Magnetohydrodynamic Perspective on the Disappearance of Mercury’s Bow Shock by Helios Data Exploration
In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M F ) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower M F solar wind due to its proximity to the Sun, resulting in a higher possibility of the di...
Saved in:
Published in | The Astrophysical journal Vol. 961; no. 1; pp. 83 - 97 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.01.2024
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ad0a8a |
Cover
Loading…
Abstract | In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number (
M
F
) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower
M
F
solar wind due to its proximity to the Sun, resulting in a higher possibility of the disappearance of its bow shock. To examine the variability of Mercury’s bow shock in response to the solar wind properties, analyses of the observations by the Helios spacecraft at 0.30–0.50 au during 1975–1983, covering solar cycle 21, together with the theoretical solutions and MHD simulations are conducted in this study. Our observational analyses show that more solar wind data with extremely low fast-mode Mach numbers (say,
M
F
≤ 1.5) are observed during the rising and maximum phases and are characterized by a significantly low proton number density. It is also found that approximately 35% of the extremely low fast-mode Mach number solar wind events (
M
F
≤ 1.5) occur within the main body of interplanetary coronal mass ejections (ICMEs), while about 58% of them are unrelated to ICMEs. Three of these events are selected to demonstrate that the occurrences of the solar wind with
M
F
≤ 1.5 may not be necessarily affected by ICMEs. Our theoretical and numerical results indicate that when Mercury encounters the solar wind with
M
F
≤ 1.5, its bow shock would move farther away, become flattened, and even disappear. Furthermore, our calculations suggest that Mercury’s bow shock would become a slow-mode shock with a concave-upward structure under such extreme solar wind conditions. |
---|---|
AbstractList | In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number (MF) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower MF solar wind due to its proximity to the Sun, resulting in a higher possibility of the disappearance of its bow shock. To examine the variability of Mercury’s bow shock in response to the solar wind properties, analyses of the observations by the Helios spacecraft at 0.30–0.50 au during 1975–1983, covering solar cycle 21, together with the theoretical solutions and MHD simulations are conducted in this study. Our observational analyses show that more solar wind data with extremely low fast-mode Mach numbers (say, MF ≤ 1.5) are observed during the rising and maximum phases and are characterized by a significantly low proton number density. It is also found that approximately 35% of the extremely low fast-mode Mach number solar wind events (MF ≤ 1.5) occur within the main body of interplanetary coronal mass ejections (ICMEs), while about 58% of them are unrelated to ICMEs. Three of these events are selected to demonstrate that the occurrences of the solar wind with MF ≤ 1.5 may not be necessarily affected by ICMEs. Our theoretical and numerical results indicate that when Mercury encounters the solar wind with MF ≤ 1.5, its bow shock would move farther away, become flattened, and even disappear. Furthermore, our calculations suggest that Mercury’s bow shock would become a slow-mode shock with a concave-upward structure under such extreme solar wind conditions. In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M F ) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower M F solar wind due to its proximity to the Sun, resulting in a higher possibility of the disappearance of its bow shock. To examine the variability of Mercury’s bow shock in response to the solar wind properties, analyses of the observations by the Helios spacecraft at 0.30–0.50 au during 1975–1983, covering solar cycle 21, together with the theoretical solutions and MHD simulations are conducted in this study. Our observational analyses show that more solar wind data with extremely low fast-mode Mach numbers (say, M F ≤ 1.5) are observed during the rising and maximum phases and are characterized by a significantly low proton number density. It is also found that approximately 35% of the extremely low fast-mode Mach number solar wind events ( M F ≤ 1.5) occur within the main body of interplanetary coronal mass ejections (ICMEs), while about 58% of them are unrelated to ICMEs. Three of these events are selected to demonstrate that the occurrences of the solar wind with M F ≤ 1.5 may not be necessarily affected by ICMEs. Our theoretical and numerical results indicate that when Mercury encounters the solar wind with M F ≤ 1.5, its bow shock would move farther away, become flattened, and even disappear. Furthermore, our calculations suggest that Mercury’s bow shock would become a slow-mode shock with a concave-upward structure under such extreme solar wind conditions. In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M _F ) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower M _F solar wind due to its proximity to the Sun, resulting in a higher possibility of the disappearance of its bow shock. To examine the variability of Mercury’s bow shock in response to the solar wind properties, analyses of the observations by the Helios spacecraft at 0.30–0.50 au during 1975–1983, covering solar cycle 21, together with the theoretical solutions and MHD simulations are conducted in this study. Our observational analyses show that more solar wind data with extremely low fast-mode Mach numbers (say, M _F ≤ 1.5) are observed during the rising and maximum phases and are characterized by a significantly low proton number density. It is also found that approximately 35% of the extremely low fast-mode Mach number solar wind events ( M _F ≤ 1.5) occur within the main body of interplanetary coronal mass ejections (ICMEs), while about 58% of them are unrelated to ICMEs. Three of these events are selected to demonstrate that the occurrences of the solar wind with M _F ≤ 1.5 may not be necessarily affected by ICMEs. Our theoretical and numerical results indicate that when Mercury encounters the solar wind with M _F ≤ 1.5, its bow shock would move farther away, become flattened, and even disappear. Furthermore, our calculations suggest that Mercury’s bow shock would become a slow-mode shock with a concave-upward structure under such extreme solar wind conditions. |
Author | Lai, S. H. Ip, W.-H. Yang, Y.-H. |
Author_xml | – sequence: 1 givenname: S. H. orcidid: 0000-0002-9024-3326 surname: Lai fullname: Lai, S. H. organization: National Central University Department of Space Science and Engineering, Taoyuan, Taiwan, R.O.C – sequence: 2 givenname: Y.-H. orcidid: 0000-0002-7547-4521 surname: Yang fullname: Yang, Y.-H. organization: National Central University Center for Astronautical Physics and Engineering, Taoyuan, Taiwan, R.O.C – sequence: 3 givenname: W.-H. orcidid: 0000-0002-3140-5014 surname: Ip fullname: Ip, W.-H. organization: National Central University Graduate Institute of Astronomy, Taoyuan, Taiwan, R.O.C |
BookMark | eNp9kU1uFDEQhS2USEwCe5aWYEkTu-1p20tIAomUKJEAiZ1V_st4mLSN3QP0jmtwvZwkPTQKm4hVqZ5evarSd4D2-tR7hF5Q8oZJLo7oksmGs6U4AkdAwhO0eJD20IIQwpuOiS9P0UGt613bKrVAq0u46f2QVqMryY093EaLr32p2dshfvc49XhYeXwSK-TsoUBvJzHgS1_stox3v35X_C79wB9XyX7FZsRnfhNTxScwAD79mTepwBBT_wztB9hU__xvPUSf359-Oj5rLq4-nB-_vWgsU3JobAhBqekjr0AZIZQzbQDKmaLggrctZaSlTnjnuJSECE64hZYxQwmoDtghOp9zXYK1ziXeQhl1gqj_CKncaChDtBuvPbEsGGEIeMtbKZVddhaIYQ5a45yZsl7OWbmkb1tfB71O29JP5-tW0WUnOBd8cpHZZUuqtfjwsJUSvWOjdyD0DoSe2Uwjr-eRmPK_zP_YXz1ih7zWqqOaasl0doHdAzhBoVs |
Cites_doi | 10.1029/JA076i028p06700 10.1007/s11207-015-0828-3 10.1029/92JA02235 10.1029/GL013i006p00513 10.1029/JA083iA05p02177 10.1029/2007JA012790 10.3847/1538-4357/ab6170 10.3847/1538-4357/ab7349 10.1007/s11214-006-9016-y 10.1007/s11430-021-9828-010.1007/s11430-021-9828-0 10.1086/338757 10.1029/2018JA026166 10.1007/s11207-023-02152-3 10.1002/jgra.50237 10.1029/2010JA015317 10.1029/JA086iA13p11401 10.1016/j.icarus.2010.01.008 10.3847/2515-5172/ab873d 10.1029/JA092iA10p11173 10.1016/0032-0633(91)90003-S 10.1006/icar.1999.6252 10.1016/0273-1177(89)90110-5 10.1016/j.pss.2018.01.010 10.1007/BF00153841 10.1016/S0032-0633(01)00098-8 10.1029/2019JA027691 10.5194/angeo-25-533-2007 10.1002/2016JA023548 10.1016/j.pss.2021.105176 10.1086/159903 10.1016/j.asr.2003.08.042 10.1007/BF00173965 10.1029/2004JA010724 10.1016/j.pss.2016.08.012 10.1029/2008GL036747 10.1086/158355 10.1016/j.pss.2017.12.016 10.1029/2010GL044413 10.1016/0032-0633(71)90011-0 10.1029/JA092iA05p04349 10.1103/PhysRevLett.101.065003 10.1002/jgra.50428 10.1007/s11214-020-00712-8 10.1016/0273-1177(94)00128-N 10.1038/s41567-022-01837-z 10.1016/j.pss.2017.01.012 10.1029/2019JA026892 10.1029/2020JA028281 10.1051/0004-6361/202245162 10.1002/2015JA021143 10.1016/0273-1177(95)00327-B 10.1051/0004-6361/202243911 10.3847/1538-3881/ac9d89 10.1029/2010JA015881 10.1002/2017JA024435 10.1029/JA083iA11p05161 10.1023/A:1005245306874 10.1029/JA086iA06p04828 10.1063/1.1724406 10.1029/GL011i003p00279 10.1029/JA083iA11p05167 10.1029/JA084iA10p05938 10.3847/1538-4357/acd370 10.1029/JA083iA03p01011 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). Published by the American Astronomical Society. 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). Published by the American Astronomical Society. – notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/ad0a8a |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_e0c3fb7b0aec42889c56ca0b3da2bddb 10_3847_1538_4357_ad0a8a apjad0a8a |
GrantInformation_xml | – fundername: National Science and Technology Council (NSTC) grantid: 111-2111-M-008-019 funderid: https://doi.org/10.13039/501100020950 – fundername: National Science and Technology Council (NSTC) grantid: 112-2111-M-008-006 funderid: https://doi.org/10.13039/100020595 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c398t-cfff99384e9a9b779db2fa14391adfec213021d7edd488007404ca233b10a96a3 |
IEDL.DBID | DOA |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:28:06 EDT 2025 Wed Aug 13 08:45:49 EDT 2025 Tue Jul 01 03:39:45 EDT 2025 Tue Aug 20 22:16:42 EDT 2024 Sun Aug 18 15:30:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-cfff99384e9a9b779db2fa14391adfec213021d7edd488007404ca233b10a96a3 |
Notes | AAS49243 The Solar System, Exoplanets, and Astrobiology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7547-4521 0000-0002-9024-3326 0000-0002-3140-5014 |
OpenAccessLink | https://doaj.org/article/e0c3fb7b0aec42889c56ca0b3da2bddb |
PQID | 2915674474 |
PQPubID | 4562441 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0c3fb7b0aec42889c56ca0b3da2bddb crossref_primary_10_3847_1538_4357_ad0a8a iop_journals_10_3847_1538_4357_ad0a8a proquest_journals_2915674474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2024 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Turc (apjad0a8abib60) 2023; 19 James (apjad0a8abib23) 2017; 122 King (apjad0a8abib28) 1981; 86 Milillo (apjad0a8abib39) 2020; 216 Slavin (apjad0a8abib51) 1984; 11 Feldman (apjad0a8abib13) 1978; 83 Schwenn (apjad0a8abib47) 1978; 83 Slavin (apjad0a8abib50) 1986; 13 Griton (apjad0a8abib17) 2023; 670 Burlaga (apjad0a8abib5) 2001; 49 Huang (apjad0a8abib21) 2020; 891 Pérez-Alanis (apjad0a8abib43) 2023; 298 Bougeret (apjad0a8abib4) 1984; 90 Exner (apjad0a8abib9) 2020; 125 Stansby (apjad0a8abib56) 2020; 4 Spreiter (apjad0a8abib55) 1995; 15 Balogh (apjad0a8abib2) 1999; 89 Kivelson (apjad0a8abib29) 2004; 33 Winslow (apjad0a8abib67) 2013; 118 Burlaga (apjad0a8abib6) 1978; 83 Bazer (apjad0a8abib3) 1959; 2 Jia (apjad0a8abib25) 2019; 124 Smith (apjad0a8abib54) 1989; 9 Wang (apjad0a8abib64) 2002; 567 Vernisse (apjad0a8abib62) 2017b; 137 Formisano (apjad0a8abib14) 1971; 19 Parker (apjad0a8abib42) 1963 Aizawa (apjad0a8abib1) 2021; 198 Köhnlein (apjad0a8abib30) 1996; 169 Whang (apjad0a8abib65) 1987; 92 Slavin (apjad0a8abib49) 1981; 86 Luhmann (apjad0a8abib35) 1993; 98 Smith (apjad0a8abib53) 1995; 16 Hapgood (apjad0a8abib19) 1991; 39 King (apjad0a8abib27) 1979; 84 Lai (apjad0a8abib33) 2010; 115 Eyni (apjad0a8abib11) 1982; 256 Lai (apjad0a8abib31) 2006; 111 Lai (apjad0a8abib32) 2008; 113 Schwenn (apjad0a8abib48) 2006; 123 Vernisse (apjad0a8abib63) 2018; 152 Diego (apjad0a8abib7) 2020; 125 Hajra (apjad0a8abib18) 2023; 951 He (apjad0a8abib20) 2022; 164 Vernisse (apjad0a8abib61) 2017a; 137 Masters (apjad0a8abib37) 2013; 118 Trávníček (apjad0a8abib59) 2010; 209 Slavin (apjad0a8abib52) 2019; 124 Hundhausen (apjad0a8abib22) 1987; 92 Schwenn (apjad0a8abib46) 1990 Mariani (apjad0a8abib36) 1978; 83 Kabin (apjad0a8abib26) 2000; 143 Paral (apjad0a8abib41) 2010; 37 Sun (apjad0a8abib58) 2022; 65 Ridley (apjad0a8abib44) 2007; 25 Exner (apjad0a8abib8) 2018; 153 Winslow (apjad0a8abib66) 2017; 122 Lavorenti (apjad0a8abib34) 2022; 664 McGregor (apjad0a8abib38) 2011; 116 Friedrichs (apjad0a8abib15) 1954 Eyni (apjad0a8abib10) 1980 Nishino (apjad0a8abib40) 2008; 101 Sarantos (apjad0a8abib45) 2009; 36 Fairfield (apjad0a8abib12) 1971; 76 Jia (apjad0a8abib24) 2015; 120 Winslow (apjad0a8abib68) 2020; 889 Steinitz (apjad0a8abib57) 1980; 241 Good (apjad0a8abib16) 2016; 291 |
References_xml | – volume: 76 start-page: 6700 year: 1971 ident: apjad0a8abib12 publication-title: JGR doi: 10.1029/JA076i028p06700 – volume: 291 start-page: 239 year: 2016 ident: apjad0a8abib16 publication-title: SoPh doi: 10.1007/s11207-015-0828-3 – volume: 98 start-page: 5559 year: 1993 ident: apjad0a8abib35 publication-title: JGR doi: 10.1029/92JA02235 – volume: 13 start-page: 513 year: 1986 ident: apjad0a8abib50 publication-title: GRL doi: 10.1029/GL013i006p00513 – volume: 83 start-page: 2177 year: 1978 ident: apjad0a8abib13 publication-title: JGR doi: 10.1029/JA083iA05p02177 – volume: 113 start-page: A06217 year: 2008 ident: apjad0a8abib32 publication-title: JGRA doi: 10.1029/2007JA012790 – year: 1954 ident: apjad0a8abib15 – volume: 889 start-page: 184 year: 2020 ident: apjad0a8abib68 publication-title: ApJ doi: 10.3847/1538-4357/ab6170 – volume: 891 start-page: 159 year: 2020 ident: apjad0a8abib21 publication-title: ApJ doi: 10.3847/1538-4357/ab7349 – start-page: 147 year: 1980 ident: apjad0a8abib10 – volume: 123 start-page: 127 year: 2006 ident: apjad0a8abib48 publication-title: SSRv doi: 10.1007/s11214-006-9016-y – volume: 65 start-page: 25 year: 2022 ident: apjad0a8abib58 publication-title: ScChD doi: 10.1007/s11430-021-9828-010.1007/s11430-021-9828-0 – volume: 567 start-page: 1211 year: 2002 ident: apjad0a8abib64 publication-title: ApJ doi: 10.1086/338757 – volume: 124 start-page: 229 year: 2019 ident: apjad0a8abib25 publication-title: JGR doi: 10.1029/2018JA026166 – volume: 298 start-page: 60 year: 2023 ident: apjad0a8abib43 publication-title: SoPh doi: 10.1007/s11207-023-02152-3 – volume: 118 start-page: 2213 year: 2013 ident: apjad0a8abib67 publication-title: JGR doi: 10.1002/jgra.50237 – volume: 115 start-page: A10215 year: 2010 ident: apjad0a8abib33 publication-title: JGRA doi: 10.1029/2010JA015317 – volume: 86 start-page: 11401 year: 1981 ident: apjad0a8abib49 publication-title: JGR doi: 10.1029/JA086iA13p11401 – volume: 209 start-page: 11 year: 2010 ident: apjad0a8abib59 publication-title: Icar doi: 10.1016/j.icarus.2010.01.008 – volume: 4 start-page: 51 year: 2020 ident: apjad0a8abib56 publication-title: RNAAS doi: 10.3847/2515-5172/ab873d – volume: 92 start-page: 11173 year: 1987 ident: apjad0a8abib22 publication-title: JGR doi: 10.1029/JA092iA10p11173 – volume: 39 start-page: 411 year: 1991 ident: apjad0a8abib19 publication-title: P&SS doi: 10.1016/0032-0633(91)90003-S – volume: 143 start-page: 397 year: 2000 ident: apjad0a8abib26 publication-title: Icar doi: 10.1006/icar.1999.6252 – volume: 9 start-page: 159 year: 1989 ident: apjad0a8abib54 publication-title: AdSpR doi: 10.1016/0273-1177(89)90110-5 – volume: 152 start-page: 18 year: 2018 ident: apjad0a8abib63 publication-title: P&SS doi: 10.1016/j.pss.2018.01.010 – volume: 169 start-page: 209 year: 1996 ident: apjad0a8abib30 publication-title: SoPh doi: 10.1007/BF00153841 – volume: 49 start-page: 1619 year: 2001 ident: apjad0a8abib5 publication-title: P&SS doi: 10.1016/S0032-0633(01)00098-8 – volume: 125 start-page: e27691 year: 2020 ident: apjad0a8abib9 publication-title: JGRA doi: 10.1029/2019JA027691 – volume: 25 start-page: 533 year: 2007 ident: apjad0a8abib44 publication-title: AnGeo doi: 10.5194/angeo-25-533-2007 – volume: 122 start-page: 4960 year: 2017 ident: apjad0a8abib66 publication-title: JGR doi: 10.1002/2016JA023548 – volume: 198 start-page: 105176 year: 2021 ident: apjad0a8abib1 publication-title: P&SS doi: 10.1016/j.pss.2021.105176 – volume: 256 start-page: 259 year: 1982 ident: apjad0a8abib11 publication-title: ApJ doi: 10.1086/159903 – volume: 33 start-page: 2061 year: 2004 ident: apjad0a8abib29 publication-title: AdSpR doi: 10.1016/j.asr.2003.08.042 – volume: 90 start-page: 401 year: 1984 ident: apjad0a8abib4 publication-title: SoPh doi: 10.1007/BF00173965 – volume: 111 start-page: A01202 year: 2006 ident: apjad0a8abib31 publication-title: JGRA doi: 10.1029/2004JA010724 – volume: 137 start-page: 40 year: 2017a ident: apjad0a8abib61 publication-title: P&SS doi: 10.1016/j.pss.2016.08.012 – volume: 36 start-page: L04107 year: 2009 ident: apjad0a8abib45 publication-title: GRL doi: 10.1029/2008GL036747 – volume: 241 start-page: 417 year: 1980 ident: apjad0a8abib57 publication-title: ApJ doi: 10.1086/158355 – volume: 153 start-page: 89 year: 2018 ident: apjad0a8abib8 publication-title: P&SS doi: 10.1016/j.pss.2017.12.016 – volume: 37 start-page: L19102 year: 2010 ident: apjad0a8abib41 publication-title: GRL doi: 10.1029/2010GL044413 – volume: 19 start-page: 1519 year: 1971 ident: apjad0a8abib14 publication-title: P&SS doi: 10.1016/0032-0633(71)90011-0 – start-page: 99 year: 1990 ident: apjad0a8abib46 – volume: 92 start-page: 4349 year: 1987 ident: apjad0a8abib65 publication-title: JGR doi: 10.1029/JA092iA05p04349 – volume: 101 start-page: 65003 year: 2008 ident: apjad0a8abib40 publication-title: PRL doi: 10.1103/PhysRevLett.101.065003 – volume: 118 start-page: 4381 year: 2013 ident: apjad0a8abib37 publication-title: JGRA doi: 10.1002/jgra.50428 – volume: 216 start-page: 1 year: 2020 ident: apjad0a8abib39 publication-title: SSRv doi: 10.1007/s11214-020-00712-8 – volume: 15 start-page: 433 year: 1995 ident: apjad0a8abib55 publication-title: AdSpR doi: 10.1016/0273-1177(94)00128-N – volume: 19 start-page: 78 year: 2023 ident: apjad0a8abib60 publication-title: NatPh doi: 10.1038/s41567-022-01837-z – volume: 137 start-page: 64 year: 2017b ident: apjad0a8abib62 publication-title: P&SS doi: 10.1016/j.pss.2017.01.012 – volume: 124 start-page: 6613 year: 2019 ident: apjad0a8abib52 publication-title: JGR doi: 10.1029/2019JA026892 – volume: 125 start-page: e28281 year: 2020 ident: apjad0a8abib7 publication-title: JGRA doi: 10.1029/2020JA028281 – volume: 670 start-page: A174 year: 2023 ident: apjad0a8abib17 publication-title: A&A doi: 10.1051/0004-6361/202245162 – volume: 120 start-page: 4763 year: 2015 ident: apjad0a8abib24 publication-title: JGR doi: 10.1002/2015JA021143 – volume: 16 start-page: 153 year: 1995 ident: apjad0a8abib53 publication-title: AdSpR doi: 10.1016/0273-1177(95)00327-B – volume: 664 start-page: A133 year: 2022 ident: apjad0a8abib34 publication-title: A&A doi: 10.1051/0004-6361/202243911 – volume: 164 start-page: 260 year: 2022 ident: apjad0a8abib20 publication-title: AJ doi: 10.3847/1538-3881/ac9d89 – volume: 116 start-page: A03101 year: 2011 ident: apjad0a8abib38 publication-title: JGRA doi: 10.1029/2010JA015881 – volume: 122 start-page: 7907 year: 2017 ident: apjad0a8abib23 publication-title: JGR doi: 10.1002/2017JA024435 – volume: 83 start-page: 5161 year: 1978 ident: apjad0a8abib36 publication-title: JGR doi: 10.1029/JA083iA11p05161 – volume: 89 start-page: 141 year: 1999 ident: apjad0a8abib2 publication-title: SSRv doi: 10.1023/A:1005245306874 – volume: 86 start-page: 4828 year: 1981 ident: apjad0a8abib28 publication-title: JGR doi: 10.1029/JA086iA06p04828 – volume: 2 start-page: 366 year: 1959 ident: apjad0a8abib3 publication-title: PhFl doi: 10.1063/1.1724406 – year: 1963 ident: apjad0a8abib42 – volume: 11 start-page: 279 year: 1984 ident: apjad0a8abib51 publication-title: GRL doi: 10.1029/GL011i003p00279 – volume: 83 start-page: 5167 year: 1978 ident: apjad0a8abib6 publication-title: JGR doi: 10.1029/JA083iA11p05167 – volume: 84 start-page: 5938 year: 1979 ident: apjad0a8abib27 publication-title: JGR doi: 10.1029/JA084iA10p05938 – volume: 951 start-page: 75 year: 2023 ident: apjad0a8abib18 publication-title: ApJ doi: 10.3847/1538-4357/acd370 – volume: 83 start-page: 1011 year: 1978 ident: apjad0a8abib47 publication-title: JGR doi: 10.1029/JA083iA03p01011 |
SSID | ssj0004299 |
Score | 2.4616926 |
Snippet | In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number (
M
F
) of the solar wind is less than one.... In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number (MF) of the solar wind is less than one.... In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M _F ) of the solar wind is less than... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | Astrophysics Charged particles Coronal mass ejection Mach number Magnetohydrodynamics Mercury Mercury (planet) Planetary bow shocks Solar cycle Solar wind Solar wind properties Spacecraft Wind data |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9VAFB5KRXAjWpVebWUWKriITTJz54Gr1lqKUC1o8e6GM6_eCiahicjd-Tf8e_4Sz2TSXooi7oYwZML5zuM7M3NOCHnmUUlkrEVRC-ULrgUUOihdzEFHpAssFXum2xbvxfEZf7eYLzbI6-tamLabXP8rHOZGwVmEyb4Z-tK90UYxyss98CUoJEe3mBIq3ef7wD6viyJrPXFfXggmF_mM8q9vuBGTxtb9GGlw-T_88xh0ju6RuxNbpPv52-6TjdBske39Pu1ft19X9AUdx3l7ot8it0_z6AFZnsB5E4Z2ufLoIvNv5-npurKStg1F7kcPL3roOlT3hD5tIz0Jlw7l_OvHz54etN_pxyV6TGpXFAPURdvTQxiA5pt7I6gPydnR209vjovprwqFY1oNhYsxIilRPGjQVkrtbR2hSqCAj8HV6Siz8jJ4n4wbKUbJHdSM2aoExJI9IptN24RtQoWMmBFVPKDD5NFxVbGoLMpVl9yCUzPy8kqupsvNMwwmHQkDkzAwCQOTMZiRgyT463mp7fX4AFXATCpgQulYtNKWEBzmTUq7uXBQWuahtt7bGXmOsJnJDPt_LLZ7Yx50X4wWlamMYqbzcUZ2roBfT6o15rqSc8kf_-cyT8idGjlQ3rHZIZvD5bewixxmsE9HXf0NAjbr2A priority: 102 providerName: IOP Publishing |
Title | Magnetohydrodynamic Perspective on the Disappearance of Mercury’s Bow Shock by Helios Data Exploration |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ad0a8a https://www.proquest.com/docview/2915674474 https://doaj.org/article/e0c3fb7b0aec42889c56ca0b3da2bddb |
Volume | 961 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFA2lIPgiWpWutpIHLfRh2JlJdpI8ttZShbYLWtq3cPPV3YIzQ2ek7Fv_hn_PX-LNZNdaCvbFlxCGwIR7knPPzccNIe8dDhIRyiorK-kyrirIlJcqm4AKKBdYvOwZT1ucVEdn_MvF5OKvp77imbCUHjgZbuxzy4IRJgdvUSpLZSeVhdwwB6VxzkT2RZ-3CqZWNyKRZdOmJEP6HQ_TGoWBGIPLQd53QkOufnQt86Z9QMiDlzl8Tp4t5SHdS916QdZ8vUE297q4YN18X9AdOtTTekS3QZ5MU-0lmR3DZe37ZrZwyInpnXk6vbtKSZuaotijB_MO2hbHd4SbNoEe-2uLhv11-7Oj-80N_TpDiqRmQdEjzZuOHkAPNB3VG1B8Rc4OP337eJQtn1HILFOyz2wIAVWI5F6BMkIoZ8oARUQBXPC2jHuXhRPeuTibUVPk3ELJmClyQPDYa7JeN7XfJLQSAUOggntkSB4slwUL0qBdVc4NWDkiuyu76jZly9AYZUQMdMRARwx0wmBE9qPh_7SLea6HD4i-XqKvH0N_RD4gbHo577p__Gz7Xjtor7SqCl1oyXTrwohsrYC_a1QqDG4F54K_-R99fUuelqiI0vrNFlnvr3_4bVQ0vXk3DF4sP59OsTxl578B3qz39Q |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMQFQQF1oQUfAIlD2CT2xvaxZVmVR8tKULE3a_zqFolN1AShvfE3-Hv8EsZxyqoCIW5WZMXWfN88_JgxIU8ckkSEssrKSrqMqwoy5aXKJqAChgssJnvG2xbH1eEJf7OYLIZ3TvtcmLoZTP8LbKZCwUmEUb8Z2tJxr6Po5cUYXA4Sxo0LV8m1CUNnioR-zz5tEiNLNcS_PKuYWKRzyr_-5ZJf6sv3o7fBKfxho3vHM7tNbg0RI91P87tDrvjVNtnZb-Medv1lTZ_Rvp22KNptcn2eWnfJ8ghOV76rl2uHZjI9PU_nm-xKWq8oxn90etZC0yDlIwNoHeiRP7co65_ff7T0oP5GPyzRalKzpuikzuqWTqEDmm7v9cDeIyezVx9fHmbDywqZZUp2mQ0hYGAiuVegjBDKmTJAEYEBF7wt43Fm4YR3Lio4hhk5t1AyZoocEE92n2yt6pXfIbQSAVdFBfdoNHmwXBYsSINyVTk3YOWIPL-Qq25SAQ2NC4-IgY4Y6IiBThiMyEEU_O9-sfR1_wFpoAcaaJ9bFowwOXiLayep7KSykBvmoDTOmRF5irDpQRXbfwy2d6kfNJ-1qgpdaMk0UmpEdi-A33QqFa53BeeCP_jPYR6TG_PpTL97ffz2IblZYkiUNnB2yVZ3_tXvYUjTmUc9bX8Bpu_v0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamic+Perspective+on+the+Disappearance+of+Mercury%E2%80%99s+Bow+Shock+by+Helios+Data+Exploration&rft.jtitle=The+Astrophysical+journal&rft.au=Lai%2C+S+H&rft.au=Y-H%2C+Yang&rft.au=W-H+Ip&rft.date=2024-01-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=961&rft.issue=1&rft.spage=83&rft_id=info:doi/10.3847%2F1538-4357%2Fad0a8a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |