Spark Sintering Behaviors of TiB2-10Ni with Elementary Bimodal TiB2 Powders

This study investigates the spark plasma sintering behavior of TiB2-10vol.%Ni powder composites, focusing on the effects of TiB2 particle size variation on microstructure and toughness. The experimental results confirm that utilizing TiB2 powders with mixed particle sizes enhances sintering performa...

Full description

Saved in:
Bibliographic Details
Published inMATERIALS TRANSACTIONS Vol. 66; no. 5; pp. 629 - 635
Main Authors Choi, Yongbum, Xu, Zhefeng, Li, Qinyang, Kuramoto, Hideaki, Yu, Jinku, Matsugi, Kazuhiro
Format Journal Article
LanguageEnglish
Published Sendai The Japan Institute of Metals and Materials 01.05.2025
公益社団法人 日本金属学会
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1345-9678
1347-5320
DOI10.2320/matertrans.MT-MC2024021

Cover

Abstract This study investigates the spark plasma sintering behavior of TiB2-10vol.%Ni powder composites, focusing on the effects of TiB2 particle size variation on microstructure and toughness. The experimental results confirm that utilizing TiB2 powders with mixed particle sizes enhances sintering performance and improves fracture toughness. Two types of TiB2 powders were used: fine TiB2 powder (STiB2, ∼3 µm) and a mixed powder containing larger TiB2 particles (LTiB2, average size ∼15 µm). These powders were mixture with Ni powder and using spark plasma sintering preparation of composite material. The sintering behaviors corresponded to the obtained characteristic microstructures, as follows: (1) For 100STiB2-10Ni, the relative density increased from the lowest temperature compared with others, which corresponds to random distribution of STiB2 and Ni. (2) For 100LTiB2-10Ni, heterogeneous area consisting of fractured particles by initial loading corresponded to high level in initial relative density. (3) For 50STiB2+50LTiB2-10Ni, there were both similar areas to in 100STiB2-10Ni and 100LTiB2-10Ni, which correspond to density increase at initial stage and sintering promotion after medium temperature. The highest final density level was obtained by deformation of continuous Ni layer in heterogeneous region, such as100LTiB2-10Ni. The sintering curve of 50STiB2+50LTiB2-10Ni could be explained by the behavior of both 100STiB2-10Ni and 100LTiB2-10Ni. Its relative density showed the highest value, and its sintering rate was close to that of pure Ni, which showed a high value. Furthermore, it was found that 50STiB2+50LTiB2-10Ni exhibited high fracture toughness values.
AbstractList This study investigates the spark plasma sintering behavior of TiB2-10vol.%Ni powder composites, focusing on the effects of TiB2 particle size variation on microstructure and toughness. The experimental results confirm that utilizing TiB2 powders with mixed particle sizes enhances sintering performance and improves fracture toughness. Two types of TiB2 powders were used: fine TiB2 powder (STiB2, ∼3 µm) and a mixed powder containing larger TiB2 particles (LTiB2, average size ∼15 µm). These powders were mixture with Ni powder and using spark plasma sintering preparation of composite material. The sintering behaviors corresponded to the obtained characteristic microstructures, as follows: (1) For 100STiB2-10Ni, the relative density increased from the lowest temperature compared with others, which corresponds to random distribution of STiB2 and Ni. (2) For 100LTiB2-10Ni, heterogeneous area consisting of fractured particles by initial loading corresponded to high level in initial relative density. (3) For 50STiB2+50LTiB2-10Ni, there were both similar areas to in 100STiB2-10Ni and 100LTiB2-10Ni, which correspond to density increase at initial stage and sintering promotion after medium temperature. The highest final density level was obtained by deformation of continuous Ni layer in heterogeneous region, such as100LTiB2-10Ni. The sintering curve of 50STiB2+50LTiB2-10Ni could be explained by the behavior of both 100STiB2-10Ni and 100LTiB2-10Ni. Its relative density showed the highest value, and its sintering rate was close to that of pure Ni, which showed a high value. Furthermore, it was found that 50STiB2+50LTiB2-10Ni exhibited high fracture toughness values.
This study investigates the spark plasma sintering behavior of TiB2-10vol.%Ni powder composites, focusing on the effects of TiB2 particle size variation on microstructure and toughness. The experimental results confirm that utilizing TiB2 powders with mixed particle sizes enhances sintering performance and improves fracture toughness. Two types of TiB2 powders were used: fine TiB2 powder (STiB2, ∼3 µm) and a mixed powder containing larger TiB2 particles (LTiB2, average size ∼15 µm). These powders were mixture with Ni powder and using spark plasma sintering preparation of composite material. The sintering behaviors corresponded to the obtained characteristic microstructures, as follows: (1) For 100STiB2-10Ni, the relative density increased from the lowest temperature compared with others, which corresponds to random distribution of STiB2 and Ni. (2) For 100LTiB2-10Ni, heterogeneous area consisting of fractured particles by initial loading corresponded to high level in initial relative density. (3) For 50STiB2+50LTiB2-10Ni, there were both similar areas to in 100STiB2-10Ni and 100LTiB2-10Ni, which correspond to density increase at initial stage and sintering promotion after medium temperature. The highest final density level was obtained by deformation of continuous Ni layer in heterogeneous region, such as100LTiB2-10Ni. The sintering curve of 50STiB2+50LTiB2-10Ni could be explained by the behavior of both 100STiB2-10Ni and 100LTiB2-10Ni. Its relative density showed the highest value, and its sintering rate was close to that of pure Ni, which showed a high value. Furthermore, it was found that 50STiB2+50LTiB2-10Ni exhibited high fracture toughness values.Fig. 6 Relative density and fracture toughness of five samples.
This study investigates the spark plasma sintering behavior of TiB2-10vol.%Ni powder composites, focusing on the effects of TiB2 particle size variation on microstructure and toughness. The experimental results confirm that utilizing TiB2 powders with mixed particle sizes enhances sintering performance and improves fracture toughness. Two types of TiB2 powders were used: fine TiB2 powder (STiB2, ~3 μm) and a mixed powder containing larger TiB2 particles (LTiB2, average size ~15 μm). These powders were mixture with Ni powder and using spark plasma sintering preparation of composite material. The sintering behaviors corresponded to the obtained characteristic microstructures, as follows: (1) For 100STiB2-10Ni, the relative density increased from the lowest temperature compared with others, which corresponds to random distribution of STiB2 and Ni. (2) For 100LTiB2-10Ni, heterogeneous area consisting of fractured particles by initial loading corresponded to high level in initial relative density. (3) For 50STiB2+50LTiB2-10Ni, there were both similar areas to in 100STiB2-10Ni and 100LTiB2-10Ni, which correspond to density increase at initial stage and sintering promotion after medium temperature. The highest final density level was obtained by deformation of continuous Ni layer in heterogeneous region, such as100LTiB2-10Ni. The sintering curve of 50STiB2+50LTiB2-10Ni could be explained by the behavior of both 100STiB2-10Ni and 100LTiB2-10Ni. Its relative density showed the highest value, and its sintering rate was close to that of pure Ni, which showed a high value. Furthermore, it was found that 50STiB2+50LTiB2-10Ni exhibited high fracture toughness values.
ArticleNumber MT-MC2024021
Author Xu, Zhefeng
Matsugi, Kazuhiro
Choi, Yongbum
Yu, Jinku
Kuramoto, Hideaki
Li, Qinyang
Author_xml – sequence: 1
  fullname: Choi, Yongbum
  organization: Graduate School of Advanced Science and Engineering, Hiroshima University
– sequence: 1
  fullname: Xu, Zhefeng
  organization: School of Materials Science and Engineering, Yanshan University
– sequence: 1
  fullname: Li, Qinyang
  organization: Graduate School of Advanced Science and Engineering, Hiroshima University
– sequence: 1
  fullname: Kuramoto, Hideaki
  organization: Hiroshima City Industrial Technology Center
– sequence: 1
  fullname: Yu, Jinku
  organization: School of Materials Science and Engineering, Yanshan University
– sequence: 1
  fullname: Matsugi, Kazuhiro
  organization: Graduate School of Advanced Science and Engineering, Hiroshima University
BackLink https://cir.nii.ac.jp/crid/1390584940354992128$$DView record in CiNii
BookMark eNpNkFtPAjEQhRuDiYj-BjfR18Xet30UgpcIagI-N3V3ForQxXaR-O9dwCAvM_PwzZkz5xy1fOUBoSuCu5RRfLu0NYQ6WB-7o0k66lNMOabkBLUJ41kqGqa1m0WqZabO0HmMc4xZJihto-fxyobPZOx8o-L8NOnBzH67KsSkKpOJ69GU4BeXbFw9SwYLWIKvbfhJem5ZFXaxI5K3alNAiBfotLSLCJd_vYPe7weT_mM6fH146t8N05xpVadQKk1KwlleasiygvNSUq2Z4M0_BQjGKMOSFKCZlFxYLm2u8g_IlFCKAWcddL3XXYXqaw2xNvNqHXxz0jBKVMa0JFsq21N5qGIMUJpVcMvGuyHYbJMz_8mZ0cQckms2b_ab3jmTu20lTGOhuOa4sak1JVQ12GiPzWNtp3CQt6F2-QKO5aU0YluOzxy4fGaDAc9-AbsvirY
Cites_doi 10.1016/j.jeurceramsoc.2011.10.033
10.2320/matertrans.MT-MC2024008
10.1016/j.scriptamat.2006.04.048
10.1007/s10853-017-1378-x
10.1016/j.jallcom.2018.11.217
10.1016/j.msea.2018.12.090
10.1016/j.powtec.2020.07.033
10.1016/j.jeurceramsoc.2015.03.027
10.2320/matertrans.MT-M2024177
10.2320/matertrans.MT-MC2024009
10.2320/matertrans.46.2067
10.2497/jjspm.63.484
10.2320/jinstmet1952.66.6_621
10.1016/j.msea.2023.145066
10.2320/matertrans.M2016265
10.1016/S0955-2219(01)00424-1
10.2320/matertrans.MC201506
10.2320/jinstmet1952.67.10_528
10.1016/j.ceramint.2018.08.270
10.1111/j.1151-2916.1997.tb03227.x
10.1016/j.ceramint.2016.10.100
10.1016/j.msea.2016.11.034
10.1016/j.jallcom.2020.154521
ContentType Journal Article
Copyright 2025 The Japan Institute of Metals and Materials
Copyright Japan Science and Technology Agency 2025
Copyright_xml – notice: 2025 The Japan Institute of Metals and Materials
– notice: Copyright Japan Science and Technology Agency 2025
DBID RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.2320/matertrans.MT-MC2024021
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5320
EndPage 635
ExternalDocumentID 10_2320_matertrans_MT_MC2024021
article_matertrans_66_5_66_MT_MC2024021_article_char_en
GroupedDBID -~X
.L7
.LE
5GY
93D
ABJNI
ACGFS
ACIWK
ADMLS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
JSI
JSP
RJT
RZJ
SJN
RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c398t-ef891f143cf9e77d44f6299354232de53323061de936645a46ac8cbe785883e43
ISSN 1345-9678
IngestDate Mon Jun 30 07:24:54 EDT 2025
Tue Aug 05 12:00:45 EDT 2025
Thu Jun 26 23:51:52 EDT 2025
Wed Sep 03 06:30:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-ef891f143cf9e77d44f6299354232de53323061de936645a46ac8cbe785883e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3218739614
PQPubID 1976393
PageCount 7
ParticipantIDs proquest_journals_3218739614
crossref_primary_10_2320_matertrans_MT_MC2024021
nii_cinii_1390584940354992128
jstage_primary_article_matertrans_66_5_66_MT_MC2024021_article_char_en
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle MATERIALS TRANSACTIONS
PublicationTitleAlternate Mater. Trans.
PublicationTitle_FL MATERIALS TRANSACTIONS
Mater. Trans
PublicationYear 2025
Publisher The Japan Institute of Metals and Materials
公益社団法人 日本金属学会
Japan Science and Technology Agency
Publisher_xml – name: The Japan Institute of Metals and Materials
– name: 公益社団法人 日本金属学会
– name: Japan Science and Technology Agency
References 11
22
12
23
13
24
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – ident: 18
– ident: 8
  doi: 10.1016/j.jeurceramsoc.2011.10.033
– ident: 24
  doi: 10.2320/matertrans.MT-MC2024008
– ident: 9
  doi: 10.1016/j.scriptamat.2006.04.048
– ident: 14
  doi: 10.1007/s10853-017-1378-x
– ident: 16
  doi: 10.1016/j.jallcom.2018.11.217
– ident: 13
  doi: 10.1016/j.msea.2018.12.090
– ident: 15
  doi: 10.1016/j.powtec.2020.07.033
– ident: 3
  doi: 10.1016/j.jeurceramsoc.2015.03.027
– ident: 23
  doi: 10.2320/matertrans.MT-M2024177
– ident: 17
  doi: 10.2320/matertrans.MT-MC2024009
– ident: 4
  doi: 10.2320/matertrans.46.2067
– ident: 7
  doi: 10.2497/jjspm.63.484
– ident: 20
  doi: 10.2320/jinstmet1952.66.6_621
– ident: 10
  doi: 10.1016/j.msea.2023.145066
– ident: 19
  doi: 10.2320/matertrans.M2016265
– ident: 1
  doi: 10.1016/S0955-2219(01)00424-1
– ident: 22
  doi: 10.2320/matertrans.MC201506
– ident: 21
  doi: 10.2320/jinstmet1952.67.10_528
– ident: 11
  doi: 10.1016/j.ceramint.2018.08.270
– ident: 5
  doi: 10.1111/j.1151-2916.1997.tb03227.x
– ident: 2
  doi: 10.1016/j.ceramint.2016.10.100
– ident: 6
  doi: 10.1016/j.msea.2016.11.034
– ident: 12
  doi: 10.1016/j.jallcom.2020.154521
SSID ssj0037522
Score 2.4362936
Snippet This study investigates the spark plasma sintering behavior of TiB2-10vol.%Ni powder composites, focusing on the effects of TiB2 particle size variation on...
SourceID proquest
crossref
nii
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 629
SubjectTerms Behavior
bimodal powders
Composite materials
Continuous sintering
Density
Fracture toughness
Microstructure
nickel-titanium diboride composite
Particle size
Particulate composites
Plasma sintering
Sintering (powder metallurgy)
Spark plasma sintering
Specific gravity
Titanium diboride
toughness
Title Spark Sintering Behaviors of TiB2-10Ni with Elementary Bimodal TiB2 Powders
URI https://www.jstage.jst.go.jp/article/matertrans/66/5/66_MT-MC2024021/_article/-char/en
https://cir.nii.ac.jp/crid/1390584940354992128
https://www.proquest.com/docview/3218739614
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX MATERIALS TRANSACTIONS, 2025/05/01, Vol.66(5), pp.629-635
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLa6jQMcED9FYUM5cKtS0tiJ42NXNhW2VEAzqZyiNLZZQKRTSYXGf8Z_x3uxk2YDJJi4WJXlVI6_V7_vud97JuQFF7mItJZuNpKByyJJ3WWIAhuqwBnpnPkZJgrHs3B6xt4sgkWv96OjWtpUy2H-_bd5JTdBFfoAV8yS_Qdk2y-FDvgM-EILCEP7VxjPL7L158EcSz7UMjpb7HBdyzOS4tCH7W9WmLPWI6sTX18ODgEfiXn5MGLwdvVNWhV8Q1LjMXDc1-PT-SB5P57Njc6kJY2T81WtAPiwKj8ubSEH6F5s6v85zpVW1hmizKce-a4oL7Nt58lmnYGB1Ge000Iq4LDdswc_2Cr9hm32Gvj08qqyIVYVln42QpHKLHdni6UscEVoLu4ZqqaPu3hFRXdfNrexWPsLOptsaM9IjL8OTbmT664AmCJqJ7_gBKra7ceJG098rOlmcrKv1dm2KKbbJ9IwTANs4iRtn0ybcZgVB0a4Q_Z8zlEhsDd-FZ_OGxpAuSlV376uERfitF7-YVJXqNGtTxAdYNmHnbIofiEKNftJ7pG7NmxxxmZW90lPlQ_InU4xy4fkpLZGp7VGp7VGZ6Wd1hodtEZna42OtcZ6hGOt8RE5Oz5KJlPXXtXh5lRElat0JEYauHeuheJcMqYBJUED1AFIBTEFhrojqQQNQxZkLMzyKF8qHgVRRBWjj8luuSrVE-JkcqQZi7BWZ8iklsLjWnme9jVXUrC8T7xmldILU5ElhUgWF7aLXRezPjk2q9k-cEOw--QA0EjzAluInTyg74J5FA9ZgANGfbLf4JTafeJrSoFFcyqABz_9X_N4Rm5vf477ZLdab9QBkONq-dya4U8GJ7wV
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spark+Sintering+Behaviors+of+TiB2-10Ni+with+Elementary+Bimodal+TiB2+Powders&rft.jtitle=MATERIALS+TRANSACTIONS&rft.au=Choi%2C+Yongbum&rft.au=Xu%2C+Zhefeng&rft.au=Li%2C+Qinyang&rft.au=Kuramoto%2C+Hideaki&rft.date=2025-05-01&rft.pub=The+Japan+Institute+of+Metals+and+Materials&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=66&rft.issue=5&rft.spage=629&rft.epage=635&rft_id=info:doi/10.2320%2Fmatertrans.MT-MC2024021&rft.externalDocID=article_matertrans_66_5_66_MT_MC2024021_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon