Viral oncogene EBNALP regulates YY1 DNA binding and alters host 3D genome organization
The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant...
Saved in:
Published in | EMBO reports Vol. 26; no. 3; pp. 810 - 835 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1469-3178 1469-221X 1469-3178 |
DOI | 10.1038/s44319-024-00357-6 |
Cover
Loading…
Abstract | The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer–promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer–promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer–promoter interactions. EBNALP inactivation also increases enhancer–promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation.
Synopsis
EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death.
EBNALP is tethered to DNA by DPF2.
EBNALP recruits YY1 to the CCND2 locus and increases enhancer-promoter interaction and gene expression.
EBNALP reduces DNA accessibility and limits YY1 DNA binding at the BCL2L11 locus, reducing enhancer-promoter looping and gene expression.
EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death. |
---|---|
AbstractList | The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer–promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer–promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer–promoter interactions. EBNALP inactivation also increases enhancer–promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation.
EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death.
EBNALP is tethered to DNA by DPF2.
EBNALP recruits YY1 to the CCND2 locus and increases enhancer-promoter interaction and gene expression.
EBNALP reduces DNA accessibility and limits YY1 DNA binding at the BCL2L11 locus, reducing enhancer-promoter looping and gene expression.
EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death. The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP's role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer-promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer-promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer-promoter interactions. EBNALP inactivation also increases enhancer-promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation.The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP's role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer-promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer-promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer-promoter interactions. EBNALP inactivation also increases enhancer-promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation. The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer–promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer–promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer–promoter interactions. EBNALP inactivation also increases enhancer–promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation. Synopsis EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death. EBNALP is tethered to DNA by DPF2. EBNALP recruits YY1 to the CCND2 locus and increases enhancer-promoter interaction and gene expression. EBNALP reduces DNA accessibility and limits YY1 DNA binding at the BCL2L11 locus, reducing enhancer-promoter looping and gene expression. EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death. The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer–promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer–promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer–promoter interactions. EBNALP inactivation also increases enhancer–promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation. |
Author | Leong, Merrin Manlong Wang, Hongbo Liu, Xiang Yiu, Stefanie P T Narita, Yohei Ding, Weiyue Lee, Jessica Teng, Mingxiang Zhao, Katelyn R S Gewurz, Benjamin Cui, Amy Hammerschmidt, Wolfgang Zhao, Bo Wang, Chong |
Author_xml | – sequence: 1 givenname: Chong orcidid: 0000-0002-0523-3562 surname: Wang fullname: Wang, Chong email: wan01642@umn.edu organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota – sequence: 2 givenname: Merrin Manlong orcidid: 0000-0003-4753-2285 surname: Leong fullname: Leong, Merrin Manlong organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 3 givenname: Weiyue orcidid: 0009-0004-7126-1061 surname: Ding fullname: Ding, Weiyue organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 4 givenname: Yohei surname: Narita fullname: Narita, Yohei organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 5 givenname: Xiang surname: Liu fullname: Liu, Xiang organization: Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute – sequence: 6 givenname: Hongbo surname: Wang fullname: Wang, Hongbo organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 7 givenname: Stefanie P T surname: Yiu fullname: Yiu, Stefanie P T organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 8 givenname: Jessica surname: Lee fullname: Lee, Jessica organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 9 givenname: Katelyn R S surname: Zhao fullname: Zhao, Katelyn R S organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 10 givenname: Amy surname: Cui fullname: Cui, Amy organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 11 givenname: Benjamin surname: Gewurz fullname: Gewurz, Benjamin organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 12 givenname: Wolfgang orcidid: 0000-0002-4659-0427 surname: Hammerschmidt fullname: Hammerschmidt, Wolfgang organization: Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research – sequence: 13 givenname: Mingxiang orcidid: 0000-0002-8536-8941 surname: Teng fullname: Teng, Mingxiang email: mingxiang.teng@moffitt.org organization: Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute – sequence: 14 givenname: Bo orcidid: 0000-0002-8612-5597 surname: Zhao fullname: Zhao, Bo email: bzhao@bwh.harvard.edu organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39747661$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtPxCAUhYnRqKP-AReGpZsqjxbKyozjM5moCzVxRZj2tmI6oNCa6K8XndHoxhUkfOdczj0jtOq8A4R2KTmghJeHMc85VRlheUYIL2QmVtAmzYXKOJXl6q_7BhrF-EQIKZQs19EGVzKXQtBNdH9vg-mwd5VvwQE-Pb4aT29wgHboTA8RPzxQfHI1xjPrautabFyNTddDiPjRxx7zE5yEfg7Yh9Y4-2566902WmtMF2FneW6hu7PT28lFNr0-v5yMp1nFVdlnDSukIqqmEmoOxWzG8oIAqPTRFFBUwFK4ohZG5U3FeC0Ub7igwLk0rFTAt9DRwvd5mM2hrsD1KY5-DnZuwpv2xuq_L84-6ta_akpLSplUyWF_6RD8ywCx13MbK-g648APUXNaUEYIUyShe7-H_Uz53mYC2AKogo8xQPODUKI_K9OLynRKpb8q0yKJ-EIUE-xaCPrJD8Glrf2n-gC3p5ec |
Cites_doi | 10.1038/ng.3963 10.1073/pnas.2315860121 10.1038/nature11082 10.1371/journal.ppat.1000951 10.1002/biot.201400744 10.1016/j.cell.2018.07.047 10.1093/nar/gkac233 10.1371/journal.ppat.1003636 10.1128/jvi.71.9.6619-6628.1997 10.1073/pnas.1321704111 10.1073/pnas.1317608110 10.1128/mBio.01723-19 10.1128/JVI.79.16.10171-10179.2005 10.1073/pnas.2201029119 10.1016/j.cell.2013.04.053 10.1101/gr.257576.119 10.1038/s41467-019-12325-z 10.1038/s41586-019-1547-y 10.1016/j.cell.2004.06.004 10.1128/jvi.71.4.3268-3274.1997 10.1016/j.ccell.2021.05.007 10.1016/S0168-1702(02)00190-9 10.1128/mBio.02372-17 10.1016/j.chom.2017.09.001 10.1371/journal.ppat.1003187 10.1126/science.8016657 10.1073/pnas.1901314116 10.1126/scitranslmed.3002878 10.1016/j.molcel.2006.11.017 10.1038/nature10730 10.1016/S0021-9258(18)35741-7 10.1016/j.ajhg.2017.05.006 10.1101/gad.1529307 10.1016/j.chom.2017.04.005 10.1371/journal.ppat.1002180 10.1073/pnas.1108892108 10.1038/ng.3335 10.1371/journal.ppat.1011950 10.1038/emboj.2008.1 10.1371/journal.ppat.1006890 10.1016/j.cell.2017.11.008 10.1073/pnas.0307808100 10.1073/pnas.2005726117 10.1016/j.gde.2016.01.002 10.1038/nrg.2016.112 10.1093/nar/gks391 10.1038/s41467-023-37347-6 10.1186/s13059-020-02108-x 10.1016/0092-8674(91)90189-6 10.1128/jvi.71.9.6611-6618.1997 10.1073/pnas.1104991108 10.1371/journal.ppat.1001048 10.1038/ng.2731 10.1128/jvi.70.11.7695-7705.1996 10.1038/nmeth.3999 10.1016/j.tig.2018.03.003 10.1080/22221751.2020.1840311 10.1038/s41467-021-27894-1 10.3389/fnmol.2018.00252 10.1016/j.immuni.2016.08.012 10.1126/science.1659743 10.1038/s41589-020-00695-1 10.1128/JVI.74.20.9471-9478.2000 10.1128/JVI.02681-09 10.1038/nature16490 10.1073/pnas.1700328114 10.1016/j.chom.2010.11.004 10.1128/JVI.00787-12 10.1186/s13059-014-0550-8 10.1016/j.molcel.2010.05.004 10.1126/science.1181369 10.1038/sj.emboj.7600820 10.1371/journal.pbio.2005752 10.1002/j.1460-2075.1992.tb05563.x 10.1128/jvi.65.12.6826-6837.1991 10.1016/j.cell.2020.07.030 10.1016/j.tim.2019.09.002 10.1128/JVI.73.5.4481-4484.1999 10.1371/journal.ppat.1009419 10.1073/pnas.1019599108 10.1093/nar/gkab787 10.1128/jvi.01148-24 10.1016/j.ccell.2017.05.008 10.1128/JVI.00156-18 10.1126/science.7725102 10.7554/eLife.18270 10.1002/ijc.31255 10.1002/j.1460-2075.1994.tb06634.x 10.1128/JVI.02209-13 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1038/s44319-024-00357-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1469-3178 |
EndPage | 835 |
ExternalDocumentID | PMC11811279 39747661 10_1038_s44319_024_00357_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01AI123420; R01AI164709 funderid: http://dx.doi.org/10.13039/100000060 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: R01CA047006 funderid: http://dx.doi.org/10.13039/100000054 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R35GM155298 funderid: http://dx.doi.org/10.13039/100000057 – fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDR) grantid: R00DE030215; DE033907 funderid: http://dx.doi.org/10.13039/100000072 – fundername: BWH | Brigham Research Institute (BRI) grantid: FSRE funderid: http://dx.doi.org/10.13039/100008552 – fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDR) grantid: R00DE030215 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01AI164709 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01AI123420 – fundername: NIGMS NIH HHS grantid: R35 GM155298 – fundername: NIAID NIH HHS grantid: R01 AI123420 – fundername: NIDCR NIH HHS grantid: R00 DE030215 – fundername: NCI NIH HHS grantid: R01 CA047006 – fundername: NIAID NIH HHS grantid: R01 AI164709 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: R01CA047006 – fundername: NIDCR NIH HHS grantid: R01 DE033907 |
GroupedDBID | --- -DZ 0R~ 1OC 24P 29G 2WC 33P 36B 39C 5GY 70F AAESR AAEVG AAHBH AAHHS AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ABZEH ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BFHJK BHPHI BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DPXWK DRFUL DRSTM E3Z EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ HK~ H~9 KQ8 L7B LATKE LEEKS LITHE LOXES LUTES LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P2P P2W R.K RHI RNS ROL RPM SV3 TR2 WBKPD WIH WIK WIN WOHZO WYJ ZGI ZZTAW AASML AAYXX CITATION NAO -Q- .55 3O- 53G 5VS 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AANHP AASGY ABUWG ACBWZ ACRPL ACYXJ ADNMO AEUYN AFKRA AGQPQ ALUQN ASPBG AVWKF AZQEC BBNVY BDRZF BENPR BPHCQ BVXVI C1A CAG CCPQU CGR COF CUY CVF DIK DWQXO ECM EIF EJD FEDTE FYUFA GNUQQ GODZA GUQSH GX1 H13 HCIFZ HMCUK HVGLF HYE LH4 LK8 LW6 M1P M2O M7P MEWTI NPM PHGZT PQQKQ PROAC PSQYO Q2X RIG RNI RZO UKHRP WOQ WXSBR X7M 7X8 5PM |
ID | FETCH-LOGICAL-c398t-f257909d17ed3e5bb2450ee90050386ce20245d6a94fc23d693f361e337a289e3 |
IEDL.DBID | C6C |
ISSN | 1469-3178 1469-221X |
IngestDate | Thu Aug 21 18:29:03 EDT 2025 Fri Sep 05 13:31:23 EDT 2025 Thu May 01 02:19:44 EDT 2025 Tue Jul 01 02:32:19 EDT 2025 Fri Feb 21 02:46:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | EBNALP YY1 HiChIP 3D Genome Organization Epstein–Barr Virus |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-f257909d17ed3e5bb2450ee90050386ce20245d6a94fc23d693f361e337a289e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4659-0427 0009-0004-7126-1061 0000-0003-4753-2285 0000-0002-8536-8941 0000-0002-8612-5597 0000-0002-0523-3562 |
OpenAccessLink | https://www.nature.com/articles/s44319-024-00357-6 |
PMID | 39747661 |
PQID | 3151200290 |
PQPubID | 23479 |
PageCount | 26 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11811279 proquest_miscellaneous_3151200290 pubmed_primary_39747661 crossref_primary_10_1038_s44319_024_00357_6 springer_journals_10_1038_s44319_024_00357_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-10 |
PublicationDateYYYYMMDD | 2025-02-10 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | EMBO reports |
PublicationTitleAbbrev | EMBO Rep |
PublicationTitleAlternate | EMBO Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | M Ohashi (357_CR58) 2021; 17 WA Flavahan (357_CR18) 2016; 529 357_CR56 MS van Ruiten (357_CR79) 2018; 34 GZ Wang (357_CR82) 2020; 117 S Heinz (357_CR24) 2010; 38 JI Cohen (357_CR11) 2011; 3 PD Ling (357_CR41) 2005; 24 JB Mannick (357_CR46) 1991; 65 MR Mumbach (357_CR53) 2017; 49 Y Hayashi (357_CR23) 2000; 74 IJ Groves (357_CR20) 2024; 121 G Sui (357_CR75) 2004; 117 B Adane (357_CR1) 2021; 39 A De Leo (357_CR14) 2020; 28 SM Morgan (357_CR50) 2022; 13 Y Inayoshi (357_CR29) 2010; 84 L Skalska (357_CR73) 2013; 9 C Shen (357_CR69) 2020; 9 AS Weintraub (357_CR85) 2017; 171 W Stedman (357_CR74) 2008; 27 ME Donohoe (357_CR16) 2007; 25 C Wang (357_CR81) 2018; 92 Y Zhang (357_CR88) 2019; 573 S Jiang (357_CR31) 2017; 22 HS Chen (357_CR10) 2012; 86 L Skalska (357_CR72) 2010; 6 T Bauknecht (357_CR3) 1996; 70 S Harada (357_CR22) 1997; 71 SD Washington (357_CR84) 2018; 92 S Maruo (357_CR47) 2005; 79 A Kon (357_CR36) 2013; 45 JE Phillips-Cremins (357_CR63) 2013; 153 S Fang (357_CR17) 2019; 10 K Munger (357_CR54) 2002; 89 S Heinz (357_CR25) 2018; 174 SE Johnstone (357_CR32) 2020; 182 P Mrozek-Gorska (357_CR51) 2019; 116 L Li (357_CR39) 2021; 17 M Panarotto (357_CR59) 2022; 119 Y Shi (357_CR70) 1991; 67 LM Khachigian (357_CR35) 2018; 143 B Zhao (357_CR89) 2011; 108 M Gabriele (357_CR19) 2017; 100 MI Love (357_CR43) 2014; 15 F Nitsche (357_CR57) 1997; 71 S Zalani (357_CR87) 1997; 71 CD Wood (357_CR86) 2016; 5 KL Bunting (357_CR7) 2016; 45 JR Dixon (357_CR15) 2012; 485 CD Laherty (357_CR37) 1992; 267 AJ Brown (357_CR6) 2015; 10 JM Cable (357_CR8) 2024; 20 W Wang (357_CR83) 2022; 50 FM Huber (357_CR28) 2017; 114 D Portal (357_CR65) 2011; 108 B Bonev (357_CR5) 2016; 17 357_CR38 R Katainen (357_CR34) 2015; 47 D Portal (357_CR66) 2013; 110 K Paschos (357_CR60) 2012; 40 MR Mumbach (357_CR52) 2016; 13 C Kaiser (357_CR33) 1999; 73 MR Corces (357_CR12) 2016; 36 T Henkel (357_CR26) 1994; 265 I Tempera (357_CR78) 2010; 6 D Pich (357_CR64) 2019; 10 MJ McClellan (357_CR49) 2013; 9 JJ Hsieh (357_CR27) 1995; 268 HS Chen (357_CR9) 2014; 88 CW Peng (357_CR61) 2004; 101 357_CR68 A Szymula (357_CR76) 2018; 14 S Maruo (357_CR48) 2011; 108 S Jiang (357_CR30) 2014; 111 N Bogershausen (357_CR4) 2018; 11 AJ Sinclair (357_CR71) 1994; 13 E Manet (357_CR45) 2021; 49 L Nanni (357_CR55) 2020; 21 E Lieberman-Aiden (357_CR40) 2009; 326 IJ Groves (357_CR21) 2024; 98 H zur Hausen (357_CR90) 1991; 254 I Tempera (357_CR77) 2011; 7 Y Ma (357_CR44) 2017; 21 K Qu (357_CR67) 2017; 32 T Bauknecht (357_CR2) 1992; 11 I Pentland (357_CR62) 2018; 16 M Cusack (357_CR13) 2020; 30 C Wang (357_CR80) 2023; 14 H Liu (357_CR42) 2007; 21 |
References_xml | – volume: 49 start-page: 1602 year: 2017 ident: 357_CR53 publication-title: Nat Genet doi: 10.1038/ng.3963 – volume: 121 year: 2024 ident: 357_CR20 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2315860121 – volume: 485 start-page: 376 year: 2012 ident: 357_CR15 publication-title: Nature doi: 10.1038/nature11082 – volume: 6 start-page: e1000951 year: 2010 ident: 357_CR72 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000951 – volume: 10 start-page: 1019 year: 2015 ident: 357_CR6 publication-title: Biotechnol J doi: 10.1002/biot.201400744 – volume: 174 start-page: 1522 year: 2018 ident: 357_CR25 publication-title: Cell doi: 10.1016/j.cell.2018.07.047 – volume: 50 start-page: 4917 year: 2022 ident: 357_CR83 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac233 – volume: 9 start-page: e1003636 year: 2013 ident: 357_CR49 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003636 – volume: 71 start-page: 6619 year: 1997 ident: 357_CR57 publication-title: J Virol doi: 10.1128/jvi.71.9.6619-6628.1997 – volume: 111 start-page: 421 year: 2014 ident: 357_CR30 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1321704111 – volume: 110 start-page: 18537 year: 2013 ident: 357_CR66 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1317608110 – volume: 10 start-page: e01723 year: 2019 ident: 357_CR64 publication-title: mBio doi: 10.1128/mBio.01723-19 – volume: 79 start-page: 10171 year: 2005 ident: 357_CR47 publication-title: J Virol doi: 10.1128/JVI.79.16.10171-10179.2005 – volume: 119 year: 2022 ident: 357_CR59 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2201029119 – volume: 153 start-page: 1281 year: 2013 ident: 357_CR63 publication-title: Cell doi: 10.1016/j.cell.2013.04.053 – volume: 30 start-page: 1393 year: 2020 ident: 357_CR13 publication-title: Genome Res doi: 10.1101/gr.257576.119 – volume: 10 year: 2019 ident: 357_CR17 publication-title: Nat Commun doi: 10.1038/s41467-019-12325-z – volume: 573 start-page: 600 year: 2019 ident: 357_CR88 publication-title: Nature doi: 10.1038/s41586-019-1547-y – volume: 117 start-page: 859 year: 2004 ident: 357_CR75 publication-title: Cell doi: 10.1016/j.cell.2004.06.004 – volume: 71 start-page: 3268 year: 1997 ident: 357_CR87 publication-title: J Virol doi: 10.1128/jvi.71.4.3268-3274.1997 – volume: 39 start-page: 827 year: 2021 ident: 357_CR1 publication-title: Cancer Cell doi: 10.1016/j.ccell.2021.05.007 – volume: 89 start-page: 213 year: 2002 ident: 357_CR54 publication-title: Virus Res doi: 10.1016/S0168-1702(02)00190-9 – ident: 357_CR38 doi: 10.1128/mBio.02372-17 – volume: 22 start-page: 561 year: 2017 ident: 357_CR31 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.09.001 – volume: 9 year: 2013 ident: 357_CR73 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003187 – volume: 265 start-page: 92 year: 1994 ident: 357_CR26 publication-title: Science doi: 10.1126/science.8016657 – volume: 116 start-page: 16046 year: 2019 ident: 357_CR51 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1901314116 – volume: 3 start-page: 107fs107 year: 2011 ident: 357_CR11 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002878 – volume: 25 start-page: 43 year: 2007 ident: 357_CR16 publication-title: Mol Cell doi: 10.1016/j.molcel.2006.11.017 – ident: 357_CR68 doi: 10.1038/nature10730 – volume: 267 start-page: 24157 year: 1992 ident: 357_CR37 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)35741-7 – volume: 100 start-page: 907 year: 2017 ident: 357_CR19 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2017.05.006 – volume: 21 start-page: 1179 year: 2007 ident: 357_CR42 publication-title: Genes Dev doi: 10.1101/gad.1529307 – volume: 21 start-page: 580 year: 2017 ident: 357_CR44 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.04.005 – volume: 7 start-page: e1002180 year: 2011 ident: 357_CR77 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002180 – volume: 108 start-page: 14902 year: 2011 ident: 357_CR89 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1108892108 – volume: 47 start-page: 818 year: 2015 ident: 357_CR34 publication-title: Nat Genet doi: 10.1038/ng.3335 – volume: 20 start-page: e1011950 year: 2024 ident: 357_CR8 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1011950 – volume: 27 start-page: 654 year: 2008 ident: 357_CR74 publication-title: EMBO J doi: 10.1038/emboj.2008.1 – volume: 14 start-page: e1006890 year: 2018 ident: 357_CR76 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006890 – volume: 171 start-page: 1573 year: 2017 ident: 357_CR85 publication-title: Cell doi: 10.1016/j.cell.2017.11.008 – volume: 101 start-page: 1033 year: 2004 ident: 357_CR61 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0307808100 – volume: 117 start-page: 18701 year: 2020 ident: 357_CR82 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2005726117 – volume: 36 start-page: 1 year: 2016 ident: 357_CR12 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2016.01.002 – volume: 17 start-page: 661 year: 2016 ident: 357_CR5 publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.112 – volume: 40 start-page: 7233 year: 2012 ident: 357_CR60 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks391 – volume: 14 year: 2023 ident: 357_CR80 publication-title: Nat Commun doi: 10.1038/s41467-023-37347-6 – volume: 21 year: 2020 ident: 357_CR55 publication-title: Genome Biol doi: 10.1186/s13059-020-02108-x – volume: 67 start-page: 377 year: 1991 ident: 357_CR70 publication-title: Cell doi: 10.1016/0092-8674(91)90189-6 – volume: 71 start-page: 6611 year: 1997 ident: 357_CR22 publication-title: J Virol doi: 10.1128/jvi.71.9.6611-6618.1997 – volume: 108 start-page: 7808 year: 2011 ident: 357_CR65 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1104991108 – volume: 6 start-page: e1001048 year: 2010 ident: 357_CR78 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001048 – volume: 45 start-page: 1232 year: 2013 ident: 357_CR36 publication-title: Nat Genet doi: 10.1038/ng.2731 – volume: 70 start-page: 7695 year: 1996 ident: 357_CR3 publication-title: J Virol doi: 10.1128/jvi.70.11.7695-7705.1996 – volume: 13 start-page: 919 year: 2016 ident: 357_CR52 publication-title: Nat Methods doi: 10.1038/nmeth.3999 – volume: 34 start-page: 477 year: 2018 ident: 357_CR79 publication-title: Trends Genet doi: 10.1016/j.tig.2018.03.003 – volume: 9 start-page: 2455 year: 2020 ident: 357_CR69 publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2020.1840311 – volume: 13 year: 2022 ident: 357_CR50 publication-title: Nat Commun doi: 10.1038/s41467-021-27894-1 – volume: 11 start-page: 252 year: 2018 ident: 357_CR4 publication-title: Front Mol Neurosci doi: 10.3389/fnmol.2018.00252 – volume: 45 start-page: 497 year: 2016 ident: 357_CR7 publication-title: Immunity doi: 10.1016/j.immuni.2016.08.012 – volume: 254 start-page: 1167 year: 1991 ident: 357_CR90 publication-title: Science doi: 10.1126/science.1659743 – volume: 17 start-page: 161 year: 2021 ident: 357_CR39 publication-title: Nat Chem Biol doi: 10.1038/s41589-020-00695-1 – volume: 92 start-page: e02155 year: 2018 ident: 357_CR81 publication-title: J Virol – volume: 74 start-page: 9471 year: 2000 ident: 357_CR23 publication-title: J Virol doi: 10.1128/JVI.74.20.9471-9478.2000 – volume: 84 start-page: 8250 year: 2010 ident: 357_CR29 publication-title: J Virol doi: 10.1128/JVI.02681-09 – volume: 529 start-page: 110 year: 2016 ident: 357_CR18 publication-title: Nature doi: 10.1038/nature16490 – volume: 114 start-page: 6016 year: 2017 ident: 357_CR28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1700328114 – ident: 357_CR56 doi: 10.1016/j.chom.2010.11.004 – volume: 86 start-page: 9454 year: 2012 ident: 357_CR10 publication-title: J Virol doi: 10.1128/JVI.00787-12 – volume: 15 year: 2014 ident: 357_CR43 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 38 start-page: 576 year: 2010 ident: 357_CR24 publication-title: Mol Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 326 start-page: 289 year: 2009 ident: 357_CR40 publication-title: Science doi: 10.1126/science.1181369 – volume: 24 start-page: 3565 year: 2005 ident: 357_CR41 publication-title: EMBO J doi: 10.1038/sj.emboj.7600820 – volume: 16 start-page: e2005752 year: 2018 ident: 357_CR62 publication-title: PLoS Biol doi: 10.1371/journal.pbio.2005752 – volume: 11 start-page: 4607 year: 1992 ident: 357_CR2 publication-title: EMBO J doi: 10.1002/j.1460-2075.1992.tb05563.x – volume: 65 start-page: 6826 year: 1991 ident: 357_CR46 publication-title: J Virol doi: 10.1128/jvi.65.12.6826-6837.1991 – volume: 182 start-page: 1474 year: 2020 ident: 357_CR32 publication-title: Cell doi: 10.1016/j.cell.2020.07.030 – volume: 28 start-page: 150 year: 2020 ident: 357_CR14 publication-title: Trends Microbiol doi: 10.1016/j.tim.2019.09.002 – volume: 73 start-page: 4481 year: 1999 ident: 357_CR33 publication-title: J Virol doi: 10.1128/JVI.73.5.4481-4484.1999 – volume: 17 start-page: e1009419 year: 2021 ident: 357_CR58 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009419 – volume: 108 start-page: 1919 year: 2011 ident: 357_CR48 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1019599108 – volume: 49 start-page: 10657 year: 2021 ident: 357_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab787 – volume: 98 year: 2024 ident: 357_CR21 publication-title: J Virol doi: 10.1128/jvi.01148-24 – volume: 32 start-page: 27 year: 2017 ident: 357_CR67 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.05.008 – volume: 92 start-page: e00156 year: 2018 ident: 357_CR84 publication-title: J Virol doi: 10.1128/JVI.00156-18 – volume: 268 start-page: 560 year: 1995 ident: 357_CR27 publication-title: Science doi: 10.1126/science.7725102 – volume: 5 start-page: e18270 year: 2016 ident: 357_CR86 publication-title: eLife doi: 10.7554/eLife.18270 – volume: 143 start-page: 460 year: 2018 ident: 357_CR35 publication-title: Int J Cancer doi: 10.1002/ijc.31255 – volume: 13 start-page: 3321 year: 1994 ident: 357_CR71 publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06634.x – volume: 88 start-page: 1703 year: 2014 ident: 357_CR9 publication-title: J Virol doi: 10.1128/JVI.02209-13 |
SSID | ssj0005978 |
Score | 2.4650373 |
Snippet | The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the... The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 810 |
SubjectTerms | B-Lymphocytes - metabolism B-Lymphocytes - virology Biomedical and Life Sciences Cell Transformation, Viral - genetics DNA - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism EMBO09 Enhancer Elements, Genetic Herpesvirus 4, Human - genetics Herpesvirus 4, Human - metabolism Host-Pathogen Interactions - genetics Humans Life Sciences Promoter Regions, Genetic Protein Binding Transcription Factors - genetics Transcription Factors - metabolism Viral Proteins - genetics Viral Proteins - metabolism YY1 Transcription Factor - genetics YY1 Transcription Factor - metabolism |
Title | Viral oncogene EBNALP regulates YY1 DNA binding and alters host 3D genome organization |
URI | https://link.springer.com/article/10.1038/s44319-024-00357-6 https://www.ncbi.nlm.nih.gov/pubmed/39747661 https://www.proquest.com/docview/3151200290 https://pubmed.ncbi.nlm.nih.gov/PMC11811279 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ6sbjRejG_Xx6Ym3pQIHejSI-5qzMbdmPiInhoKJe5BMLIe_Pe2BdRVY-KZUsh0Smf45vsG4JAr7UcBmj_uPHV8zDJHSkYdRKq4XvGE216HozG7uPWH98F9C2jDhbFF-1bS0n6mm-qwk9L3Ld2G-o4Bv3oOm4O2kW43evl91v8s69BpUU2OcTH85b7ZA-hHVPmzOPIbQmoPnvMVWK4jRhJV77gKLZWvwULVQ_JtDRZHNTq-Dnd3Ez0VKfKk0G6hyNnpOLq8Ii9Vu3lVkocHjwzGEZETy2UhcZ4SC5eXxJA9CA6I0Wx9UqT4QtHcgNvzs5v-hVP3TXAS5OHUyfQ25Nr0Xk-lqAIpqR-4SvFK-8W0ADN4a8pi7mcJxZRxzJB5CrEX6_xL4SbM50WutoHILI4TqjKXS-lTKrnU4QzFwAsTz02Z24GjxpjiuZLHEBbWxlBUphf6WcKaXrAOHDT2FtqLDTQR56p4LQWawMMghHrGrcr-H_OhSXl0GNGBcGZlPgYYhezZK_nk0SplG1atR3u8A8fNIop6j5Z_vOfO_4bvwhI1XYFNmxh3D-anL69qX4cqU9mFdhQNr4dd66Ndm_C_Ayj_4yw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ7oGh8X49v1WRNvSoQOsPSIr6zr7sZE3aynhkKJexCMrAf_vW0BddWYeKaUZjptp3zzzQdwyKTyIw_1H3eWWC6mqSWETy1EKpma8ZgZrcNe32_fu52hN5wCWnNhTNK-KWlptuk6O-ykcF1Dt6GupcGvluVPw4wuxk4bMBOGndvOZ2KHuhhV9Bgbg1_enDyCfsSVP9Mjv2Gk5ui5XILFKmYkYTnKZZiS2QrMliqSbysw16vw8VUYDEaqK5Jnca4cQ5KL037YvSEvpeC8LMjDg0PO-yERI8NmIVGWEAOYF0TTPQieE1219UmS_AtJcw3uLy_uztpWpZxgxciCsZWqhciU8Z2WTFB6QlDXs6VkZfUXLQKmEdfEj5ibxhQTn2GKviMRW5G6gUlch0aWZ3ITiEijKKYytZkQLqWCCRXQUPScIHbsxLebcFQbkz-XBTK4AbYx4KXpufoWN6bnfhMOantz5ccanIgymb8WHHXooTFC1eNGaf-P_lBfelQg0YRgYmY-Guga2ZNPstGjqZWtebUObbEmHNeTyKtVWvwxzq3_Nd-H-fZdr8u7V_3rbVigWiNYi8bYO9AYv7zKXRW4jMVe5anvU4Lk9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCMQFQdnKaiRuEEg8iRsfS0tVtooDIDhZceKIHkgqUg78PbaTAAWExDmOY43H9jhv3jyAA660HwVo_rjzxPExTR0pGXUQqeJ6xmNutQ6vB6x_5188BA9TwGoujE3atyUt7TZdZ4edFL5v6TbUdwz41XLY8ShJp2FWx9uuSeXrsM5naoe-GlUEGRfDX96dPIR-RJY_EyS_oaT28OktwWIVNZJ2Oc5lmFJZA-ZKHcm3BsxfVwj5CtzfD3VXJM_iXLuGImeng_bVDXkpJedVQR4fPdIdtIkcWj4LibKEWMi8IIbwQbBLTN3WZ0XyLzTNVbjrnd12-k6lneDEyMOxk-qlyLX5vZZKUAVSUj9wleJl_RcjA2Yw14RF3E9jignjmCLzFGIr0ncwhWswk-WZ2gAi0yiKqUpdLqVPqeRShzQUAy-MPTdhbhMOa2OKUVkiQ1hoG0NRml7obwlresGasF_bW2hPNvBElKn8tRBogg-DEuoe10v7f_SH5tqjQ4kmhBMz89HAVMmefJINn2y1bMOs9WiLN-GonkRRrdPij3Fu_q_5HszfdHvi6nxwuQUL1IgEG9UYdxtmxi-vakdHLmO5a930HdUG5KM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+oncogene+EBNALP+regulates+YY1+DNA+binding+and+alters+host+3D+genome+organization&rft.jtitle=EMBO+reports&rft.au=Wang%2C+Chong&rft.au=Leong%2C+Merrin+Manlong&rft.au=Ding%2C+Weiyue&rft.au=Narita%2C+Yohei&rft.date=2025-02-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1469-3178&rft.volume=26&rft.issue=3&rft.spage=810&rft.epage=835&rft_id=info:doi/10.1038%2Fs44319-024-00357-6&rft.externalDocID=10_1038_s44319_024_00357_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-3178&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-3178&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-3178&client=summon |