Enzymatically releasable polyethylene glycol – host defense peptide conjugates with improved activity and biocompatibility

Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biological half-life have limited their applicability for cli...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 339; pp. 220 - 231
Main Authors Drayton, Matthew, Alford, Morgan A., Pletzer, Daniel, Haney, Evan F., Machado, Yoan, Luo, Haiming D., Overall, Christopher M., Kizhakkedathu, Jayachandran N., Hancock, Robert E.W., Straus, Suzana K.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biological half-life have limited their applicability for clinical treatment. Many methods have been explored to alleviate these issues, such as polymer (e.g., polyethylene glycol (PEG)) conjugation, but these are often accompanied by reductions in the activity of the HDP. Here, we detail the design of a novel PEG-HDP conjugate incorporating an enzymatic cleavage sequence targeting matrix metalloproteinases (MMPs) that accumulate at sites of inflammation and infection. Addition of the cleavage sequence onto either the N- or the C-terminal region of the parent peptide (peptide 73, a derivative of the HDP aurein 2.2) was explored to determine the location for optimal antimicrobial activity following MMP cleavage; furthermore, the susceptibility of the peptide to MMP cleavage after conjugation to 2 kDa or 5 kDa PEG was examined. The top candidate, L73, utilized an N-terminal cleavage site that was subsequently conjugated to a 2 kDa PEG polymer. Both L73 and the conjugate exhibited no antimicrobial activity in vitro until cleaved by purified MMP, which liberated a peptide fragment with 16- or 63-fold improved activity, respectively, corresponding to a minimum inhibitory concentration (MIC) of 8 μg/mL, comparable to that of peptide 73 (4 μg/mL). Furthermore, PEG conjugation improved the blood compatibility and reduced the aggregation tendency of the HDP in vitro, indicating enhanced biocompatibility. When administered as a single subcutaneous dose (~3.6 mg, or a peptide concentration of 142 mg/kg) in a mouse abscess model of high-density methicillin-resistant Staphylococcus aureus (MRSA) infection, the conjugate displayed strong activity, reducing abscess size and bacterial load by 73.3% and 58-fold, respectively. This activity was completely lost when the cleavage site was rendered resistant to MMPs by the substitution of two d-amino acids, supporting the hypothesis that antimicrobial activity was dependent on cleavage by MMPs, which were shown here to increasingly accumulate at the abscess site up to 18 h post infection. Finally, the conjugate displayed biocompatibility in vivo, with no identifiable toxicity or aggregation. [Display omitted]
AbstractList Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biological half-life have limited their applicability for clinical treatment. Many methods have been explored to alleviate these issues, such as polymer (e.g., polyethylene glycol (PEG)) conjugation, but these are often accompanied by reductions in the activity of the HDP. Here, we detail the design of a novel PEG-HDP conjugate incorporating an enzymatic cleavage sequence targeting matrix metalloproteinases (MMPs) that accumulate at sites of inflammation and infection. Addition of the cleavage sequence onto either the N- or the C-terminal region of the parent peptide (peptide 73, a derivative of the HDP aurein 2.2) was explored to determine the location for optimal antimicrobial activity following MMP cleavage; furthermore, the susceptibility of the peptide to MMP cleavage after conjugation to 2 kDa or 5 kDa PEG was examined. The top candidate, L73, utilized an N-terminal cleavage site that was subsequently conjugated to a 2 kDa PEG polymer. Both L73 and the conjugate exhibited no antimicrobial activity in vitro until cleaved by purified MMP, which liberated a peptide fragment with 16- or 63-fold improved activity, respectively, corresponding to a minimum inhibitory concentration (MIC) of 8 μg/mL, comparable to that of peptide 73 (4 μg/mL). Furthermore, PEG conjugation improved the blood compatibility and reduced the aggregation tendency of the HDP in vitro, indicating enhanced biocompatibility. When administered as a single subcutaneous dose (~3.6 mg, or a peptide concentration of 142 mg/kg) in a mouse abscess model of high-density methicillin-resistant Staphylococcus aureus (MRSA) infection, the conjugate displayed strong activity, reducing abscess size and bacterial load by 73.3% and 58-fold, respectively. This activity was completely lost when the cleavage site was rendered resistant to MMPs by the substitution of two d-amino acids, supporting the hypothesis that antimicrobial activity was dependent on cleavage by MMPs, which were shown here to increasingly accumulate at the abscess site up to 18 h post infection. Finally, the conjugate displayed biocompatibility in vivo, with no identifiable toxicity or aggregation. [Display omitted]
Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biological half-life have limited their applicability for clinical treatment. Many methods have been explored to alleviate these issues, such as polymer (e.g., polyethylene glycol (PEG)) conjugation, but these are often accompanied by reductions in the activity of the HDP. Here, we detail the design of a novel PEG-HDP conjugate incorporating an enzymatic cleavage sequence targeting matrix metalloproteinases (MMPs) that accumulate at sites of inflammation and infection. Addition of the cleavage sequence onto either the N- or the C-terminal region of the parent peptide (peptide 73, a derivative of the HDP aurein 2.2) was explored to determine the location for optimal antimicrobial activity following MMP cleavage; furthermore, the susceptibility of the peptide to MMP cleavage after conjugation to 2 kDa or 5 kDa PEG was examined. The top candidate, L73, utilized an N-terminal cleavage site that was subsequently conjugated to a 2 kDa PEG polymer. Both L73 and the conjugate exhibited no antimicrobial activity in vitro until cleaved by purified MMP, which liberated a peptide fragment with 16- or 63-fold improved activity, respectively, corresponding to a minimum inhibitory concentration (MIC) of 8 μg/mL, comparable to that of peptide 73 (4 μg/mL). Furthermore, PEG conjugation improved the blood compatibility and reduced the aggregation tendency of the HDP in vitro, indicating enhanced biocompatibility. When administered as a single subcutaneous dose (~3.6 mg, or a peptide concentration of 142 mg/kg) in a mouse abscess model of high-density methicillin-resistant Staphylococcus aureus (MRSA) infection, the conjugate displayed strong activity, reducing abscess size and bacterial load by 73.3% and 58-fold, respectively. This activity was completely lost when the cleavage site was rendered resistant to MMPs by the substitution of two d-amino acids, supporting the hypothesis that antimicrobial activity was dependent on cleavage by MMPs, which were shown here to increasingly accumulate at the abscess site up to 18 h post infection. Finally, the conjugate displayed biocompatibility in vivo, with no identifiable toxicity or aggregation.
Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biological half-life have limited their applicability for clinical treatment. Many methods have been explored to alleviate these issues, such as polymer (e.g., polyethylene glycol (PEG)) conjugation, but these are often accompanied by reductions in the activity of the HDP. Here, we detail the design of a novel PEG-HDP conjugate incorporating an enzymatic cleavage sequence targeting matrix metalloproteinases (MMPs) that accumulate at sites of inflammation and infection. Addition of the cleavage sequence onto either the N- or the C-terminal region of the parent peptide (peptide 73, a derivative of the HDP aurein 2.2) was explored to determine the location for optimal antimicrobial activity following MMP cleavage; furthermore, the susceptibility of the peptide to MMP cleavage after conjugation to 2 kDa or 5 kDa PEG was examined. The top candidate, L73, utilized an N-terminal cleavage site that was subsequently conjugated to a 2 kDa PEG polymer. Both L73 and the conjugate exhibited no antimicrobial activity in vitro until cleaved by purified MMP, which liberated a peptide fragment with 16- or 63-fold improved activity, respectively, corresponding to a minimum inhibitory concentration (MIC) of 8 μg/mL, comparable to that of peptide 73 (4 μg/mL). Furthermore, PEG conjugation improved the blood compatibility and reduced the aggregation tendency of the HDP in vitro, indicating enhanced biocompatibility. When administered as a single subcutaneous dose (~3.6 mg, or a peptide concentration of 142 mg/kg) in a mouse abscess model of high-density methicillin-resistant Staphylococcus aureus (MRSA) infection, the conjugate displayed strong activity, reducing abscess size and bacterial load by 73.3% and 58-fold, respectively. This activity was completely lost when the cleavage site was rendered resistant to MMPs by the substitution of two d-amino acids, supporting the hypothesis that antimicrobial activity was dependent on cleavage by MMPs, which were shown here to increasingly accumulate at the abscess site up to 18 h post infection. Finally, the conjugate displayed biocompatibility in vivo, with no identifiable toxicity or aggregation.
Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biological half-life have limited their applicability for clinical treatment. Many methods have been explored to alleviate these issues, such as polymer (e.g., polyethylene glycol (PEG)) conjugation, but these are often accompanied by reductions in the activity of the HDP. Here, we detail the design of a novel PEG-HDP conjugate incorporating an enzymatic cleavage sequence targeting matrix metalloproteinases (MMPs) that accumulate at sites of inflammation and infection. Addition of the cleavage sequence onto either the N- or the C-terminal region of the parent peptide (peptide 73, a derivative of the HDP aurein 2.2) was explored to determine the location for optimal antimicrobial activity following MMP cleavage; furthermore, the susceptibility of the peptide to MMP cleavage after conjugation to 2 kDa or 5 kDa PEG was examined. The top candidate, L73, utilized an N-terminal cleavage site that was subsequently conjugated to a 2 kDa PEG polymer. Both L73 and the conjugate exhibited no antimicrobial activity in vitro until cleaved by purified MMP, which liberated a peptide fragment with 16- or 63-fold improved activity, respectively, corresponding to a minimum inhibitory concentration (MIC) of 8 μg/mL, comparable to that of peptide 73 (4 μg/mL). Furthermore, PEG conjugation improved the blood compatibility and reduced the aggregation tendency of the HDP in vitro, indicating enhanced biocompatibility. When administered as a single subcutaneous dose (~3.6 mg, or a peptide concentration of 142 mg/kg) in a mouse abscess model of high-density methicillin-resistant Staphylococcus aureus (MRSA) infection, the conjugate displayed strong activity, reducing abscess size and bacterial load by 73.3% and 58-fold, respectively. This activity was completely lost when the cleavage site was rendered resistant to MMPs by the substitution of two d-amino acids, supporting the hypothesis that antimicrobial activity was dependent on cleavage by MMPs, which were shown here to increasingly accumulate at the abscess site up to 18 h post infection. Finally, the conjugate displayed biocompatibility in vivo, with no identifiable toxicity or aggregation.Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biological half-life have limited their applicability for clinical treatment. Many methods have been explored to alleviate these issues, such as polymer (e.g., polyethylene glycol (PEG)) conjugation, but these are often accompanied by reductions in the activity of the HDP. Here, we detail the design of a novel PEG-HDP conjugate incorporating an enzymatic cleavage sequence targeting matrix metalloproteinases (MMPs) that accumulate at sites of inflammation and infection. Addition of the cleavage sequence onto either the N- or the C-terminal region of the parent peptide (peptide 73, a derivative of the HDP aurein 2.2) was explored to determine the location for optimal antimicrobial activity following MMP cleavage; furthermore, the susceptibility of the peptide to MMP cleavage after conjugation to 2 kDa or 5 kDa PEG was examined. The top candidate, L73, utilized an N-terminal cleavage site that was subsequently conjugated to a 2 kDa PEG polymer. Both L73 and the conjugate exhibited no antimicrobial activity in vitro until cleaved by purified MMP, which liberated a peptide fragment with 16- or 63-fold improved activity, respectively, corresponding to a minimum inhibitory concentration (MIC) of 8 μg/mL, comparable to that of peptide 73 (4 μg/mL). Furthermore, PEG conjugation improved the blood compatibility and reduced the aggregation tendency of the HDP in vitro, indicating enhanced biocompatibility. When administered as a single subcutaneous dose (~3.6 mg, or a peptide concentration of 142 mg/kg) in a mouse abscess model of high-density methicillin-resistant Staphylococcus aureus (MRSA) infection, the conjugate displayed strong activity, reducing abscess size and bacterial load by 73.3% and 58-fold, respectively. This activity was completely lost when the cleavage site was rendered resistant to MMPs by the substitution of two d-amino acids, supporting the hypothesis that antimicrobial activity was dependent on cleavage by MMPs, which were shown here to increasingly accumulate at the abscess site up to 18 h post infection. Finally, the conjugate displayed biocompatibility in vivo, with no identifiable toxicity or aggregation.
Author Kizhakkedathu, Jayachandran N.
Machado, Yoan
Haney, Evan F.
Hancock, Robert E.W.
Alford, Morgan A.
Overall, Christopher M.
Pletzer, Daniel
Luo, Haiming D.
Straus, Suzana K.
Drayton, Matthew
Author_xml – sequence: 1
  givenname: Matthew
  surname: Drayton
  fullname: Drayton, Matthew
  organization: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
– sequence: 2
  givenname: Morgan A.
  surname: Alford
  fullname: Alford, Morgan A.
  organization: Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
– sequence: 3
  givenname: Daniel
  surname: Pletzer
  fullname: Pletzer, Daniel
  organization: Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
– sequence: 4
  givenname: Evan F.
  surname: Haney
  fullname: Haney, Evan F.
  organization: Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
– sequence: 5
  givenname: Yoan
  surname: Machado
  fullname: Machado, Yoan
  organization: Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
– sequence: 6
  givenname: Haiming D.
  surname: Luo
  fullname: Luo, Haiming D.
  organization: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
– sequence: 7
  givenname: Christopher M.
  surname: Overall
  fullname: Overall, Christopher M.
  organization: Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
– sequence: 8
  givenname: Jayachandran N.
  surname: Kizhakkedathu
  fullname: Kizhakkedathu, Jayachandran N.
  organization: Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
– sequence: 9
  givenname: Robert E.W.
  surname: Hancock
  fullname: Hancock, Robert E.W.
  organization: Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
– sequence: 10
  givenname: Suzana K.
  surname: Straus
  fullname: Straus, Suzana K.
  email: sstraus@chem.ubc.ca
  organization: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34597746$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2O1DAQhS00iOkZOALISzYJdpzYjlggNBp-pJHYwNpy7Mq0I8duYnejIBbcgRtyEjzqhgWbXpVU-t6r0ntX6CLEAAg9p6SmhPJXUz2ZGBbwdUMaWpO-Jqx7hDZUCla1fd9doE3hZMV411-iq5QmQkjHWvEEXbK264Vo-Qb9uA3f11lnZ7T3Ky5-oJMePOBd9Cvk7eohAL73q4ke__75C29jytjCCCEVCHbZWcDllWl_rzMk_M3lLXbzbokHsFib7A4ur1gHiwcXTZx35drgfFk-RY9H7RM8O81r9OXd7eebD9Xdp_cfb97eVYb1MleW2472tCcNIwM0YzsYaqg0Flpuem0kByYZ4Y3uxDhKLRiz7SBHNrSgjWHsGr08-panvu4hZTW7ZMB7HSDuk2o447IRnDfn0U5IwSUVoqAvTuh-mMGq3eJmvazqb7gF6I6AWWJKC4z_EErUQ4lqUqcS1UOJivSqlFh0r__TGZdLaDHkRTt_Vv3mqIaS6MHBopJxEAxYt4DJykZ3xuEPyzLAFQ
CitedBy_id crossref_primary_10_1016_j_bbamem_2023_184260
crossref_primary_10_1186_s12934_022_01991_2
crossref_primary_10_3390_pharmaceutics15030935
crossref_primary_10_1159_000534068
crossref_primary_10_1002_ddr_21990
crossref_primary_10_1016_j_ejmech_2023_115680
crossref_primary_10_1016_j_drup_2023_101030
crossref_primary_10_1021_acs_molpharmaceut_3c01169
crossref_primary_10_1016_j_ijantimicag_2024_107399
crossref_primary_10_1186_s40824_022_00326_x
Cites_doi 10.1021/bm5018244
10.1189/jlb.0605353
10.1039/C6CC01269H
10.1016/S1473-3099(20)30327-3
10.1089/wound.2014.0581
10.3389/fimmu.2014.00448
10.1126/science.289.5482.1202
10.1016/S1473-3099(15)00466-1
10.3390/biom8010004
10.1016/j.bbamem.2007.01.005
10.1529/biophysj.106.097238
10.1016/j.jprot.2013.10.004
10.3389/fmicb.2020.01902
10.1016/j.jaci.2009.12.980
10.1016/j.bbamem.2015.12.015
10.1038/nrc884
10.1021/acsinfecdis.8b00319
10.3389/fchem.2019.00043
10.1021/nn4035074
10.1182/blood.V100.4.1160.h81602001160_1160_1167
10.3390/antibiotics9010024
10.1021/ja211279u
10.1002/anie.201301533
10.1038/89126
10.3389/fphys.2018.00113
10.1016/j.bbamem.2007.06.013
10.1128/CMR.00047-08
10.1002/adma.201703461
10.1038/s41565-019-0527-6
10.1016/j.bpj.2010.08.077
10.1186/s12974-017-0801-1
10.1002/adma.201503437
10.1039/c3cc43576h
10.2500/ajra.2010.24.3509
10.1016/j.it.2014.07.004
10.1038/nature08181
10.1016/j.immuni.2010.11.011
10.3390/nano8020119
10.1021/acsomega.8b01876
10.1016/S0014-827X(02)01301-0
10.1021/acsami.7b09471
10.1038/nmat3776
10.1038/nrmicro2745
10.1002/pep2.24122
10.1016/j.bbamem.2006.02.010
10.1002/bip.22250
10.1126/scitranslmed.3009427
10.1016/j.bbamem.2020.183262
10.1016/S0021-9258(19)57263-5
10.1016/j.bpj.2008.10.012
10.1016/j.matbio.2015.09.003
10.1021/acsnano.7b07496
10.1039/D0TB00750A
10.1002/pep2.24077
10.1371/journal.ppat.1007084
10.1021/nn3008383
10.3390/ma11122468
10.1073/pnas.0706438104
10.1021/bc3000723
10.1128/mBio.00140-17
10.3389/fcimb.2016.00194
10.2174/1389203053027494
10.1111/j.1365-2249.2005.02840.x
10.1016/j.biomaterials.2010.01.137
10.3390/molecules25133048
10.1021/acs.biomac.0c01695
10.2353/ajpath.2008.080081
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2021.09.035
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 231
ExternalDocumentID 34597746
10_1016_j_jconrel_2021_09_035
S0168365921005149
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: FDN-148408
– fundername: CIHR
  grantid: FDN-154287
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SPT
SSH
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c398t-d6d519190230be2f4bc1c18cde46c9ac86e383062a57ff8a733d4b8f3b4eacc33
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Sun Aug 24 04:08:55 EDT 2025
Mon Jul 21 11:25:23 EDT 2025
Thu Apr 03 06:58:09 EDT 2025
Tue Jul 01 04:10:05 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Fri Feb 23 02:42:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Matrix metalloproteinases (MMPs)
Bioconjugates
Polyethylene glycol (PEG)
Host defense peptides (HDPs)
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-d6d519190230be2f4bc1c18cde46c9ac86e383062a57ff8a733d4b8f3b4eacc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34597746
PQID 2578768177
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2636827662
proquest_miscellaneous_2578768177
pubmed_primary_34597746
crossref_primary_10_1016_j_jconrel_2021_09_035
crossref_citationtrail_10_1016_j_jconrel_2021_09_035
elsevier_sciencedirect_doi_10_1016_j_jconrel_2021_09_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-10
PublicationDateYYYYMMDD 2021-11-10
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xiong, Bao, Yang, Wang, Sun, Wang (bb0140) 2012; 134
Vanlaere, Libert (bb0160) 2009; 22
Haney, Wuerth, Rahanjam, Nikouei, Ghassemi, Noghani, Boey, Hancock (bb0345) 2019
Kumar, Shenoi, Lai, Nguyen, Kizhakkedathu, Straus (bb0100) 2015; 16
Loynachan, Soleimany, Dudani, Lin, Najer, Bekdemir, Chen, Bhatia, Stevens (bb0245) 2019; 14
Guiotto, Pozzobon, Canevari, Manganelli, Scarin, Veronese (bb0095) 2003; 58
Haney, Straus, Hancock (bb0005) 2019; 7
de la Fuente-Núñez, Cardoso, De Souza Cândido, Franco, Hancock (bb0020) 2016; 1858
Kumar, Takayesu, Abbasi, Kalathottukaren, Abbina, Kizhakkedathu, Straus (bb0110) 2017; 9
Hasty, Hibbs, Kang, Mainardi (bb0215) 1986; 261
Radovic-Moreno, Lu, Puscasu, Yoon, Langer, Farokhzad (bb0115) 2012; 6
Cui, Hu, Khalil (bb0295) 2017
Alford, Baquir, Santana, Haney, Hancock (bb0060) 2020; 11
Bowdish, Davidson, Hancock (bb0050) 2005; 6
Li, Ma, Bin Qi, Zhang, Yu, Hu, Wang (bb0130) 2016; 28
Raheem, Kumar, Lee, Cheng, Hancock, Straus (bb0175) 2020; 1862
Sinha, Harioudh, Dewangan, Ng, Ghosh, Bhattacharjya (bb0010) 2018; 3
Ardi, Kupriyanova, Deryugina, Quigley (bb0210) 2007; 104
Mansour, Pena, Hancock (bb0045) 2014; 35
Rossi, Constantinescu, Kainthan, Brooks, Scott, Kizhakkedathu (bb0220) 2010; 31
Pletzer, Mansour, Hancock (bb0035) 2018; 14
Kumar, Kizhakkedathu, Straus (bb0105) 2018; 8
Pletzer, Mansour, Wuerth, Rahanjam, Hancock (bb0235) 2017; 8
Lin, Jackson, Tester, Diaconu, Overall, Blalock, Pearlman (bb0300) 2008; 173
Ahmed, Lai, Kizhakkedathu, Narain (bb0225) 2012; 23
Cheng, Hale, Elliot, Hancock, Straus (bb0190) 2009; 96
Chu, Gao, Cheng, Zhang, Liu, Huang, Yang, Shi, Liu (bb0135) 2016; 52
Magana, Pushpanathan, Santos, Leanse, Fernandez, Ioannidis, Giulianotti, Apidianakis, Bradfute, Ferguson, Cherkasov, Seleem, Pinilla, de la Fuente-Nunez, Lazaridis, Dai, Houghten, Hancock, Tegos (bb0015) 2020; 20
Pan, Cheng, Hale, Pan, Hancock, Straus (bb0180) 2007; 92
Hancock, Nijnik, Philpott (bb0055) 2012; 10
Czaplewski, Bax, Clokie, Dawson, Fairhead, Fischetti, Foster, Gilmore, Hancock, Harper, Henderson, Hilpert, Jones, Kadioglu, Knowles, Ólafsdóttir, Payne, Projan, Shaunak, Silverman, Thomas, T.J. Trust, Warn, Rex (bb0065) 2016; 16
Imran ul-haq, Hamilton, Lai, Shenoi, Horte, Constantinescu, Leitch, Kizhakkedathu (bb0230) 2013; 7
Elkington, O’Kane, Friedland (bb0165) 2005; 142
Chakrabarti, Zee, Patel (bb0205) 2006; 79
Houghton, Hartzell, Robbins, Gomis-Rüth, Shapiro (bb0290) 2009; 460
McQuibban, Gong, Wong, Wallace, Clark-Lewis, Overall (bb0335) 2002; 100
Imura, Nishida, Ogawa, Takakura, Matsuzaki (bb0090) 2007; 1768
Haney, Hancock (bb0040) 2013; 100
Chen, Lu (bb0080) 2020; 9
Eckhard, Huesgen, Brandstetter, Overall (bb0270) 2014; 100
Smigiel, Parks (bb0155) 2017
Mura, Nicolas, Couvreur (bb0125) 2013; 12
Shenoi, Kalathottukaren, Travers, Lai, Creagh, Lange, Yu, Weinhart, Chew, Du, Brooks, Carter, Morrissey, Haynes, Kizhakkedathu (bb0305) 2014; 6
Cheng, Hale, Kindrachuk, Jessen, Elliott, Hancock, Straus (bb0185) 2010; 99
O’Leary, Chen, Westblade, Alabi (bb0145) 2021; 22
Overall, López-Otín (bb0285) 2002; 2
Yasir, Willcox, Dutta (bb0025) 2018; 11
Boland, Separovic (bb0315) 2006; 1758
Borregaard (bb0325) 2010; 33
Drayton, Kizhakkedathu, Straus (bb0075) 2020; 25
Li, Ge, Liu (bb0250) 2013; 49
Qi, Zhang, Liu, Qiao, Wang (bb0265) 2017; 1703461
Koo, Seo (bb0070) 2019; 111
Du, Wang, Wu, Jia, Li, Qiu, Jiang, Wang, Li (bb0260) 2020
Bremer, Tung, Weissleder (bb0255) 2001; 7
Sheshachalam, Srivastava, Mitchell, Lacy, Eitzen (bb0330) 2014; 5
Caley, Martins, O’Toole (bb0310) 2015; 4
Chaplin (bb0320) 2010; 125
Kumar, Pletzer, Haney, Rahanjam, Cheng, Yue, Aljehani, Hancock, Kizhakkedathu, Straus (bb0195) 2019; 5
Imura, Nishida, Matsuzaki (bb0085) 2007; 1768
Wang, Kwon, Jang (bb0170) 2010; 24
Gupta, Das, Yesilbag Tonga, Mizuhara, Rotello (bb0120) 2018; 12
Rosales (bb0280) 2018; 9
Eckhard, Huesgen, Schilling, Bellac, Butler, Cox, Dufour, Goebeler, Kappelhoff, Keller, Klein, Lange, Marino, Morrison, Prudova, Rodriguez, Starr, Wang, Overall (bb0200) 2016; 49
Nollmann, Goldbach, Berthold, Hoffmann (bb0150) 2013; 52
McQuibban, Gong, Tam, McCulloch, Clark-Lewis, Overall (bb0340) 2000; 289
Lee, Kim, Lee, Kim, Kim, Key (bb0240) 2018; 8
Mahlapuu, Håkansson, Ringstad, Björn (bb0030) 2016; 6
Ong, Pabisiak, Brilha, Singh, Roncaroli, Elkington, Friedland (bb0275) 2017; 14
Chaplin (10.1016/j.jconrel.2021.09.035_bb0320) 2010; 125
Cui (10.1016/j.jconrel.2021.09.035_bb0295) 2017
Xiong (10.1016/j.jconrel.2021.09.035_bb0140) 2012; 134
Yasir (10.1016/j.jconrel.2021.09.035_bb0025) 2018; 11
Imura (10.1016/j.jconrel.2021.09.035_bb0090) 2007; 1768
Shenoi (10.1016/j.jconrel.2021.09.035_bb0305) 2014; 6
Haney (10.1016/j.jconrel.2021.09.035_bb0005) 2019; 7
Sheshachalam (10.1016/j.jconrel.2021.09.035_bb0330) 2014; 5
Chakrabarti (10.1016/j.jconrel.2021.09.035_bb0205) 2006; 79
Guiotto (10.1016/j.jconrel.2021.09.035_bb0095) 2003; 58
Mura (10.1016/j.jconrel.2021.09.035_bb0125) 2013; 12
Loynachan (10.1016/j.jconrel.2021.09.035_bb0245) 2019; 14
Lin (10.1016/j.jconrel.2021.09.035_bb0300) 2008; 173
Pletzer (10.1016/j.jconrel.2021.09.035_bb0035) 2018; 14
Kumar (10.1016/j.jconrel.2021.09.035_bb0110) 2017; 9
de la Fuente-Núñez (10.1016/j.jconrel.2021.09.035_bb0020) 2016; 1858
McQuibban (10.1016/j.jconrel.2021.09.035_bb0340) 2000; 289
Li (10.1016/j.jconrel.2021.09.035_bb0250) 2013; 49
Chen (10.1016/j.jconrel.2021.09.035_bb0080) 2020; 9
Rossi (10.1016/j.jconrel.2021.09.035_bb0220) 2010; 31
Drayton (10.1016/j.jconrel.2021.09.035_bb0075) 2020; 25
Wang (10.1016/j.jconrel.2021.09.035_bb0170) 2010; 24
Imura (10.1016/j.jconrel.2021.09.035_bb0085) 2007; 1768
Ardi (10.1016/j.jconrel.2021.09.035_bb0210) 2007; 104
Smigiel (10.1016/j.jconrel.2021.09.035_bb0155) 2017
Raheem (10.1016/j.jconrel.2021.09.035_bb0175) 2020; 1862
Radovic-Moreno (10.1016/j.jconrel.2021.09.035_bb0115) 2012; 6
Rosales (10.1016/j.jconrel.2021.09.035_bb0280) 2018; 9
Mansour (10.1016/j.jconrel.2021.09.035_bb0045) 2014; 35
Alford (10.1016/j.jconrel.2021.09.035_bb0060) 2020; 11
Kumar (10.1016/j.jconrel.2021.09.035_bb0195) 2019; 5
Boland (10.1016/j.jconrel.2021.09.035_bb0315) 2006; 1758
Bowdish (10.1016/j.jconrel.2021.09.035_bb0050) 2005; 6
Chu (10.1016/j.jconrel.2021.09.035_bb0135) 2016; 52
Du (10.1016/j.jconrel.2021.09.035_bb0260) 2020
Kumar (10.1016/j.jconrel.2021.09.035_bb0100) 2015; 16
Gupta (10.1016/j.jconrel.2021.09.035_bb0120) 2018; 12
Mahlapuu (10.1016/j.jconrel.2021.09.035_bb0030) 2016; 6
Eckhard (10.1016/j.jconrel.2021.09.035_bb0270) 2014; 100
Koo (10.1016/j.jconrel.2021.09.035_bb0070) 2019; 111
Ong (10.1016/j.jconrel.2021.09.035_bb0275) 2017; 14
Lee (10.1016/j.jconrel.2021.09.035_bb0240) 2018; 8
Hasty (10.1016/j.jconrel.2021.09.035_bb0215) 1986; 261
McQuibban (10.1016/j.jconrel.2021.09.035_bb0335) 2002; 100
Houghton (10.1016/j.jconrel.2021.09.035_bb0290) 2009; 460
Sinha (10.1016/j.jconrel.2021.09.035_bb0010) 2018; 3
Borregaard (10.1016/j.jconrel.2021.09.035_bb0325) 2010; 33
Imran ul-haq (10.1016/j.jconrel.2021.09.035_bb0230) 2013; 7
Kumar (10.1016/j.jconrel.2021.09.035_bb0105) 2018; 8
Nollmann (10.1016/j.jconrel.2021.09.035_bb0150) 2013; 52
Vanlaere (10.1016/j.jconrel.2021.09.035_bb0160) 2009; 22
Magana (10.1016/j.jconrel.2021.09.035_bb0015) 2020; 20
Elkington (10.1016/j.jconrel.2021.09.035_bb0165) 2005; 142
Qi (10.1016/j.jconrel.2021.09.035_bb0265) 2017; 1703461
Pan (10.1016/j.jconrel.2021.09.035_bb0180) 2007; 92
Caley (10.1016/j.jconrel.2021.09.035_bb0310) 2015; 4
Czaplewski (10.1016/j.jconrel.2021.09.035_bb0065) 2016; 16
Li (10.1016/j.jconrel.2021.09.035_bb0130) 2016; 28
Cheng (10.1016/j.jconrel.2021.09.035_bb0185) 2010; 99
Pletzer (10.1016/j.jconrel.2021.09.035_bb0235) 2017; 8
Ahmed (10.1016/j.jconrel.2021.09.035_bb0225) 2012; 23
Eckhard (10.1016/j.jconrel.2021.09.035_bb0200) 2016; 49
Bremer (10.1016/j.jconrel.2021.09.035_bb0255) 2001; 7
Overall (10.1016/j.jconrel.2021.09.035_bb0285) 2002; 2
Haney (10.1016/j.jconrel.2021.09.035_bb0345) 2019
O’Leary (10.1016/j.jconrel.2021.09.035_bb0145) 2021; 22
Cheng (10.1016/j.jconrel.2021.09.035_bb0190) 2009; 96
Hancock (10.1016/j.jconrel.2021.09.035_bb0055) 2012; 10
Haney (10.1016/j.jconrel.2021.09.035_bb0040) 2013; 100
References_xml – volume: 11
  start-page: 1
  year: 2020
  end-page: 18
  ident: bb0060
  article-title: Cathelicidin host defense peptides and inflammatory signaling: striking a balance
  publication-title: Front. Microbiol.
– volume: 49
  start-page: 37
  year: 2016
  end-page: 60
  ident: bb0200
  article-title: Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses
  publication-title: Matrix Biol.
– volume: 11
  year: 2018
  ident: bb0025
  article-title: Action of antimicrobial peptides against bacterial biofilms
  publication-title: Materials (Basel).
– volume: 6
  start-page: 194
  year: 2016
  ident: bb0030
  article-title: Antimicrobial peptides: an emerging category of therapeutic agents
  publication-title: Front. Cell. Infect. Microbiol.
– year: 2020
  ident: bb0260
  article-title: Enzyme-responsive turn-on nanoprobes for in situ fluorescence imaging and localized photothermal treatment of multidrug-resistant bacterial infections
  publication-title: J. Mater. Chem. B
– year: 2019
  ident: bb0345
  article-title: Identification of an IDR peptide formulation candidate that prevents peptide aggregation and retains immunomodulatory activity
  publication-title: Pept. Sci.
– volume: 9
  year: 2020
  ident: bb0080
  article-title: Development and challenges of antimicrobial peptides for therapeutic applications
  publication-title: Antibiotics
– volume: 5
  start-page: 1
  year: 2014
  end-page: 11
  ident: bb0330
  article-title: Granule protein processing and regulated secretion in neutrophils
  publication-title: Front. Immunol.
– volume: 12
  start-page: 89
  year: 2018
  end-page: 94
  ident: bb0120
  article-title: Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections
  publication-title: ACS Nano
– volume: 8
  year: 2018
  ident: bb0105
  article-title: Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo
  publication-title: Biomolecules
– volume: 9
  year: 2017
  ident: bb0110
  article-title: Antimicrobial peptide-polymer conjugates with high activity: influence of polymer molecular weight and peptide sequence on antimicrobial activity, proteolysis, and biocompatibility
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 883
  year: 2019
  end-page: 890
  ident: bb0245
  article-title: Renal clearable catalytic gold nanoclusters for in vivo disease monitoring
  publication-title: Nat. Nanotechnol.
– volume: 6
  year: 2014
  ident: bb0305
  article-title: Affinity-based design of a synthetic universal reversal agent for heparin anticoagulants
  publication-title: Sci. Transl. Med.
– volume: 22
  start-page: 984
  year: 2021
  end-page: 992
  ident: bb0145
  article-title: Design of a PEGylated antimicrobial prodrug with species-specific activation
  publication-title: Biomacromolecules.
– volume: 14
  year: 2018
  ident: bb0035
  article-title: Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens
  publication-title: PLoS Pathog.
– volume: 261
  start-page: 5645
  year: 1986
  end-page: 5650
  ident: bb0215
  article-title: Secreted forms of human neutrophil collagenase
  publication-title: J. Biol. Chem.
– volume: 1758
  start-page: 1178
  year: 2006
  end-page: 1183
  ident: bb0315
  article-title: Membrane interactions of antimicrobial peptides from Australian tree frogs
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 3
  start-page: 14650
  year: 2018
  end-page: 14664
  ident: bb0010
  article-title: Cell-selective pore forming antimicrobial peptides of the prodomain of human furin: a conserved aromatic/cationic sequence mapping, membrane disruption, and atomic-resolution structure and dynamics
  publication-title: ACS Omega
– volume: 7
  start-page: 743
  year: 2001
  end-page: 748
  ident: bb0255
  article-title: In vivo molecular target assessment of matrix metalloproteinase inhibition
  publication-title: Nat. Med.
– volume: 25
  year: 2020
  ident: bb0075
  article-title: Towards robust delivery of antimicrobial peptides to combat bacterial resistance
  publication-title: Molecules
– volume: 460
  start-page: 637
  year: 2009
  end-page: 641
  ident: bb0290
  article-title: Macrophage elastase kills bacteria within murine macrophages
  publication-title: Nature.
– volume: 92
  year: 2007
  ident: bb0180
  article-title: Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs
  publication-title: Biophys. J.
– volume: 28
  start-page: 254
  year: 2016
  end-page: 262
  ident: bb0130
  article-title: Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection
  publication-title: Adv. Mater.
– volume: 100
  start-page: 1160
  year: 2002
  end-page: 1167
  ident: bb0335
  article-title: Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo
  publication-title: Blood.
– volume: 49
  start-page: 6974
  year: 2013
  end-page: 6976
  ident: bb0250
  article-title: PEG-sheddable polyplex micelles as smart gene carriers based on MMP-cleavable peptide-linked block copolymers
  publication-title: Chem. Commun.
– volume: 6
  start-page: 4279
  year: 2012
  end-page: 4287
  ident: bb0115
  article-title: Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics
  publication-title: ACS Nano
– volume: 2
  start-page: 657
  year: 2002
  end-page: 672
  ident: bb0285
  article-title: Strategies for MMP inhibition in cancer: innovations for the post-trial era
  publication-title: Nat. Rev. Cancer
– volume: 111
  year: 2019
  ident: bb0070
  article-title: Antimicrobial peptides under clinical investigation
  publication-title: Pept. Sci.
– volume: 7
  start-page: 43
  year: 2019
  ident: bb0005
  article-title: Reassessing the host defense peptide landscape
  publication-title: Front. Chem.
– volume: 7
  start-page: 10704
  year: 2013
  end-page: 10716
  ident: bb0230
  article-title: Design of long circulating nontoxic dendritic polymers for the removal of iron in vivo
  publication-title: ACS Nano
– volume: 1703461
  start-page: 1703461
  year: 2017
  ident: bb0265
  article-title: An “on-site transformation” strategy for treatment of bacterial infection
  publication-title: Adv. Mater.
– volume: 6
  start-page: 35
  year: 2005
  end-page: 51
  ident: bb0050
  article-title: A re-evaluation of the role of host defence peptides in mammalian immunity
  publication-title: Curr. Protein Pept. Sci.
– volume: 125
  start-page: S3
  year: 2010
  end-page: S23
  ident: bb0320
  article-title: Overview of the immune response
  publication-title: J. Allergy Clin. Immunol.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 16
  ident: bb0235
  article-title: New mouse model for chronic infections by gram-negative bacteria enabling the study of anti-infective efficacy and host-microbe interactions
  publication-title: MBio.
– volume: 1768
  start-page: 1160
  year: 2007
  end-page: 1169
  ident: bb0090
  article-title: Action mechanism of tachyplesin I and effects of PEGylation
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 10
  start-page: 243
  year: 2012
  end-page: 254
  ident: bb0055
  article-title: Modulating immunity as a therapy for bacterial infections
  publication-title: Nat. Rev. Microbiol.
– volume: 20
  start-page: e216
  year: 2020
  end-page: e230
  ident: bb0015
  article-title: The value of antimicrobial peptides in the age of resistance
  publication-title: Lancet Infect. Dis.
– volume: 24
  start-page: 422
  year: 2010
  end-page: 427
  ident: bb0170
  article-title: Staphylococcus aureus increases cytokine and matrix metalloproteinase expression in nasal mucosae of patients with chronic rhinosinusitis and nasal polyps
  publication-title: Am. J. Rhinol. Allergy.
– volume: 23
  start-page: 1050
  year: 2012
  end-page: 1058
  ident: bb0225
  article-title: Hyperbranched glycopolymers for blood biocompatibility
  publication-title: Bioconjug. Chem.
– year: 2017
  ident: bb0155
  article-title: Matrix Metalloproteinases and Leukocyte Activation
– volume: 12
  start-page: 991
  year: 2013
  end-page: 1003
  ident: bb0125
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
– volume: 1768
  start-page: 2578
  year: 2007
  end-page: 2585
  ident: bb0085
  article-title: Action mechanism of PEGylated magainin 2 analogue peptide
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 16
  year: 2015
  ident: bb0100
  article-title: Conjugation of Aurein 2.2 to HPG yields an antimicrobial with better properties
  publication-title: Biomacromolecules
– volume: 79
  start-page: 214
  year: 2006
  end-page: 222
  ident: bb0205
  article-title: Regulation of matrix metalloproteinase-9 (MMP-9) in TNF-stimulated neutrophils: novel pathways for tertiary granule release
  publication-title: J. Leukoc. Biol.
– volume: 173
  start-page: 144
  year: 2008
  end-page: 153
  ident: bb0300
  article-title: Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide pro-gly-pro
  publication-title: Am. J. Pathol.
– volume: 16
  start-page: 239
  year: 2016
  end-page: 251
  ident: bb0065
  article-title: Alternatives to antibiotics-a pipeline portfolio review
  publication-title: Lancet Infect. Dis.
– volume: 134
  start-page: 4355
  year: 2012
  end-page: 4362
  ident: bb0140
  article-title: Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 6265
  year: 2016
  end-page: 6268
  ident: bb0135
  article-title: A charge-adaptive nanosystem for prolonged and enhanced: in vivo antibiotic delivery
  publication-title: Chem. Commun.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 17
  ident: bb0280
  article-title: Neutrophil: a cell with many roles in inflammation or several cell types?
  publication-title: Front. Physiol.
– volume: 22
  start-page: 224
  year: 2009
  end-page: 239
  ident: bb0160
  article-title: Matrix metalloproteinases as drug targets in infections caused by gram-negative bacteria and in septic shock
  publication-title: Clin. Microbiol. Rev.
– volume: 4
  start-page: 225
  year: 2015
  end-page: 234
  ident: bb0310
  article-title: Metalloproteinases and wound healing
  publication-title: Adv. Wound Care.
– volume: 104
  start-page: 20262
  year: 2007
  end-page: 20267
  ident: bb0210
  article-title: Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 5
  year: 2019
  ident: bb0195
  article-title: Aurein-derived antimicrobial peptides formulated with pegylated phospholipid micelles to target methicillin-resistant
  publication-title: ACS Infect. Dis.
– volume: 100
  start-page: 572
  year: 2013
  end-page: 583
  ident: bb0040
  article-title: Peptide design for antimicrobial and immunomodulatory applications
  publication-title: Biopolymers.
– volume: 99
  year: 2010
  ident: bb0185
  article-title: Importance of residue 13 and the C-terminus for the structure and activity of the antimicrobial peptide aurein 2.2
  publication-title: Biophys. J.
– volume: 58
  start-page: 45
  year: 2003
  end-page: 50
  ident: bb0095
  article-title: PEGylation of the antimicrobial peptide nisin a: problems and perspectives
  publication-title: Farmaco.
– volume: 142
  start-page: 12
  year: 2005
  end-page: 20
  ident: bb0165
  article-title: The paradox of matrix metalloproteinases in infectious disease
  publication-title: Clin. Exp. Immunol.
– volume: 289
  start-page: 1202
  year: 2000
  end-page: 1206
  ident: bb0340
  article-title: Inflammation dampened by gelatinase a cleavage of monocyte chemoattractant protein-3
  publication-title: Science (80-. )
– volume: 1858
  start-page: 1061
  year: 2016
  end-page: 1069
  ident: bb0020
  article-title: Synthetic antibiofilm peptides
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 31
  start-page: 4167
  year: 2010
  end-page: 4178
  ident: bb0220
  article-title: Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols
  publication-title: Biomaterials.
– volume: 33
  start-page: 657
  year: 2010
  end-page: 670
  ident: bb0325
  article-title: Neutrophils, from marrow to microbes
  publication-title: Immunity.
– volume: 96
  start-page: 552
  year: 2009
  end-page: 565
  ident: bb0190
  article-title: Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from australian southern bell frogs
  publication-title: Biophys. J.
– volume: 1862
  year: 2020
  ident: bb0175
  article-title: Insights into the mechanism of action of two analogues of aurein 2.2
  publication-title: Biochim. Biophys. Acta Biomembr.
– volume: 14
  start-page: 1
  year: 2017
  end-page: 12
  ident: bb0275
  article-title: Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis
  publication-title: J. Neuroinflammation
– volume: 52
  start-page: 7597
  year: 2013
  end-page: 7599
  ident: bb0150
  article-title: Controlled systemic release of therapeutic peptides from PEGylated prodrugs by serum proteases
  publication-title: Angew. Chemie Int. Ed.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: bb0240
  article-title: Visualization of MMP-2 activity using dual-probe nanoparticles to detect potential metastatic cancer cells
  publication-title: Nanomaterials.
– volume: 35
  start-page: 443
  year: 2014
  end-page: 450
  ident: bb0045
  article-title: Host defense peptides: Front-line immunomodulators
  publication-title: Trends Immunol.
– volume: 100
  start-page: 102
  year: 2014
  end-page: 114
  ident: bb0270
  article-title: Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen
  publication-title: J. Proteome
– year: 2017
  ident: bb0295
  article-title: Biochemical and Biological Attributes of Matrix Metalloproteinases
– volume: 16
  year: 2015
  ident: 10.1016/j.jconrel.2021.09.035_bb0100
  article-title: Conjugation of Aurein 2.2 to HPG yields an antimicrobial with better properties
  publication-title: Biomacromolecules
  doi: 10.1021/bm5018244
– volume: 79
  start-page: 214
  year: 2006
  ident: 10.1016/j.jconrel.2021.09.035_bb0205
  article-title: Regulation of matrix metalloproteinase-9 (MMP-9) in TNF-stimulated neutrophils: novel pathways for tertiary granule release
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0605353
– volume: 52
  start-page: 6265
  year: 2016
  ident: 10.1016/j.jconrel.2021.09.035_bb0135
  article-title: A charge-adaptive nanosystem for prolonged and enhanced: in vivo antibiotic delivery
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01269H
– volume: 20
  start-page: e216
  year: 2020
  ident: 10.1016/j.jconrel.2021.09.035_bb0015
  article-title: The value of antimicrobial peptides in the age of resistance
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30327-3
– volume: 4
  start-page: 225
  year: 2015
  ident: 10.1016/j.jconrel.2021.09.035_bb0310
  article-title: Metalloproteinases and wound healing
  publication-title: Adv. Wound Care.
  doi: 10.1089/wound.2014.0581
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.jconrel.2021.09.035_bb0330
  article-title: Granule protein processing and regulated secretion in neutrophils
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00448
– volume: 289
  start-page: 1202
  year: 2000
  ident: 10.1016/j.jconrel.2021.09.035_bb0340
  article-title: Inflammation dampened by gelatinase a cleavage of monocyte chemoattractant protein-3
  publication-title: Science (80-. )
  doi: 10.1126/science.289.5482.1202
– volume: 16
  start-page: 239
  year: 2016
  ident: 10.1016/j.jconrel.2021.09.035_bb0065
  article-title: Alternatives to antibiotics-a pipeline portfolio review
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(15)00466-1
– volume: 8
  year: 2018
  ident: 10.1016/j.jconrel.2021.09.035_bb0105
  article-title: Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo
  publication-title: Biomolecules
  doi: 10.3390/biom8010004
– volume: 1768
  start-page: 1160
  year: 2007
  ident: 10.1016/j.jconrel.2021.09.035_bb0090
  article-title: Action mechanism of tachyplesin I and effects of PEGylation
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2007.01.005
– volume: 92
  year: 2007
  ident: 10.1016/j.jconrel.2021.09.035_bb0180
  article-title: Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097238
– volume: 100
  start-page: 102
  year: 2014
  ident: 10.1016/j.jconrel.2021.09.035_bb0270
  article-title: Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen
  publication-title: J. Proteome
  doi: 10.1016/j.jprot.2013.10.004
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.jconrel.2021.09.035_bb0060
  article-title: Cathelicidin host defense peptides and inflammatory signaling: striking a balance
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01902
– volume: 125
  start-page: S3
  year: 2010
  ident: 10.1016/j.jconrel.2021.09.035_bb0320
  article-title: Overview of the immune response
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2009.12.980
– volume: 1858
  start-page: 1061
  year: 2016
  ident: 10.1016/j.jconrel.2021.09.035_bb0020
  article-title: Synthetic antibiofilm peptides
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2015.12.015
– volume: 2
  start-page: 657
  year: 2002
  ident: 10.1016/j.jconrel.2021.09.035_bb0285
  article-title: Strategies for MMP inhibition in cancer: innovations for the post-trial era
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc884
– volume: 5
  year: 2019
  ident: 10.1016/j.jconrel.2021.09.035_bb0195
  article-title: Aurein-derived antimicrobial peptides formulated with pegylated phospholipid micelles to target methicillin-resistant Staphylococcus aureus skin infections
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.8b00319
– volume: 7
  start-page: 43
  year: 2019
  ident: 10.1016/j.jconrel.2021.09.035_bb0005
  article-title: Reassessing the host defense peptide landscape
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00043
– volume: 7
  start-page: 10704
  year: 2013
  ident: 10.1016/j.jconrel.2021.09.035_bb0230
  article-title: Design of long circulating nontoxic dendritic polymers for the removal of iron in vivo
  publication-title: ACS Nano
  doi: 10.1021/nn4035074
– volume: 100
  start-page: 1160
  year: 2002
  ident: 10.1016/j.jconrel.2021.09.035_bb0335
  article-title: Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo
  publication-title: Blood.
  doi: 10.1182/blood.V100.4.1160.h81602001160_1160_1167
– volume: 9
  year: 2020
  ident: 10.1016/j.jconrel.2021.09.035_bb0080
  article-title: Development and challenges of antimicrobial peptides for therapeutic applications
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9010024
– volume: 134
  start-page: 4355
  year: 2012
  ident: 10.1016/j.jconrel.2021.09.035_bb0140
  article-title: Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211279u
– volume: 52
  start-page: 7597
  year: 2013
  ident: 10.1016/j.jconrel.2021.09.035_bb0150
  article-title: Controlled systemic release of therapeutic peptides from PEGylated prodrugs by serum proteases
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.201301533
– volume: 7
  start-page: 743
  year: 2001
  ident: 10.1016/j.jconrel.2021.09.035_bb0255
  article-title: In vivo molecular target assessment of matrix metalloproteinase inhibition
  publication-title: Nat. Med.
  doi: 10.1038/89126
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.jconrel.2021.09.035_bb0280
  article-title: Neutrophil: a cell with many roles in inflammation or several cell types?
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00113
– volume: 1768
  start-page: 2578
  year: 2007
  ident: 10.1016/j.jconrel.2021.09.035_bb0085
  article-title: Action mechanism of PEGylated magainin 2 analogue peptide
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2007.06.013
– volume: 22
  start-page: 224
  year: 2009
  ident: 10.1016/j.jconrel.2021.09.035_bb0160
  article-title: Matrix metalloproteinases as drug targets in infections caused by gram-negative bacteria and in septic shock
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00047-08
– volume: 1703461
  start-page: 1703461
  year: 2017
  ident: 10.1016/j.jconrel.2021.09.035_bb0265
  article-title: An “on-site transformation” strategy for treatment of bacterial infection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703461
– volume: 14
  start-page: 883
  year: 2019
  ident: 10.1016/j.jconrel.2021.09.035_bb0245
  article-title: Renal clearable catalytic gold nanoclusters for in vivo disease monitoring
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0527-6
– volume: 99
  year: 2010
  ident: 10.1016/j.jconrel.2021.09.035_bb0185
  article-title: Importance of residue 13 and the C-terminus for the structure and activity of the antimicrobial peptide aurein 2.2
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.08.077
– volume: 14
  start-page: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.09.035_bb0275
  article-title: Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-017-0801-1
– volume: 28
  start-page: 254
  year: 2016
  ident: 10.1016/j.jconrel.2021.09.035_bb0130
  article-title: Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503437
– year: 2017
  ident: 10.1016/j.jconrel.2021.09.035_bb0155
– volume: 49
  start-page: 6974
  year: 2013
  ident: 10.1016/j.jconrel.2021.09.035_bb0250
  article-title: PEG-sheddable polyplex micelles as smart gene carriers based on MMP-cleavable peptide-linked block copolymers
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43576h
– volume: 24
  start-page: 422
  year: 2010
  ident: 10.1016/j.jconrel.2021.09.035_bb0170
  article-title: Staphylococcus aureus increases cytokine and matrix metalloproteinase expression in nasal mucosae of patients with chronic rhinosinusitis and nasal polyps
  publication-title: Am. J. Rhinol. Allergy.
  doi: 10.2500/ajra.2010.24.3509
– volume: 35
  start-page: 443
  year: 2014
  ident: 10.1016/j.jconrel.2021.09.035_bb0045
  article-title: Host defense peptides: Front-line immunomodulators
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2014.07.004
– volume: 460
  start-page: 637
  year: 2009
  ident: 10.1016/j.jconrel.2021.09.035_bb0290
  article-title: Macrophage elastase kills bacteria within murine macrophages
  publication-title: Nature.
  doi: 10.1038/nature08181
– volume: 33
  start-page: 657
  year: 2010
  ident: 10.1016/j.jconrel.2021.09.035_bb0325
  article-title: Neutrophils, from marrow to microbes
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2010.11.011
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.jconrel.2021.09.035_bb0240
  article-title: Visualization of MMP-2 activity using dual-probe nanoparticles to detect potential metastatic cancer cells
  publication-title: Nanomaterials.
  doi: 10.3390/nano8020119
– volume: 3
  start-page: 14650
  year: 2018
  ident: 10.1016/j.jconrel.2021.09.035_bb0010
  article-title: Cell-selective pore forming antimicrobial peptides of the prodomain of human furin: a conserved aromatic/cationic sequence mapping, membrane disruption, and atomic-resolution structure and dynamics
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01876
– volume: 58
  start-page: 45
  year: 2003
  ident: 10.1016/j.jconrel.2021.09.035_bb0095
  article-title: PEGylation of the antimicrobial peptide nisin a: problems and perspectives
  publication-title: Farmaco.
  doi: 10.1016/S0014-827X(02)01301-0
– volume: 9
  year: 2017
  ident: 10.1016/j.jconrel.2021.09.035_bb0110
  article-title: Antimicrobial peptide-polymer conjugates with high activity: influence of polymer molecular weight and peptide sequence on antimicrobial activity, proteolysis, and biocompatibility
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09471
– volume: 12
  start-page: 991
  year: 2013
  ident: 10.1016/j.jconrel.2021.09.035_bb0125
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3776
– volume: 10
  start-page: 243
  year: 2012
  ident: 10.1016/j.jconrel.2021.09.035_bb0055
  article-title: Modulating immunity as a therapy for bacterial infections
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2745
– volume: 111
  year: 2019
  ident: 10.1016/j.jconrel.2021.09.035_bb0070
  article-title: Antimicrobial peptides under clinical investigation
  publication-title: Pept. Sci.
  doi: 10.1002/pep2.24122
– volume: 1758
  start-page: 1178
  year: 2006
  ident: 10.1016/j.jconrel.2021.09.035_bb0315
  article-title: Membrane interactions of antimicrobial peptides from Australian tree frogs
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2006.02.010
– volume: 100
  start-page: 572
  year: 2013
  ident: 10.1016/j.jconrel.2021.09.035_bb0040
  article-title: Peptide design for antimicrobial and immunomodulatory applications
  publication-title: Biopolymers.
  doi: 10.1002/bip.22250
– volume: 6
  year: 2014
  ident: 10.1016/j.jconrel.2021.09.035_bb0305
  article-title: Affinity-based design of a synthetic universal reversal agent for heparin anticoagulants
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3009427
– volume: 1862
  year: 2020
  ident: 10.1016/j.jconrel.2021.09.035_bb0175
  article-title: Insights into the mechanism of action of two analogues of aurein 2.2
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2020.183262
– volume: 261
  start-page: 5645
  year: 1986
  ident: 10.1016/j.jconrel.2021.09.035_bb0215
  article-title: Secreted forms of human neutrophil collagenase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)57263-5
– volume: 96
  start-page: 552
  year: 2009
  ident: 10.1016/j.jconrel.2021.09.035_bb0190
  article-title: Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from australian southern bell frogs
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2008.10.012
– volume: 49
  start-page: 37
  year: 2016
  ident: 10.1016/j.jconrel.2021.09.035_bb0200
  article-title: Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2015.09.003
– volume: 12
  start-page: 89
  year: 2018
  ident: 10.1016/j.jconrel.2021.09.035_bb0120
  article-title: Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07496
– year: 2020
  ident: 10.1016/j.jconrel.2021.09.035_bb0260
  article-title: Enzyme-responsive turn-on nanoprobes for in situ fluorescence imaging and localized photothermal treatment of multidrug-resistant bacterial infections
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00750A
– year: 2019
  ident: 10.1016/j.jconrel.2021.09.035_bb0345
  article-title: Identification of an IDR peptide formulation candidate that prevents peptide aggregation and retains immunomodulatory activity
  publication-title: Pept. Sci.
  doi: 10.1002/pep2.24077
– volume: 14
  year: 2018
  ident: 10.1016/j.jconrel.2021.09.035_bb0035
  article-title: Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007084
– volume: 6
  start-page: 4279
  year: 2012
  ident: 10.1016/j.jconrel.2021.09.035_bb0115
  article-title: Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics
  publication-title: ACS Nano
  doi: 10.1021/nn3008383
– volume: 11
  year: 2018
  ident: 10.1016/j.jconrel.2021.09.035_bb0025
  article-title: Action of antimicrobial peptides against bacterial biofilms
  publication-title: Materials (Basel).
  doi: 10.3390/ma11122468
– volume: 104
  start-page: 20262
  year: 2007
  ident: 10.1016/j.jconrel.2021.09.035_bb0210
  article-title: Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0706438104
– volume: 23
  start-page: 1050
  year: 2012
  ident: 10.1016/j.jconrel.2021.09.035_bb0225
  article-title: Hyperbranched glycopolymers for blood biocompatibility
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc3000723
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.09.035_bb0235
  article-title: New mouse model for chronic infections by gram-negative bacteria enabling the study of anti-infective efficacy and host-microbe interactions
  publication-title: MBio.
  doi: 10.1128/mBio.00140-17
– volume: 6
  start-page: 194
  year: 2016
  ident: 10.1016/j.jconrel.2021.09.035_bb0030
  article-title: Antimicrobial peptides: an emerging category of therapeutic agents
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2016.00194
– volume: 6
  start-page: 35
  year: 2005
  ident: 10.1016/j.jconrel.2021.09.035_bb0050
  article-title: A re-evaluation of the role of host defence peptides in mammalian immunity
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/1389203053027494
– volume: 142
  start-page: 12
  year: 2005
  ident: 10.1016/j.jconrel.2021.09.035_bb0165
  article-title: The paradox of matrix metalloproteinases in infectious disease
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/j.1365-2249.2005.02840.x
– volume: 31
  start-page: 4167
  year: 2010
  ident: 10.1016/j.jconrel.2021.09.035_bb0220
  article-title: Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2010.01.137
– year: 2017
  ident: 10.1016/j.jconrel.2021.09.035_bb0295
– volume: 25
  year: 2020
  ident: 10.1016/j.jconrel.2021.09.035_bb0075
  article-title: Towards robust delivery of antimicrobial peptides to combat bacterial resistance
  publication-title: Molecules
  doi: 10.3390/molecules25133048
– volume: 22
  start-page: 984
  year: 2021
  ident: 10.1016/j.jconrel.2021.09.035_bb0145
  article-title: Design of a PEGylated antimicrobial prodrug with species-specific activation
  publication-title: Biomacromolecules.
  doi: 10.1021/acs.biomac.0c01695
– volume: 173
  start-page: 144
  year: 2008
  ident: 10.1016/j.jconrel.2021.09.035_bb0300
  article-title: Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide pro-gly-pro
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2008.080081
SSID ssj0005347
Score 2.4323683
Snippet Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 220
SubjectTerms abscess
Animals
Antimicrobial Cationic Peptides
antimicrobial properties
biocompatibility
Bioconjugates
biological half-life
Drug Resistance, Multiple, Bacterial
Host defense peptides (HDPs)
induced resistance
Matrix metalloproteinases (MMPs)
metalloproteinases
Methicillin-Resistant Staphylococcus aureus
Mice
microbial load
Microbial Sensitivity Tests
minimum inhibitory concentration
multiple drug resistance
peptides
polyethylene glycol
Polyethylene glycol (PEG)
Polyethylene Glycols
toxicity
Title Enzymatically releasable polyethylene glycol – host defense peptide conjugates with improved activity and biocompatibility
URI https://dx.doi.org/10.1016/j.jconrel.2021.09.035
https://www.ncbi.nlm.nih.gov/pubmed/34597746
https://www.proquest.com/docview/2578768177
https://www.proquest.com/docview/2636827662
Volume 339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhvfRS-t9N26BCySneXVuyrD2GkLBtIQSaQG5CP-Oyi_Eu2d2DQyh9h75hn6Qzsp1tD2mgN9tIWNbIM99I38ww9lEFyIMgno4YQyKdHSc2LfBKFoiHwQUJkSB7pqaX8vNVfrXDjvtYGKJVdrq_1elRW3dPRt1sjpaz2egrghUt6FQwjUm8KYgP30CrfPj9D5qHkG3ItNIJtd5G8Yzmwzn6nNdAJxBZ2qY7ze-zT_fhz2iHTp-yJx2A5EftGJ-xHaifs4PzNgN1c8gvtgFVq0N-wM-3uambF-z2pL5pYpZWW1UNp4opdkXRU3y5qBpAqaEVAv6tarAH__XjJ6coEB6gRHcXGxEHJgDHD5pvaANuxWkjl8_i1gQETmESVI2C2zpwN1tEivu6ZeA2L9nl6cnF8TTpCjAkXkz0OgkqIMBDyIB-ioOslM6nPtU-gFR-Yr1WgA7uWGU2L8pS20KIIJ0uhZOoz70Qr9huvajhDeMKckAkCYX2VrpcOVCgSoF4Dx0m7-SAyX7aje-yk1ORjMr0NLS56aRlSFpmPDEorQEb3nVbtuk5Huqge5mav9aZQRPyUNcP_Row-A_SwYqtYbFZmaj2lE6L4h9tlFA6K5TKBux1u4DuRiwkZQGUau__B_eWPaa7JBIU37Hd9fUG3iNcWrv9-D_ss0dHn75Mz34DluEaQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKOcAF8SY8jYR66ibZtdfrHFHVKkCpKpFKvVl-zFaJok3UJIdFCPEf-If8Ema8uw0cSiVuq12P5PXY42_sb2YYe6cC5EEQT0cMIZHODhObFvgkC8TD4IKESJA9UeMz-fE8P99hB10sDNEqW9vf2PRords3g3Y0B8vpdPAFwYoWdCuYxiTeo1vstsTlS2UM-t__4HkI2cRMK51Q820Yz2DWn6HTeQl0BZGlTb7T_LoN6joAGjeio_vsXosg-fumkw_YDlQP2d5pk4K63ueTbUTVap_v8dNtcur6Eft2WH2tY5pWO5_XnEqm2BWFT_HlYl4Dqg23IeAX8xol-K8fPzmFgfAAJfq72IhIMAE4_tBsQydwK04nuXwazyYgcIqToHIU3FaBu-kictzXDQW3fszOjg4nB-OkrcCQeDHS6ySogAgPMQM6Kg6yUjqf-lT7AFL5kfVaAXq4Q5XZvChLbQshgnS6FE6iQfdCPGG71aKCZ4wryAGhJBTaW-ly5UCBKgUCPvSYvJM9JrthN75NT05VMuam46HNTKstQ9oyw5FBbfVY_0ps2eTnuElAdzo1f000g3vITaJvuzlgcBHSzYqtYLFZmWj3lE6L4h9tlFA6K5TKeuxpM4GueiwkpQGU6vn_d-4NuzOefD42xx9OPr1gd-lLEtmKL9nu-nIDrxA7rd3ruDZ-A9Z-G9E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatically+releasable+polyethylene+glycol+%E2%80%93+host+defense+peptide+conjugates+with+improved+activity+and+biocompatibility&rft.jtitle=Journal+of+controlled+release&rft.au=Drayton%2C+Matthew&rft.au=Alford%2C+Morgan+A.&rft.au=Pletzer%2C+Daniel&rft.au=Haney%2C+Evan+F.&rft.date=2021-11-10&rft.issn=0168-3659&rft.volume=339&rft.spage=220&rft.epage=231&rft_id=info:doi/10.1016%2Fj.jconrel.2021.09.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jconrel_2021_09_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon