Viral oncogene EBNALP regulates YY1 DNA binding and alters host 3D genome organization

The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 26; no. 3; pp. 810 - 835
Main Authors Wang, Chong, Leong, Merrin Manlong, Ding, Weiyue, Narita, Yohei, Liu, Xiang, Wang, Hongbo, Yiu, Stefanie P T, Lee, Jessica, Zhao, Katelyn R S, Cui, Amy, Gewurz, Benjamin, Hammerschmidt, Wolfgang, Teng, Mingxiang, Zhao, Bo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.02.2025
Subjects
Online AccessGet full text
ISSN1469-3178
1469-221X
1469-3178
DOI10.1038/s44319-024-00357-6

Cover

Loading…
Abstract The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer–promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer–promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer–promoter interactions. EBNALP inactivation also increases enhancer–promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation. Synopsis EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death. EBNALP is tethered to DNA by DPF2. EBNALP recruits YY1 to the CCND2 locus and increases enhancer-promoter interaction and gene expression. EBNALP reduces DNA accessibility and limits YY1 DNA binding at the BCL2L11 locus, reducing enhancer-promoter looping and gene expression. EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death.
AbstractList The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer–promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer–promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer–promoter interactions. EBNALP inactivation also increases enhancer–promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation. EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death. EBNALP is tethered to DNA by DPF2. EBNALP recruits YY1 to the CCND2 locus and increases enhancer-promoter interaction and gene expression. EBNALP reduces DNA accessibility and limits YY1 DNA binding at the BCL2L11 locus, reducing enhancer-promoter looping and gene expression. EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death.
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP's role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer-promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer-promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer-promoter interactions. EBNALP inactivation also increases enhancer-promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation.The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP's role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer-promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer-promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer-promoter interactions. EBNALP inactivation also increases enhancer-promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation.
The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer–promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer–promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer–promoter interactions. EBNALP inactivation also increases enhancer–promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation. Synopsis EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death. EBNALP is tethered to DNA by DPF2. EBNALP recruits YY1 to the CCND2 locus and increases enhancer-promoter interaction and gene expression. EBNALP reduces DNA accessibility and limits YY1 DNA binding at the BCL2L11 locus, reducing enhancer-promoter looping and gene expression. EBNALP alters looping factor YY1 DNA binding and 3D genome organization which might facilitate cell cycle progression and prevent cell death.
The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the mechanisms remain elusive. To understand EBNALP’s role in B-cell transformation, we compare NBLs infected with wild-type EBV and an EBNALP-null mutant EBV using multi-omics techniques. EBNALP inactivation alters enhancer–promoter interactions, resulting in decreased CCND2 and increased CASP1 and BCL2L11 expression. Mechanistically, EBNALP interacts with and colocalizes with the looping factor YY1. Depletion of EBNALP reduces YY1 DNA-binding and enhancer–promoter interactions, similar to effects observed with YY1 depletion. Furthermore, EBNALP colocalizes with DPF2, a protein that binds to H3K14ac and H4K16ac. CRISPR depletion of DPF2 reduces both EBNALP and YY1 DNA binding, suggesting that the DPF2/EBNALP complex may tether YY1 to DNA to increase enhancer–promoter interactions. EBNALP inactivation also increases enhancer–promoter interactions at the CASP1 and BCL2L11 loci, along with elevated DPF2 and YY1 binding and DNA accessibility. Our data suggest that EBNALP regulates YY1 to rewire the host genome, which might facilitate naive B-cell transformation.
Author Leong, Merrin Manlong
Wang, Hongbo
Liu, Xiang
Yiu, Stefanie P T
Narita, Yohei
Ding, Weiyue
Lee, Jessica
Teng, Mingxiang
Zhao, Katelyn R S
Gewurz, Benjamin
Cui, Amy
Hammerschmidt, Wolfgang
Zhao, Bo
Wang, Chong
Author_xml – sequence: 1
  givenname: Chong
  orcidid: 0000-0002-0523-3562
  surname: Wang
  fullname: Wang, Chong
  email: wan01642@umn.edu
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota
– sequence: 2
  givenname: Merrin Manlong
  orcidid: 0000-0003-4753-2285
  surname: Leong
  fullname: Leong, Merrin Manlong
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 3
  givenname: Weiyue
  orcidid: 0009-0004-7126-1061
  surname: Ding
  fullname: Ding, Weiyue
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 4
  givenname: Yohei
  surname: Narita
  fullname: Narita, Yohei
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 5
  givenname: Xiang
  surname: Liu
  fullname: Liu, Xiang
  organization: Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute
– sequence: 6
  givenname: Hongbo
  surname: Wang
  fullname: Wang, Hongbo
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 7
  givenname: Stefanie P T
  surname: Yiu
  fullname: Yiu, Stefanie P T
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 8
  givenname: Jessica
  surname: Lee
  fullname: Lee, Jessica
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 9
  givenname: Katelyn R S
  surname: Zhao
  fullname: Zhao, Katelyn R S
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 10
  givenname: Amy
  surname: Cui
  fullname: Cui, Amy
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 11
  givenname: Benjamin
  surname: Gewurz
  fullname: Gewurz, Benjamin
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 12
  givenname: Wolfgang
  orcidid: 0000-0002-4659-0427
  surname: Hammerschmidt
  fullname: Hammerschmidt, Wolfgang
  organization: Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research
– sequence: 13
  givenname: Mingxiang
  orcidid: 0000-0002-8536-8941
  surname: Teng
  fullname: Teng, Mingxiang
  email: mingxiang.teng@moffitt.org
  organization: Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute
– sequence: 14
  givenname: Bo
  orcidid: 0000-0002-8612-5597
  surname: Zhao
  fullname: Zhao, Bo
  email: bzhao@bwh.harvard.edu
  organization: Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39747661$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPxCAUhYnRqKP-AReGpZsqjxbKyozjM5moCzVxRZj2tmI6oNCa6K8XndHoxhUkfOdczj0jtOq8A4R2KTmghJeHMc85VRlheUYIL2QmVtAmzYXKOJXl6q_7BhrF-EQIKZQs19EGVzKXQtBNdH9vg-mwd5VvwQE-Pb4aT29wgHboTA8RPzxQfHI1xjPrautabFyNTddDiPjRxx7zE5yEfg7Yh9Y4-2566902WmtMF2FneW6hu7PT28lFNr0-v5yMp1nFVdlnDSukIqqmEmoOxWzG8oIAqPTRFFBUwFK4ohZG5U3FeC0Ub7igwLk0rFTAt9DRwvd5mM2hrsD1KY5-DnZuwpv2xuq_L84-6ta_akpLSplUyWF_6RD8ywCx13MbK-g648APUXNaUEYIUyShe7-H_Uz53mYC2AKogo8xQPODUKI_K9OLynRKpb8q0yKJ-EIUE-xaCPrJD8Glrf2n-gC3p5ec
Cites_doi 10.1038/ng.3963
10.1073/pnas.2315860121
10.1038/nature11082
10.1371/journal.ppat.1000951
10.1002/biot.201400744
10.1016/j.cell.2018.07.047
10.1093/nar/gkac233
10.1371/journal.ppat.1003636
10.1128/jvi.71.9.6619-6628.1997
10.1073/pnas.1321704111
10.1073/pnas.1317608110
10.1128/mBio.01723-19
10.1128/JVI.79.16.10171-10179.2005
10.1073/pnas.2201029119
10.1016/j.cell.2013.04.053
10.1101/gr.257576.119
10.1038/s41467-019-12325-z
10.1038/s41586-019-1547-y
10.1016/j.cell.2004.06.004
10.1128/jvi.71.4.3268-3274.1997
10.1016/j.ccell.2021.05.007
10.1016/S0168-1702(02)00190-9
10.1128/mBio.02372-17
10.1016/j.chom.2017.09.001
10.1371/journal.ppat.1003187
10.1126/science.8016657
10.1073/pnas.1901314116
10.1126/scitranslmed.3002878
10.1016/j.molcel.2006.11.017
10.1038/nature10730
10.1016/S0021-9258(18)35741-7
10.1016/j.ajhg.2017.05.006
10.1101/gad.1529307
10.1016/j.chom.2017.04.005
10.1371/journal.ppat.1002180
10.1073/pnas.1108892108
10.1038/ng.3335
10.1371/journal.ppat.1011950
10.1038/emboj.2008.1
10.1371/journal.ppat.1006890
10.1016/j.cell.2017.11.008
10.1073/pnas.0307808100
10.1073/pnas.2005726117
10.1016/j.gde.2016.01.002
10.1038/nrg.2016.112
10.1093/nar/gks391
10.1038/s41467-023-37347-6
10.1186/s13059-020-02108-x
10.1016/0092-8674(91)90189-6
10.1128/jvi.71.9.6611-6618.1997
10.1073/pnas.1104991108
10.1371/journal.ppat.1001048
10.1038/ng.2731
10.1128/jvi.70.11.7695-7705.1996
10.1038/nmeth.3999
10.1016/j.tig.2018.03.003
10.1080/22221751.2020.1840311
10.1038/s41467-021-27894-1
10.3389/fnmol.2018.00252
10.1016/j.immuni.2016.08.012
10.1126/science.1659743
10.1038/s41589-020-00695-1
10.1128/JVI.74.20.9471-9478.2000
10.1128/JVI.02681-09
10.1038/nature16490
10.1073/pnas.1700328114
10.1016/j.chom.2010.11.004
10.1128/JVI.00787-12
10.1186/s13059-014-0550-8
10.1016/j.molcel.2010.05.004
10.1126/science.1181369
10.1038/sj.emboj.7600820
10.1371/journal.pbio.2005752
10.1002/j.1460-2075.1992.tb05563.x
10.1128/jvi.65.12.6826-6837.1991
10.1016/j.cell.2020.07.030
10.1016/j.tim.2019.09.002
10.1128/JVI.73.5.4481-4484.1999
10.1371/journal.ppat.1009419
10.1073/pnas.1019599108
10.1093/nar/gkab787
10.1128/jvi.01148-24
10.1016/j.ccell.2017.05.008
10.1128/JVI.00156-18
10.1126/science.7725102
10.7554/eLife.18270
10.1002/ijc.31255
10.1002/j.1460-2075.1994.tb06634.x
10.1128/JVI.02209-13
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1038/s44319-024-00357-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 835
ExternalDocumentID PMC11811279
39747661
10_1038_s44319_024_00357_6
Genre Journal Article
GrantInformation_xml – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01AI123420; R01AI164709
  funderid: http://dx.doi.org/10.13039/100000060
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: R01CA047006
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R35GM155298
  funderid: http://dx.doi.org/10.13039/100000057
– fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDR)
  grantid: R00DE030215; DE033907
  funderid: http://dx.doi.org/10.13039/100000072
– fundername: BWH | Brigham Research Institute (BRI)
  grantid: FSRE
  funderid: http://dx.doi.org/10.13039/100008552
– fundername: HHS | NIH | National Institute of Dental and Craniofacial Research (NIDR)
  grantid: R00DE030215
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01AI164709
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01AI123420
– fundername: NIGMS NIH HHS
  grantid: R35 GM155298
– fundername: NIAID NIH HHS
  grantid: R01 AI123420
– fundername: NIDCR NIH HHS
  grantid: R00 DE030215
– fundername: NCI NIH HHS
  grantid: R01 CA047006
– fundername: NIAID NIH HHS
  grantid: R01 AI164709
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: R01CA047006
– fundername: NIDCR NIH HHS
  grantid: R01 DE033907
GroupedDBID ---
-DZ
0R~
1OC
24P
29G
2WC
33P
36B
39C
5GY
70F
AAESR
AAEVG
AAHBH
AAHHS
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BFHJK
BHPHI
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DPXWK
DRFUL
DRSTM
E3Z
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
HK~
H~9
KQ8
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
R.K
RHI
RNS
ROL
RPM
SV3
TR2
WBKPD
WIH
WIK
WIN
WOHZO
WYJ
ZGI
ZZTAW
AASML
AAYXX
CITATION
NAO
-Q-
.55
3O-
53G
5VS
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AANHP
AASGY
ABUWG
ACBWZ
ACRPL
ACYXJ
ADNMO
AEUYN
AFKRA
AGQPQ
ALUQN
ASPBG
AVWKF
AZQEC
BBNVY
BDRZF
BENPR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CGR
COF
CUY
CVF
DIK
DWQXO
ECM
EIF
EJD
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HYE
LH4
LK8
LW6
M1P
M2O
M7P
MEWTI
NPM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNI
RZO
UKHRP
WOQ
WXSBR
X7M
7X8
5PM
ID FETCH-LOGICAL-c398t-f257909d17ed3e5bb2450ee90050386ce20245d6a94fc23d693f361e337a289e3
IEDL.DBID C6C
ISSN 1469-3178
1469-221X
IngestDate Thu Aug 21 18:29:03 EDT 2025
Fri Sep 05 13:31:23 EDT 2025
Thu May 01 02:19:44 EDT 2025
Tue Jul 01 02:32:19 EDT 2025
Fri Feb 21 02:46:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords EBNALP
YY1
HiChIP
3D Genome Organization
Epstein–Barr Virus
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-f257909d17ed3e5bb2450ee90050386ce20245d6a94fc23d693f361e337a289e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4659-0427
0009-0004-7126-1061
0000-0003-4753-2285
0000-0002-8536-8941
0000-0002-8612-5597
0000-0002-0523-3562
OpenAccessLink https://www.nature.com/articles/s44319-024-00357-6
PMID 39747661
PQID 3151200290
PQPubID 23479
PageCount 26
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11811279
proquest_miscellaneous_3151200290
pubmed_primary_39747661
crossref_primary_10_1038_s44319_024_00357_6
springer_journals_10_1038_s44319_024_00357_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-10
PublicationDateYYYYMMDD 2025-02-10
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References M Ohashi (357_CR58) 2021; 17
WA Flavahan (357_CR18) 2016; 529
357_CR56
MS van Ruiten (357_CR79) 2018; 34
GZ Wang (357_CR82) 2020; 117
S Heinz (357_CR24) 2010; 38
JI Cohen (357_CR11) 2011; 3
PD Ling (357_CR41) 2005; 24
JB Mannick (357_CR46) 1991; 65
MR Mumbach (357_CR53) 2017; 49
Y Hayashi (357_CR23) 2000; 74
IJ Groves (357_CR20) 2024; 121
G Sui (357_CR75) 2004; 117
B Adane (357_CR1) 2021; 39
A De Leo (357_CR14) 2020; 28
SM Morgan (357_CR50) 2022; 13
Y Inayoshi (357_CR29) 2010; 84
L Skalska (357_CR73) 2013; 9
C Shen (357_CR69) 2020; 9
AS Weintraub (357_CR85) 2017; 171
W Stedman (357_CR74) 2008; 27
ME Donohoe (357_CR16) 2007; 25
C Wang (357_CR81) 2018; 92
Y Zhang (357_CR88) 2019; 573
S Jiang (357_CR31) 2017; 22
HS Chen (357_CR10) 2012; 86
L Skalska (357_CR72) 2010; 6
T Bauknecht (357_CR3) 1996; 70
S Harada (357_CR22) 1997; 71
SD Washington (357_CR84) 2018; 92
S Maruo (357_CR47) 2005; 79
A Kon (357_CR36) 2013; 45
JE Phillips-Cremins (357_CR63) 2013; 153
S Fang (357_CR17) 2019; 10
K Munger (357_CR54) 2002; 89
S Heinz (357_CR25) 2018; 174
SE Johnstone (357_CR32) 2020; 182
P Mrozek-Gorska (357_CR51) 2019; 116
L Li (357_CR39) 2021; 17
M Panarotto (357_CR59) 2022; 119
Y Shi (357_CR70) 1991; 67
LM Khachigian (357_CR35) 2018; 143
B Zhao (357_CR89) 2011; 108
M Gabriele (357_CR19) 2017; 100
MI Love (357_CR43) 2014; 15
F Nitsche (357_CR57) 1997; 71
S Zalani (357_CR87) 1997; 71
CD Wood (357_CR86) 2016; 5
KL Bunting (357_CR7) 2016; 45
JR Dixon (357_CR15) 2012; 485
CD Laherty (357_CR37) 1992; 267
AJ Brown (357_CR6) 2015; 10
JM Cable (357_CR8) 2024; 20
W Wang (357_CR83) 2022; 50
FM Huber (357_CR28) 2017; 114
D Portal (357_CR65) 2011; 108
B Bonev (357_CR5) 2016; 17
357_CR38
R Katainen (357_CR34) 2015; 47
D Portal (357_CR66) 2013; 110
K Paschos (357_CR60) 2012; 40
MR Mumbach (357_CR52) 2016; 13
C Kaiser (357_CR33) 1999; 73
MR Corces (357_CR12) 2016; 36
T Henkel (357_CR26) 1994; 265
I Tempera (357_CR78) 2010; 6
D Pich (357_CR64) 2019; 10
MJ McClellan (357_CR49) 2013; 9
JJ Hsieh (357_CR27) 1995; 268
HS Chen (357_CR9) 2014; 88
CW Peng (357_CR61) 2004; 101
357_CR68
A Szymula (357_CR76) 2018; 14
S Maruo (357_CR48) 2011; 108
S Jiang (357_CR30) 2014; 111
N Bogershausen (357_CR4) 2018; 11
AJ Sinclair (357_CR71) 1994; 13
E Manet (357_CR45) 2021; 49
L Nanni (357_CR55) 2020; 21
E Lieberman-Aiden (357_CR40) 2009; 326
IJ Groves (357_CR21) 2024; 98
H zur Hausen (357_CR90) 1991; 254
I Tempera (357_CR77) 2011; 7
Y Ma (357_CR44) 2017; 21
K Qu (357_CR67) 2017; 32
T Bauknecht (357_CR2) 1992; 11
I Pentland (357_CR62) 2018; 16
M Cusack (357_CR13) 2020; 30
C Wang (357_CR80) 2023; 14
H Liu (357_CR42) 2007; 21
References_xml – volume: 49
  start-page: 1602
  year: 2017
  ident: 357_CR53
  publication-title: Nat Genet
  doi: 10.1038/ng.3963
– volume: 121
  year: 2024
  ident: 357_CR20
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2315860121
– volume: 485
  start-page: 376
  year: 2012
  ident: 357_CR15
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 6
  start-page: e1000951
  year: 2010
  ident: 357_CR72
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000951
– volume: 10
  start-page: 1019
  year: 2015
  ident: 357_CR6
  publication-title: Biotechnol J
  doi: 10.1002/biot.201400744
– volume: 174
  start-page: 1522
  year: 2018
  ident: 357_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.047
– volume: 50
  start-page: 4917
  year: 2022
  ident: 357_CR83
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac233
– volume: 9
  start-page: e1003636
  year: 2013
  ident: 357_CR49
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003636
– volume: 71
  start-page: 6619
  year: 1997
  ident: 357_CR57
  publication-title: J Virol
  doi: 10.1128/jvi.71.9.6619-6628.1997
– volume: 111
  start-page: 421
  year: 2014
  ident: 357_CR30
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1321704111
– volume: 110
  start-page: 18537
  year: 2013
  ident: 357_CR66
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1317608110
– volume: 10
  start-page: e01723
  year: 2019
  ident: 357_CR64
  publication-title: mBio
  doi: 10.1128/mBio.01723-19
– volume: 79
  start-page: 10171
  year: 2005
  ident: 357_CR47
  publication-title: J Virol
  doi: 10.1128/JVI.79.16.10171-10179.2005
– volume: 119
  year: 2022
  ident: 357_CR59
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2201029119
– volume: 153
  start-page: 1281
  year: 2013
  ident: 357_CR63
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.053
– volume: 30
  start-page: 1393
  year: 2020
  ident: 357_CR13
  publication-title: Genome Res
  doi: 10.1101/gr.257576.119
– volume: 10
  year: 2019
  ident: 357_CR17
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12325-z
– volume: 573
  start-page: 600
  year: 2019
  ident: 357_CR88
  publication-title: Nature
  doi: 10.1038/s41586-019-1547-y
– volume: 117
  start-page: 859
  year: 2004
  ident: 357_CR75
  publication-title: Cell
  doi: 10.1016/j.cell.2004.06.004
– volume: 71
  start-page: 3268
  year: 1997
  ident: 357_CR87
  publication-title: J Virol
  doi: 10.1128/jvi.71.4.3268-3274.1997
– volume: 39
  start-page: 827
  year: 2021
  ident: 357_CR1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2021.05.007
– volume: 89
  start-page: 213
  year: 2002
  ident: 357_CR54
  publication-title: Virus Res
  doi: 10.1016/S0168-1702(02)00190-9
– ident: 357_CR38
  doi: 10.1128/mBio.02372-17
– volume: 22
  start-page: 561
  year: 2017
  ident: 357_CR31
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.09.001
– volume: 9
  year: 2013
  ident: 357_CR73
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003187
– volume: 265
  start-page: 92
  year: 1994
  ident: 357_CR26
  publication-title: Science
  doi: 10.1126/science.8016657
– volume: 116
  start-page: 16046
  year: 2019
  ident: 357_CR51
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1901314116
– volume: 3
  start-page: 107fs107
  year: 2011
  ident: 357_CR11
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002878
– volume: 25
  start-page: 43
  year: 2007
  ident: 357_CR16
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.11.017
– ident: 357_CR68
  doi: 10.1038/nature10730
– volume: 267
  start-page: 24157
  year: 1992
  ident: 357_CR37
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)35741-7
– volume: 100
  start-page: 907
  year: 2017
  ident: 357_CR19
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.05.006
– volume: 21
  start-page: 1179
  year: 2007
  ident: 357_CR42
  publication-title: Genes Dev
  doi: 10.1101/gad.1529307
– volume: 21
  start-page: 580
  year: 2017
  ident: 357_CR44
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.04.005
– volume: 7
  start-page: e1002180
  year: 2011
  ident: 357_CR77
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002180
– volume: 108
  start-page: 14902
  year: 2011
  ident: 357_CR89
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1108892108
– volume: 47
  start-page: 818
  year: 2015
  ident: 357_CR34
  publication-title: Nat Genet
  doi: 10.1038/ng.3335
– volume: 20
  start-page: e1011950
  year: 2024
  ident: 357_CR8
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1011950
– volume: 27
  start-page: 654
  year: 2008
  ident: 357_CR74
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.1
– volume: 14
  start-page: e1006890
  year: 2018
  ident: 357_CR76
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006890
– volume: 171
  start-page: 1573
  year: 2017
  ident: 357_CR85
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.008
– volume: 101
  start-page: 1033
  year: 2004
  ident: 357_CR61
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0307808100
– volume: 117
  start-page: 18701
  year: 2020
  ident: 357_CR82
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2005726117
– volume: 36
  start-page: 1
  year: 2016
  ident: 357_CR12
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2016.01.002
– volume: 17
  start-page: 661
  year: 2016
  ident: 357_CR5
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.112
– volume: 40
  start-page: 7233
  year: 2012
  ident: 357_CR60
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks391
– volume: 14
  year: 2023
  ident: 357_CR80
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-37347-6
– volume: 21
  year: 2020
  ident: 357_CR55
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02108-x
– volume: 67
  start-page: 377
  year: 1991
  ident: 357_CR70
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90189-6
– volume: 71
  start-page: 6611
  year: 1997
  ident: 357_CR22
  publication-title: J Virol
  doi: 10.1128/jvi.71.9.6611-6618.1997
– volume: 108
  start-page: 7808
  year: 2011
  ident: 357_CR65
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1104991108
– volume: 6
  start-page: e1001048
  year: 2010
  ident: 357_CR78
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1001048
– volume: 45
  start-page: 1232
  year: 2013
  ident: 357_CR36
  publication-title: Nat Genet
  doi: 10.1038/ng.2731
– volume: 70
  start-page: 7695
  year: 1996
  ident: 357_CR3
  publication-title: J Virol
  doi: 10.1128/jvi.70.11.7695-7705.1996
– volume: 13
  start-page: 919
  year: 2016
  ident: 357_CR52
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3999
– volume: 34
  start-page: 477
  year: 2018
  ident: 357_CR79
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2018.03.003
– volume: 9
  start-page: 2455
  year: 2020
  ident: 357_CR69
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1840311
– volume: 13
  year: 2022
  ident: 357_CR50
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27894-1
– volume: 11
  start-page: 252
  year: 2018
  ident: 357_CR4
  publication-title: Front Mol Neurosci
  doi: 10.3389/fnmol.2018.00252
– volume: 45
  start-page: 497
  year: 2016
  ident: 357_CR7
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.012
– volume: 254
  start-page: 1167
  year: 1991
  ident: 357_CR90
  publication-title: Science
  doi: 10.1126/science.1659743
– volume: 17
  start-page: 161
  year: 2021
  ident: 357_CR39
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-020-00695-1
– volume: 92
  start-page: e02155
  year: 2018
  ident: 357_CR81
  publication-title: J Virol
– volume: 74
  start-page: 9471
  year: 2000
  ident: 357_CR23
  publication-title: J Virol
  doi: 10.1128/JVI.74.20.9471-9478.2000
– volume: 84
  start-page: 8250
  year: 2010
  ident: 357_CR29
  publication-title: J Virol
  doi: 10.1128/JVI.02681-09
– volume: 529
  start-page: 110
  year: 2016
  ident: 357_CR18
  publication-title: Nature
  doi: 10.1038/nature16490
– volume: 114
  start-page: 6016
  year: 2017
  ident: 357_CR28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1700328114
– ident: 357_CR56
  doi: 10.1016/j.chom.2010.11.004
– volume: 86
  start-page: 9454
  year: 2012
  ident: 357_CR10
  publication-title: J Virol
  doi: 10.1128/JVI.00787-12
– volume: 15
  year: 2014
  ident: 357_CR43
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 38
  start-page: 576
  year: 2010
  ident: 357_CR24
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 326
  start-page: 289
  year: 2009
  ident: 357_CR40
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 24
  start-page: 3565
  year: 2005
  ident: 357_CR41
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600820
– volume: 16
  start-page: e2005752
  year: 2018
  ident: 357_CR62
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2005752
– volume: 11
  start-page: 4607
  year: 1992
  ident: 357_CR2
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1992.tb05563.x
– volume: 65
  start-page: 6826
  year: 1991
  ident: 357_CR46
  publication-title: J Virol
  doi: 10.1128/jvi.65.12.6826-6837.1991
– volume: 182
  start-page: 1474
  year: 2020
  ident: 357_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.030
– volume: 28
  start-page: 150
  year: 2020
  ident: 357_CR14
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2019.09.002
– volume: 73
  start-page: 4481
  year: 1999
  ident: 357_CR33
  publication-title: J Virol
  doi: 10.1128/JVI.73.5.4481-4484.1999
– volume: 17
  start-page: e1009419
  year: 2021
  ident: 357_CR58
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1009419
– volume: 108
  start-page: 1919
  year: 2011
  ident: 357_CR48
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1019599108
– volume: 49
  start-page: 10657
  year: 2021
  ident: 357_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab787
– volume: 98
  year: 2024
  ident: 357_CR21
  publication-title: J Virol
  doi: 10.1128/jvi.01148-24
– volume: 32
  start-page: 27
  year: 2017
  ident: 357_CR67
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.05.008
– volume: 92
  start-page: e00156
  year: 2018
  ident: 357_CR84
  publication-title: J Virol
  doi: 10.1128/JVI.00156-18
– volume: 268
  start-page: 560
  year: 1995
  ident: 357_CR27
  publication-title: Science
  doi: 10.1126/science.7725102
– volume: 5
  start-page: e18270
  year: 2016
  ident: 357_CR86
  publication-title: eLife
  doi: 10.7554/eLife.18270
– volume: 143
  start-page: 460
  year: 2018
  ident: 357_CR35
  publication-title: Int J Cancer
  doi: 10.1002/ijc.31255
– volume: 13
  start-page: 3321
  year: 1994
  ident: 357_CR71
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06634.x
– volume: 88
  start-page: 1703
  year: 2014
  ident: 357_CR9
  publication-title: J Virol
  doi: 10.1128/JVI.02209-13
SSID ssj0005978
Score 2.4650373
Snippet The Epstein–Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the...
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNALP) is essential for the immortalization of naive B lymphocytes (NBLs). However, the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 810
SubjectTerms B-Lymphocytes - metabolism
B-Lymphocytes - virology
Biomedical and Life Sciences
Cell Transformation, Viral - genetics
DNA - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
EMBO09
Enhancer Elements, Genetic
Herpesvirus 4, Human - genetics
Herpesvirus 4, Human - metabolism
Host-Pathogen Interactions - genetics
Humans
Life Sciences
Promoter Regions, Genetic
Protein Binding
Transcription Factors - genetics
Transcription Factors - metabolism
Viral Proteins - genetics
Viral Proteins - metabolism
YY1 Transcription Factor - genetics
YY1 Transcription Factor - metabolism
Title Viral oncogene EBNALP regulates YY1 DNA binding and alters host 3D genome organization
URI https://link.springer.com/article/10.1038/s44319-024-00357-6
https://www.ncbi.nlm.nih.gov/pubmed/39747661
https://www.proquest.com/docview/3151200290
https://pubmed.ncbi.nlm.nih.gov/PMC11811279
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ6sbjRejG_Xx6Ym3pQIHejSI-5qzMbdmPiInhoKJe5BMLIe_Pe2BdRVY-KZUsh0Smf45vsG4JAr7UcBmj_uPHV8zDJHSkYdRKq4XvGE216HozG7uPWH98F9C2jDhbFF-1bS0n6mm-qwk9L3Ld2G-o4Bv3oOm4O2kW43evl91v8s69BpUU2OcTH85b7ZA-hHVPmzOPIbQmoPnvMVWK4jRhJV77gKLZWvwULVQ_JtDRZHNTq-Dnd3Ez0VKfKk0G6hyNnpOLq8Ii9Vu3lVkocHjwzGEZETy2UhcZ4SC5eXxJA9CA6I0Wx9UqT4QtHcgNvzs5v-hVP3TXAS5OHUyfQ25Nr0Xk-lqAIpqR-4SvFK-8W0ADN4a8pi7mcJxZRxzJB5CrEX6_xL4SbM50WutoHILI4TqjKXS-lTKrnU4QzFwAsTz02Z24GjxpjiuZLHEBbWxlBUphf6WcKaXrAOHDT2FtqLDTQR56p4LQWawMMghHrGrcr-H_OhSXl0GNGBcGZlPgYYhezZK_nk0SplG1atR3u8A8fNIop6j5Z_vOfO_4bvwhI1XYFNmxh3D-anL69qX4cqU9mFdhQNr4dd66Ndm_C_Ayj_4yw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ7oGh8X49v1WRNvSoQOsPSIr6zr7sZE3aynhkKJexCMrAf_vW0BddWYeKaUZjptp3zzzQdwyKTyIw_1H3eWWC6mqSWETy1EKpma8ZgZrcNe32_fu52hN5wCWnNhTNK-KWlptuk6O-ykcF1Dt6GupcGvluVPw4wuxk4bMBOGndvOZ2KHuhhV9Bgbg1_enDyCfsSVP9Mjv2Gk5ui5XILFKmYkYTnKZZiS2QrMliqSbysw16vw8VUYDEaqK5Jnca4cQ5KL037YvSEvpeC8LMjDg0PO-yERI8NmIVGWEAOYF0TTPQieE1219UmS_AtJcw3uLy_uztpWpZxgxciCsZWqhciU8Z2WTFB6QlDXs6VkZfUXLQKmEdfEj5ibxhQTn2GKviMRW5G6gUlch0aWZ3ITiEijKKYytZkQLqWCCRXQUPScIHbsxLebcFQbkz-XBTK4AbYx4KXpufoWN6bnfhMOantz5ccanIgymb8WHHXooTFC1eNGaf-P_lBfelQg0YRgYmY-Guga2ZNPstGjqZWtebUObbEmHNeTyKtVWvwxzq3_Nd-H-fZdr8u7V_3rbVigWiNYi8bYO9AYv7zKXRW4jMVe5anvU4Lk9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCMQFQdnKaiRuEEg8iRsfS0tVtooDIDhZceKIHkgqUg78PbaTAAWExDmOY43H9jhv3jyAA660HwVo_rjzxPExTR0pGXUQqeJ6xmNutQ6vB6x_5188BA9TwGoujE3atyUt7TZdZ4edFL5v6TbUdwz41XLY8ShJp2FWx9uuSeXrsM5naoe-GlUEGRfDX96dPIR-RJY_EyS_oaT28OktwWIVNZJ2Oc5lmFJZA-ZKHcm3BsxfVwj5CtzfD3VXJM_iXLuGImeng_bVDXkpJedVQR4fPdIdtIkcWj4LibKEWMi8IIbwQbBLTN3WZ0XyLzTNVbjrnd12-k6lneDEyMOxk-qlyLX5vZZKUAVSUj9wleJl_RcjA2Yw14RF3E9jignjmCLzFGIr0ncwhWswk-WZ2gAi0yiKqUpdLqVPqeRShzQUAy-MPTdhbhMOa2OKUVkiQ1hoG0NRml7obwlresGasF_bW2hPNvBElKn8tRBogg-DEuoe10v7f_SH5tqjQ4kmhBMz89HAVMmefJINn2y1bMOs9WiLN-GonkRRrdPij3Fu_q_5HszfdHvi6nxwuQUL1IgEG9UYdxtmxi-vakdHLmO5a930HdUG5KM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viral+oncogene+EBNALP+regulates+YY1+DNA+binding+and+alters+host+3D+genome+organization&rft.jtitle=EMBO+reports&rft.au=Wang%2C+Chong&rft.au=Leong%2C+Merrin+Manlong&rft.au=Ding%2C+Weiyue&rft.au=Narita%2C+Yohei&rft.date=2025-02-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=1469-3178&rft.volume=26&rft.issue=3&rft.spage=810&rft.epage=835&rft_id=info:doi/10.1038%2Fs44319-024-00357-6&rft.externalDocID=10_1038_s44319_024_00357_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-3178&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-3178&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-3178&client=summon