The MyD88 Pathway in Plasmacytoid and CD4+ Dendritic Cells Primarily Triggers Type I IFN Production against Measles Virus in a Mouse Infection Model

Infection by measles virus (MV) induces type I IFN via the retinoic acid–inducible gene I/melanoma differentiation–associated gene 5/mitochondrial antiviral signaling protein (MAVS) pathway in human cells. However, the in vivo role of the MAVS pathway in host defense against MV infection remains und...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 191; no. 9; pp. 4740 - 4747
Main Authors Takaki, Hiromi, Takeda, Makoto, Tahara, Maino, Shingai, Masashi, Oshiumi, Hiroyuki, Matsumoto, Misako, Seya, Tsukasa
Format Journal Article
LanguageEnglish
Published United States 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infection by measles virus (MV) induces type I IFN via the retinoic acid–inducible gene I/melanoma differentiation–associated gene 5/mitochondrial antiviral signaling protein (MAVS) pathway in human cells. However, the in vivo role of the MAVS pathway in host defense against MV infection remains undetermined. CD150 transgenic (Tg) mice, which express human CD150, an entry receptor for MV, with the disrupting IFNR gene (Ifnar−/−), are susceptible to MV and serve as a model for MV infection. In this study, we generated CD150Tg/Mavs−/− mice and examined MV permissiveness compared with that in CD150Tg/Ifnar−/− mice. MV replicated mostly in the spleen of i.p.-infected CD150Tg/Ifnar−/− mice. Strikingly, CD150Tg/Mavs−/− mice were not permissive to MV in vivo because of substantial type I IFN induction. MV barely replicated in any other organs tested. When T cells, B cells, and dendritic cells (DCs) isolated from CD150Tg/Mavs−/− splenocytes were cultured with MV in vitro, only the DCs produced type I IFN. In vitro infection analysis using CD150Tg/Mavs−/− DC subsets revealed that CD4+ and plasmacytoid DCs, but not CD8α+ and CD8α−CD4− double negative DCs, were exclusively involved in type I IFN production in response to MV infection. Because CD150Tg/Mavs−/− mice turned permissive to MV by anti-IFNAR Ab, type I IFN produced by CD4+ DCs and plasmacytoid DCs plays a critical role in antiviral protection for neighboring cells expressing IFNAR. Induction of type I IFN in these DC subsets was abolished by the MyD88 inhibitory peptide. Thus, production of type I IFN occurs via the MyD88-dependent and MAVS-independent signaling pathway during MV infection.
AbstractList Infection by measles virus (MV) induces type I IFN via the retinoic acid-inducible gene I/melanoma differentiation-associated gene 5/mitochondrial antiviral signaling protein (MAVS) pathway in human cells. However, the in vivo role of the MAVS pathway in host defense against MV infection remains undetermined. CD150 transgenic (Tg) mice, which express human CD150, an entry receptor for MV, with the disrupting IFNR gene (Ifnar(-/-)), are susceptible to MV and serve as a model for MV infection. In this study, we generated CD150Tg/Mavs(-/-) mice and examined MV permissiveness compared with that in CD150Tg/Ifnar(-/-) mice. MV replicated mostly in the spleen of i.p.-infected CD150Tg/Ifnar(-/-) mice. Strikingly, CD150Tg/Mavs(-/-) mice were not permissive to MV in vivo because of substantial type I IFN induction. MV barely replicated in any other organs tested. When T cells, B cells, and dendritic cells (DCs) isolated from CD150Tg/Mavs(-/-) splenocytes were cultured with MV in vitro, only the DCs produced type I IFN. In vitro infection analysis using CD150Tg/Mavs(-/-) DC subsets revealed that CD4(+) and plasmacytoid DCs, but not CD8α(+) and CD8α(-)CD4(-) double negative DCs, were exclusively involved in type I IFN production in response to MV infection. Because CD150Tg/Mavs(-/-) mice turned permissive to MV by anti-IFNAR Ab, type I IFN produced by CD4(+) DCs and plasmacytoid DCs plays a critical role in antiviral protection for neighboring cells expressing IFNAR. Induction of type I IFN in these DC subsets was abolished by the MyD88 inhibitory peptide. Thus, production of type I IFN occurs via the MyD88-dependent and MAVS-independent signaling pathway during MV infection.Infection by measles virus (MV) induces type I IFN via the retinoic acid-inducible gene I/melanoma differentiation-associated gene 5/mitochondrial antiviral signaling protein (MAVS) pathway in human cells. However, the in vivo role of the MAVS pathway in host defense against MV infection remains undetermined. CD150 transgenic (Tg) mice, which express human CD150, an entry receptor for MV, with the disrupting IFNR gene (Ifnar(-/-)), are susceptible to MV and serve as a model for MV infection. In this study, we generated CD150Tg/Mavs(-/-) mice and examined MV permissiveness compared with that in CD150Tg/Ifnar(-/-) mice. MV replicated mostly in the spleen of i.p.-infected CD150Tg/Ifnar(-/-) mice. Strikingly, CD150Tg/Mavs(-/-) mice were not permissive to MV in vivo because of substantial type I IFN induction. MV barely replicated in any other organs tested. When T cells, B cells, and dendritic cells (DCs) isolated from CD150Tg/Mavs(-/-) splenocytes were cultured with MV in vitro, only the DCs produced type I IFN. In vitro infection analysis using CD150Tg/Mavs(-/-) DC subsets revealed that CD4(+) and plasmacytoid DCs, but not CD8α(+) and CD8α(-)CD4(-) double negative DCs, were exclusively involved in type I IFN production in response to MV infection. Because CD150Tg/Mavs(-/-) mice turned permissive to MV by anti-IFNAR Ab, type I IFN produced by CD4(+) DCs and plasmacytoid DCs plays a critical role in antiviral protection for neighboring cells expressing IFNAR. Induction of type I IFN in these DC subsets was abolished by the MyD88 inhibitory peptide. Thus, production of type I IFN occurs via the MyD88-dependent and MAVS-independent signaling pathway during MV infection.
Infection by measles virus (MV) induces type I IFN via the retinoic acid–inducible gene I/melanoma differentiation–associated gene 5/mitochondrial antiviral signaling protein (MAVS) pathway in human cells. However, the in vivo role of the MAVS pathway in host defense against MV infection remains undetermined. CD150 transgenic (Tg) mice, which express human CD150, an entry receptor for MV, with the disrupting IFNR gene (Ifnar−/−), are susceptible to MV and serve as a model for MV infection. In this study, we generated CD150Tg/Mavs−/− mice and examined MV permissiveness compared with that in CD150Tg/Ifnar−/− mice. MV replicated mostly in the spleen of i.p.-infected CD150Tg/Ifnar−/− mice. Strikingly, CD150Tg/Mavs−/− mice were not permissive to MV in vivo because of substantial type I IFN induction. MV barely replicated in any other organs tested. When T cells, B cells, and dendritic cells (DCs) isolated from CD150Tg/Mavs−/− splenocytes were cultured with MV in vitro, only the DCs produced type I IFN. In vitro infection analysis using CD150Tg/Mavs−/− DC subsets revealed that CD4+ and plasmacytoid DCs, but not CD8α+ and CD8α−CD4− double negative DCs, were exclusively involved in type I IFN production in response to MV infection. Because CD150Tg/Mavs−/− mice turned permissive to MV by anti-IFNAR Ab, type I IFN produced by CD4+ DCs and plasmacytoid DCs plays a critical role in antiviral protection for neighboring cells expressing IFNAR. Induction of type I IFN in these DC subsets was abolished by the MyD88 inhibitory peptide. Thus, production of type I IFN occurs via the MyD88-dependent and MAVS-independent signaling pathway during MV infection.
Infection by measles virus (MV) induces type I IFN via the retinoic acid-inducible gene I/melanoma differentiation-associated gene 5/mitochondrial antiviral signaling protein (MAVS) pathway in human cells. However, the in vivo role of the MAVS pathway in host defense against MV infection remains undetermined. CD150 transgenic (Tg) mice, which express human CD150, an entry receptor for MV, with the disrupting IFNR gene (Ifnar-/-), are susceptible to MV and serve as a model for MV infection. In this study, we generated CD150Tg/Mavs-/- mice and examined MV permissiveness compared with that in CD150Tg/Ifnar-/- mice. MV replicated mostly in the spleen of i.p.-infected CD150Tg/Ifnar-/- mice. Strikingly, CD150Tg/Mavs-/- mice were not permissive to MV in vivo because of substantial type I IFN induction. MV barely replicated in any other organs tested. When T cells, B cells, and dendritic cells (DCs) isolated from CD150Tg/Mavs-/- splenocytes were cultured with MV in vitro, only the DCs produced type I IFN. In vitro infection analysis using CD150Tg/Mavs-/- DC subsets revealed that CD4+ and plasmacytoid DCs, but not CD8 alpha + and CD8 alpha -CD4- double negative DCs, were exclusively involved in type I IFN production in response to MV infection. Because CD150Tg/Mavs-/- mice turned permissive to MV by anti-IFNAR Ab, type I IFN produced by CD4+ DCs and plasmacytoid DCs plays a critical role in antiviral protection for neighboring cells expressing IFNAR. Induction of type I IFN in these DC subsets was abolished by the MyD88 inhibitory peptide. Thus, production of type I IFN occurs via the MyD88-dependent and MAVS-independent signaling pathway during MV infection.
Infection by measles virus (MV) induces type I IFN via the retinoic acid-inducible gene I/melanoma differentiation-associated gene 5/mitochondrial antiviral signaling protein (MAVS) pathway in human cells. However, the in vivo role of the MAVS pathway in host defense against MV infection remains undetermined. CD150 transgenic (Tg) mice, which express human CD150, an entry receptor for MV, with the disrupting IFNR gene (Ifnar(-/-)), are susceptible to MV and serve as a model for MV infection. In this study, we generated CD150Tg/Mavs(-/-) mice and examined MV permissiveness compared with that in CD150Tg/Ifnar(-/-) mice. MV replicated mostly in the spleen of i.p.-infected CD150Tg/Ifnar(-/-) mice. Strikingly, CD150Tg/Mavs(-/-) mice were not permissive to MV in vivo because of substantial type I IFN induction. MV barely replicated in any other organs tested. When T cells, B cells, and dendritic cells (DCs) isolated from CD150Tg/Mavs(-/-) splenocytes were cultured with MV in vitro, only the DCs produced type I IFN. In vitro infection analysis using CD150Tg/Mavs(-/-) DC subsets revealed that CD4(+) and plasmacytoid DCs, but not CD8α(+) and CD8α(-)CD4(-) double negative DCs, were exclusively involved in type I IFN production in response to MV infection. Because CD150Tg/Mavs(-/-) mice turned permissive to MV by anti-IFNAR Ab, type I IFN produced by CD4(+) DCs and plasmacytoid DCs plays a critical role in antiviral protection for neighboring cells expressing IFNAR. Induction of type I IFN in these DC subsets was abolished by the MyD88 inhibitory peptide. Thus, production of type I IFN occurs via the MyD88-dependent and MAVS-independent signaling pathway during MV infection.
Author Tahara, Maino
Takaki, Hiromi
Takeda, Makoto
Oshiumi, Hiroyuki
Matsumoto, Misako
Shingai, Masashi
Seya, Tsukasa
Author_xml – sequence: 1
  givenname: Hiromi
  surname: Takaki
  fullname: Takaki, Hiromi
– sequence: 2
  givenname: Makoto
  surname: Takeda
  fullname: Takeda, Makoto
– sequence: 3
  givenname: Maino
  surname: Tahara
  fullname: Tahara, Maino
– sequence: 4
  givenname: Masashi
  surname: Shingai
  fullname: Shingai, Masashi
– sequence: 5
  givenname: Hiroyuki
  surname: Oshiumi
  fullname: Oshiumi, Hiroyuki
– sequence: 6
  givenname: Misako
  surname: Matsumoto
  fullname: Matsumoto, Misako
– sequence: 7
  givenname: Tsukasa
  surname: Seya
  fullname: Seya, Tsukasa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24078691$$D View this record in MEDLINE/PubMed
BookMark eNqFkT9v2zAQxYkiReMk3TsVHAsUSo4SRYljYTetgbjxIHQlThLlMKAol5QQ6Hv0A5eu7aVAkemG-737894VuXCD04R8YHDLgcu7Z9P3kxvsLcuAFZy_IQuW55AIAeKCLADSNGGFKC7JVQjPACAg5e_IZcqhKIVkC_K7etJ0M6_Kkm5xfHrBmRpHtxZDj808Dqal6Fq6XPHPdKVd681oGrrU1ga69aZHb-xMK292O-0Drea9pmu6vv8Ru0M7NaMZHMUdGhdGutEYrA70p_FTOOxBuhmmEBWu00d0M7Ta3pC3Hdqg35_qNanuv1bL78nD47f18stD0mSyHJMWRFciNNhJWQPDkndCZpCXvGW1YLKWJYDO0rTAWnZMp1kHAtO8TFnsN9k1-XQcu_fDr0mHUfUmNPE1dDqepaKVTGQ5SHgd5TyTUuZcRvTjCZ3qXrdq_9elWZ09j4A4Ao0fQvC6U40Z8fD96NFYxUAdwlXncNUp3CiEf4Tn2f-V_AGjSKiN
CitedBy_id crossref_primary_10_1007_s11033_016_4078_8
crossref_primary_10_1128_JVI_01305_15
crossref_primary_10_3390_cells11244006
crossref_primary_10_1038_mi_2017_48
crossref_primary_10_1016_j_virol_2015_03_039
crossref_primary_10_1016_j_molimm_2013_08_007
crossref_primary_10_1159_000442460
crossref_primary_10_1089_vim_2016_0178
crossref_primary_10_4049_jimmunol_1401056
crossref_primary_10_1093_infdis_jiu103
crossref_primary_10_3390_s151027160
crossref_primary_10_4049_jimmunol_1400924
crossref_primary_10_2222_jsv_63_135
crossref_primary_10_1128_JVI_01014_15
crossref_primary_10_1016_j_biocel_2014_05_001
crossref_primary_10_1111_1348_0421_12477
crossref_primary_10_3233_JIFS_189265
crossref_primary_10_3390_v13020170
Cites_doi 10.1128/JVI.02134-06
10.1016/j.micinf.2006.04.005
10.1016/j.immuni.2010.01.013
10.1073/pnas.0505945102
10.1016/j.immuni.2007.07.013
10.1016/j.coviro.2012.10.008
10.1073/pnas.0403597101
10.1016/j.immuni.2006.08.009
10.1371/journal.pone.0049573
10.4049/jimmunol.164.6.2978
10.1371/journal.ppat.1001263
10.1038/ni886
10.1128/JVI.01559-09
10.1126/science.1093620
10.1128/JVI.01264-07
10.1089/jir.2006.26.804
10.1038/ni1243
10.4049/jimmunol.170.8.4102
10.1111/j.1600-065X.2008.00737.x
10.1128/jvi.64.2.700-705.1990
10.1074/jbc.C400613200
10.1016/j.virol.2004.03.011
10.1016/j.addr.2007.12.001
10.1126/science.1087262
10.1038/nature10639
10.1126/science.1093616
10.1038/nm1191
10.1128/JVI.02525-09
10.4049/jimmunol.169.12.6668
10.1128/JVI.01690-09
10.1038/35022579
10.4049/jimmunol.1101503
10.1371/journal.ppat.1002240
10.1038/ni736
10.1002/eji.200323797
10.1073/pnas.0605978104
10.1038/ni758
10.1128/JVI.00209-06
10.4049/jimmunol.179.9.6123
10.1128/JVI.74.14.6643-6647.2000
10.4049/jimmunol.175.5.3252
10.1084/jem.20060792
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
DOI 10.4049/jimmunol.1301744
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
DatabaseTitleList MEDLINE - Academic
CrossRef
AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 4747
ExternalDocumentID 24078691
10_4049_jimmunol_1301744
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
0R~
18M
1KJ
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AGORE
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CITATION
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
K-O
KQ8
L7B
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XJT
XSW
XTH
YHG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
ID FETCH-LOGICAL-c398t-d06f8a0caf99b01a84f6930584d1b619b9800e3227ab9f1e23f06a258211b6c3
ISSN 0022-1767
1550-6606
IngestDate Thu Jul 10 23:55:43 EDT 2025
Mon Jul 21 10:39:59 EDT 2025
Thu Apr 03 07:07:28 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
Tue Jul 01 05:16:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-d06f8a0caf99b01a84f6930584d1b619b9800e3227ab9f1e23f06a258211b6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24078691
PQID 1443999549
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1551635090
proquest_miscellaneous_1443999549
pubmed_primary_24078691
crossref_citationtrail_10_4049_jimmunol_1301744
crossref_primary_10_4049_jimmunol_1301744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
2013-Nov-01
20131101
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2013
References Mühlebach (2025032405515282700_r13) 2011; 480
Tatsuo (2025032405515282700_r12) 2000; 406
Asselin-Paturel (2025032405515282700_r33) 2001; 2
Luber (2025032405515282700_r35) 2010; 32
Ohno (2025032405515282700_r24) 2007; 81
Delpeut (2025032405515282700_r15) 2012; 2
Welstead (2025032405515282700_r22) 2005; 102
Servet-Delprat (2025032405515282700_r21) 2003; 276
Takeda (2025032405515282700_r28) 2000; 74
Hemmi (2025032405515282700_r36) 2002; 3
Griffin (2025032405515282700_r11) 1995; 191
Diebold (2025032405515282700_r38) 2004; 303
Akazawa (2025032405515282700_r25) 2007; 104
Edwards (2025032405515282700_r34) 2003; 33
Ferreira (2025032405515282700_r17) 2010; 84
Shingai (2025032405515282700_r30) 2007; 179
Vremec (2025032405515282700_r32) 2000; 164
Heil (2025032405515282700_r37) 2004; 303
Yamamoto (2025032405515282700_r7) 2003; 301
Kumar (2025032405515282700_r8) 2006; 203
Honda (2025032405515282700_r1) 2006; 25
Noyce (2025032405515282700_r14) 2011; 7
Hornung (2025032405515282700_r39) 2005; 11
Takeuchi (2025032405515282700_r3) 2009; 227
Yamamoto (2025032405515282700_r4) 2002; 169
Oshiumi (2025032405515282700_r5) 2003; 4
Takeda (2025032405515282700_r29) 2007; 81
Kobune (2025032405515282700_r27) 1990; 64
Datta (2025032405515282700_r45) 2003; 170
Loiarro (2025032405515282700_r40) 2005; 280
Kumagai (2025032405515282700_r41) 2007; 27
Lemon (2025032405515282700_r18) 2011; 7
Sellin (2025032405515282700_r23) 2006; 80
Yoneyama (2025032405515282700_r2) 2008; 60
Oshiumi (2025032405515282700_r26) 2011; 187
Schneider-Schaulies (2025032405515282700_r20) 2003; 276
Berghäll (2025032405515282700_r10) 2006; 8
Mesman (2025032405515282700_r19) 2012; 7
Shingai (2025032405515282700_r16) 2005; 175
Hahm (2025032405515282700_r42) 2004; 323
von Messling (2025032405515282700_r46) 2004; 101
Kawai (2025032405515282700_r6) 2005; 6
Takaki (2025032405515282700_r44) 2013
Ikegame (2025032405515282700_r9) 2010; 84
Sheehan (2025032405515282700_r31) 2006; 26
Koga (2025032405515282700_r43) 2010; 84
References_xml – volume: 81
  start-page: 1650
  year: 2007
  ident: 2025032405515282700_r24
  article-title: Measles virus infection of SLAM (CD150) knockin mice reproduces tropism and immunosuppression in human infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.02134-06
– volume: 8
  start-page: 2138
  year: 2006
  ident: 2025032405515282700_r10
  article-title: The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines
  publication-title: Microbes Infect.
  doi: 10.1016/j.micinf.2006.04.005
– volume: 32
  start-page: 279
  year: 2010
  ident: 2025032405515282700_r35
  article-title: Quantitative proteomics reveals subset-specific viral recognition in dendritic cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.01.013
– volume: 102
  start-page: 16415
  year: 2005
  ident: 2025032405515282700_r22
  article-title: Measles virus replication in lymphatic cells and organs of CD150 (SLAM) transgenic mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0505945102
– volume: 27
  start-page: 240
  year: 2007
  ident: 2025032405515282700_r41
  article-title: Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.07.013
– volume: 2
  start-page: 773
  year: 2012
  ident: 2025032405515282700_r15
  article-title: Host factors and measles virus replication
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2012.10.008
– volume: 101
  start-page: 14216
  year: 2004
  ident: 2025032405515282700_r46
  article-title: Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0403597101
– volume: 25
  start-page: 349
  year: 2006
  ident: 2025032405515282700_r1
  article-title: Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.009
– volume: 7
  start-page: e49573
  year: 2012
  ident: 2025032405515282700_r19
  article-title: A prominent role for DC-SIGN+ dendritic cells in initiation and dissemination of measles virus infection in non-human primates
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049573
– volume: 164
  start-page: 2978
  year: 2000
  ident: 2025032405515282700_r32
  article-title: CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.164.6.2978
– volume: 7
  start-page: e1001263
  year: 2011
  ident: 2025032405515282700_r18
  article-title: Early target cells of measles virus after aerosol infection of non-human primates
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001263
– volume: 4
  start-page: 161
  year: 2003
  ident: 2025032405515282700_r5
  article-title: TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction
  publication-title: Nat. Immunol.
  doi: 10.1038/ni886
– volume-title: Molec. Immunol.
  year: 2013
  ident: 2025032405515282700_r44
  article-title: MAVS-dependent IRF3/IRF7 bypass of interferon β-induction restricts the response to measles infection in CD150Tg mouse bone marrow-derived dendritic cells
– volume: 84
  start-page: 3033
  year: 2010
  ident: 2025032405515282700_r17
  article-title: Measles virus infection of alveolar macrophages and dendritic cells precedes spread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activation molecule (SLAM, CD150)
  publication-title: J. Virol.
  doi: 10.1128/JVI.01559-09
– volume: 303
  start-page: 1526
  year: 2004
  ident: 2025032405515282700_r37
  article-title: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8
  publication-title: Science
  doi: 10.1126/science.1093620
– volume: 81
  start-page: 12091
  year: 2007
  ident: 2025032405515282700_r29
  article-title: A human lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism
  publication-title: J. Virol.
  doi: 10.1128/JVI.01264-07
– volume: 26
  start-page: 804
  year: 2006
  ident: 2025032405515282700_r31
  article-title: Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.2006.26.804
– volume: 6
  start-page: 981
  year: 2005
  ident: 2025032405515282700_r6
  article-title: IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1243
– volume: 170
  start-page: 4102
  year: 2003
  ident: 2025032405515282700_r45
  article-title: A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.8.4102
– volume: 227
  start-page: 75
  year: 2009
  ident: 2025032405515282700_r3
  article-title: Innate immunity to virus infection
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2008.00737.x
– volume: 64
  start-page: 700
  year: 1990
  ident: 2025032405515282700_r27
  article-title: Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus
  publication-title: J. Virol.
  doi: 10.1128/jvi.64.2.700-705.1990
– volume: 280
  start-page: 15809
  year: 2005
  ident: 2025032405515282700_r40
  article-title: Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-kappaB
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C400613200
– volume: 323
  start-page: 292
  year: 2004
  ident: 2025032405515282700_r42
  article-title: Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression
  publication-title: Virology
  doi: 10.1016/j.virol.2004.03.011
– volume: 60
  start-page: 841
  year: 2008
  ident: 2025032405515282700_r2
  article-title: Cytoplasmic recognition of RNA
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2007.12.001
– volume: 301
  start-page: 640
  year: 2003
  ident: 2025032405515282700_r7
  article-title: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway
  publication-title: Science
  doi: 10.1126/science.1087262
– volume: 480
  start-page: 530
  year: 2011
  ident: 2025032405515282700_r13
  article-title: Adherens junction protein nectin-4 is the epithelial receptor for measles virus
  publication-title: Nature
  doi: 10.1038/nature10639
– volume: 303
  start-page: 1529
  year: 2004
  ident: 2025032405515282700_r38
  article-title: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA
  publication-title: Science
  doi: 10.1126/science.1093616
– volume: 11
  start-page: 263
  year: 2005
  ident: 2025032405515282700_r39
  article-title: Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7
  publication-title: Nat. Med.
  doi: 10.1038/nm1191
– volume: 84
  start-page: 5360
  year: 2010
  ident: 2025032405515282700_r43
  article-title: Measles virus-induced immunosuppression in SLAM knock-in mice
  publication-title: J. Virol.
  doi: 10.1128/JVI.02525-09
– volume: 169
  start-page: 6668
  year: 2002
  ident: 2025032405515282700_r4
  article-title: Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.169.12.6668
– volume: 276
  start-page: 77
  year: 2003
  ident: 2025032405515282700_r20
  article-title: Dendritic cells and measles virus infection
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 84
  start-page: 372
  year: 2010
  ident: 2025032405515282700_r9
  article-title: Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.01690-09
– volume: 406
  start-page: 893
  year: 2000
  ident: 2025032405515282700_r12
  article-title: SLAM (CDw150) is a cellular receptor for measles virus
  publication-title: Nature
  doi: 10.1038/35022579
– volume: 187
  start-page: 5320
  year: 2011
  ident: 2025032405515282700_r26
  article-title: The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101503
– volume: 276
  start-page: 103
  year: 2003
  ident: 2025032405515282700_r21
  article-title: Measles virus and dendritic cell functions: how specific response cohabits with immunosuppression
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 7
  start-page: e1002240
  year: 2011
  ident: 2025032405515282700_r14
  article-title: Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002240
– volume: 2
  start-page: 1144
  year: 2001
  ident: 2025032405515282700_r33
  article-title: Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology
  publication-title: Nat. Immunol.
  doi: 10.1038/ni736
– volume: 33
  start-page: 827
  year: 2003
  ident: 2025032405515282700_r34
  article-title: Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200323797
– volume: 104
  start-page: 252
  year: 2007
  ident: 2025032405515282700_r25
  article-title: Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0605978104
– volume: 3
  start-page: 196
  year: 2002
  ident: 2025032405515282700_r36
  article-title: Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway
  publication-title: Nat. Immunol.
  doi: 10.1038/ni758
– volume: 80
  start-page: 6420
  year: 2006
  ident: 2025032405515282700_r23
  article-title: High pathogenicity of wild-type measles virus infection in CD150 (SLAM) transgenic mice
  publication-title: J. Virol.
  doi: 10.1128/JVI.00209-06
– volume: 179
  start-page: 6123
  year: 2007
  ident: 2025032405515282700_r30
  article-title: Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.9.6123
– volume: 191
  start-page: 117
  year: 1995
  ident: 2025032405515282700_r11
  article-title: Immune responses during measles virus infection
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 74
  start-page: 6643
  year: 2000
  ident: 2025032405515282700_r28
  article-title: Recovery of pathogenic measles virus from cloned cDNA
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.14.6643-6647.2000
– volume: 175
  start-page: 3252
  year: 2005
  ident: 2025032405515282700_r16
  article-title: Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.175.5.3252
– volume: 203
  start-page: 1795
  year: 2006
  ident: 2025032405515282700_r8
  article-title: Essential role of IPS-1 in innate immune responses against RNA viruses
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20060792
SSID ssj0006024
Score 2.198261
Snippet Infection by measles virus (MV) induces type I IFN via the retinoic acid–inducible gene I/melanoma differentiation–associated gene 5/mitochondrial antiviral...
Infection by measles virus (MV) induces type I IFN via the retinoic acid-inducible gene I/melanoma differentiation-associated gene 5/mitochondrial antiviral...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4740
SubjectTerms Adaptor Proteins, Signal Transducing - biosynthesis
Adaptor Proteins, Signal Transducing - genetics
Animals
Antigens, CD - biosynthesis
Antigens, CD - metabolism
B-Lymphocytes - immunology
CD4 Antigens - metabolism
CD8 Antigens - metabolism
Cells, Cultured
Dendritic Cells - immunology
Dendritic Cells - metabolism
Disease Models, Animal
Humans
Interferon Type I - biosynthesis
Measles - immunology
Measles - virology
Measles virus
Measles virus - immunology
Mice
Mice, Inbred C57BL
Mice, Knockout
Myeloid Differentiation Factor 88 - metabolism
Receptor, Interferon alpha-beta - biosynthesis
Receptor, Interferon alpha-beta - genetics
Receptors, Cell Surface - biosynthesis
Receptors, Cell Surface - metabolism
Signaling Lymphocytic Activation Molecule Family Member 1
Spleen - cytology
T-Lymphocytes - immunology
Title The MyD88 Pathway in Plasmacytoid and CD4+ Dendritic Cells Primarily Triggers Type I IFN Production against Measles Virus in a Mouse Infection Model
URI https://www.ncbi.nlm.nih.gov/pubmed/24078691
https://www.proquest.com/docview/1443999549
https://www.proquest.com/docview/1551635090
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKEIgXBANG-ScjsQcUheWPmzqPsK5aYS0PdNLeIid2RrQ1ndoUVD4HH4EPyp3tpGEa0-Alqq5p3Pp-te_Od_cj5I3opXk_yyOXSxa5rB_1XB5I6YKxwNNYqH6YYe3weBIdHrOPJ72TTudXK2tpVaXvsh9X1pX8j1ZBBnrFKtl_0GzzUBDAa9AvXEHDcL2xjsfrAefYHvXrd6Fr-C7AHp6JbF3NC92G1dkfsN3ggwMLjNS8Bg4G65fOhe4zgdGNCjz0Uyzk1fHYkTMaTjBvS64sjfipKMCIdGZKLM_V0vlWLFY6i1Y4GDdQTUJXaXh12vbupvLMNKfAahTT9WlXn615rUjEVJwJS6JdLOazoiVXUpjCorN5Nd_Isdm0kRdlI_6CMTVDsj0WS-SKakc2_NCW-LUW4x64tpFnW2VfIatX8NhvQTVurcesb5pBXd4oGDhGuFHYn42c2OCasc2mWCcCTD4nw-Ojo2R6cDK9RW4H4IwgT8Zg9KnZ7yPPUCfX38wchuMIe5ef_6fx8xePRls20wfkvlUPfW_w9ZB0VLlN7hiS0vU2uTu26RePyE9QJ9WAoxZwtChpG3AUAEcBcA5t4EY13GgDN1rDjSLc6IgC3OgGbtTCjVq4UQ03HEdQDTfawI1quD0m0-HBdP_QtbQebhbGvHKlF-VceJnI4zj1fMFZjnycYAlLPwV_Po3BiVGw0fRFGue-CsLci0SAFd3wfhY-IVvlvFRPCeUsDKTIhGQ8Ylmo0oCrUGYsB5vXS2PZJXv1dCeZbXmPzCvnCbi-qKCkVlBiFdQlb5tPmHlZX3Pv61qDCazJOJmiVDAR4E6jl48H6NfcgyfUIZjrXpfsGPU3I2KUhUex_-wGIzwn9zb_nRdkq1qs1Euwk6v0lYbpb6qJwwY
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+MyD88+pathway+in+plasmacytoid+and+CD4%2B+dendritic+cells+primarily+triggers+type+I+IFN+production+against+measles+virus+in+a+mouse+infection+model&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Takaki%2C+Hiromi&rft.au=Takeda%2C+Makoto&rft.au=Tahara%2C+Maino&rft.au=Shingai%2C+Masashi&rft.date=2013-11-01&rft.issn=1550-6606&rft.eissn=1550-6606&rft.volume=191&rft.issue=9&rft.spage=4740&rft_id=info:doi/10.4049%2Fjimmunol.1301744&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon