MaxQuant.Live Enables Global Targeting of More Than 25,000 Peptides

MaxQuant.Live builds on the fast application programming interface of quadrupole Orbitrap mass analyzers to control data acquisition in real-time (freely available at www.maxquant.live). Its graphical user interface enables advanced data acquisition strategies, such as in-depth characterization of p...

Full description

Saved in:
Bibliographic Details
Published inMolecular & cellular proteomics Vol. 18; no. 5; pp. 982 - 994
Main Authors Wichmann, Christoph, Meier, Florian, Virreira Winter, Sebastian, Brunner, Andreas-David, Cox, Jürgen, Mann, Matthias
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2019
The American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MaxQuant.Live builds on the fast application programming interface of quadrupole Orbitrap mass analyzers to control data acquisition in real-time (freely available at www.maxquant.live). Its graphical user interface enables advanced data acquisition strategies, such as in-depth characterization of peptides of interest. Online recalibration in mass, retention time, and intensity dimensions extends this concept to more than 25,000 peptides per run. Our “global targeting” strategy combines the best of targeted and shotgun approaches. [Display omitted] Highlights •MaxQuant.Live controls Orbitrap mass analyzers in real-time.•Freely available apps enable advanced data acquisition strategies.•On-the-fly mass, retention time and intensity recalibration.•Global targeting unifies shotgun and targeted proteomics. Mass spectrometry (MS)-based proteomics is often performed in a shotgun format, in which as many peptide precursors as possible are selected from full or MS1 scans so that their fragment spectra can be recorded in MS2 scans. Although achieving great proteome depths, shotgun proteomics cannot guarantee that each precursor will be fragmented in each run. In contrast, targeted proteomics aims to reproducibly and sensitively record a restricted number of precursor/fragment combinations in each run, based on prescheduled mass-to-charge and retention time windows. Here we set out to unify these two concepts by a global targeting approach in which an arbitrary number of precursors of interest are detected in real-time, followed by standard fragmentation or advanced peptide-specific analyses. We made use of a fast application programming interface to a quadrupole Orbitrap instrument and real-time recalibration in mass, retention time and intensity dimensions to predict precursor identity. MaxQuant.Live is freely available (www.maxquant.live) and has a graphical user interface to specify many predefined data acquisition strategies. Acquisition speed is as fast as with the vendor software and the power of our approach is demonstrated with the acquisition of breakdown curves for hundreds of precursors of interest. We also uncover precursors that are not even visible in MS1 scans, using elution time prediction based on the auto-adjusted retention time alone. Finally, we successfully recognized and targeted more than 25,000 peptides in single LC-MS runs. Global targeting combines the advantages of two classical approaches in MS-based proteomics, whereas greatly expanding the analytical toolbox. MaxQuant.Live builds on the fast application programming interface of quadrupole Orbitrap mass analyzers to control data acquisition in real-time (freely available at www.maxquant.live). Its graphical user interface enables advanced data acquisition strategies, such as in-depth characterization of peptides of interest. Online recalibration in mass, retention time, and intensity dimensions extends this concept to more than 25,000 peptides per run. Our “global targeting” strategy combines the best of targeted and shotgun approaches.
AbstractList MaxQuant.Live builds on the fast application programming interface of quadrupole Orbitrap mass analyzers to control data acquisition in real-time (freely available at www.maxquant.live). Its graphical user interface enables advanced data acquisition strategies, such as in-depth characterization of peptides of interest. Online recalibration in mass, retention time, and intensity dimensions extends this concept to more than 25,000 peptides per run. Our “global targeting” strategy combines the best of targeted and shotgun approaches. [Display omitted] Highlights •MaxQuant.Live controls Orbitrap mass analyzers in real-time.•Freely available apps enable advanced data acquisition strategies.•On-the-fly mass, retention time and intensity recalibration.•Global targeting unifies shotgun and targeted proteomics. Mass spectrometry (MS)-based proteomics is often performed in a shotgun format, in which as many peptide precursors as possible are selected from full or MS1 scans so that their fragment spectra can be recorded in MS2 scans. Although achieving great proteome depths, shotgun proteomics cannot guarantee that each precursor will be fragmented in each run. In contrast, targeted proteomics aims to reproducibly and sensitively record a restricted number of precursor/fragment combinations in each run, based on prescheduled mass-to-charge and retention time windows. Here we set out to unify these two concepts by a global targeting approach in which an arbitrary number of precursors of interest are detected in real-time, followed by standard fragmentation or advanced peptide-specific analyses. We made use of a fast application programming interface to a quadrupole Orbitrap instrument and real-time recalibration in mass, retention time and intensity dimensions to predict precursor identity. MaxQuant.Live is freely available (www.maxquant.live) and has a graphical user interface to specify many predefined data acquisition strategies. Acquisition speed is as fast as with the vendor software and the power of our approach is demonstrated with the acquisition of breakdown curves for hundreds of precursors of interest. We also uncover precursors that are not even visible in MS1 scans, using elution time prediction based on the auto-adjusted retention time alone. Finally, we successfully recognized and targeted more than 25,000 peptides in single LC-MS runs. Global targeting combines the advantages of two classical approaches in MS-based proteomics, whereas greatly expanding the analytical toolbox. MaxQuant.Live builds on the fast application programming interface of quadrupole Orbitrap mass analyzers to control data acquisition in real-time (freely available at www.maxquant.live). Its graphical user interface enables advanced data acquisition strategies, such as in-depth characterization of peptides of interest. Online recalibration in mass, retention time, and intensity dimensions extends this concept to more than 25,000 peptides per run. Our “global targeting” strategy combines the best of targeted and shotgun approaches.
Mass spectrometry (MS)-based proteomics is often performed in a shotgun format, in which as many peptide precursors as possible are selected from full or MS1 scans so that their fragment spectra can be recorded in MS2 scans. Although achieving great proteome depths, shotgun proteomics cannot guarantee that each precursor will be fragmented in each run. In contrast, targeted proteomics aims to reproducibly and sensitively record a restricted number of precursor/fragment combinations in each run, based on prescheduled mass-to-charge and retention time windows. Here we set out to unify these two concepts by a global targeting approach in which an arbitrary number of precursors of interest are detected in real-time, followed by standard fragmentation or advanced peptide-specific analyses. We made use of a fast application programming interface to a quadrupole Orbitrap instrument and real-time recalibration in mass, retention time and intensity dimensions to predict precursor identity. MaxQuant.Live is freely available (www.maxquant.live) and has a graphical user interface to specify many predefined data acquisition strategies. Acquisition speed is as fast as with the vendor software and the power of our approach is demonstrated with the acquisition of breakdown curves for hundreds of precursors of interest. We also uncover precursors that are not even visible in MS1 scans, using elution time prediction based on the auto-adjusted retention time alone. Finally, we successfully recognized and targeted more than 25,000 peptides in single LC-MS runs. Global targeting combines the advantages of two classical approaches in MS-based proteomics, whereas greatly expanding the analytical toolbox.
MaxQuant.Live builds on the fast application programming interface of quadrupole Orbitrap mass analyzers to control data acquisition in real-time (freely available at www.maxquant.live ). Its graphical user interface enables advanced data acquisition strategies, such as in-depth characterization of peptides of interest. Online recalibration in mass, retention time, and intensity dimensions extends this concept to more than 25,000 peptides per run. Our “global targeting” strategy combines the best of targeted and shotgun approaches. Highlights MaxQuant.Live controls Orbitrap mass analyzers in real-time. Freely available apps enable advanced data acquisition strategies. On-the-fly mass, retention time and intensity recalibration. Global targeting unifies shotgun and targeted proteomics. Mass spectrometry (MS)-based proteomics is often performed in a shotgun format, in which as many peptide precursors as possible are selected from full or MS1 scans so that their fragment spectra can be recorded in MS2 scans. Although achieving great proteome depths, shotgun proteomics cannot guarantee that each precursor will be fragmented in each run. In contrast, targeted proteomics aims to reproducibly and sensitively record a restricted number of precursor/fragment combinations in each run, based on prescheduled mass-to-charge and retention time windows. Here we set out to unify these two concepts by a global targeting approach in which an arbitrary number of precursors of interest are detected in real-time, followed by standard fragmentation or advanced peptide-specific analyses. We made use of a fast application programming interface to a quadrupole Orbitrap instrument and real-time recalibration in mass, retention time and intensity dimensions to predict precursor identity. MaxQuant.Live is freely available ( www.maxquant.live ) and has a graphical user interface to specify many predefined data acquisition strategies. Acquisition speed is as fast as with the vendor software and the power of our approach is demonstrated with the acquisition of breakdown curves for hundreds of precursors of interest. We also uncover precursors that are not even visible in MS1 scans, using elution time prediction based on the auto-adjusted retention time alone. Finally, we successfully recognized and targeted more than 25,000 peptides in single LC-MS runs. Global targeting combines the advantages of two classical approaches in MS-based proteomics, whereas greatly expanding the analytical toolbox.
Author Mann, Matthias
Brunner, Andreas-David
Cox, Jürgen
Wichmann, Christoph
Virreira Winter, Sebastian
Meier, Florian
Author_xml – sequence: 1
  givenname: Christoph
  surname: Wichmann
  fullname: Wichmann, Christoph
  organization: From the ‡Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
– sequence: 2
  givenname: Florian
  surname: Meier
  fullname: Meier, Florian
  organization: §Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
– sequence: 3
  givenname: Sebastian
  surname: Virreira Winter
  fullname: Virreira Winter, Sebastian
  organization: §Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
– sequence: 4
  givenname: Andreas-David
  surname: Brunner
  fullname: Brunner, Andreas-David
  organization: §Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
– sequence: 5
  givenname: Jürgen
  surname: Cox
  fullname: Cox, Jürgen
  email: cox@biochem.mpg.de
  organization: From the ‡Computational Systems Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
– sequence: 6
  givenname: Matthias
  surname: Mann
  fullname: Mann, Matthias
  email: mmann@biochem.mpg.de
  organization: §Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30755466$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUQEVJaR7tB3RTZplF7erO6I4kAoFi8gKHPnDXQqO5dhTGkiuNTfv3mTCJSTbtSgKde5B0jtlBiIEY-wh8ClyKL2u3mS5ufgKoKecAFbxhR4AVTrRQ4mC_l_UhO875nvOSg8R37LDiElHU9RGb3do_P7Y29NO531FxEWzTUS6uutjYrljYtKLeh1URl8VtTFQs7mwoSvzMOS--06b3LeX37O3Sdpk-PK0n7NflxWJ2PZl_u7qZfZ1PXKU1TABKiQ6htFJxdM2ylaiVc9AQL11rG-uAaqFr5QClhsqitko2KCUH1FV1ws5H72bbrKl1FPpkO7NJfm3TXxOtN69Pgr8zq7gzgxRL5IPg9EmQ4u8t5d6sfXbUdTZQ3GZTCqlQC4Hi_2gJSmutxCMKI-pSzDnRcn8j4Oaxkxk6mbGTGTsNM59ePmU_8RxmAM5GgIYP3XlKJjtPwVHrE7netNH_Q_8AWnmiNg
CitedBy_id crossref_primary_10_1152_ajpendo_00153_2023
crossref_primary_10_1186_s13068_022_02125_x
crossref_primary_10_1038_s41592_021_01116_4
crossref_primary_10_1186_s12915_021_01135_9
crossref_primary_10_1080_15476286_2022_2141938
crossref_primary_10_1038_s41598_020_80120_8
crossref_primary_10_1016_j_xphs_2022_10_016
crossref_primary_10_1016_j_mcpro_2021_100165
crossref_primary_10_1016_j_fsigen_2021_102529
crossref_primary_10_1021_acs_jproteome_3c00598
crossref_primary_10_3390_proteomes9010002
crossref_primary_10_1007_s00414_023_02955_w
crossref_primary_10_1080_22297928_2022_2086822
crossref_primary_10_3389_fonc_2022_841398
crossref_primary_10_1021_acs_jproteome_0c00892
crossref_primary_10_1186_s12014_020_09283_w
crossref_primary_10_1186_s12864_022_08394_y
crossref_primary_10_1002_mas_21812
crossref_primary_10_1002_pmic_202200328
crossref_primary_10_1021_acschembio_9b00398
crossref_primary_10_1038_s41591_022_01850_y
crossref_primary_10_1002_prca_202200093
crossref_primary_10_1038_s41467_022_31922_z
crossref_primary_10_15252_emmm_202013257
crossref_primary_10_1021_acs_jproteome_2c00223
crossref_primary_10_1002_ijc_34265
crossref_primary_10_1002_pmic_202200162
crossref_primary_10_1038_s41467_020_20509_1
crossref_primary_10_1002_wcms_1658
crossref_primary_10_3390_cancers13153890
crossref_primary_10_1021_acs_accounts_0c00413
crossref_primary_10_1021_acs_jproteome_8b00972
crossref_primary_10_1038_s41467_020_17033_7
crossref_primary_10_3390_ijms232314754
crossref_primary_10_1021_acs_jproteome_1c00639
crossref_primary_10_1002_mas_21789
crossref_primary_10_3389_fimmu_2021_785941
crossref_primary_10_3390_ijms222413537
crossref_primary_10_1038_s41592_023_01786_2
crossref_primary_10_1093_femsre_fuad051
crossref_primary_10_1016_j_jsbmb_2024_106520
crossref_primary_10_1002_pmic_201900276
crossref_primary_10_1016_j_biopha_2019_109390
crossref_primary_10_1002_path_5420
crossref_primary_10_1016_j_copbio_2022_102736
crossref_primary_10_1016_j_bbamcr_2022_119266
crossref_primary_10_1080_15384047_2023_2170669
crossref_primary_10_1016_j_mcpro_2023_100502
crossref_primary_10_1021_acs_jproteome_2c00096
crossref_primary_10_1002_prca_202000053
crossref_primary_10_1038_s41467_019_13866_z
crossref_primary_10_1021_acs_jproteome_2c00092
crossref_primary_10_1002_prca_202000092
crossref_primary_10_1042_BCJ20200930
crossref_primary_10_1016_j_xcrm_2022_100661
crossref_primary_10_1038_s41592_023_01830_1
crossref_primary_10_1038_s41598_020_70541_w
crossref_primary_10_1016_j_euprot_2019_07_002
crossref_primary_10_1021_acs_jproteome_1c00525
crossref_primary_10_1021_acs_jpcb_3c00014
crossref_primary_10_1016_j_mcpro_2021_100138
crossref_primary_10_1021_acs_analchem_3c04497
crossref_primary_10_1038_s41586_020_2402_x
crossref_primary_10_1021_acs_analchem_0c04293
crossref_primary_10_15252_msb_20199356
crossref_primary_10_1007_s00216_024_05171_6
crossref_primary_10_1007_s00216_022_03931_w
crossref_primary_10_15252_msb_202210947
crossref_primary_10_1039_D0CC05447J
crossref_primary_10_7554_eLife_77937
Cites_doi 10.1038/nmeth.2015
10.1074/mcp.M111.014050
10.1016/1044-0305(95)00017-8
10.1074/mcp.O114.043968
10.1007/s13361-011-0142-8
10.1074/mcp.M113.034769
10.1074/mcp.M111.013185
10.1038/nmeth.2834
10.15252/msb.20178126
10.1002/pmic.201500543
10.1021/ja00475a072
10.1016/j.cbpa.2009.08.016
10.1038/nature07341
10.15252/msb.20156297
10.1038/nprot.2006.427
10.1021/pr101065j
10.1038/nmeth.3901
10.1038/nbt.1511
10.1093/nar/gkv1145
10.1021/ac50036a020
10.1074/mcp.O114.047035
10.1074/mcp.O112.020131
10.1038/nature19949
10.1093/bioinformatics/btq054
10.1038/nrm3970
10.1038/nmeth.1408
10.1038/embor.2008.56
10.1038/s41592-018-0003-5
10.1021/pr401278j
10.1146/annurev-biodatasci-080917-013516
10.1074/mcp.M112.020271
10.1038/nmeth.4153
10.1021/acs.jproteome.7b00602
10.1016/j.cels.2017.05.009
10.1038/nmeth.1584
10.1016/j.cell.2016.06.041
10.1038/nmeth1060
10.1074/mcp.M200025-MCP200
10.1016/j.cbpa.2011.12.011
10.1021/pr101060v
10.1091/mbc.E15-07-0507
10.15252/embj.201694818
10.1038/nmeth.4607
10.1038/nmeth.1260
10.1038/s41592-018-0037-8
ContentType Journal Article
Copyright 2019 © 2019 Wichmann et al.
2019 Wichmann et al.
2019 Wichmann et al. 2019 Wichmann et al.
Copyright_xml – notice: 2019 © 2019 Wichmann et al.
– notice: 2019 Wichmann et al.
– notice: 2019 Wichmann et al. 2019 Wichmann et al.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1074/mcp.TIR118.001131
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
DocumentTitleAlternate Global Targeting of Tens of Thousands of Peptides
EISSN 1535-9484
EndPage 994
ExternalDocumentID 10_1074_mcp_TIR118_001131
30755466
S1535947620316078
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union′s Horizon 2020 research
  grantid: 686547
– fundername: ;
  grantid: 686547
– fundername: ;
  grantid: 0
– fundername: ;
  grantid: Gottfried Wilhelm Leibniz Prize granted to Matthias Mann
GroupedDBID ---
0SF
123
18M
29M
2WC
34G
39C
4.4
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AAXUO
ABDNZ
ACGFO
ACIWK
ACPRK
ACYGS
ADBBV
AENEX
AEXQZ
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
KQ8
OK1
P2P
RHF
RHI
RNS
ROL
RPM
TBC
TR2
W8F
WOQ
ZA5
0R~
AALRI
ADVLN
AITUG
AKRWK
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c3991-11275c512a7805cbfd7598cc1be02cdabac1e64968c157913a59a87b577015933
IEDL.DBID RPM
ISSN 1535-9476
IngestDate Tue Sep 17 21:24:05 EDT 2024
Fri Oct 25 01:55:22 EDT 2024
Fri Oct 25 06:54:21 EDT 2024
Fri Aug 23 02:47:13 EDT 2024
Wed Oct 16 00:44:10 EDT 2024
Fri Feb 23 02:46:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Global targeting
Targeted mass spectrometry
Quantification
Real time control
Computational Biology
Bioinformatics software
Parallel reaction monitoring
Protein Identification
Quality control and metrics
Label-free quantification
Language English
License This is an open access article under the CC BY license.
2019 Wichmann et al.
Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license.
Published by The American Society for Biochemistry and Molecular Biology, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3991-11275c512a7805cbfd7598cc1be02cdabac1e64968c157913a59a87b577015933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: C.W., F.M., and M.M. designed research; C.W., F.M., S.V.W., and A.-D.B. performed research; C.W., F.M., S.V.W., A.-D.B., and M.M. analyzed data; C.W., F.M., S.V.W., A.-D.B., and M.M. wrote the paper; J.C. contributed new reagents/analytic tools; J.C. supervised Dr. Christoph Wichmann.
ORCID 0000-0003-4729-175X
0000-0002-2733-7899
0000-0002-6974-3895
0000-0001-8597-205X
0000-0002-2299-8110
0000-0003-1292-4799
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495250/
PMID 30755466
PQID 2218999844
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6495250
proquest_miscellaneous_2478594454
proquest_miscellaneous_2218999844
crossref_primary_10_1074_mcp_TIR118_001131
pubmed_primary_30755466
elsevier_sciencedirect_doi_10_1074_mcp_TIR118_001131
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular & cellular proteomics
PublicationTitleAlternate Mol Cell Proteomics
PublicationYear 2019
Publisher Elsevier Inc
The American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: The American Society for Biochemistry and Molecular Biology
References Kelstrup, Bekker-Jensen, Arrey, Hogrebe, Harder, Olsen (bib33) 2018; 17
Lössl, van de Waterbeemd, Heck (bib1) 2016; 35
Ludwig, Gillet, Rosenberger, Amon, Collins, Aebersold (bib11) 2018; 14
Bekker-Jensen, Kelstrup, Batth, Larsen, Haldrup, Bramsen, Sørensen, Høyer, Ørntoft, Andersen, Nielsen, Olsen (bib6) 2017; 4
Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger, Mann, Cox (bib36) 2016; 13
MacLean, Tomazela, Shulman, Chambers, Finney, Frewen, Kern, Tabb, Liebler, MacCoss (bib35) 2010; 26
Ong, Blagoev, Kratchmarova, Kristensen, Steen, Pandey, Mann (bib30) 2002; 1
Larance, Lamond (bib2) 2015; 16
R Core Team (bib37) 2008
Zolg, Wilhelm, Schnatbaum, Zerweck, Knaute, Delanghe, Bailey, Gessulat, Ehrlich, Weininger, Yu, Schlegl, Kramer, Schmidt, Kusebauch, Deutsch, Aebersold, Moritz, Wenschuh, Moehring, Aiche, Huhmer, Reimer, vKuster (bib20) 2017; 14
Gallien, Kim, Domon (bib22) 2015; 14
Sinitcyn, Rudolph, Cox (bib28) 2018; 1
Kondrat, McClusky, Cooks (bib13) 1978; 50
Cox, Neuhauser, Michalski, Scheltema, Olsen, Mann (bib25) 2011; 10
Bourmaud, Gallien, Domon (bib16) 2016; 16
Cox, Mann (bib24) 2008; 26
Vizcaíno, Csordas, Del-Toro, Dianes, Griss, Lavidas, Mayer, Perez-Riverol, Reisinger, Ternent, Xu, Wang, Hermjakob (bib38) 2016; 44
Bailey, McDevitt, Westphall, Pagliarini, Coon (bib23) 2014; 13
Graumann, Scheltema Ra Zhang, Cox, Mann (bib26) 2012; 11
Olsen, Macek, Lange, Makarov, Horning, Mann (bib34) 2007; 4
Peterson, Russell, Bailey, Westphall, Coon (bib15) 2012; 11
Deutsch, Lam, Aebersold (bib19) 2008; 9
Kuehn (bib29) 2013
Ong, Mann (bib31) 2006; 1
Schmidt, Claassen, Aebersold (bib45) 2009; 13
Röst, Malmström, Aebersold (bib8) 2015; 26
Virreira Winter, Meier, Wichmann, Cox, Mann, Meissner (bib41) 2018; 15
Zauber, Kirchner, Selbach (bib18) 2018; 15
Kusebauch, Campbell, Deutsch, Chu, Spicer, Brusniak, Slagel, Sun, Stevens, Grimes, Shteynberg, Hoopmann, Blattmann, Ratushny, Rinner, Picotti, Carapito, Huang, Kapousouz, Lam, Tran, Demir, Aitchison, Sander, Hood, Aebersold, Moritz (bib21) 2016; 166
Kulak, Pichler, Paron, Nagaraj, Mann (bib32) 2014; 11
Geyer, Holdt, Teupser, Mann (bib9) 2017; 13
Geiger, Wehner, Schaab, Cox, Mann (bib27) 2012; 11
Aebersold, Mann (bib3) 2016; 537
Michalski, Cox, Mann (bib10) 2011; 10
de Godoy, Olsen, Cox, Nielsen, Hubner, Fröhlich, Walther, Mann (bib4) 2008; 455
Cox, Michalski, Mann (bib43) 2011; 22
Ting, Egertson, Payne, Kim, MacLean, Käll, Aebersold, Smith, Noble, MacCoss (bib47) 2015; 14
Hebert, Richards, Bailey, Ulbrich, Coughlin, Westphall, Coon (bib5) 2014; 13
Meier, Geyer, Virreira Winter, Cox, Mann (bib40) 2018; 15
Picotti, Rinner, Stallmach, Dautel, Farrah, Domon, Wenschuh, Aebersold (bib17) 2010; 7
Neuhauser, Michalski, Cox, Mann (bib44) 2012; 11
Reiter, Rinner, Picotti, Hüttenhain, Beck, Brusniak, Hengartner, Aebersold (bib46) 2011; 8
Senko, Beu, McLafferty (bib42) 1995; 6
Altelaar, Heck (bib7) 2012; 16
Yost, Enke (bib14) 1978; 100
Picotti, Aebersold (bib12) 2012; 9
Ong (10.1074/mcp.TIR118.001131_bib30) 2002; 1
Neuhauser (10.1074/mcp.TIR118.001131_bib44) 2012; 11
Kuehn (10.1074/mcp.TIR118.001131_bib29) 2013
Zolg (10.1074/mcp.TIR118.001131_bib20) 2017; 14
Ludwig (10.1074/mcp.TIR118.001131_bib11) 2018; 14
Reiter (10.1074/mcp.TIR118.001131_bib46) 2011; 8
Kusebauch (10.1074/mcp.TIR118.001131_bib21) 2016; 166
MacLean (10.1074/mcp.TIR118.001131_bib35) 2010; 26
Schmidt (10.1074/mcp.TIR118.001131_bib45) 2009; 13
Vizcaíno (10.1074/mcp.TIR118.001131_bib38) 2016; 44
Aebersold (10.1074/mcp.TIR118.001131_bib3) 2016; 537
Olsen (10.1074/mcp.TIR118.001131_bib34) 2007; 4
Cox (10.1074/mcp.TIR118.001131_bib24) 2008; 26
Tyanova (10.1074/mcp.TIR118.001131_bib36) 2016; 13
Gallien (10.1074/mcp.TIR118.001131_bib22) 2015; 14
Ting (10.1074/mcp.TIR118.001131_bib47) 2015; 14
Hebert (10.1074/mcp.TIR118.001131_bib5) 2014; 13
Peterson (10.1074/mcp.TIR118.001131_bib15) 2012; 11
de Godoy (10.1074/mcp.TIR118.001131_bib4) 2008; 455
Michalski (10.1074/mcp.TIR118.001131_bib10) 2011; 10
Geyer (10.1074/mcp.TIR118.001131_bib9) 2017; 13
Geiger (10.1074/mcp.TIR118.001131_bib27) 2012; 11
Meier (10.1074/mcp.TIR118.001131_bib40) 2018; 15
Bourmaud (10.1074/mcp.TIR118.001131_bib16) 2016; 16
Sinitcyn (10.1074/mcp.TIR118.001131_bib28) 2018; 1
Cox (10.1074/mcp.TIR118.001131_bib25) 2011; 10
Senko (10.1074/mcp.TIR118.001131_bib42) 1995; 6
Kondrat (10.1074/mcp.TIR118.001131_bib13) 1978; 50
Graumann (10.1074/mcp.TIR118.001131_bib26) 2012; 11
Altelaar (10.1074/mcp.TIR118.001131_bib7) 2012; 16
Kelstrup (10.1074/mcp.TIR118.001131_bib33) 2018; 17
Bailey (10.1074/mcp.TIR118.001131_bib23) 2014; 13
Virreira Winter (10.1074/mcp.TIR118.001131_bib41) 2018; 15
Deutsch (10.1074/mcp.TIR118.001131_bib19) 2008; 9
Zauber (10.1074/mcp.TIR118.001131_bib18) 2018; 15
Ong (10.1074/mcp.TIR118.001131_bib31) 2006; 1
Kulak (10.1074/mcp.TIR118.001131_bib32) 2014; 11
Röst (10.1074/mcp.TIR118.001131_bib8) 2015; 26
R Core Team (10.1074/mcp.TIR118.001131_bib37) 2008
Cox (10.1074/mcp.TIR118.001131_bib43) 2011; 22
Swaney (10.1074/mcp.TIR118.001131_bib39) 2008; 5
Picotti (10.1074/mcp.TIR118.001131_bib12) 2012; 9
Bekker-Jensen (10.1074/mcp.TIR118.001131_bib6) 2017; 4
Lössl (10.1074/mcp.TIR118.001131_bib1) 2016; 35
Yost (10.1074/mcp.TIR118.001131_bib14) 1978; 100
Picotti (10.1074/mcp.TIR118.001131_bib17) 2010; 7
Larance (10.1074/mcp.TIR118.001131_bib2) 2015; 16
References_xml – volume: 9
  start-page: 429
  year: 2008
  end-page: 434
  ident: bib19
  article-title: PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows
  publication-title: EMBO Rep
  contributor:
    fullname: Aebersold
– year: 2008
  ident: bib37
  article-title: R: A language and environment for statistical computing
  publication-title: R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org
  contributor:
    fullname: R Core Team
– volume: 537
  start-page: 347
  year: 2016
  end-page: 355
  ident: bib3
  article-title: Mass-spectrometric exploration of proteome structure and function
  publication-title: Nature
  contributor:
    fullname: Mann
– volume: 26
  start-page: 3926
  year: 2015
  end-page: 3931
  ident: bib8
  article-title: Reproducible quantitative proteotype data matrices for systems biology
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: Aebersold
– volume: 1
  start-page: 207
  year: 2018
  end-page: 234
  ident: bib28
  article-title: Computational methods for understanding mass spectrometry-based shotgun proteomics data
  publication-title: Annu. Rev. Biomed. Data Sci
  contributor:
    fullname: Cox
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: bib24
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol
  contributor:
    fullname: Mann
– volume: 11
  start-page: 1475
  year: 2012
  end-page: 1488
  ident: bib15
  article-title: Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics
  publication-title: Mol. Cell. Proteomics
  contributor:
    fullname: Coon
– volume: 16
  start-page: 206
  year: 2012
  end-page: 213
  ident: bib7
  article-title: Trends in ultrasensitive proteomics
  publication-title: Curr. Opin. Chem. Biol
  contributor:
    fullname: Heck
– volume: 13
  start-page: 2152
  year: 2014
  end-page: 2161
  ident: bib23
  article-title: Intelligent Data Acquisition Blends Targeted and Discovery Methods
  publication-title: J. Proteome Res
  contributor:
    fullname: Coon
– volume: 4
  start-page: 709
  year: 2007
  end-page: 712
  ident: bib34
  article-title: Higher-energy C-trap dissociation for peptide modification analysis
  publication-title: Nat. Methods
  contributor:
    fullname: Mann
– volume: 455
  start-page: 1251
  year: 2008
  end-page: 1254
  ident: bib4
  article-title: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
  publication-title: Nature
  contributor:
    fullname: Mann
– volume: 15
  start-page: 440
  year: 2018
  end-page: 448
  ident: bib40
  article-title: BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes
  publication-title: Nat. Methods
  contributor:
    fullname: Mann
– volume: 9
  start-page: 555
  year: 2012
  end-page: 566
  ident: bib12
  article-title: Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions
  publication-title: Nat. Methods
  contributor:
    fullname: Aebersold
– volume: 10
  start-page: 1785
  year: 2011
  end-page: 1793
  ident: bib10
  article-title: More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS
  publication-title: J. Proteome Res
  contributor:
    fullname: Mann
– volume: 50
  start-page: 2017
  year: 1978
  end-page: 2021
  ident: bib13
  article-title: Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures
  publication-title: Anal. Chem
  contributor:
    fullname: Cooks
– year: 2013
  ident: bib29
  article-title: Customized real-time control of benchtop orbitrap MSin
  publication-title: Proceedings of the 61st ASMS Conference on Mass Spectrometry and Allied Topics Poster MP377
  contributor:
    fullname: Kuehn
– volume: 14
  start-page: e8126
  year: 2018
  ident: bib11
  article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial
  publication-title: Mol Syst Biol
  contributor:
    fullname: Aebersold
– volume: 26
  start-page: 966
  year: 2010
  end-page: 968
  ident: bib35
  article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments
  publication-title: Bioinformatics
  contributor:
    fullname: MacCoss
– volume: 100
  start-page: 2274
  year: 1978
  end-page: 2275
  ident: bib14
  article-title: Selected ion fragmentation with a tandem quadrupole mass spectrometer
  publication-title: J. Am. Chem. Soc
  contributor:
    fullname: Enke
– volume: 7
  start-page: 43
  year: 2010
  end-page: 46
  ident: bib17
  article-title: High-throughput generation of selected reaction-monitoring assays for proteins and proteomes
  publication-title: Nat. Methods
  contributor:
    fullname: Aebersold
– volume: 1
  start-page: 376
  year: 2002
  end-page: 386
  ident: bib30
  article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics
  publication-title: Mol Cell Proteomics
  contributor:
    fullname: Mann
– volume: 17
  start-page: 727
  year: 2018
  end-page: 738
  ident: bib33
  article-title: Performance evaluation of the QExactive, H. F.-X for shotgun proteomics
  publication-title: Proteome Res. J
  contributor:
    fullname: Olsen
– volume: 166
  start-page: 766
  year: 2016
  end-page: 778
  ident: bib21
  article-title: Human SRMAtlas: A resource of targeted assays to quantify the complete human proteome
  publication-title: Cell
  contributor:
    fullname: Moritz
– volume: 44
  start-page: D447
  year: 2016
  end-page: D456
  ident: bib38
  article-title: 2016 update of the PRIDE database and its related tools
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Hermjakob
– volume: 15
  start-page: 527
  year: 2018
  end-page: 530
  ident: bib41
  article-title: EASI-tag enables accurate multiplexed and interference-free MS2-based proteome quantification
  publication-title: Nat. Methods
  contributor:
    fullname: Meissner
– volume: 16
  start-page: 269
  year: 2015
  end-page: 280
  ident: bib2
  article-title: Multidimensional proteomics for cell biology
  publication-title: Nat. Rev. Mol. Cell Biol
  contributor:
    fullname: Lamond
– volume: 6
  start-page: 229
  year: 1995
  end-page: 233
  ident: bib42
  article-title: Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions
  publication-title: J. Am. Soc. Mass Spectrom
  contributor:
    fullname: McLafferty
– volume: 1
  start-page: 2650
  year: 2006
  end-page: 2660
  ident: bib31
  article-title: A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC)
  publication-title: Nat. Protoc
  contributor:
    fullname: Mann
– volume: 11
  start-page: 1500
  year: 2012
  end-page: 1509
  ident: bib44
  article-title: Expert system for computer-assisted annotation of MS/MS Spectra
  publication-title: Mol. Cell. Proteomics
  contributor:
    fullname: Mann
– volume: 13
  start-page: 510
  year: 2009
  end-page: 517
  ident: bib45
  article-title: Directed mass spectrometry: towards hypothesis-driven proteomics
  publication-title: Curr. Opin. Chem. Biol
  contributor:
    fullname: Aebersold
– volume: 11
  start-page: 319
  year: 2014
  end-page: 324
  ident: bib32
  article-title: Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells
  publication-title: Nat. Methods
  contributor:
    fullname: Mann
– volume: 11
  year: 2012
  ident: bib26
  article-title: A framework for intelligent data acquisition and real-time database searching for shotgun proteomics
  publication-title: Mol. Cell. Proteomics
  contributor:
    fullname: Mann
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  ident: bib36
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat. Methods
  contributor:
    fullname: Cox
– volume: 22
  start-page: 1373
  year: 2011
  end-page: 1380
  ident: bib43
  article-title: Software lock mass by two-dimensional minimization of peptide mass errors
  publication-title: J. Am. Soc. Mass Spectrom
  contributor:
    fullname: Mann
– volume: 16
  start-page: 2146
  year: 2016
  end-page: 2159
  ident: bib16
  article-title: Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications
  publication-title: Proteomics
  contributor:
    fullname: Domon
– volume: 10
  start-page: 1794
  year: 2011
  end-page: 1805
  ident: bib25
  article-title: Andromeda: A peptide search engine integrated into the MaxQuant environment
  publication-title: Proteome Res J
  contributor:
    fullname: Mann
– volume: 14
  start-page: 1630
  year: 2015
  end-page: 1644
  ident: bib22
  article-title: Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM)
  publication-title: Mol. Cell. Proteomics
  contributor:
    fullname: Domon
– volume: 15
  start-page: 156
  year: 2018
  end-page: 157
  ident: bib18
  article-title: Picky: a simple online PRM and SRM method designer for targeted proteomics
  publication-title: Nat. Methods
  contributor:
    fullname: Selbach
– volume: 11
  year: 2012
  ident: bib27
  article-title: Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins
  publication-title: Mol. Cell. Proteomics
  contributor:
    fullname: Mann
– volume: 13
  start-page: 942
  year: 2017
  ident: bib9
  article-title: Revisiting biomarker discovery by plasma proteomics
  publication-title: Mol. Syst. Biol
  contributor:
    fullname: Mann
– volume: 14
  start-page: 2301
  year: 2015
  end-page: 2307
  ident: bib47
  article-title: Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data
  publication-title: Mol. Cell. Proteomics
  contributor:
    fullname: MacCoss
– volume: 8
  start-page: 430
  year: 2011
  end-page: 435
  ident: bib46
  article-title: mProphet: automated data processing and statistical validation for large-scale SRM experiments
  publication-title: Nat. Methods
  contributor:
    fullname: Aebersold
– volume: 4
  start-page: 587
  year: 2017
  end-page: 599.e4
  ident: bib6
  article-title: An optimized shotgun strategy for the rapid generation of comprehensive human proteomes
  publication-title: Cell Syst
  contributor:
    fullname: Olsen
– volume: 14
  start-page: 259
  year: 2017
  end-page: 262
  ident: bib20
  article-title: Building ProteomeTools based on a complete synthetic human proteome
  publication-title: Nat Methods
  contributor:
    fullname: vKuster
– volume: 35
  start-page: 2634
  year: 2016
  end-page: 2657
  ident: bib1
  article-title: The diverse and expanding role of mass spectrometry in structural and molecular biology
  publication-title: EMBO J
  contributor:
    fullname: Heck
– volume: 13
  start-page: 339
  year: 2014
  end-page: 347
  ident: bib5
  article-title: The one hour yeast proteome
  publication-title: Mol. Cell. Proteomics
  contributor:
    fullname: Coon
– volume: 9
  start-page: 555
  year: 2012
  ident: 10.1074/mcp.TIR118.001131_bib12
  article-title: Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2015
  contributor:
    fullname: Picotti
– volume: 11
  year: 2012
  ident: 10.1074/mcp.TIR118.001131_bib27
  article-title: Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.014050
  contributor:
    fullname: Geiger
– volume: 6
  start-page: 229
  year: 1995
  ident: 10.1074/mcp.TIR118.001131_bib42
  article-title: Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions
  publication-title: J. Am. Soc. Mass Spectrom
  doi: 10.1016/1044-0305(95)00017-8
  contributor:
    fullname: Senko
– volume: 14
  start-page: 1630
  year: 2015
  ident: 10.1074/mcp.TIR118.001131_bib22
  article-title: Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM)
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O114.043968
  contributor:
    fullname: Gallien
– volume: 22
  start-page: 1373
  year: 2011
  ident: 10.1074/mcp.TIR118.001131_bib43
  article-title: Software lock mass by two-dimensional minimization of peptide mass errors
  publication-title: J. Am. Soc. Mass Spectrom
  doi: 10.1007/s13361-011-0142-8
  contributor:
    fullname: Cox
– volume: 13
  start-page: 339
  year: 2014
  ident: 10.1074/mcp.TIR118.001131_bib5
  article-title: The one hour yeast proteome
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.034769
  contributor:
    fullname: Hebert
– volume: 11
  year: 2012
  ident: 10.1074/mcp.TIR118.001131_bib26
  article-title: A framework for intelligent data acquisition and real-time database searching for shotgun proteomics
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.013185
  contributor:
    fullname: Graumann
– volume: 11
  start-page: 319
  year: 2014
  ident: 10.1074/mcp.TIR118.001131_bib32
  article-title: Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2834
  contributor:
    fullname: Kulak
– volume: 14
  start-page: e8126
  year: 2018
  ident: 10.1074/mcp.TIR118.001131_bib11
  article-title: Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178126
  contributor:
    fullname: Ludwig
– volume: 16
  start-page: 2146
  year: 2016
  ident: 10.1074/mcp.TIR118.001131_bib16
  article-title: Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications
  publication-title: Proteomics
  doi: 10.1002/pmic.201500543
  contributor:
    fullname: Bourmaud
– volume: 100
  start-page: 2274
  year: 1978
  ident: 10.1074/mcp.TIR118.001131_bib14
  article-title: Selected ion fragmentation with a tandem quadrupole mass spectrometer
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja00475a072
  contributor:
    fullname: Yost
– volume: 13
  start-page: 510
  year: 2009
  ident: 10.1074/mcp.TIR118.001131_bib45
  article-title: Directed mass spectrometry: towards hypothesis-driven proteomics
  publication-title: Curr. Opin. Chem. Biol
  doi: 10.1016/j.cbpa.2009.08.016
  contributor:
    fullname: Schmidt
– volume: 455
  start-page: 1251
  year: 2008
  ident: 10.1074/mcp.TIR118.001131_bib4
  article-title: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
  publication-title: Nature
  doi: 10.1038/nature07341
  contributor:
    fullname: de Godoy
– volume: 13
  start-page: 942
  year: 2017
  ident: 10.1074/mcp.TIR118.001131_bib9
  article-title: Revisiting biomarker discovery by plasma proteomics
  publication-title: Mol. Syst. Biol
  doi: 10.15252/msb.20156297
  contributor:
    fullname: Geyer
– year: 2013
  ident: 10.1074/mcp.TIR118.001131_bib29
  article-title: Customized real-time control of benchtop orbitrap MSin
  publication-title: Proceedings of the 61st ASMS Conference on Mass Spectrometry and Allied Topics Poster MP377
  contributor:
    fullname: Kuehn
– volume: 1
  start-page: 2650
  year: 2006
  ident: 10.1074/mcp.TIR118.001131_bib31
  article-title: A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC)
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2006.427
  contributor:
    fullname: Ong
– volume: 10
  start-page: 1794
  year: 2011
  ident: 10.1074/mcp.TIR118.001131_bib25
  article-title: Andromeda: A peptide search engine integrated into the MaxQuant environment
  publication-title: Proteome Res J
  doi: 10.1021/pr101065j
  contributor:
    fullname: Cox
– volume: 13
  start-page: 731
  year: 2016
  ident: 10.1074/mcp.TIR118.001131_bib36
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3901
  contributor:
    fullname: Tyanova
– volume: 26
  start-page: 1367
  year: 2008
  ident: 10.1074/mcp.TIR118.001131_bib24
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1511
  contributor:
    fullname: Cox
– volume: 44
  start-page: D447
  year: 2016
  ident: 10.1074/mcp.TIR118.001131_bib38
  article-title: 2016 update of the PRIDE database and its related tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1145
  contributor:
    fullname: Vizcaíno
– volume: 50
  start-page: 2017
  year: 1978
  ident: 10.1074/mcp.TIR118.001131_bib13
  article-title: Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures
  publication-title: Anal. Chem
  doi: 10.1021/ac50036a020
  contributor:
    fullname: Kondrat
– volume: 14
  start-page: 2301
  year: 2015
  ident: 10.1074/mcp.TIR118.001131_bib47
  article-title: Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O114.047035
  contributor:
    fullname: Ting
– volume: 11
  start-page: 1475
  year: 2012
  ident: 10.1074/mcp.TIR118.001131_bib15
  article-title: Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O112.020131
  contributor:
    fullname: Peterson
– volume: 537
  start-page: 347
  year: 2016
  ident: 10.1074/mcp.TIR118.001131_bib3
  article-title: Mass-spectrometric exploration of proteome structure and function
  publication-title: Nature
  doi: 10.1038/nature19949
  contributor:
    fullname: Aebersold
– volume: 26
  start-page: 966
  year: 2010
  ident: 10.1074/mcp.TIR118.001131_bib35
  article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq054
  contributor:
    fullname: MacLean
– volume: 16
  start-page: 269
  year: 2015
  ident: 10.1074/mcp.TIR118.001131_bib2
  article-title: Multidimensional proteomics for cell biology
  publication-title: Nat. Rev. Mol. Cell Biol
  doi: 10.1038/nrm3970
  contributor:
    fullname: Larance
– volume: 7
  start-page: 43
  year: 2010
  ident: 10.1074/mcp.TIR118.001131_bib17
  article-title: High-throughput generation of selected reaction-monitoring assays for proteins and proteomes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1408
  contributor:
    fullname: Picotti
– volume: 9
  start-page: 429
  year: 2008
  ident: 10.1074/mcp.TIR118.001131_bib19
  article-title: PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows
  publication-title: EMBO Rep
  doi: 10.1038/embor.2008.56
  contributor:
    fullname: Deutsch
– volume: 15
  start-page: 440
  year: 2018
  ident: 10.1074/mcp.TIR118.001131_bib40
  article-title: BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0003-5
  contributor:
    fullname: Meier
– volume: 13
  start-page: 2152
  year: 2014
  ident: 10.1074/mcp.TIR118.001131_bib23
  article-title: Intelligent Data Acquisition Blends Targeted and Discovery Methods
  publication-title: J. Proteome Res
  doi: 10.1021/pr401278j
  contributor:
    fullname: Bailey
– volume: 1
  start-page: 207
  year: 2018
  ident: 10.1074/mcp.TIR118.001131_bib28
  article-title: Computational methods for understanding mass spectrometry-based shotgun proteomics data
  publication-title: Annu. Rev. Biomed. Data Sci
  doi: 10.1146/annurev-biodatasci-080917-013516
  contributor:
    fullname: Sinitcyn
– year: 2008
  ident: 10.1074/mcp.TIR118.001131_bib37
  article-title: R: A language and environment for statistical computing
  publication-title: R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org
  contributor:
    fullname: R Core Team
– volume: 11
  start-page: 1500
  year: 2012
  ident: 10.1074/mcp.TIR118.001131_bib44
  article-title: Expert system for computer-assisted annotation of MS/MS Spectra
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M112.020271
  contributor:
    fullname: Neuhauser
– volume: 14
  start-page: 259
  year: 2017
  ident: 10.1074/mcp.TIR118.001131_bib20
  article-title: Building ProteomeTools based on a complete synthetic human proteome
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4153
  contributor:
    fullname: Zolg
– volume: 17
  start-page: 727
  year: 2018
  ident: 10.1074/mcp.TIR118.001131_bib33
  article-title: Performance evaluation of the QExactive, H. F.-X for shotgun proteomics
  publication-title: Proteome Res. J
  doi: 10.1021/acs.jproteome.7b00602
  contributor:
    fullname: Kelstrup
– volume: 4
  start-page: 587
  year: 2017
  ident: 10.1074/mcp.TIR118.001131_bib6
  article-title: An optimized shotgun strategy for the rapid generation of comprehensive human proteomes
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.05.009
  contributor:
    fullname: Bekker-Jensen
– volume: 8
  start-page: 430
  year: 2011
  ident: 10.1074/mcp.TIR118.001131_bib46
  article-title: mProphet: automated data processing and statistical validation for large-scale SRM experiments
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1584
  contributor:
    fullname: Reiter
– volume: 166
  start-page: 766
  year: 2016
  ident: 10.1074/mcp.TIR118.001131_bib21
  article-title: Human SRMAtlas: A resource of targeted assays to quantify the complete human proteome
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.041
  contributor:
    fullname: Kusebauch
– volume: 4
  start-page: 709
  year: 2007
  ident: 10.1074/mcp.TIR118.001131_bib34
  article-title: Higher-energy C-trap dissociation for peptide modification analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1060
  contributor:
    fullname: Olsen
– volume: 1
  start-page: 376
  year: 2002
  ident: 10.1074/mcp.TIR118.001131_bib30
  article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M200025-MCP200
  contributor:
    fullname: Ong
– volume: 16
  start-page: 206
  year: 2012
  ident: 10.1074/mcp.TIR118.001131_bib7
  article-title: Trends in ultrasensitive proteomics
  publication-title: Curr. Opin. Chem. Biol
  doi: 10.1016/j.cbpa.2011.12.011
  contributor:
    fullname: Altelaar
– volume: 10
  start-page: 1785
  year: 2011
  ident: 10.1074/mcp.TIR118.001131_bib10
  article-title: More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS
  publication-title: J. Proteome Res
  doi: 10.1021/pr101060v
  contributor:
    fullname: Michalski
– volume: 26
  start-page: 3926
  year: 2015
  ident: 10.1074/mcp.TIR118.001131_bib8
  article-title: Reproducible quantitative proteotype data matrices for systems biology
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E15-07-0507
  contributor:
    fullname: Röst
– volume: 35
  start-page: 2634
  year: 2016
  ident: 10.1074/mcp.TIR118.001131_bib1
  article-title: The diverse and expanding role of mass spectrometry in structural and molecular biology
  publication-title: EMBO J
  doi: 10.15252/embj.201694818
  contributor:
    fullname: Lössl
– volume: 15
  start-page: 156
  year: 2018
  ident: 10.1074/mcp.TIR118.001131_bib18
  article-title: Picky: a simple online PRM and SRM method designer for targeted proteomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4607
  contributor:
    fullname: Zauber
– volume: 5
  start-page: 959
  year: 2008
  ident: 10.1074/mcp.TIR118.001131_bib39
  article-title: Decision tree-driven tandem mass spectrometry for shotgun proteomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1260
  contributor:
    fullname: Swaney
– volume: 15
  start-page: 527
  year: 2018
  ident: 10.1074/mcp.TIR118.001131_bib41
  article-title: EASI-tag enables accurate multiplexed and interference-free MS2-based proteome quantification
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0037-8
  contributor:
    fullname: Virreira Winter
SSID ssj0020175
Score 2.5924885
Snippet MaxQuant.Live builds on the fast application programming interface of quadrupole Orbitrap mass analyzers to control data acquisition in real-time (freely...
Mass spectrometry (MS)-based proteomics is often performed in a shotgun format, in which as many peptide precursors as possible are selected from full or MS1...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 982
SubjectTerms Algorithms
Amino Acid Sequence
Bioinformatics software
Computational Biology
Global targeting
HeLa Cells
Humans
Label-free quantification
Parallel reaction monitoring
Peptides - chemistry
Peptides - metabolism
Protein Identification
Proteome - analysis
Proteomics
Quality control and metrics
Quantification
Real time control
Reproducibility of Results
Software
Targeted mass spectrometry
Technological Innovation and Resources
Title MaxQuant.Live Enables Global Targeting of More Than 25,000 Peptides
URI https://dx.doi.org/10.1074/mcp.TIR118.001131
https://www.ncbi.nlm.nih.gov/pubmed/30755466
https://search.proquest.com/docview/2218999844
https://search.proquest.com/docview/2478594454
https://pubmed.ncbi.nlm.nih.gov/PMC6495250
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL00gUFfytbP7COoUPow5qS2Jct6DKFZO5rSjhTyJiRZoYHFCUkD67_flWSHdaV52LNlEEfHuke-R_cCnCWTwqaFs5UboSNa0EmkUDYgl7WhQmWFztzl5OFtdvVAf4zZeAdYfRfGm_aNnnbKX7NOOX303srFzHRrn1j3btjPUNVj6O42oIEErY_o1SkLKcZCkVQWCcqzOpXJaXdmFp3R9U_U1D4Bkbo2MchxZ9TK3opLr3Xnv_bJv-LR4D3sVUKS9MKEP8COLffhoFfiIXr2TM6Jt3b6f-b78C50nHw-gP5Q_b5fI5qdG9zmyKW_ObUiofI_GXlbOAYzMp-Q4XxpyehRlSRh33BLI3fOAFPY1SE8DC5H_auo6qMQmdQZm2JXxN1gZFeugYHRk4IzkRsTa3uRmEJpZWKLmGa5iRkXcaqYUDnXjHMUCyJNj6BZzkt7AiRJda6t0LQwnGqW6kTluUGJqFDnaBO34GuNolyEchnSp7k5lYi-DOjLgH4LaI2zrOJ9iOMSt_Ntr53WayLxW3AJDlXa-XolE9QrKHhzSreMoTxnglKGY47DOm5mWnOhBfzFCm8GuFrcL58gRX1N7oqSH__7zU-wi9QVwUv5GZpPy7X9gnrnSbeh8X0ctz3L_wCFg_1F
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSxwxEB6spdQXadXa09pGKD5I987dTTabRzmUs96Kygq-hSSbQ6G3d3ge6H_vJNkVf6APfd4EwuRL5svONzMAv5NRZdPKycqN0BGt6ChSSBsQy9pQobJKZy45uTjJBhf07yW7XADW5sJ40b7R193637hbX195beV0bHqtTqx3WvQzZPXounsf4COe1z3aPtKbdxaCjIUyqSwSlGdtMJPT3thMu-XRObJqH4JIXaMYRLmTamVveabXzPOlgPKJRzr8AssNlST7YclfYcHWK7C6X-MzenxPdogXd_q_5ivwKfScvF-FfqHuzuZoz-4QLzpy4HOnZiTU_ielF4ajOyOTESkmN5aUV6omCfuDlxo5dRKYys7W4OLwoOwPoqaTQmRSJ22KXRl3g75duRYGRo8qzkRuTKztXmIqpZWJLVo1y03MuIhTxYTKuWacI10QafoNFutJbb8DSVKdays0rQynmqU6UXlukCQqZDraxB3Yba0op6FghvSBbk4lWl8G68tg_Q7Q1s6y8fjBk0u80N-btt3uicTT4EIcqraT-UwmyFiQ8uaUvjOG8pwJShmOWQ_7-LjSFgsd4M92-HGAq8b9_AuC1FflbkC58d8zf8HnQVkM5fDo5HgTlhDGIigrf8Di7c3cbiH7udU_PdYfAAyH_6o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUKteUAt9LH1gJMShajYkseP4iLasoGXRtlokbpZfEUjd7IplpfLvO7YTBFTlwDljyRp_9nzOfJ4B2M1r6wrrZeVG6IRaWicKaQNiWRsqVGl16R8nj07LozP6_Zyd32n1FUT7Rl_2m9_TfnN5EbSV86lJO51YOh4NSmT1GLrTua3TZ7CGe3a_7C7q7V0LgcZiqVSWCMrLLqHJaTo18_7k-Bcy65CGKHyzGES6l2uV_4tO_7LPhyLKO1Fp-ArWWzpJDuK0X8OKazZg86DBq_T0huyRIPAMf8434HnsO3mzCYOR-vNziT7tn-BhRw7D-6kFifX_ySSIwzGkkVlNRrMrRyYXqiE5-4oHGxl7GYx1izdwNjycDI6StptCYgovb8p8KXeD8V35NgZG15YzURmTabefG6u0MplDz5aVyRgXWaGYUBXXjHOkDKIo3sJqM2vceyB5oSvthKbWcKpZoXNVVQaJokK2o03Wgy-dF-U8Fs2QIdnNqUTvy-h9Gb3fA9r5WbZRP0ZziYf6Y8N2ujWRuCN8mkM1brZcyBxZC9LeitJHbCivmKCUoc27uI63M-2w0AN-b4VvDXxF7vtfEKihMncLzK0nj9yGF-NvQ3lyfPrjA7xEFIsorvwIq9dXS_cJCdC1_hyg_hfMRADM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MaxQuant.Live+Enables+Global+Targeting+of+More+Than+25%2C000+Peptides&rft.jtitle=Molecular+%26+cellular+proteomics&rft.au=Wichmann%2C+Christoph&rft.au=Meier%2C+Florian&rft.au=Virreira+Winter%2C+Sebastian&rft.au=Brunner%2C+Andreas-David&rft.date=2019-05-01&rft.issn=1535-9476&rft.volume=18&rft.issue=5&rft.spage=982&rft.epage=994&rft_id=info:doi/10.1074%2Fmcp.TIR118.001131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_mcp_TIR118_001131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9476&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9476&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9476&client=summon