT 2025
Thu Apr 24 23:03:29 EDT 2025
Thu Mar 13 19:39:07 EDT 2025
Tue Nov 07 23:22:57 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords AKT/mTOR
vascular formation
mouse embryonic stem cells
HUVECs
hesperidin
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3991-6965a1b819ac7dc8933c024cdc6116b28accbfb4eb1fca2ab29b8afb133af54c3
Notes Q01
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
G704-000778.2015.20.4.010
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4700910
PMID 26770908
PQID 1760878613
PQPubID 23479
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_737368
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4700910
proquest_miscellaneous_1760878613
pubmed_primary_26770908
crossref_citationtrail_10_3746_pnf_2015_20_4_221
crossref_primary_10_3746_pnf_2015_20_4_221
nurimedia_primary_NODE06577609
fao_agris_KR2016000196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Preventive nutrition and food science
PublicationTitleAlternate Prev Nutr Food Sci
PublicationYear 2015
Publisher 한국식품영양과학회
The Korean Society of Food Science and Nutrition
Publisher_xml – name: 한국식품영양과학회
– name: The Korean Society of Food Science and Nutrition
References (E1FSA3_2015_v20n4_221_020) 2012; 7
(E1FSA3_2015_v20n4_221_019) 1999; 165
(E1FSA3_2015_v20n4_221_021) 2005; 5
(E1FSA3_2015_v20n4_221_025) 2006; 26
(E1FSA3_2015_v20n4_221_002) 2010; 126
(E1FSA3_2015_v20n4_221_027) 2002; 13
(E1FSA3_2015_v20n4_221_005) 2004; 23
(E1FSA3_2015_v20n4_221_004) 2000; 19
(E1FSA3_2015_v20n4_221_022) 2011; 4
(E1FSA3_2015_v20n4_221_006) 2006; 69
(E1FSA3_2015_v20n4_221_017) 2009; 57
(E1FSA3_2015_v20n4_221_015) 2008; 56
(E1FSA3_2015_v20n4_221_012) 2009; 7
(E1FSA3_2015_v20n4_221_029) 2004; 215
(E1FSA3_2015_v20n4_221_031) 2000; 100
(E1FSA3_2015_v20n4_221_034) 2006; 291
(E1FSA3_2015_v20n4_221_008) 2015; 75
(E1FSA3_2015_v20n4_221_018) 1993; 7
(E1FSA3_2015_v20n4_221_007) 2003; 278
(E1FSA3_2015_v20n4_221_014) 2012; 30
(E1FSA3_2015_v20n4_221_036) 2010; 285
(E1FSA3_2015_v20n4_221_013) 2008; 180
(E1FSA3_2015_v20n4_221_026) 1997; 57
(E1FSA3_2015_v20n4_221_024) 2003; 133
(E1FSA3_2015_v20n4_221_003) 2005; 58
(E1FSA3_2015_v20n4_221_011) 1988; 102
(E1FSA3_2015_v20n4_221_016) 2008; 15
(E1FSA3_2015_v20n4_221_035) 2008; 15
(E1FSA3_2015_v20n4_221_001) 2009; 19
(E1FSA3_2015_v20n4_221_032) 2008; 7
(E1FSA3_2015_v20n4_221_010) 1985; 87
(E1FSA3_2015_v20n4_221_023) 2000; 268
(E1FSA3_2015_v20n4_221_033) 2002; 90
(E1FSA3_2015_v20n4_221_009) 2015; 34
(E1FSA3_2015_v20n4_221_030) 2006; 69
(E1FSA3_2015_v20n4_221_028) 2002; 16
16424078 - Mol Pharmacol. 2006 Apr;69(4):1226-33
17897817 - Phytomedicine. 2008 Jan;15(1-2):147-51
10815805 - Oncogene. 2000 Apr 20;19(17 ):2138-46
9230201 - Cancer Res. 1997 Jul 15;57(14):2916-21
20732251 - Toxicol In Vitro. 1993 Jul;7(4):551-6
19919125 - J Agric Food Chem. 2009 Nov 25;57(22):10933-42
12089061 - Circ Res. 2002 Jun 28;90(12):1243-50
14712224 - Oncogene. 2004 Jan 8;23(1):192-200
10647931 - Cell. 2000 Jan 7;100(1):57-70
11772931 - FASEB J. 2002 Jan;16(1):2-14
2460305 - Development. 1988 Mar;102(3):471-8
19864126 - Curr Opin Genet Dev. 2009 Oct;19(5):476-83
19864431 - J Biol Chem. 2010 Jan 1;285(1):80-94
12816951 - J Biol Chem. 2003 Sep 12;278(37):35501-7
10592392 - Cells Tissues Organs. 1999;165(3-4):203-11
12121824 - J Nutr Biochem. 2002 Jul;13(7):380-390
15488631 - Cancer Lett. 2004 Nov 25;215(2):129-40
16710860 - Med Res Rev. 2006 Nov;26(6):747-66
18473813 - Curr Med Chem. 2008;15(12):1192-208
16254106 - J Clin Pathol. 2005 Nov;58(11):1170-4
3897439 - J Embryol Exp Morphol. 1985 Jun;87:27-45
10652234 - Biochem Biophys Res Commun. 2000 Feb 5;268(1):183-91
22144946 - Front Mol Neurosci. 2011 Dec 02;4:51
18981713 - Cancer Biol Ther. 2008 Dec;7(12):1994-2003
18593176 - J Agric Food Chem. 2008 Aug 13;56(15):6185-205
14519822 - J Nutr. 2003 Oct;133(10):3248S-3254S
19904748 - Int J Cancer. 2010 Apr 15;126(8):1777-87
16825603 - Am J Physiol Cell Physiol. 2006 Aug;291(2):C317-26
19630768 - J Thromb Haemost. 2009 Jul;7 Suppl 1:53-6
26239613 - Oncol Rep. 2015 Oct;34(4):1755-60
22890153 - Cell Physiol Biochem. 2012;30(3):758-70
22193302 - Nat Protoc. 2011 Dec 22;7(1):89-104
18590808 - Toxicol Lett. 2008 Aug 28;180(3):166-73
15928673 - Nat Rev Cancer. 2005 Jun;5(6):423-35
16336951 - Cardiovasc Res. 2006 Feb 1;69(2):512-9
25977334 - Cancer Res. 2015 Jul 15;75(14):2886-96
References_xml – volume: 7
  start-page: 551
  year: 1993
  ident: E1FSA3_2015_v20n4_221_018
  publication-title: Toxicol In Vitro
  doi: 10.1016/0887-2333(93)90064-C
– volume: 215
  start-page: 129
  year: 2004
  ident: E1FSA3_2015_v20n4_221_029
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2004.07.013
– volume: 165
  start-page: 203
  year: 1999
  ident: E1FSA3_2015_v20n4_221_019
  publication-title: Cells Tissues Organs
  doi: 10.1159/000016700
– volume: 23
  start-page: 192
  year: 2004
  ident: E1FSA3_2015_v20n4_221_005
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206921
– volume: 26
  start-page: 747
  year: 2006
  ident: E1FSA3_2015_v20n4_221_025
  publication-title: Med Res Rev
  doi: 10.1002/med.20060
– volume: 285
  start-page: 80
  year: 2010
  ident: E1FSA3_2015_v20n4_221_036
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.029637
– volume: 15
  start-page: 147
  year: 2008
  ident: E1FSA3_2015_v20n4_221_016
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2007.07.061
– volume: 34
  start-page: 1755
  year: 2015
  ident: E1FSA3_2015_v20n4_221_009
  publication-title: Oncol Rep
  doi: 10.3892/or.2015.4166
– volume: 102
  start-page: 471
  year: 1988
  ident: E1FSA3_2015_v20n4_221_011
  publication-title: Development
  doi: 10.1242/dev.102.3.471
– volume: 291
  start-page: C317
  year: 2006
  ident: E1FSA3_2015_v20n4_221_034
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00491.2005
– volume: 7
  start-page: 89
  year: 2012
  ident: E1FSA3_2015_v20n4_221_020
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2011.435
– volume: 57
  start-page: 2916
  year: 1997
  ident: E1FSA3_2015_v20n4_221_026
  publication-title: Cancer Res
– volume: 7
  start-page: 1994
  year: 2008
  ident: E1FSA3_2015_v20n4_221_032
  publication-title: Cancer Biol Ther
  doi: 10.4161/cbt.7.12.6967
– volume: 16
  start-page: 2
  year: 2002
  ident: E1FSA3_2015_v20n4_221_028
  publication-title: FASEB J
  doi: 10.1096/fj.01-0300rev
– volume: 180
  start-page: 166
  year: 2008
  ident: E1FSA3_2015_v20n4_221_013
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2008.05.023
– volume: 4
  start-page: 51
  year: 2011
  ident: E1FSA3_2015_v20n4_221_022
  publication-title: Front Mol Neurosci
– volume: 69
  start-page: 512
  year: 2006
  ident: E1FSA3_2015_v20n4_221_006
  publication-title: Cardiovasc Res
  doi: 10.1016/j.cardiores.2005.09.019
– volume: 7
  start-page: 53
  year: 2009
  ident: E1FSA3_2015_v20n4_221_012
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2009.03427.x
– volume: 5
  start-page: 423
  year: 2005
  ident: E1FSA3_2015_v20n4_221_021
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1628
– volume: 13
  start-page: 380
  year: 2002
  ident: E1FSA3_2015_v20n4_221_027
  publication-title: J Nutr Biochem
  doi: 10.1016/S0955-2863(02)00204-8
– volume: 30
  start-page: 758
  year: 2012
  ident: E1FSA3_2015_v20n4_221_014
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000341455
– volume: 15
  start-page: 1192
  year: 2008
  ident: E1FSA3_2015_v20n4_221_035
  publication-title: Curr Med Chem
  doi: 10.2174/092986708784310459
– volume: 278
  start-page: 35501
  year: 2003
  ident: E1FSA3_2015_v20n4_221_007
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M302967200
– volume: 57
  start-page: 10933
  year: 2009
  ident: E1FSA3_2015_v20n4_221_017
  publication-title: J Agric Food Chem
  doi: 10.1021/jf901718u
– volume: 19
  start-page: 2138
  year: 2000
  ident: E1FSA3_2015_v20n4_221_004
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203533
– volume: 69
  start-page: 1226
  year: 2006
  ident: E1FSA3_2015_v20n4_221_030
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.105.020537
– volume: 90
  start-page: 1243
  year: 2002
  ident: E1FSA3_2015_v20n4_221_033
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000022200.71892.9F
– volume: 19
  start-page: 476
  year: 2009
  ident: E1FSA3_2015_v20n4_221_001
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2009.09.004
– volume: 126
  start-page: 1777
  year: 2010
  ident: E1FSA3_2015_v20n4_221_002
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25026
– volume: 56
  start-page: 6185
  year: 2008
  ident: E1FSA3_2015_v20n4_221_015
  publication-title: J Agric Food Chem
  doi: 10.1021/jf8006568
– volume: 133
  start-page: 3248S
  year: 2003
  ident: E1FSA3_2015_v20n4_221_024
  publication-title: J Nutr
  doi: 10.1093/jn/133.10.3248S
– volume: 87
  start-page: 27
  year: 1985
  ident: E1FSA3_2015_v20n4_221_010
  publication-title: J Embryol Exp Morphol
– volume: 268
  start-page: 183
  year: 2000
  ident: E1FSA3_2015_v20n4_221_023
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1999.2018
– volume: 100
  start-page: 57
  year: 2000
  ident: E1FSA3_2015_v20n4_221_031
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81683-9
– volume: 75
  start-page: 2886
  year: 2015
  ident: E1FSA3_2015_v20n4_221_008
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-2312
– volume: 58
  start-page: 1170
  year: 2005
  ident: E1FSA3_2015_v20n4_221_003
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.2004.025536
– reference: 26239613 - Oncol Rep. 2015 Oct;34(4):1755-60
– reference: 17897817 - Phytomedicine. 2008 Jan;15(1-2):147-51
– reference: 10647931 - Cell. 2000 Jan 7;100(1):57-70
– reference: 16710860 - Med Res Rev. 2006 Nov;26(6):747-66
– reference: 11772931 - FASEB J. 2002 Jan;16(1):2-14
– reference: 18590808 - Toxicol Lett. 2008 Aug 28;180(3):166-73
– reference: 22890153 - Cell Physiol Biochem. 2012;30(3):758-70
– reference: 12816951 - J Biol Chem. 2003 Sep 12;278(37):35501-7
– reference: 19864431 - J Biol Chem. 2010 Jan 1;285(1):80-94
– reference: 16254106 - J Clin Pathol. 2005 Nov;58(11):1170-4
– reference: 12121824 - J Nutr Biochem. 2002 Jul;13(7):380-390
– reference: 14519822 - J Nutr. 2003 Oct;133(10):3248S-3254S
– reference: 9230201 - Cancer Res. 1997 Jul 15;57(14):2916-21
– reference: 16336951 - Cardiovasc Res. 2006 Feb 1;69(2):512-9
– reference: 25977334 - Cancer Res. 2015 Jul 15;75(14):2886-96
– reference: 18593176 - J Agric Food Chem. 2008 Aug 13;56(15):6185-205
– reference: 19864126 - Curr Opin Genet Dev. 2009 Oct;19(5):476-83
– reference: 2460305 - Development. 1988 Mar;102(3):471-8
– reference: 16825603 - Am J Physiol Cell Physiol. 2006 Aug;291(2):C317-26
– reference: 15928673 - Nat Rev Cancer. 2005 Jun;5(6):423-35
– reference: 18473813 - Curr Med Chem. 2008;15(12):1192-208
– reference: 19630768 - J Thromb Haemost. 2009 Jul;7 Suppl 1:53-6
– reference: 10592392 - Cells Tissues Organs. 1999;165(3-4):203-11
– reference: 22144946 - Front Mol Neurosci. 2011 Dec 02;4:51
– reference: 20732251 - Toxicol In Vitro. 1993 Jul;7(4):551-6
– reference: 18981713 - Cancer Biol Ther. 2008 Dec;7(12):1994-2003
– reference: 19919125 - J Agric Food Chem. 2009 Nov 25;57(22):10933-42
– reference: 12089061 - Circ Res. 2002 Jun 28;90(12):1243-50
– reference: 10815805 - Oncogene. 2000 Apr 20;19(17 ):2138-46
– reference: 22193302 - Nat Protoc. 2011 Dec 22;7(1):89-104
– reference: 3897439 - J Embryol Exp Morphol. 1985 Jun;87:27-45
– reference: 15488631 - Cancer Lett. 2004 Nov 25;215(2):129-40
– reference: 16424078 - Mol Pharmacol. 2006 Apr;69(4):1226-33
– reference: 19904748 - Int J Cancer. 2010 Apr 15;126(8):1777-87
– reference: 14712224 - Oncogene. 2004 Jan 8;23(1):192-200
– reference: 10652234 - Biochem Biophys Res Commun. 2000 Feb 5;268(1):183-91
SSID ssj0001129527
Score 2.0281415
Snippet Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
nurimedia
fao
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 221
SubjectTerms FLAVONOIDE
FLAVONOIDES
FLAVONOIDS
vascular formation,AKT/mTOR,HUVECs,mouse embryonic stem cells
식품과학
Title Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06577609
https://www.ncbi.nlm.nih.gov/pubmed/26770908
https://www.proquest.com/docview/1760878613
https://pubmed.ncbi.nlm.nih.gov/PMC4700910
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002066686
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Preventive Nutrition and Food Science, 2015, 20(4), , pp.221-229
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68QAvCASDDpiCxBNTu9T54fQRxkphWjeVDu3Nst2kq8rSqmtB21_Pd0mcpmVCsBc3yg879X25-84-nxl7Z4aaq3bCG3HkhQ1fhKoRxYHXiAMlKIyIJwk5iie9sHvuf70ILmq12-rqkoVumts715XcR6o4B7nSKtn_kGxZKU7gGPJFCQmj_CcZd2PK8z2G-cF3fjnWNAnw3YaWduyyRGKYH2GzJnZlFHgd2rwanPb3v41HxMRx4QxU8Je6ua6yVZvf6We8n9qs_dlsQ0K5kAvjuZrFz6D1eQwkxdXBhFawEZhB0DyezmkOwAaNgrJ2qE6raqiRnm1ypaw4PC-o9HxH6Wa8Okd7XFW1LXcrqPKrqjNfKV1YYZ6Pg2wqeE9kmY1naZZ9NUDR9JvFkxWBz64yifNQCLftRitbV0Ygnp0c-sIlsrTFHnAhsil-O9KTjc-BCOU7_pZ_LZ8Up1c4-OMFKKl00doaw9lK1BRlOsfxw3RJWzbgu7_LndmMyq3QnMET9rjwT5wPOdieslqcPmP9FdAcCzTHAs0pgeboG8cCzQHQHADtgGDmlDBzLMyes_PO0eCw2yg242gYj6LjwnYYqJYGgVRGDA1ormfA78zQhK1WqHmkjNGJ9mH7E6O40rytI5XoluepJPCNt8O202kav2SOVqatQq5EEgx93Ky0cIdwg7lKXINOrzPXdqA0RaZ62jDlh4THSt0v0f2Suh-F9CW6v87el4_M8jQtf7t5B1KRagQzKo_7nJIsZnmi6uwtBCUnZiwp6zr9jqZyMpfwLb9I4UF3RXW2V4qxbKp3-ukIXF6I0G2jEitbCVVN828qjafLa9nC5UhEINB19iKXdVmDBU-diTUUlDfQC61fSceXWTr4Ase7937yFXu00gWv2fZivozfgGov9F72TfwGzPjS7w
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hesperidin+Inhibits+Vascular+Formation+by+Blocking+the+AKT%2FmTOR+Signaling+Pathways&rft.jtitle=Preventive+nutrition+and+food+science&rft.au=Kim%2C+Gi+Dae&rft.date=2015-12-01&rft.pub=The+Korean+Society+of+Food+Science+and+Nutrition&rft.issn=2287-1098&rft.eissn=2287-8602&rft.volume=20&rft.issue=4&rft.spage=221&rft.epage=229&rft_id=info:doi/10.3746%2Fpnf.2015.20.4.221&rft_id=info%3Apmid%2F26770908&rft.externalDocID=PMC4700910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-1098&client=summon