Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways
Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects...
Saved in:
Published in | Preventive nutrition and food science Vol. 20; no. 4; pp. 221 - 229 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Korea (South)
한국식품영양과학회
01.12.2015
The Korean Society of Food Science and Nutrition |
Subjects | |
Online Access | Get full text |
ISSN | 2287-1098 2287-8602 |
DOI | 10.3746/pnf.2015.20.4.221 |
Cover
Abstract | Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 mM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial- like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P¡Õ0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. |
---|---|
AbstractList | Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. KCI Citation Count: 0 Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs ( P <0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 mM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial- like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P¡Õ0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways.Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the anti-angiogenic activity of hesperidin is not fully understood. In the present study, we evaluated whether hesperidin has anti-angiogenic effects in mouse embryonic stem cell (mES)-derived endothelial-like cells, and human umbilical vascular endothelial cells (HUVECs), and evaluated their mechanism via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. The endothelial cells were treated with several doses of hesperidin (12.5, 25, 50, and 100 μM) for 24 h. Cell viability and vascular formation were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and tube formation assay, respectively. Alteration of the AKT/mTOR signaling in vascular formation was analyzed by western blot. In addition, a mouse aortic ring assay was used to determine the effect of hesperidin on vascular formation. There were no differences between the viability of mES-derived endothelial-like cells and HUVECs after hesperidin treatment. However, hesperidin significantly inhibited cell migration and tube formation of HUVECs (P<0.05) and suppressed sprouting of microvessels in the mouse aortic ring assay. Moreover, hesperidin suppressed the expression of AKT and mTOR in HUVECs. Taken together, these findings suggest that hesperidin inhibits vascular formation by blocking the AKT/mTOR signaling pathways. |
Author | Kim, D.K., Kyungnam University, Changwon, Republic of Korea |
Author_xml | – sequence: 1 fullname: Kim, D.K., Kyungnam University, Changwon, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26770908$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002066686$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UktvEzEQtlARLaE_gANoL0hcktreXT8uSGlpadSKoBC4WmPHm5jseoO9C8q_x3m0PA5cZiz7e4zm83N04ltvEXpJ8CjnBbvY-GpEMSlTGRUjSskTdEap4EPBMD05ngmW4hSdx_gNY0wIlSXlz9ApZZxjicUZmt3auLHBLZzPJn7ltOti9hWi6WsI2U0bGuhc6zO9zS7r1qydX2bdymbju_lFM5_Oss9u6aHeXX-CbvUTtvEFelpBHe35sQ_Ql5vr-dXt8H76YXI1vh-aXEoyZJKVQLQgEgxfGCHz3GBamIVhhDBNBRijK11YTSoDFDSVWkClSZ5DVRYmH6C3B10fKrU2TrXg9n3ZqnVQ49l8onjOcyYS9N0Buul1YxfG-i5ArTbBNRC2e-LfL96tkswPVXCMJcG_vTah_d7b2KnGRWPrGrxt-6gIZ1hwwdJwA_T6T69Hk4edJwA_AExoYwy2UsZ1-y0na1crgtUuYJUCVruAU1GFSgEnJvmH-SD-P86b45b6hLULB4-kj9P315iVPM0uE-7VAVdBq2AZXFR3syTFdh9HsvwXrDy-rA |
CitedBy_id | crossref_primary_10_1007_s12011_016_0770_8 crossref_primary_10_1016_j_onano_2022_100081 crossref_primary_10_1080_10790268_2018_1507805 crossref_primary_10_3390_ijms26010316 crossref_primary_10_1080_09205063_2022_2099668 crossref_primary_10_3390_nu9121312 crossref_primary_10_1002_jbt_22253 crossref_primary_10_1177_1535370220903671 crossref_primary_10_2174_0113816128314974240724045220 |
Cites_doi | 10.1016/0887-2333(93)90064-C 10.1016/j.canlet.2004.07.013 10.1159/000016700 10.1038/sj.onc.1206921 10.1002/med.20060 10.1074/jbc.M109.029637 10.1016/j.phymed.2007.07.061 10.3892/or.2015.4166 10.1242/dev.102.3.471 10.1152/ajpcell.00491.2005 10.1038/nprot.2011.435 10.4161/cbt.7.12.6967 10.1096/fj.01-0300rev 10.1016/j.toxlet.2008.05.023 10.1016/j.cardiores.2005.09.019 10.1111/j.1538-7836.2009.03427.x 10.1038/nrc1628 10.1016/S0955-2863(02)00204-8 10.1159/000341455 10.2174/092986708784310459 10.1074/jbc.M302967200 10.1021/jf901718u 10.1038/sj.onc.1203533 10.1124/mol.105.020537 10.1161/01.RES.0000022200.71892.9F 10.1016/j.gde.2009.09.004 10.1002/ijc.25026 10.1021/jf8006568 10.1093/jn/133.10.3248S 10.1006/bbrc.1999.2018 10.1016/S0092-8674(00)81683-9 10.1158/0008-5472.CAN-14-2312 10.1136/jcp.2004.025536 |
ContentType | Journal Article |
Copyright | Copyright © 2015 by The Korean Society of Food Science and Nutrition. All rights Reserved. 2015 |
Copyright_xml | – notice: Copyright © 2015 by The Korean Society of Food Science and Nutrition. All rights Reserved. 2015 |
DBID | FBQ DBRKI TDB AAYXX CITATION NPM 7X8 5PM ACYCR |
DOI | 10.3746/pnf.2015.20.4.221 |
DatabaseName | AGRIS DBPIA - 디비피아 누리미디어 DBpia CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2287-8602 |
EndPage | 229 |
ExternalDocumentID | oai_kci_go_kr_ARTI_737368 PMC4700910 26770908 10_3746_pnf_2015_20_4_221 NODE06577609 KR2016000196 |
Genre | Journal Article |
GroupedDBID | .UV 9ZL ADBBV ALMA_UNASSIGNED_HOLDINGS AOIJS DBRKI DIK FBQ HYE JDI KVFHK OK1 RPM TDB GW5 AAYXX CITATION NPM 7X8 5PM ACYCR |
ID | FETCH-LOGICAL-c3991-6965a1b819ac7dc8933c024cdc6116b28accbfb4eb1fca2ab29b8afb133af54c3 |
ISSN | 2287-1098 |
IngestDate | Wed Jan 22 07:36:46 EST 2025 Thu Aug 21 18:05:43 EDT 2025 Thu Jul 10 23:46:36 EDT 2025 Thu Apr 03 07:06:33 EDT 2025 Tue Jul 01 03:44:00 EDT 2025 Thu Apr 24 23:03:29 EDT 2025 Thu Mar 13 19:39:07 EDT 2025 Tue Nov 07 23:22:57 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | AKT/mTOR vascular formation mouse embryonic stem cells HUVECs hesperidin |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3991-6965a1b819ac7dc8933c024cdc6116b28accbfb4eb1fca2ab29b8afb133af54c3 |
Notes | Q01 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 G704-000778.2015.20.4.010 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4700910 |
PMID | 26770908 |
PQID | 1760878613 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_737368 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4700910 proquest_miscellaneous_1760878613 pubmed_primary_26770908 crossref_citationtrail_10_3746_pnf_2015_20_4_221 crossref_primary_10_3746_pnf_2015_20_4_221 nurimedia_primary_NODE06577609 fao_agris_KR2016000196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Preventive nutrition and food science |
PublicationTitleAlternate | Prev Nutr Food Sci |
PublicationYear | 2015 |
Publisher | 한국식품영양과학회 The Korean Society of Food Science and Nutrition |
Publisher_xml | – name: 한국식품영양과학회 – name: The Korean Society of Food Science and Nutrition |
References | (E1FSA3_2015_v20n4_221_020) 2012; 7 (E1FSA3_2015_v20n4_221_019) 1999; 165 (E1FSA3_2015_v20n4_221_021) 2005; 5 (E1FSA3_2015_v20n4_221_025) 2006; 26 (E1FSA3_2015_v20n4_221_002) 2010; 126 (E1FSA3_2015_v20n4_221_027) 2002; 13 (E1FSA3_2015_v20n4_221_005) 2004; 23 (E1FSA3_2015_v20n4_221_004) 2000; 19 (E1FSA3_2015_v20n4_221_022) 2011; 4 (E1FSA3_2015_v20n4_221_006) 2006; 69 (E1FSA3_2015_v20n4_221_017) 2009; 57 (E1FSA3_2015_v20n4_221_015) 2008; 56 (E1FSA3_2015_v20n4_221_012) 2009; 7 (E1FSA3_2015_v20n4_221_029) 2004; 215 (E1FSA3_2015_v20n4_221_031) 2000; 100 (E1FSA3_2015_v20n4_221_034) 2006; 291 (E1FSA3_2015_v20n4_221_008) 2015; 75 (E1FSA3_2015_v20n4_221_018) 1993; 7 (E1FSA3_2015_v20n4_221_007) 2003; 278 (E1FSA3_2015_v20n4_221_014) 2012; 30 (E1FSA3_2015_v20n4_221_036) 2010; 285 (E1FSA3_2015_v20n4_221_013) 2008; 180 (E1FSA3_2015_v20n4_221_026) 1997; 57 (E1FSA3_2015_v20n4_221_024) 2003; 133 (E1FSA3_2015_v20n4_221_003) 2005; 58 (E1FSA3_2015_v20n4_221_011) 1988; 102 (E1FSA3_2015_v20n4_221_016) 2008; 15 (E1FSA3_2015_v20n4_221_035) 2008; 15 (E1FSA3_2015_v20n4_221_001) 2009; 19 (E1FSA3_2015_v20n4_221_032) 2008; 7 (E1FSA3_2015_v20n4_221_010) 1985; 87 (E1FSA3_2015_v20n4_221_023) 2000; 268 (E1FSA3_2015_v20n4_221_033) 2002; 90 (E1FSA3_2015_v20n4_221_009) 2015; 34 (E1FSA3_2015_v20n4_221_030) 2006; 69 (E1FSA3_2015_v20n4_221_028) 2002; 16 16424078 - Mol Pharmacol. 2006 Apr;69(4):1226-33 17897817 - Phytomedicine. 2008 Jan;15(1-2):147-51 10815805 - Oncogene. 2000 Apr 20;19(17 ):2138-46 9230201 - Cancer Res. 1997 Jul 15;57(14):2916-21 20732251 - Toxicol In Vitro. 1993 Jul;7(4):551-6 19919125 - J Agric Food Chem. 2009 Nov 25;57(22):10933-42 12089061 - Circ Res. 2002 Jun 28;90(12):1243-50 14712224 - Oncogene. 2004 Jan 8;23(1):192-200 10647931 - Cell. 2000 Jan 7;100(1):57-70 11772931 - FASEB J. 2002 Jan;16(1):2-14 2460305 - Development. 1988 Mar;102(3):471-8 19864126 - Curr Opin Genet Dev. 2009 Oct;19(5):476-83 19864431 - J Biol Chem. 2010 Jan 1;285(1):80-94 12816951 - J Biol Chem. 2003 Sep 12;278(37):35501-7 10592392 - Cells Tissues Organs. 1999;165(3-4):203-11 12121824 - J Nutr Biochem. 2002 Jul;13(7):380-390 15488631 - Cancer Lett. 2004 Nov 25;215(2):129-40 16710860 - Med Res Rev. 2006 Nov;26(6):747-66 18473813 - Curr Med Chem. 2008;15(12):1192-208 16254106 - J Clin Pathol. 2005 Nov;58(11):1170-4 3897439 - J Embryol Exp Morphol. 1985 Jun;87:27-45 10652234 - Biochem Biophys Res Commun. 2000 Feb 5;268(1):183-91 22144946 - Front Mol Neurosci. 2011 Dec 02;4:51 18981713 - Cancer Biol Ther. 2008 Dec;7(12):1994-2003 18593176 - J Agric Food Chem. 2008 Aug 13;56(15):6185-205 14519822 - J Nutr. 2003 Oct;133(10):3248S-3254S 19904748 - Int J Cancer. 2010 Apr 15;126(8):1777-87 16825603 - Am J Physiol Cell Physiol. 2006 Aug;291(2):C317-26 19630768 - J Thromb Haemost. 2009 Jul;7 Suppl 1:53-6 26239613 - Oncol Rep. 2015 Oct;34(4):1755-60 22890153 - Cell Physiol Biochem. 2012;30(3):758-70 22193302 - Nat Protoc. 2011 Dec 22;7(1):89-104 18590808 - Toxicol Lett. 2008 Aug 28;180(3):166-73 15928673 - Nat Rev Cancer. 2005 Jun;5(6):423-35 16336951 - Cardiovasc Res. 2006 Feb 1;69(2):512-9 25977334 - Cancer Res. 2015 Jul 15;75(14):2886-96 |
References_xml | – volume: 7 start-page: 551 year: 1993 ident: E1FSA3_2015_v20n4_221_018 publication-title: Toxicol In Vitro doi: 10.1016/0887-2333(93)90064-C – volume: 215 start-page: 129 year: 2004 ident: E1FSA3_2015_v20n4_221_029 publication-title: Cancer Lett doi: 10.1016/j.canlet.2004.07.013 – volume: 165 start-page: 203 year: 1999 ident: E1FSA3_2015_v20n4_221_019 publication-title: Cells Tissues Organs doi: 10.1159/000016700 – volume: 23 start-page: 192 year: 2004 ident: E1FSA3_2015_v20n4_221_005 publication-title: Oncogene doi: 10.1038/sj.onc.1206921 – volume: 26 start-page: 747 year: 2006 ident: E1FSA3_2015_v20n4_221_025 publication-title: Med Res Rev doi: 10.1002/med.20060 – volume: 285 start-page: 80 year: 2010 ident: E1FSA3_2015_v20n4_221_036 publication-title: J Biol Chem doi: 10.1074/jbc.M109.029637 – volume: 15 start-page: 147 year: 2008 ident: E1FSA3_2015_v20n4_221_016 publication-title: Phytomedicine doi: 10.1016/j.phymed.2007.07.061 – volume: 34 start-page: 1755 year: 2015 ident: E1FSA3_2015_v20n4_221_009 publication-title: Oncol Rep doi: 10.3892/or.2015.4166 – volume: 102 start-page: 471 year: 1988 ident: E1FSA3_2015_v20n4_221_011 publication-title: Development doi: 10.1242/dev.102.3.471 – volume: 291 start-page: C317 year: 2006 ident: E1FSA3_2015_v20n4_221_034 publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00491.2005 – volume: 7 start-page: 89 year: 2012 ident: E1FSA3_2015_v20n4_221_020 publication-title: Nat Protoc doi: 10.1038/nprot.2011.435 – volume: 57 start-page: 2916 year: 1997 ident: E1FSA3_2015_v20n4_221_026 publication-title: Cancer Res – volume: 7 start-page: 1994 year: 2008 ident: E1FSA3_2015_v20n4_221_032 publication-title: Cancer Biol Ther doi: 10.4161/cbt.7.12.6967 – volume: 16 start-page: 2 year: 2002 ident: E1FSA3_2015_v20n4_221_028 publication-title: FASEB J doi: 10.1096/fj.01-0300rev – volume: 180 start-page: 166 year: 2008 ident: E1FSA3_2015_v20n4_221_013 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2008.05.023 – volume: 4 start-page: 51 year: 2011 ident: E1FSA3_2015_v20n4_221_022 publication-title: Front Mol Neurosci – volume: 69 start-page: 512 year: 2006 ident: E1FSA3_2015_v20n4_221_006 publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2005.09.019 – volume: 7 start-page: 53 year: 2009 ident: E1FSA3_2015_v20n4_221_012 publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2009.03427.x – volume: 5 start-page: 423 year: 2005 ident: E1FSA3_2015_v20n4_221_021 publication-title: Nat Rev Cancer doi: 10.1038/nrc1628 – volume: 13 start-page: 380 year: 2002 ident: E1FSA3_2015_v20n4_221_027 publication-title: J Nutr Biochem doi: 10.1016/S0955-2863(02)00204-8 – volume: 30 start-page: 758 year: 2012 ident: E1FSA3_2015_v20n4_221_014 publication-title: Cell Physiol Biochem doi: 10.1159/000341455 – volume: 15 start-page: 1192 year: 2008 ident: E1FSA3_2015_v20n4_221_035 publication-title: Curr Med Chem doi: 10.2174/092986708784310459 – volume: 278 start-page: 35501 year: 2003 ident: E1FSA3_2015_v20n4_221_007 publication-title: J Biol Chem doi: 10.1074/jbc.M302967200 – volume: 57 start-page: 10933 year: 2009 ident: E1FSA3_2015_v20n4_221_017 publication-title: J Agric Food Chem doi: 10.1021/jf901718u – volume: 19 start-page: 2138 year: 2000 ident: E1FSA3_2015_v20n4_221_004 publication-title: Oncogene doi: 10.1038/sj.onc.1203533 – volume: 69 start-page: 1226 year: 2006 ident: E1FSA3_2015_v20n4_221_030 publication-title: Mol Pharmacol doi: 10.1124/mol.105.020537 – volume: 90 start-page: 1243 year: 2002 ident: E1FSA3_2015_v20n4_221_033 publication-title: Circ Res doi: 10.1161/01.RES.0000022200.71892.9F – volume: 19 start-page: 476 year: 2009 ident: E1FSA3_2015_v20n4_221_001 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2009.09.004 – volume: 126 start-page: 1777 year: 2010 ident: E1FSA3_2015_v20n4_221_002 publication-title: Int J Cancer doi: 10.1002/ijc.25026 – volume: 56 start-page: 6185 year: 2008 ident: E1FSA3_2015_v20n4_221_015 publication-title: J Agric Food Chem doi: 10.1021/jf8006568 – volume: 133 start-page: 3248S year: 2003 ident: E1FSA3_2015_v20n4_221_024 publication-title: J Nutr doi: 10.1093/jn/133.10.3248S – volume: 87 start-page: 27 year: 1985 ident: E1FSA3_2015_v20n4_221_010 publication-title: J Embryol Exp Morphol – volume: 268 start-page: 183 year: 2000 ident: E1FSA3_2015_v20n4_221_023 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.2018 – volume: 100 start-page: 57 year: 2000 ident: E1FSA3_2015_v20n4_221_031 publication-title: Cell doi: 10.1016/S0092-8674(00)81683-9 – volume: 75 start-page: 2886 year: 2015 ident: E1FSA3_2015_v20n4_221_008 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-2312 – volume: 58 start-page: 1170 year: 2005 ident: E1FSA3_2015_v20n4_221_003 publication-title: J Clin Pathol doi: 10.1136/jcp.2004.025536 – reference: 26239613 - Oncol Rep. 2015 Oct;34(4):1755-60 – reference: 17897817 - Phytomedicine. 2008 Jan;15(1-2):147-51 – reference: 10647931 - Cell. 2000 Jan 7;100(1):57-70 – reference: 16710860 - Med Res Rev. 2006 Nov;26(6):747-66 – reference: 11772931 - FASEB J. 2002 Jan;16(1):2-14 – reference: 18590808 - Toxicol Lett. 2008 Aug 28;180(3):166-73 – reference: 22890153 - Cell Physiol Biochem. 2012;30(3):758-70 – reference: 12816951 - J Biol Chem. 2003 Sep 12;278(37):35501-7 – reference: 19864431 - J Biol Chem. 2010 Jan 1;285(1):80-94 – reference: 16254106 - J Clin Pathol. 2005 Nov;58(11):1170-4 – reference: 12121824 - J Nutr Biochem. 2002 Jul;13(7):380-390 – reference: 14519822 - J Nutr. 2003 Oct;133(10):3248S-3254S – reference: 9230201 - Cancer Res. 1997 Jul 15;57(14):2916-21 – reference: 16336951 - Cardiovasc Res. 2006 Feb 1;69(2):512-9 – reference: 25977334 - Cancer Res. 2015 Jul 15;75(14):2886-96 – reference: 18593176 - J Agric Food Chem. 2008 Aug 13;56(15):6185-205 – reference: 19864126 - Curr Opin Genet Dev. 2009 Oct;19(5):476-83 – reference: 2460305 - Development. 1988 Mar;102(3):471-8 – reference: 16825603 - Am J Physiol Cell Physiol. 2006 Aug;291(2):C317-26 – reference: 15928673 - Nat Rev Cancer. 2005 Jun;5(6):423-35 – reference: 18473813 - Curr Med Chem. 2008;15(12):1192-208 – reference: 19630768 - J Thromb Haemost. 2009 Jul;7 Suppl 1:53-6 – reference: 10592392 - Cells Tissues Organs. 1999;165(3-4):203-11 – reference: 22144946 - Front Mol Neurosci. 2011 Dec 02;4:51 – reference: 20732251 - Toxicol In Vitro. 1993 Jul;7(4):551-6 – reference: 18981713 - Cancer Biol Ther. 2008 Dec;7(12):1994-2003 – reference: 19919125 - J Agric Food Chem. 2009 Nov 25;57(22):10933-42 – reference: 12089061 - Circ Res. 2002 Jun 28;90(12):1243-50 – reference: 10815805 - Oncogene. 2000 Apr 20;19(17 ):2138-46 – reference: 22193302 - Nat Protoc. 2011 Dec 22;7(1):89-104 – reference: 3897439 - J Embryol Exp Morphol. 1985 Jun;87:27-45 – reference: 15488631 - Cancer Lett. 2004 Nov 25;215(2):129-40 – reference: 16424078 - Mol Pharmacol. 2006 Apr;69(4):1226-33 – reference: 19904748 - Int J Cancer. 2010 Apr 15;126(8):1777-87 – reference: 14712224 - Oncogene. 2004 Jan 8;23(1):192-200 – reference: 10652234 - Biochem Biophys Res Commun. 2000 Feb 5;268(1):183-91 |
SSID | ssj0001129527 |
Score | 2.0281415 |
Snippet | Hesperidin has been shown to possess a potential inhibitory effect on vascular formation in endothelial cells. However, the fundamental mechanism for the... |
SourceID | nrf pubmedcentral proquest pubmed crossref nurimedia fao |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 221 |
SubjectTerms | FLAVONOIDE FLAVONOIDES FLAVONOIDS vascular formation,AKT/mTOR,HUVECs,mouse embryonic stem cells 식품과학 |
Title | Hesperidin Inhibits Vascular Formation by Blocking the AKT/mTOR Signaling Pathways |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06577609 https://www.ncbi.nlm.nih.gov/pubmed/26770908 https://www.proquest.com/docview/1760878613 https://pubmed.ncbi.nlm.nih.gov/PMC4700910 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002066686 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Preventive Nutrition and Food Science, 2015, 20(4), , pp.221-229 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68QAvCASDDpiCxBNTu9T54fQRxkphWjeVDu3Nst2kq8rSqmtB21_Pd0mcpmVCsBc3yg879X25-84-nxl7Z4aaq3bCG3HkhQ1fhKoRxYHXiAMlKIyIJwk5iie9sHvuf70ILmq12-rqkoVumts715XcR6o4B7nSKtn_kGxZKU7gGPJFCQmj_CcZd2PK8z2G-cF3fjnWNAnw3YaWduyyRGKYH2GzJnZlFHgd2rwanPb3v41HxMRx4QxU8Je6ua6yVZvf6We8n9qs_dlsQ0K5kAvjuZrFz6D1eQwkxdXBhFawEZhB0DyezmkOwAaNgrJ2qE6raqiRnm1ypaw4PC-o9HxH6Wa8Okd7XFW1LXcrqPKrqjNfKV1YYZ6Pg2wqeE9kmY1naZZ9NUDR9JvFkxWBz64yifNQCLftRitbV0Ygnp0c-sIlsrTFHnAhsil-O9KTjc-BCOU7_pZ_LZ8Up1c4-OMFKKl00doaw9lK1BRlOsfxw3RJWzbgu7_LndmMyq3QnMET9rjwT5wPOdieslqcPmP9FdAcCzTHAs0pgeboG8cCzQHQHADtgGDmlDBzLMyes_PO0eCw2yg242gYj6LjwnYYqJYGgVRGDA1ormfA78zQhK1WqHmkjNGJ9mH7E6O40rytI5XoluepJPCNt8O202kav2SOVqatQq5EEgx93Ky0cIdwg7lKXINOrzPXdqA0RaZ62jDlh4THSt0v0f2Suh-F9CW6v87el4_M8jQtf7t5B1KRagQzKo_7nJIsZnmi6uwtBCUnZiwp6zr9jqZyMpfwLb9I4UF3RXW2V4qxbKp3-ukIXF6I0G2jEitbCVVN828qjafLa9nC5UhEINB19iKXdVmDBU-diTUUlDfQC61fSceXWTr4Ase7937yFXu00gWv2fZivozfgGov9F72TfwGzPjS7w |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hesperidin+Inhibits+Vascular+Formation+by+Blocking+the+AKT%2FmTOR+Signaling+Pathways&rft.jtitle=Preventive+nutrition+and+food+science&rft.au=Kim%2C+Gi+Dae&rft.date=2015-12-01&rft.pub=The+Korean+Society+of+Food+Science+and+Nutrition&rft.issn=2287-1098&rft.eissn=2287-8602&rft.volume=20&rft.issue=4&rft.spage=221&rft.epage=229&rft_id=info:doi/10.3746%2Fpnf.2015.20.4.221&rft_id=info%3Apmid%2F26770908&rft.externalDocID=PMC4700910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-1098&client=summon |