Self-templating hydrothermal synthesis of carbon-confined double-shelled Ni/NiO hollow microspheres for diphenylamine detection in fruit samples
Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and quantity of food consumption have increased owing to developments in the agricultural and food industries. Food safety has a substantial socio...
Saved in:
Published in | Journal of hazardous materials Vol. 424; no. Pt A; p. 127378 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 1873-3336 |
DOI | 10.1016/j.jhazmat.2021.127378 |
Cover
Loading…
Abstract | Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and quantity of food consumption have increased owing to developments in the agricultural and food industries. Food safety has a substantial socioeconomic impact, and an increasing number of consumers have become aware of its importance. Therefore, simple and cost-effective analytical methods are required to quantify the safety of preservatives. Herein, we report an electrochemical method using double-shelled carbon-confined Ni/NiO (C@Ni/NiO) hollow microspheres to detect diphenylamine (DPA). The microspheres were synthesized by a self-templating hydrothermal method followed by calcination. The hydrothermal temperature and precursor ratio were optimized systematically to prepare double-shelled C@Ni/NiO hollow microspheres. The excellent electrocatalytic activity and electron transport properties of a C@Ni/NiO-modified glassy carbon electrode (GCE) were exploited in the electrochemical oxidation of DPA. Interestingly, the engineered C@Ni/NiO/GCE has a wide dynamic linear range (0.02–473 μM) and a DPA detection limit of 0.007 μM. In addition, the DPA sensor exhibited good selectivity, reproducibility, repeatability, and stability. The practical feasibility of the DPA sensor was evaluated in fruit samples (sweet tomatoes, apples, and red grapes), with considerable recovery.
[Display omitted]
•Double-shell structured C@Ni/NiO is synthesized by a self-templating method.•Sucrose-derived carbon enhances the conductivity also converts the NiO to metallic Ni.•The C@Ni/NiO modified GCE was applied for the electrocatalytic oxidation of DPA.•The practical feasibility of the DPA sensor was evaluated in fruit samples.•The C@Ni/NiO preparation and fabrication process is simple and cost-effective. |
---|---|
AbstractList | Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and quantity of food consumption have increased owing to developments in the agricultural and food industries. Food safety has a substantial socioeconomic impact, and an increasing number of consumers have become aware of its importance. Therefore, simple and cost-effective analytical methods are required to quantify the safety of preservatives. Herein, we report an electrochemical method using double-shelled carbon-confined Ni/NiO (C@Ni/NiO) hollow microspheres to detect diphenylamine (DPA). The microspheres were synthesized by a self-templating hydrothermal method followed by calcination. The hydrothermal temperature and precursor ratio were optimized systematically to prepare double-shelled C@Ni/NiO hollow microspheres. The excellent electrocatalytic activity and electron transport properties of a C@Ni/NiO-modified glassy carbon electrode (GCE) were exploited in the electrochemical oxidation of DPA. Interestingly, the engineered C@Ni/NiO/GCE has a wide dynamic linear range (0.02-473 μM) and a DPA detection limit of 0.007 μM. In addition, the DPA sensor exhibited good selectivity, reproducibility, repeatability, and stability. The practical feasibility of the DPA sensor was evaluated in fruit samples (sweet tomatoes, apples, and red grapes), with considerable recovery. Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and quantity of food consumption have increased owing to developments in the agricultural and food industries. Food safety has a substantial socioeconomic impact, and an increasing number of consumers have become aware of its importance. Therefore, simple and cost-effective analytical methods are required to quantify the safety of preservatives. Herein, we report an electrochemical method using double-shelled carbon-confined Ni/NiO (C@Ni/NiO) hollow microspheres to detect diphenylamine (DPA). The microspheres were synthesized by a self-templating hydrothermal method followed by calcination. The hydrothermal temperature and precursor ratio were optimized systematically to prepare double-shelled C@Ni/NiO hollow microspheres. The excellent electrocatalytic activity and electron transport properties of a C@Ni/NiO-modified glassy carbon electrode (GCE) were exploited in the electrochemical oxidation of DPA. Interestingly, the engineered C@Ni/NiO/GCE has a wide dynamic linear range (0.02–473 μM) and a DPA detection limit of 0.007 μM. In addition, the DPA sensor exhibited good selectivity, reproducibility, repeatability, and stability. The practical feasibility of the DPA sensor was evaluated in fruit samples (sweet tomatoes, apples, and red grapes), with considerable recovery. Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and quantity of food consumption have increased owing to developments in the agricultural and food industries. Food safety has a substantial socioeconomic impact, and an increasing number of consumers have become aware of its importance. Therefore, simple and cost-effective analytical methods are required to quantify the safety of preservatives. Herein, we report an electrochemical method using double-shelled carbon-confined Ni/NiO (C@Ni/NiO) hollow microspheres to detect diphenylamine (DPA). The microspheres were synthesized by a self-templating hydrothermal method followed by calcination. The hydrothermal temperature and precursor ratio were optimized systematically to prepare double-shelled C@Ni/NiO hollow microspheres. The excellent electrocatalytic activity and electron transport properties of a C@Ni/NiO-modified glassy carbon electrode (GCE) were exploited in the electrochemical oxidation of DPA. Interestingly, the engineered C@Ni/NiO/GCE has a wide dynamic linear range (0.02–473 μM) and a DPA detection limit of 0.007 μM. In addition, the DPA sensor exhibited good selectivity, reproducibility, repeatability, and stability. The practical feasibility of the DPA sensor was evaluated in fruit samples (sweet tomatoes, apples, and red grapes), with considerable recovery. [Display omitted] •Double-shell structured C@Ni/NiO is synthesized by a self-templating method.•Sucrose-derived carbon enhances the conductivity also converts the NiO to metallic Ni.•The C@Ni/NiO modified GCE was applied for the electrocatalytic oxidation of DPA.•The practical feasibility of the DPA sensor was evaluated in fruit samples.•The C@Ni/NiO preparation and fabrication process is simple and cost-effective. Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and quantity of food consumption have increased owing to developments in the agricultural and food industries. Food safety has a substantial socioeconomic impact, and an increasing number of consumers have become aware of its importance. Therefore, simple and cost-effective analytical methods are required to quantify the safety of preservatives. Herein, we report an electrochemical method using double-shelled carbon-confined Ni/NiO (C@Ni/NiO) hollow microspheres to detect diphenylamine (DPA). The microspheres were synthesized by a self-templating hydrothermal method followed by calcination. The hydrothermal temperature and precursor ratio were optimized systematically to prepare double-shelled C@Ni/NiO hollow microspheres. The excellent electrocatalytic activity and electron transport properties of a C@Ni/NiO-modified glassy carbon electrode (GCE) were exploited in the electrochemical oxidation of DPA. Interestingly, the engineered C@Ni/NiO/GCE has a wide dynamic linear range (0.02-473 μM) and a DPA detection limit of 0.007 μM. In addition, the DPA sensor exhibited good selectivity, reproducibility, repeatability, and stability. The practical feasibility of the DPA sensor was evaluated in fruit samples (sweet tomatoes, apples, and red grapes), with considerable recovery.Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and quantity of food consumption have increased owing to developments in the agricultural and food industries. Food safety has a substantial socioeconomic impact, and an increasing number of consumers have become aware of its importance. Therefore, simple and cost-effective analytical methods are required to quantify the safety of preservatives. Herein, we report an electrochemical method using double-shelled carbon-confined Ni/NiO (C@Ni/NiO) hollow microspheres to detect diphenylamine (DPA). The microspheres were synthesized by a self-templating hydrothermal method followed by calcination. The hydrothermal temperature and precursor ratio were optimized systematically to prepare double-shelled C@Ni/NiO hollow microspheres. The excellent electrocatalytic activity and electron transport properties of a C@Ni/NiO-modified glassy carbon electrode (GCE) were exploited in the electrochemical oxidation of DPA. Interestingly, the engineered C@Ni/NiO/GCE has a wide dynamic linear range (0.02-473 μM) and a DPA detection limit of 0.007 μM. In addition, the DPA sensor exhibited good selectivity, reproducibility, repeatability, and stability. The practical feasibility of the DPA sensor was evaluated in fruit samples (sweet tomatoes, apples, and red grapes), with considerable recovery. |
ArticleNumber | 127378 |
Author | He, Jr-Hau Chung, Ren-Jei Sakthivel, Rajalakshmi |
Author_xml | – sequence: 1 givenname: Rajalakshmi surname: Sakthivel fullname: Sakthivel, Rajalakshmi organization: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan – sequence: 2 givenname: Jr-Hau surname: He fullname: He, Jr-Hau email: jrhauhe@cityu.edu.hk organization: Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong – sequence: 3 givenname: Ren-Jei surname: Chung fullname: Chung, Ren-Jei email: rjchung@ntut.edu.tw organization: Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34879572$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFRwB5ySZT_yRxRiwQqiggVe0CWFu2c008cuzBdkDDU_SR8WgGFmzKyr7S-Y6vz7lAZyEGQOglJWtKaH-1XW8n9WtWZc0Io2vKBBfDE7Sig-AN57w_QyvCSdvwYdOeo4uct4QQKrr2GTrn7SA2nWAr9PAZvG0KzDuvigvf8LQfUywTpFl5nPehXrPLOFpsVNIxNCYG6wKMeIyL9tDkCbyv4527unP3eIrex594dibFvKs-kLGNCY-uDmHv1VxhPEIBU1wM2AVs0-IKzqruAPk5emqVz_DidF6irzfvv1x_bG7vP3y6fnfbGL4ZSmOtNbojpNNKdz3XPTGk7QUBZoW2rW0pQEv6VlBhGCGt5jCyThHoGViqGb9Er4--uxS_L5CLnF029SsqQFyyZD3vB1p5-h_S-oIYyIZX6auTdNEzjHKX3KzSXv4JvAq6o-AQT05g_0ookYdi5VaeipWHYuWx2Mq9-YczrqhDgiUp5x-l3x5pqIn-cJBkNg6CgdGl2oMco3vE4Tf1UsVS |
CitedBy_id | crossref_primary_10_1002_anie_202207816 crossref_primary_10_1016_j_mcat_2024_113866 crossref_primary_10_1016_j_psep_2022_04_069 crossref_primary_10_1016_j_apsusc_2022_155784 crossref_primary_10_1016_j_foodchem_2023_136608 crossref_primary_10_1002_slct_202301922 crossref_primary_10_1016_j_matchemphys_2022_125810 crossref_primary_10_1016_j_seta_2022_102006 crossref_primary_10_1016_j_inoche_2023_111643 crossref_primary_10_1016_j_pmatsci_2022_101024 crossref_primary_10_1016_j_microc_2024_110341 crossref_primary_10_1016_j_foodchem_2023_136609 crossref_primary_10_1016_j_mtchem_2022_100883 crossref_primary_10_1016_j_mtchem_2022_101136 crossref_primary_10_1039_D4NJ00580E crossref_primary_10_1039_D2TC02812C crossref_primary_10_1016_j_apsusc_2021_152362 crossref_primary_10_1021_acsanm_2c02836 crossref_primary_10_1016_j_jfca_2022_104628 crossref_primary_10_1016_j_microc_2023_108691 crossref_primary_10_1016_j_talanta_2025_127728 crossref_primary_10_3390_s24030985 crossref_primary_10_1016_j_jiec_2022_02_008 crossref_primary_10_1016_j_jallcom_2022_168053 crossref_primary_10_1016_j_cej_2024_155989 crossref_primary_10_1016_j_microc_2023_109504 crossref_primary_10_1016_j_ceramint_2022_09_143 crossref_primary_10_1021_acsami_2c15946 crossref_primary_10_1016_j_jece_2024_113048 crossref_primary_10_2174_0115734129281427231123063958 crossref_primary_10_1039_D3RA04334G crossref_primary_10_1007_s44211_023_00440_3 crossref_primary_10_1016_j_carbon_2023_118376 crossref_primary_10_1021_acsanm_2c05123 crossref_primary_10_1016_j_est_2025_115530 crossref_primary_10_1016_j_foodchem_2023_137874 crossref_primary_10_1016_j_microc_2023_109456 crossref_primary_10_1016_j_snb_2022_131705 crossref_primary_10_1021_acsanm_3c05968 crossref_primary_10_1016_j_matlet_2022_133293 crossref_primary_10_1016_j_mtcomm_2024_110649 crossref_primary_10_2139_ssrn_4062362 crossref_primary_10_1002_ange_202207816 crossref_primary_10_1039_D4NJ00895B crossref_primary_10_1016_j_foodchem_2024_139920 crossref_primary_10_1021_acsami_2c22411 crossref_primary_10_1016_j_envres_2022_114609 crossref_primary_10_1016_j_snb_2023_133819 crossref_primary_10_1016_j_foodchem_2023_137295 crossref_primary_10_1016_j_jhazmat_2023_130777 crossref_primary_10_1016_j_snb_2024_136782 crossref_primary_10_1016_j_cej_2022_140085 |
Cites_doi | 10.1016/j.matlet.2018.03.156 10.1007/s10854-020-04902-6 10.1016/j.nantod.2009.10.008 10.1002/jsfa.9416 10.3390/polym10121329 10.1016/j.aca.2020.07.032 10.1039/c2jm16935e 10.1039/C7TA02048A 10.1016/j.aca.2013.11.038 10.1002/aenm.201300912 10.1016/j.jallcom.2018.03.125 10.1039/C5CS00344J 10.1038/srep05786 10.1007/s10971-014-3554-7 10.3390/app9132599 10.1039/D1AN00537E 10.1039/C8CE02004C 10.1007/BF00956507 10.1016/j.microc.2020.105587 10.1039/C8TB02058B 10.1016/j.chroma.2012.05.088 10.1039/c3ra21978j 10.1016/j.foodchem.2014.03.099 10.1016/j.jphotochem.2014.12.002 10.1002/adfm.201807377 10.1016/j.snb.2018.06.094 10.1007/s10853-020-05236-8 10.1021/acssuschemeng.9b00824 10.1016/j.jallcom.2007.04.258 10.15541/jim20160306 10.3390/s16111791 10.1016/j.apsusc.2010.10.051 10.1080/16583655.2020.1794566 10.1016/j.jcat.2017.06.001 10.1016/j.supflu.2015.02.021 10.1021/acsami.7b07501 10.1016/j.cej.2019.01.046 10.1016/j.envint.2016.02.008 10.1016/j.ultsonch.2019.02.013 10.2478/msp-2018-0088 10.1007/s10854-020-02990-y 10.1039/C4RA15556D 10.1002/prep.201600118 10.1016/j.chroma.2005.05.060 10.1080/03067319.2014.962529 10.1039/c3ta11219e 10.1016/j.compositesb.2018.12.082 10.1002/adma.201802349 10.1039/C5TA01071C 10.1038/s41598-018-37566-8 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2021.127378 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 34879572 10_1016_j_jhazmat_2021_127378 S0304389421023463 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-fffcb5005bab563b60c04670e2f7bf4f41ee4064717c2004b3ed25a0e62ef1b23 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Fri Jul 11 07:03:36 EDT 2025 Fri Jul 11 11:09:05 EDT 2025 Mon Jul 21 06:02:00 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Tue Jul 01 00:49:54 EDT 2025 Fri Feb 23 02:38:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Carbon-confined Ni/NiO Diphenylamine Electrochemical oxidation Differential pulse voltammetry Self-templating |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-fffcb5005bab563b60c04670e2f7bf4f41ee4064717c2004b3ed25a0e62ef1b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34879572 |
PQID | 2620078093 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636814711 proquest_miscellaneous_2620078093 pubmed_primary_34879572 crossref_primary_10_1016_j_jhazmat_2021_127378 crossref_citationtrail_10_1016_j_jhazmat_2021_127378 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_127378 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Granado, Gutiérrez-Capitán, Fernández-Sánchez, Gomes, Rudnitskaya, Jimenez-Jorquera (bib9) 2014; 809 Liu, Li, Zhao, Hou, Chen (bib16) 2017; 5 Sakthivel, Kubendhiran, Chen (bib32) 2019; 54 Kayani, Butt, Riaz, Naseem (bib13) 2018; 36 Zhang, Qian, Zhang, Yuan, Xiao, Wang (bib49) 2015; 3 Shamsipur, Hemmateenejad, Jahani, Majd (bib35) 2015; 299 Rakshit, Chall, Mati, Roychowdhury, Moulik, Bhattacharya (bib27) 2013; 3 Yang, Tao, Zhang, Tang, Ouyang (bib43) 2008; 459 Zarei, Teymori, Kor (bib48) 2014; 94 Saini, Singh, Prajapati, Sinha, Jain (bib30) 2019; 7 Kubendhiran, Sakthivel, Chen, Anbazhagan, Tsai (bib15) 2019; 168 Liu, Lin, Tseng, Tan, Li, Feng, Song, Lai, Li, He, Sakthivel (bib18) 2021; 146 Rezaei, Yamini, Asiabi, Moradi (bib28) 2015; 100 Biesinger, Payne, Grosvenor, Lau, Gerson, Smart (bib1) 2011; 257 Ma, Jin, Wei, Liu, Guo (bib20) 2020 Feng, Yin (bib5) 2019; 31 Sangili, Vinothkumar, Chen, Veerakumar, Lin (bib34) 2021; 32 Pankratov, Morozov, Mushtakova, Il’yasov (bib25) 1984; 33 Yin, Zhan, Chen, Wang, Gong, Zhao, Ji, Nie (bib45) 2020; 31 Gokoglu (bib7) 2019; 99 Yin, Zhu, Chen, Gong, Nie (bib46) 2018; 221 Sun, Yan, Chen, Si, Deng, Oswald, Liu, Schmidt (bib39) 2014; 4 Lv, Fan, Xie, Chen, Alsaedi, Hayat, Wang, Chen (bib19) 2019; 362 Xia, Zhang, Xiao, Huang, Zeng, Chen, Chen, Gan, Tao (bib41) 2012; 22 Gao, Li, Dou, Zhang, Wang (bib6) 2018; 6 Gómez-Pérez, Plaza-Bolaños, Romero-González, Martínez-Vidal, Garrido-Frenich (bib8) 2012; 1248 Qi, Lai, Wang, Tang, Ren, Yang, Jin, Zhang, Yu, Ma, Su (bib26) 2015; 44 Nehru, Murugesan, Chen, Sankar (bib24) 2019; 21 Mahendraprabhu, Elumalai (bib22) 2015; 73 Dong-Yu, Xiao-Long, Qiu-Lin, Hao-Yong, Qiu-Li (bib4) 2017; 32 Zhu, Yin, Gong, Al-Furjan, Nie (bib52) 2018; 748 Yuan, Ni, Zhang, Yuan, Wei (bib47) 2013; 1 Tsaboula, Papadakis, Vryzas, Kotopoulou, Kintzikoglou, Papadopoulou-Mourkidou (bib40) 2016; 91 Choi, Ko, Lee, Kang (bib3) 2014; 4 Ma, Tang, Yang, Shi, Zhao (bib21) 2021; 56 Sakthivel, Sukanya, Chen (bib31) 2018; 273 Xu, Xia, Yue, Zhu, Guo, Zhu, Xia (bib42) 2019; 29 Sangili, Sakthivel, Chen (bib33) 2020; 1131 Zhang, Wang, Goebl, Yin (bib50) 2009; 4 Song, Forney, Jordan (bib37) 2014; 160 Shu, Yan, Chen, Xu, Pang, Hu (bib36) 2017; 9 Kesavan, Chen (bib14) 2020; 159 Kaipannan, Marappan (bib11) 2019; 9 Zhang, Zhang, Liao, Liu, Kang, Zhang (bib51) 2016; 16 Liu, Zhu, Zeng, Wang, Lu, Zhang, Yin, Chen, Yang, Li (bib17) 2018; 10 Mironova-Ulmane, Kuzmin, Sildos, Pärs (bib23) 2011; 9 Ye, Guan (bib44) 2019; 9 Karthik, Karikalan, Chen, Kumar, Karuppiah, Muthuraj (bib12) 2017; 352 Hande, Samui, Kulkarni (bib10) 2017; 42 Cheng, Bai, Si, Yang, Dong, Wang, Gao, Zhang (bib2) 2015; 5 Sulistya, Hui-Hui, Attenborough, Pourshahrestani, Kadri, Zeimaran, Razak, Amini Horri, Salamatinia (bib38) 2020; 14 Rudell, Mattheis, Fellman (bib29) 2005; 1081 Gao (10.1016/j.jhazmat.2021.127378_bib6) 2018; 6 Nehru (10.1016/j.jhazmat.2021.127378_bib24) 2019; 21 Karthik (10.1016/j.jhazmat.2021.127378_bib12) 2017; 352 Gómez-Pérez (10.1016/j.jhazmat.2021.127378_bib8) 2012; 1248 Ma (10.1016/j.jhazmat.2021.127378_bib20) 2020 Cheng (10.1016/j.jhazmat.2021.127378_bib2) 2015; 5 Kaipannan (10.1016/j.jhazmat.2021.127378_bib11) 2019; 9 Zarei (10.1016/j.jhazmat.2021.127378_bib48) 2014; 94 Ye (10.1016/j.jhazmat.2021.127378_bib44) 2019; 9 Liu (10.1016/j.jhazmat.2021.127378_bib16) 2017; 5 Qi (10.1016/j.jhazmat.2021.127378_bib26) 2015; 44 Ma (10.1016/j.jhazmat.2021.127378_bib21) 2021; 56 Sangili (10.1016/j.jhazmat.2021.127378_bib33) 2020; 1131 Yin (10.1016/j.jhazmat.2021.127378_bib45) 2020; 31 Pankratov (10.1016/j.jhazmat.2021.127378_bib25) 1984; 33 Rakshit (10.1016/j.jhazmat.2021.127378_bib27) 2013; 3 Kayani (10.1016/j.jhazmat.2021.127378_bib13) 2018; 36 Sakthivel (10.1016/j.jhazmat.2021.127378_bib32) 2019; 54 Zhang (10.1016/j.jhazmat.2021.127378_bib50) 2009; 4 Song (10.1016/j.jhazmat.2021.127378_bib37) 2014; 160 Zhang (10.1016/j.jhazmat.2021.127378_bib49) 2015; 3 Saini (10.1016/j.jhazmat.2021.127378_bib30) 2019; 7 Liu (10.1016/j.jhazmat.2021.127378_bib17) 2018; 10 Mahendraprabhu (10.1016/j.jhazmat.2021.127378_bib22) 2015; 73 Rudell (10.1016/j.jhazmat.2021.127378_bib29) 2005; 1081 Lv (10.1016/j.jhazmat.2021.127378_bib19) 2019; 362 Zhang (10.1016/j.jhazmat.2021.127378_bib51) 2016; 16 Shamsipur (10.1016/j.jhazmat.2021.127378_bib35) 2015; 299 Dong-Yu (10.1016/j.jhazmat.2021.127378_bib4) 2017; 32 Yang (10.1016/j.jhazmat.2021.127378_bib43) 2008; 459 Hande (10.1016/j.jhazmat.2021.127378_bib10) 2017; 42 Sun (10.1016/j.jhazmat.2021.127378_bib39) 2014; 4 Biesinger (10.1016/j.jhazmat.2021.127378_bib1) 2011; 257 Feng (10.1016/j.jhazmat.2021.127378_bib5) 2019; 31 Liu (10.1016/j.jhazmat.2021.127378_bib18) 2021; 146 Xu (10.1016/j.jhazmat.2021.127378_bib42) 2019; 29 Sangili (10.1016/j.jhazmat.2021.127378_bib34) 2021; 32 Zhu (10.1016/j.jhazmat.2021.127378_bib52) 2018; 748 Mironova-Ulmane (10.1016/j.jhazmat.2021.127378_bib23) 2011; 9 Granado (10.1016/j.jhazmat.2021.127378_bib9) 2014; 809 Rezaei (10.1016/j.jhazmat.2021.127378_bib28) 2015; 100 Shu (10.1016/j.jhazmat.2021.127378_bib36) 2017; 9 Kesavan (10.1016/j.jhazmat.2021.127378_bib14) 2020; 159 Sakthivel (10.1016/j.jhazmat.2021.127378_bib31) 2018; 273 Choi (10.1016/j.jhazmat.2021.127378_bib3) 2014; 4 Gokoglu (10.1016/j.jhazmat.2021.127378_bib7) 2019; 99 Xia (10.1016/j.jhazmat.2021.127378_bib41) 2012; 22 Yuan (10.1016/j.jhazmat.2021.127378_bib47) 2013; 1 Kubendhiran (10.1016/j.jhazmat.2021.127378_bib15) 2019; 168 Tsaboula (10.1016/j.jhazmat.2021.127378_bib40) 2016; 91 Yin (10.1016/j.jhazmat.2021.127378_bib46) 2018; 221 Sulistya (10.1016/j.jhazmat.2021.127378_bib38) 2020; 14 |
References_xml | – volume: 1131 start-page: 35 year: 2020 end-page: 44 ident: bib33 article-title: Cost-effective single-step synthesis of flower-like cerium-ruthenium-sulfide for the determination of antipsychotic drug trifluoperazine in human urine samples publication-title: Anal. Chim. Acta – volume: 21 start-page: 724 year: 2019 end-page: 735 ident: bib24 article-title: Electrochemical sensing of free radical antioxidant diphenylamine cations (DPAH˙+) with carbon interlaced nanoflake-assembled MgxNi9− xS8 microspheres publication-title: CrystEngComm – volume: 9 start-page: 2599 year: 2019 ident: bib44 article-title: HMT-controlled synthesis of mesoporous NiO hierarchical nanostructures and their catalytic role towards the thermal decomposition of ammonium perchlorate publication-title: Appl. Sci. – volume: 16 start-page: 1791 year: 2016 ident: bib51 article-title: Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite publication-title: Sensors – volume: 5 start-page: 15042 year: 2015 end-page: 15051 ident: bib2 article-title: Nickel oxide nanopetal-decorated 3D nickel network with enhanced pseudocapacitive properties publication-title: RSC Adv. – volume: 32 start-page: 1289 year: 2021 end-page: 1302 ident: bib34 article-title: Efficient and green synthesis of silver nanocomposite using guar gum for voltammetric determination of diphenylamine publication-title: J. Mater. Sci. Mater. Electron. – volume: 9 start-page: 1 year: 2019 end-page: 14 ident: bib11 article-title: Fabrication of 9.6 V high-performance asymmetric supercapacitors stack based on nickel hexacyanoferrate-derived Ni(OH)2 nanosheets and bio-derived activated carbon publication-title: Sci. Rep. – volume: 3 start-page: 6106 year: 2013 end-page: 6116 ident: bib27 article-title: Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis publication-title: RSC Adv. – volume: 160 start-page: 255 year: 2014 end-page: 259 ident: bib37 article-title: A method to detect diphenylamine contamination of apple fruit and storages using headspace solid phase micro-extraction and gas chromatography/mass spectroscopy publication-title: Food Chem. – volume: 99 start-page: 2068 year: 2019 end-page: 2077 ident: bib7 article-title: Novel natural food preservatives and applications in seafood preservation: a review publication-title: J. Sci. Food Agric. – volume: 94 start-page: 1407 year: 2014 end-page: 1421 ident: bib48 article-title: Very sensitive differential pulse adsorptive stripping voltammetric determination of 4-nitrophenol at poly (diphenylamine)/multi-walled carbon nanotube-β-cyclodextrin-modified glassy carbon electrode publication-title: Int. J. Environ. Anal. Chem. – volume: 33 start-page: 1363 year: 1984 end-page: 1367 ident: bib25 article-title: Mechanism of oxidation of diphenylamine in an acidic medium publication-title: Bull. Acad. Sci. USSR Div. – volume: 73 start-page: 428 year: 2015 end-page: 433 ident: bib22 article-title: Influence of citric acid on formation of Ni/NiO nanocomposite by sol–gel synthesis publication-title: J. Sol. -Gel Sci. Technol. – volume: 809 start-page: 141 year: 2014 end-page: 147 ident: bib9 article-title: Thin-film electrochemical sensor for diphenylamine detection using molecularly imprinted polymers publication-title: Anal. Chim. Acta – volume: 22 start-page: 9209 year: 2012 end-page: 9215 ident: bib41 article-title: Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries publication-title: J. Mater. Chem. A – volume: 14 start-page: 1042 year: 2020 end-page: 1050 ident: bib38 article-title: Hydrothermal synthesis of carbon microspheres from sucrose with citric acid as a catalyst: physicochemical and structural properties publication-title: J. Taibah Univ. Sci. – volume: 31 start-page: 4323 year: 2020 end-page: 4335 ident: bib45 article-title: Polyhedral NiO/C porous composites derived by controlled pyrolysis of Ni-MOF for highly efficient non-enzymatic glucose detection publication-title: J. Mater. Sci. Mater. Electron – volume: 159 year: 2020 ident: bib14 article-title: Highly sensitive electrochemical sensor based on carbon-rich graphitic carbon nitride as an electrocatalyst for the detection of diphenylamine publication-title: Microchem. J. – volume: 748 start-page: 145 year: 2018 end-page: 153 ident: bib52 article-title: In situ growth of Ni/NiO on N-doped carbon spheres with excellent electrocatalytic performance for non-enzymatic glucose detection publication-title: J. Alloy Compd. – volume: 91 start-page: 78 year: 2016 end-page: 93 ident: bib40 article-title: Environmental and human risk hierarchy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate publication-title: Environ. Int. – volume: 100 start-page: 79 year: 2015 end-page: 85 ident: bib28 article-title: Determination of diphenylamine residue in fruit samples by supercritical fluid extraction followed by vesicular based-supramolecular solvent microextraction publication-title: J. Supercrit. Fluids – volume: 29 start-page: 1807377 year: 2019 ident: bib42 article-title: Rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium‐ion batteries publication-title: Adv. Funct. Mater. – volume: 3 start-page: 10519 year: 2015 end-page: 10525 ident: bib49 article-title: Hierarchical porous Ni/NiO core–shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors publication-title: J. Mater. Chem. A – volume: 6 start-page: 6781 year: 2018 end-page: 6787 ident: bib6 article-title: Self-supported Ni nanoparticles embedded on nitrogen-doped carbon derived from nickel polyphthalocyanine for high-performance non-enzymatic glucose detection publication-title: J. Mater. Chem. B – volume: 299 start-page: 210 year: 2015 end-page: 217 ident: bib35 article-title: Liquid chromatographic–mass spectrometric monitoring of photodegradation of diphenylamine using experimental design methodology publication-title: J. Photochem. Photobiol. A – volume: 221 start-page: 267 year: 2018 end-page: 270 ident: bib46 article-title: MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor publication-title: Mater. Lett. – volume: 10 start-page: 1329 year: 2018 ident: bib17 article-title: An electrochemical sensor for diphenylamine detection based on reduced graphene oxide/Fe3O4-molecularly imprinted polymer with 1, 4-Butanediyl-3, 3′-bis-l-vinylimidazolium dihexafluorophosphate ionic liquid as cross-linker publication-title: Polymers – volume: 352 start-page: 606 year: 2017 end-page: 616 ident: bib12 article-title: Assessment of divergent functional properties of seed-like strontium molybdate for the photocatalysis and electrocatalysis of the postharvest scald inhibitor diphenylamine publication-title: J. Catal. – volume: 56 start-page: 442 year: 2021 end-page: 456 ident: bib21 article-title: Metal–organic framework-derived yolk–shell hollow Ni/NiO@ C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors publication-title: J. Mater. Sci. – volume: 31 start-page: 1802349 year: 2019 ident: bib5 article-title: Self‐templating approaches to hollow nanostructures publication-title: Adv. Mater. – volume: 44 start-page: 6749 year: 2015 end-page: 6773 ident: bib26 article-title: Multi-shelled hollow micro-/nanostructures publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1096 year: 2011 end-page: 1099 ident: bib23 article-title: Polarisation dependent Raman study of single-crystal nickel oxide publication-title: Cent. Eur. J. Phys. – volume: 146 start-page: 4066 year: 2021 end-page: 4079 ident: bib18 article-title: Label-free electrochemical immunosensor based on gold nanoparticle/polyethyleneimine/reduced graphene oxide nanocomposites for the ultrasensitive detection of cancer biomarker matrix metalloproteinase-1 publication-title: Analyst – volume: 459 start-page: 98 year: 2008 end-page: 102 ident: bib43 article-title: Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials publication-title: J. Alloy. Compd. – volume: 1081 start-page: 202 year: 2005 end-page: 209 ident: bib29 article-title: Evaluation of diphenylamine derivatives in apple peel using gradient reversed-phase liquid chromatography with ultraviolet–visible absorption and atmospheric pressure chemical ionization mass selective detection publication-title: J. Chromatogr. A – volume: 1 start-page: 8438 year: 2013 end-page: 8444 ident: bib47 article-title: Synthesis, properties and applications of flowerlike Ni–NiO composite microstructures publication-title: J. Mater. Chem. A – volume: 1248 start-page: 130 year: 2012 end-page: 138 ident: bib8 article-title: Comprehensive qualitative and quantitative determination of pesticides and veterinary drugs in honey using liquid chromatography–Orbitrap high resolution mass spectrometry publication-title: J. Chromatogr. A – volume: 4 start-page: 1300912 year: 2014 ident: bib39 article-title: Three‐dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li‐ion batteries with long cycle lifetimes publication-title: Adv. Energy Mater. – start-page: 1 year: 2020 end-page: 11 ident: bib20 article-title: Hydrophobic deep eutectic solvent-based ultrasonic-assisted liquid-liquid micro-extraction combined with HPLC-FLD for diphenylamine determination in fruit publication-title: Food Addit. Contam. Part A – volume: 4 start-page: 494 year: 2009 end-page: 507 ident: bib50 article-title: Self-templated synthesis of hollow nanostructures publication-title: Nano Today – volume: 7 start-page: 11313 year: 2019 end-page: 11322 ident: bib30 article-title: Nickel/Nickel oxide in combination with a photoredox catalyst for the reductive carboxylation of unsaturated hydrocarbons with CO publication-title: ACS Sustain. Chem. Eng. – volume: 54 start-page: 68 year: 2019 end-page: 78 ident: bib32 article-title: Facile one-pot sonochemical synthesis of Ni doped bismuth sulphide for the electrochemical determination of promethazine hydrochloride publication-title: Ultrason. Sonochem. – volume: 4 start-page: 1 year: 2014 end-page: 7 ident: bib3 article-title: Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries publication-title: Sci. Rep. – volume: 5 start-page: 8909 year: 2017 end-page: 8915 ident: bib16 article-title: Self-templated formation of ZnFe2O 4 double-shelled hollow microspheres for photocatalytic degradation of gaseous o-dichlorobenzene publication-title: J. Mater. Chem. A – volume: 362 start-page: 413 year: 2019 end-page: 421 ident: bib19 article-title: MOFs-derived magnetic chestnut shell-like hollow sphere NiO/Ni@ C composites and their removal performance for arsenic (V) publication-title: Chem. Eng. J. – volume: 273 start-page: 616 year: 2018 end-page: 626 ident: bib31 article-title: Fabrication of europium doped molybdenum diselenide nanoflower based electrochemical sensor for sensitive detection of diphenylamine in apple juice publication-title: Sens. Actuators B: Chem. – volume: 32 start-page: 313 year: 2017 end-page: 318 ident: bib4 article-title: In situ preparation and glucose sensing property of ternary NiO/Ni/C microspheres publication-title: J. Inorg. Mater. – volume: 42 start-page: 376 year: 2017 end-page: 380 ident: bib10 article-title: An efficient method for determination of the diphenylamine (stabilizer) in propellants by molecularly imprinted polymer based carbon paste electrochemical sensor publication-title: Propellants Explos. Pyrotech. – volume: 168 start-page: 282 year: 2019 end-page: 290 ident: bib15 article-title: A novel design and synthesis of ruthenium sulfide decorated activated graphite nanocomposite for the electrochemical determination of antipsychotic drug chlorpromazine publication-title: Compos. B. Eng. – volume: 257 start-page: 2717 year: 2011 end-page: 2730 ident: bib1 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni publication-title: Appl. Surf. Sci. – volume: 9 start-page: 22342 year: 2017 end-page: 22349 ident: bib36 article-title: Ni and NiO nanoparticles decorated metal–organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum publication-title: ACS Appl. Mater. Interfaces – volume: 36 start-page: 547 year: 2018 end-page: 552 ident: bib13 article-title: Synthesis of NiO nanoparticles by sol-gel technique publication-title: Mater. Sci. -Pol. – volume: 221 start-page: 267 year: 2018 ident: 10.1016/j.jhazmat.2021.127378_bib46 article-title: MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.03.156 – volume: 32 start-page: 1289 year: 2021 ident: 10.1016/j.jhazmat.2021.127378_bib34 article-title: Efficient and green synthesis of silver nanocomposite using guar gum for voltammetric determination of diphenylamine publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-04902-6 – volume: 4 start-page: 494 year: 2009 ident: 10.1016/j.jhazmat.2021.127378_bib50 article-title: Self-templated synthesis of hollow nanostructures publication-title: Nano Today doi: 10.1016/j.nantod.2009.10.008 – volume: 99 start-page: 2068 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib7 article-title: Novel natural food preservatives and applications in seafood preservation: a review publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.9416 – volume: 10 start-page: 1329 year: 2018 ident: 10.1016/j.jhazmat.2021.127378_bib17 article-title: An electrochemical sensor for diphenylamine detection based on reduced graphene oxide/Fe3O4-molecularly imprinted polymer with 1, 4-Butanediyl-3, 3′-bis-l-vinylimidazolium dihexafluorophosphate ionic liquid as cross-linker publication-title: Polymers doi: 10.3390/polym10121329 – volume: 1131 start-page: 35 year: 2020 ident: 10.1016/j.jhazmat.2021.127378_bib33 article-title: Cost-effective single-step synthesis of flower-like cerium-ruthenium-sulfide for the determination of antipsychotic drug trifluoperazine in human urine samples publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.07.032 – volume: 22 start-page: 9209 year: 2012 ident: 10.1016/j.jhazmat.2021.127378_bib41 article-title: Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c2jm16935e – start-page: 1 year: 2020 ident: 10.1016/j.jhazmat.2021.127378_bib20 article-title: Hydrophobic deep eutectic solvent-based ultrasonic-assisted liquid-liquid micro-extraction combined with HPLC-FLD for diphenylamine determination in fruit publication-title: Food Addit. Contam. Part A – volume: 5 start-page: 8909 year: 2017 ident: 10.1016/j.jhazmat.2021.127378_bib16 article-title: Self-templated formation of ZnFe2O 4 double-shelled hollow microspheres for photocatalytic degradation of gaseous o-dichlorobenzene publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02048A – volume: 809 start-page: 141 year: 2014 ident: 10.1016/j.jhazmat.2021.127378_bib9 article-title: Thin-film electrochemical sensor for diphenylamine detection using molecularly imprinted polymers publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2013.11.038 – volume: 4 start-page: 1300912 year: 2014 ident: 10.1016/j.jhazmat.2021.127378_bib39 article-title: Three‐dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li‐ion batteries with long cycle lifetimes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300912 – volume: 748 start-page: 145 year: 2018 ident: 10.1016/j.jhazmat.2021.127378_bib52 article-title: In situ growth of Ni/NiO on N-doped carbon spheres with excellent electrocatalytic performance for non-enzymatic glucose detection publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2018.03.125 – volume: 44 start-page: 6749 year: 2015 ident: 10.1016/j.jhazmat.2021.127378_bib26 article-title: Multi-shelled hollow micro-/nanostructures publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00344J – volume: 4 start-page: 1 year: 2014 ident: 10.1016/j.jhazmat.2021.127378_bib3 article-title: Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries publication-title: Sci. Rep. doi: 10.1038/srep05786 – volume: 73 start-page: 428 year: 2015 ident: 10.1016/j.jhazmat.2021.127378_bib22 article-title: Influence of citric acid on formation of Ni/NiO nanocomposite by sol–gel synthesis publication-title: J. Sol. -Gel Sci. Technol. doi: 10.1007/s10971-014-3554-7 – volume: 9 start-page: 2599 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib44 article-title: HMT-controlled synthesis of mesoporous NiO hierarchical nanostructures and their catalytic role towards the thermal decomposition of ammonium perchlorate publication-title: Appl. Sci. doi: 10.3390/app9132599 – volume: 146 start-page: 4066 year: 2021 ident: 10.1016/j.jhazmat.2021.127378_bib18 article-title: Label-free electrochemical immunosensor based on gold nanoparticle/polyethyleneimine/reduced graphene oxide nanocomposites for the ultrasensitive detection of cancer biomarker matrix metalloproteinase-1 publication-title: Analyst doi: 10.1039/D1AN00537E – volume: 21 start-page: 724 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib24 article-title: Electrochemical sensing of free radical antioxidant diphenylamine cations (DPAH˙+) with carbon interlaced nanoflake-assembled MgxNi9− xS8 microspheres publication-title: CrystEngComm doi: 10.1039/C8CE02004C – volume: 33 start-page: 1363 year: 1984 ident: 10.1016/j.jhazmat.2021.127378_bib25 article-title: Mechanism of oxidation of diphenylamine in an acidic medium publication-title: Bull. Acad. Sci. USSR Div. doi: 10.1007/BF00956507 – volume: 159 year: 2020 ident: 10.1016/j.jhazmat.2021.127378_bib14 article-title: Highly sensitive electrochemical sensor based on carbon-rich graphitic carbon nitride as an electrocatalyst for the detection of diphenylamine publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105587 – volume: 6 start-page: 6781 year: 2018 ident: 10.1016/j.jhazmat.2021.127378_bib6 article-title: Self-supported Ni nanoparticles embedded on nitrogen-doped carbon derived from nickel polyphthalocyanine for high-performance non-enzymatic glucose detection publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02058B – volume: 1248 start-page: 130 year: 2012 ident: 10.1016/j.jhazmat.2021.127378_bib8 article-title: Comprehensive qualitative and quantitative determination of pesticides and veterinary drugs in honey using liquid chromatography–Orbitrap high resolution mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2012.05.088 – volume: 3 start-page: 6106 year: 2013 ident: 10.1016/j.jhazmat.2021.127378_bib27 article-title: Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis publication-title: RSC Adv. doi: 10.1039/c3ra21978j – volume: 160 start-page: 255 year: 2014 ident: 10.1016/j.jhazmat.2021.127378_bib37 article-title: A method to detect diphenylamine contamination of apple fruit and storages using headspace solid phase micro-extraction and gas chromatography/mass spectroscopy publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.03.099 – volume: 299 start-page: 210 year: 2015 ident: 10.1016/j.jhazmat.2021.127378_bib35 article-title: Liquid chromatographic–mass spectrometric monitoring of photodegradation of diphenylamine using experimental design methodology publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2014.12.002 – volume: 29 start-page: 1807377 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib42 article-title: Rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium‐ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807377 – volume: 273 start-page: 616 year: 2018 ident: 10.1016/j.jhazmat.2021.127378_bib31 article-title: Fabrication of europium doped molybdenum diselenide nanoflower based electrochemical sensor for sensitive detection of diphenylamine in apple juice publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2018.06.094 – volume: 56 start-page: 442 year: 2021 ident: 10.1016/j.jhazmat.2021.127378_bib21 article-title: Metal–organic framework-derived yolk–shell hollow Ni/NiO@ C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05236-8 – volume: 7 start-page: 11313 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib30 article-title: Nickel/Nickel oxide in combination with a photoredox catalyst for the reductive carboxylation of unsaturated hydrocarbons with CO2 under visible-light irradiation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00824 – volume: 459 start-page: 98 year: 2008 ident: 10.1016/j.jhazmat.2021.127378_bib43 article-title: Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2007.04.258 – volume: 32 start-page: 313 year: 2017 ident: 10.1016/j.jhazmat.2021.127378_bib4 article-title: In situ preparation and glucose sensing property of ternary NiO/Ni/C microspheres publication-title: J. Inorg. Mater. doi: 10.15541/jim20160306 – volume: 16 start-page: 1791 year: 2016 ident: 10.1016/j.jhazmat.2021.127378_bib51 article-title: Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite publication-title: Sensors doi: 10.3390/s16111791 – volume: 257 start-page: 2717 year: 2011 ident: 10.1016/j.jhazmat.2021.127378_bib1 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.10.051 – volume: 14 start-page: 1042 year: 2020 ident: 10.1016/j.jhazmat.2021.127378_bib38 article-title: Hydrothermal synthesis of carbon microspheres from sucrose with citric acid as a catalyst: physicochemical and structural properties publication-title: J. Taibah Univ. Sci. doi: 10.1080/16583655.2020.1794566 – volume: 352 start-page: 606 year: 2017 ident: 10.1016/j.jhazmat.2021.127378_bib12 article-title: Assessment of divergent functional properties of seed-like strontium molybdate for the photocatalysis and electrocatalysis of the postharvest scald inhibitor diphenylamine publication-title: J. Catal. doi: 10.1016/j.jcat.2017.06.001 – volume: 100 start-page: 79 year: 2015 ident: 10.1016/j.jhazmat.2021.127378_bib28 article-title: Determination of diphenylamine residue in fruit samples by supercritical fluid extraction followed by vesicular based-supramolecular solvent microextraction publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2015.02.021 – volume: 9 start-page: 22342 year: 2017 ident: 10.1016/j.jhazmat.2021.127378_bib36 article-title: Ni and NiO nanoparticles decorated metal–organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07501 – volume: 362 start-page: 413 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib19 article-title: MOFs-derived magnetic chestnut shell-like hollow sphere NiO/Ni@ C composites and their removal performance for arsenic (V) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.046 – volume: 91 start-page: 78 year: 2016 ident: 10.1016/j.jhazmat.2021.127378_bib40 article-title: Environmental and human risk hierarchy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate publication-title: Environ. Int. doi: 10.1016/j.envint.2016.02.008 – volume: 54 start-page: 68 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib32 article-title: Facile one-pot sonochemical synthesis of Ni doped bismuth sulphide for the electrochemical determination of promethazine hydrochloride publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.02.013 – volume: 36 start-page: 547 year: 2018 ident: 10.1016/j.jhazmat.2021.127378_bib13 article-title: Synthesis of NiO nanoparticles by sol-gel technique publication-title: Mater. Sci. -Pol. doi: 10.2478/msp-2018-0088 – volume: 31 start-page: 4323 year: 2020 ident: 10.1016/j.jhazmat.2021.127378_bib45 article-title: Polyhedral NiO/C porous composites derived by controlled pyrolysis of Ni-MOF for highly efficient non-enzymatic glucose detection publication-title: J. Mater. Sci. Mater. Electron doi: 10.1007/s10854-020-02990-y – volume: 5 start-page: 15042 year: 2015 ident: 10.1016/j.jhazmat.2021.127378_bib2 article-title: Nickel oxide nanopetal-decorated 3D nickel network with enhanced pseudocapacitive properties publication-title: RSC Adv. doi: 10.1039/C4RA15556D – volume: 42 start-page: 376 year: 2017 ident: 10.1016/j.jhazmat.2021.127378_bib10 article-title: An efficient method for determination of the diphenylamine (stabilizer) in propellants by molecularly imprinted polymer based carbon paste electrochemical sensor publication-title: Propellants Explos. Pyrotech. doi: 10.1002/prep.201600118 – volume: 1081 start-page: 202 year: 2005 ident: 10.1016/j.jhazmat.2021.127378_bib29 article-title: Evaluation of diphenylamine derivatives in apple peel using gradient reversed-phase liquid chromatography with ultraviolet–visible absorption and atmospheric pressure chemical ionization mass selective detection publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2005.05.060 – volume: 94 start-page: 1407 year: 2014 ident: 10.1016/j.jhazmat.2021.127378_bib48 article-title: Very sensitive differential pulse adsorptive stripping voltammetric determination of 4-nitrophenol at poly (diphenylamine)/multi-walled carbon nanotube-β-cyclodextrin-modified glassy carbon electrode publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2014.962529 – volume: 1 start-page: 8438 year: 2013 ident: 10.1016/j.jhazmat.2021.127378_bib47 article-title: Synthesis, properties and applications of flowerlike Ni–NiO composite microstructures publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11219e – volume: 168 start-page: 282 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib15 article-title: A novel design and synthesis of ruthenium sulfide decorated activated graphite nanocomposite for the electrochemical determination of antipsychotic drug chlorpromazine publication-title: Compos. B. Eng. doi: 10.1016/j.compositesb.2018.12.082 – volume: 9 start-page: 1096 year: 2011 ident: 10.1016/j.jhazmat.2021.127378_bib23 article-title: Polarisation dependent Raman study of single-crystal nickel oxide publication-title: Cent. Eur. J. Phys. – volume: 31 start-page: 1802349 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib5 article-title: Self‐templating approaches to hollow nanostructures publication-title: Adv. Mater. doi: 10.1002/adma.201802349 – volume: 3 start-page: 10519 year: 2015 ident: 10.1016/j.jhazmat.2021.127378_bib49 article-title: Hierarchical porous Ni/NiO core–shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01071C – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.jhazmat.2021.127378_bib11 article-title: Fabrication of 9.6 V high-performance asymmetric supercapacitors stack based on nickel hexacyanoferrate-derived Ni(OH)2 nanosheets and bio-derived activated carbon publication-title: Sci. Rep. doi: 10.1038/s41598-018-37566-8 |
SSID | ssj0001754 |
Score | 2.5653133 |
Snippet | Toxic substances, such as heavy metals, toxins, pesticides, pathogens, and veterinary drug residues in food are hazardous to consumer health. The variety and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 127378 |
SubjectTerms | Carbon Carbon-confined Ni/NiO cost effectiveness detection limit Differential pulse voltammetry Diphenylamine Electrochemical oxidation electrochemistry electron transfer food consumption food safety Fruit fruits glassy carbon electrode hot water treatment microparticles Microspheres Nickel nickel oxide oxidation Reproducibility of Results Self-templating socioeconomic factors temperature toxicity veterinary drugs |
Title | Self-templating hydrothermal synthesis of carbon-confined double-shelled Ni/NiO hollow microspheres for diphenylamine detection in fruit samples |
URI | https://dx.doi.org/10.1016/j.jhazmat.2021.127378 https://www.ncbi.nlm.nih.gov/pubmed/34879572 https://www.proquest.com/docview/2620078093 https://www.proquest.com/docview/2636814711 |
Volume | 424 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADB6VcoEDgvLo8qgGiWs2m8xMNnusKqrltRxKpd6ieXhoVtuk2smqWg78Bn4ydh4tSEAlblE0jiZje2zL9mfG3uTCahSTJFIKHAYoMxvlmRaRs15Lm6MRtJTR_bTI5qfy_Zk622FHQy8MlVX2d393p7e3df8m7k8zvizL-ISSemhuJQUtQmaE-EnodSjT4-83ZR5oHjsIKcoA4OqbLp54OV6e62_oGGKYmCbjBC05TVv7s336m__Z2qHjh-xB70Dyw26Pj9gOVHvs_i-wgnvszkd99Zj9OIGVjwh6isrdqq_8fOvWbb_VBdKHbYWPoQy89tzqtamrCENjj19x3NUbs4IotEWiji_KeFF-5nhPruorfkElfIHQCCBwdHm5K6lObIuihcTcQdNWd1W8rLhfb8qGB00QxOEJOz1---VoHvXzFyIrZnkTee-tUaimRhuVCZNNLEbT0wmkfmq89DIBkNSsmkwtKZsR4FKlJ5Cl4BOTiqdst6or2GccqUUmEuvTREsFNge0iT6HLEePUysYMTmcemF7cHKakbEqhiq0ZdEzqyBmFR2zRmx8TXbZoXPcRpAPLC1-E7MCLchtpK8HEShQBSmvoiuoN6EgTH_0tCYz8a81Av8VjyoZsWed_FzvWEia-D5Nn___5l6weyn1ZdCkGvWS7TbrDbxCb6kxB606HLC7h-8-zBc_AfezFt8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB616QE4ICiv8Fwkro5j79pxjlVFldLUHNpKva1217uto9SuYkdV-BX8ZGb8CCABlbhFVsZa77w1M98AfEq4USgmgRdFNsMEZWq8JFbcy4xTwiToBA1VdE_TeHYhvlxGlztw2M_CUFtlZ_tbm95Y6-6J392mf5vn_hkV9dDdCkpauIj5LuwROpUYwN7B8cks3Rpk9JAtihQVAZDg5yCPvxgtrtU3jA0xUwyDUYDOnBau_dlF_S0EbVzR0RN43MWQ7KA95lPYscU-PPoFWXAfdufq7hl8P7NL5xH6FHW8FVfsepOtmpGrG6SvNgX-rPKKlY4ZtdJl4WF27PAtGcvKtV5ar2r6RDOW5n6af2VoKpflHbuhLr6KAAlsxTDqZVlOrWIblC4kZpmtmwavguUFc6t1XrNKEQpx9Rwujj6fH868bgWDZ_g0qT3nnNERaqpWOoq5jscGE-rJ2IZuop1wIrBW0LxqMDGkb5rbLIzU2MahdYEO-QsYFGVhXwFDah7zwLgwUCKyJrHoFl1i4wSDThXZIYj-1qXp8MlpTcZS9o1oC9kxSxKzZMusIYy2ZLctQMd9BEnPUvmbpEl0IveRfuxFQKIWUmlFFbZcV5Jg_THYGk_5v_7D8VvxqoIhvGzlZ3tiLmjp-yR8_f-H-wAPZuenczk_Tk_ewMOQxjRocU30Fgb1am3fYfBU6_edcvwAb7kZkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-templating+hydrothermal+synthesis+of+carbon-confined+double-shelled+Ni%2FNiO+hollow+microspheres+for+diphenylamine+detection+in+fruit+samples&rft.jtitle=Journal+of+hazardous+materials&rft.au=Sakthivel%2C+Rajalakshmi&rft.au=He%2C+Jr-Hau&rft.au=Chung%2C+Ren-Jei&rft.date=2022-02-15&rft.eissn=1873-3336&rft.volume=424&rft.issue=Pt+A&rft.spage=127378&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.127378&rft_id=info%3Apmid%2F34879572&rft.externalDocID=34879572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |