Magnetohydrodynamic Perspective on the Disappearance of Mercury’s Bow Shock by Helios Data Exploration

In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M F ) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower M F solar wind due to its proximity to the Sun, resulting in a higher possibility of the di...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 961; no. 1; pp. 83 - 97
Main Authors Lai, S. H., Yang, Y.-H., Ip, W.-H.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.01.2024
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ad0a8a

Cover

Loading…
Abstract In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M F ) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower M F solar wind due to its proximity to the Sun, resulting in a higher possibility of the disappearance of its bow shock. To examine the variability of Mercury’s bow shock in response to the solar wind properties, analyses of the observations by the Helios spacecraft at 0.30–0.50 au during 1975–1983, covering solar cycle 21, together with the theoretical solutions and MHD simulations are conducted in this study. Our observational analyses show that more solar wind data with extremely low fast-mode Mach numbers (say, M F ≤ 1.5) are observed during the rising and maximum phases and are characterized by a significantly low proton number density. It is also found that approximately 35% of the extremely low fast-mode Mach number solar wind events ( M F ≤ 1.5) occur within the main body of interplanetary coronal mass ejections (ICMEs), while about 58% of them are unrelated to ICMEs. Three of these events are selected to demonstrate that the occurrences of the solar wind with M F ≤ 1.5 may not be necessarily affected by ICMEs. Our theoretical and numerical results indicate that when Mercury encounters the solar wind with M F ≤ 1.5, its bow shock would move farther away, become flattened, and even disappear. Furthermore, our calculations suggest that Mercury’s bow shock would become a slow-mode shock with a concave-upward structure under such extreme solar wind conditions.
AbstractList In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number (MF) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower MF solar wind due to its proximity to the Sun, resulting in a higher possibility of the disappearance of its bow shock. To examine the variability of Mercury’s bow shock in response to the solar wind properties, analyses of the observations by the Helios spacecraft at 0.30–0.50 au during 1975–1983, covering solar cycle 21, together with the theoretical solutions and MHD simulations are conducted in this study. Our observational analyses show that more solar wind data with extremely low fast-mode Mach numbers (say, MF ≤ 1.5) are observed during the rising and maximum phases and are characterized by a significantly low proton number density. It is also found that approximately 35% of the extremely low fast-mode Mach number solar wind events (MF ≤ 1.5) occur within the main body of interplanetary coronal mass ejections (ICMEs), while about 58% of them are unrelated to ICMEs. Three of these events are selected to demonstrate that the occurrences of the solar wind with MF ≤ 1.5 may not be necessarily affected by ICMEs. Our theoretical and numerical results indicate that when Mercury encounters the solar wind with MF ≤ 1.5, its bow shock would move farther away, become flattened, and even disappear. Furthermore, our calculations suggest that Mercury’s bow shock would become a slow-mode shock with a concave-upward structure under such extreme solar wind conditions.
In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M F ) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower M F solar wind due to its proximity to the Sun, resulting in a higher possibility of the disappearance of its bow shock. To examine the variability of Mercury’s bow shock in response to the solar wind properties, analyses of the observations by the Helios spacecraft at 0.30–0.50 au during 1975–1983, covering solar cycle 21, together with the theoretical solutions and MHD simulations are conducted in this study. Our observational analyses show that more solar wind data with extremely low fast-mode Mach numbers (say, M F ≤ 1.5) are observed during the rising and maximum phases and are characterized by a significantly low proton number density. It is also found that approximately 35% of the extremely low fast-mode Mach number solar wind events ( M F ≤ 1.5) occur within the main body of interplanetary coronal mass ejections (ICMEs), while about 58% of them are unrelated to ICMEs. Three of these events are selected to demonstrate that the occurrences of the solar wind with M F ≤ 1.5 may not be necessarily affected by ICMEs. Our theoretical and numerical results indicate that when Mercury encounters the solar wind with M F ≤ 1.5, its bow shock would move farther away, become flattened, and even disappear. Furthermore, our calculations suggest that Mercury’s bow shock would become a slow-mode shock with a concave-upward structure under such extreme solar wind conditions.
In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M _F ) of the solar wind is less than one. Compared to Earth, Mercury is subject to a lower M _F solar wind due to its proximity to the Sun, resulting in a higher possibility of the disappearance of its bow shock. To examine the variability of Mercury’s bow shock in response to the solar wind properties, analyses of the observations by the Helios spacecraft at 0.30–0.50 au during 1975–1983, covering solar cycle 21, together with the theoretical solutions and MHD simulations are conducted in this study. Our observational analyses show that more solar wind data with extremely low fast-mode Mach numbers (say, M _F ≤ 1.5) are observed during the rising and maximum phases and are characterized by a significantly low proton number density. It is also found that approximately 35% of the extremely low fast-mode Mach number solar wind events ( M _F ≤ 1.5) occur within the main body of interplanetary coronal mass ejections (ICMEs), while about 58% of them are unrelated to ICMEs. Three of these events are selected to demonstrate that the occurrences of the solar wind with M _F ≤ 1.5 may not be necessarily affected by ICMEs. Our theoretical and numerical results indicate that when Mercury encounters the solar wind with M _F ≤ 1.5, its bow shock would move farther away, become flattened, and even disappear. Furthermore, our calculations suggest that Mercury’s bow shock would become a slow-mode shock with a concave-upward structure under such extreme solar wind conditions.
Author Lai, S. H.
Ip, W.-H.
Yang, Y.-H.
Author_xml – sequence: 1
  givenname: S. H.
  orcidid: 0000-0002-9024-3326
  surname: Lai
  fullname: Lai, S. H.
  organization: National Central University Department of Space Science and Engineering, Taoyuan, Taiwan, R.O.C
– sequence: 2
  givenname: Y.-H.
  orcidid: 0000-0002-7547-4521
  surname: Yang
  fullname: Yang, Y.-H.
  organization: National Central University Center for Astronautical Physics and Engineering, Taoyuan, Taiwan, R.O.C
– sequence: 3
  givenname: W.-H.
  orcidid: 0000-0002-3140-5014
  surname: Ip
  fullname: Ip, W.-H.
  organization: National Central University Graduate Institute of Astronomy, Taoyuan, Taiwan, R.O.C
BookMark eNp9kU1uFDEQhS2USEwCe5aWYEkTu-1p20tIAomUKJEAiZ1V_st4mLSN3QP0jmtwvZwkPTQKm4hVqZ5evarSd4D2-tR7hF5Q8oZJLo7oksmGs6U4AkdAwhO0eJD20IIQwpuOiS9P0UGt613bKrVAq0u46f2QVqMryY093EaLr32p2dshfvc49XhYeXwSK-TsoUBvJzHgS1_stox3v35X_C79wB9XyX7FZsRnfhNTxScwAD79mTepwBBT_wztB9hU__xvPUSf359-Oj5rLq4-nB-_vWgsU3JobAhBqekjr0AZIZQzbQDKmaLggrctZaSlTnjnuJSECE64hZYxQwmoDtghOp9zXYK1ziXeQhl1gqj_CKncaChDtBuvPbEsGGEIeMtbKZVddhaIYQ5a45yZsl7OWbmkb1tfB71O29JP5-tW0WUnOBd8cpHZZUuqtfjwsJUSvWOjdyD0DoSe2Uwjr-eRmPK_zP_YXz1ih7zWqqOaasl0doHdAzhBoVs
Cites_doi 10.1029/JA076i028p06700
10.1007/s11207-015-0828-3
10.1029/92JA02235
10.1029/GL013i006p00513
10.1029/JA083iA05p02177
10.1029/2007JA012790
10.3847/1538-4357/ab6170
10.3847/1538-4357/ab7349
10.1007/s11214-006-9016-y
10.1007/s11430-021-9828-010.1007/s11430-021-9828-0
10.1086/338757
10.1029/2018JA026166
10.1007/s11207-023-02152-3
10.1002/jgra.50237
10.1029/2010JA015317
10.1029/JA086iA13p11401
10.1016/j.icarus.2010.01.008
10.3847/2515-5172/ab873d
10.1029/JA092iA10p11173
10.1016/0032-0633(91)90003-S
10.1006/icar.1999.6252
10.1016/0273-1177(89)90110-5
10.1016/j.pss.2018.01.010
10.1007/BF00153841
10.1016/S0032-0633(01)00098-8
10.1029/2019JA027691
10.5194/angeo-25-533-2007
10.1002/2016JA023548
10.1016/j.pss.2021.105176
10.1086/159903
10.1016/j.asr.2003.08.042
10.1007/BF00173965
10.1029/2004JA010724
10.1016/j.pss.2016.08.012
10.1029/2008GL036747
10.1086/158355
10.1016/j.pss.2017.12.016
10.1029/2010GL044413
10.1016/0032-0633(71)90011-0
10.1029/JA092iA05p04349
10.1103/PhysRevLett.101.065003
10.1002/jgra.50428
10.1007/s11214-020-00712-8
10.1016/0273-1177(94)00128-N
10.1038/s41567-022-01837-z
10.1016/j.pss.2017.01.012
10.1029/2019JA026892
10.1029/2020JA028281
10.1051/0004-6361/202245162
10.1002/2015JA021143
10.1016/0273-1177(95)00327-B
10.1051/0004-6361/202243911
10.3847/1538-3881/ac9d89
10.1029/2010JA015881
10.1002/2017JA024435
10.1029/JA083iA11p05161
10.1023/A:1005245306874
10.1029/JA086iA06p04828
10.1063/1.1724406
10.1029/GL011i003p00279
10.1029/JA083iA11p05167
10.1029/JA084iA10p05938
10.3847/1538-4357/acd370
10.1029/JA083iA03p01011
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ad0a8a
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_e0c3fb7b0aec42889c56ca0b3da2bddb
10_3847_1538_4357_ad0a8a
apjad0a8a
GrantInformation_xml – fundername: National Science and Technology Council (NSTC)
  grantid: 111-2111-M-008-019
  funderid: https://doi.org/10.13039/501100020950
– fundername: National Science and Technology Council (NSTC)
  grantid: 112-2111-M-008-006
  funderid: https://doi.org/10.13039/100020595
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c398t-cfff99384e9a9b779db2fa14391adfec213021d7edd488007404ca233b10a96a3
IEDL.DBID DOA
ISSN 0004-637X
IngestDate Wed Aug 27 01:28:06 EDT 2025
Wed Aug 13 08:45:49 EDT 2025
Tue Jul 01 03:39:45 EDT 2025
Tue Aug 20 22:16:42 EDT 2024
Sun Aug 18 15:30:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-cfff99384e9a9b779db2fa14391adfec213021d7edd488007404ca233b10a96a3
Notes AAS49243
The Solar System, Exoplanets, and Astrobiology
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7547-4521
0000-0002-9024-3326
0000-0002-3140-5014
OpenAccessLink https://doaj.org/article/e0c3fb7b0aec42889c56ca0b3da2bddb
PQID 2915674474
PQPubID 4562441
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_e0c3fb7b0aec42889c56ca0b3da2bddb
crossref_primary_10_3847_1538_4357_ad0a8a
iop_journals_10_3847_1538_4357_ad0a8a
proquest_journals_2915674474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Turc (apjad0a8abib60) 2023; 19
James (apjad0a8abib23) 2017; 122
King (apjad0a8abib28) 1981; 86
Milillo (apjad0a8abib39) 2020; 216
Slavin (apjad0a8abib51) 1984; 11
Feldman (apjad0a8abib13) 1978; 83
Schwenn (apjad0a8abib47) 1978; 83
Slavin (apjad0a8abib50) 1986; 13
Griton (apjad0a8abib17) 2023; 670
Burlaga (apjad0a8abib5) 2001; 49
Huang (apjad0a8abib21) 2020; 891
Pérez-Alanis (apjad0a8abib43) 2023; 298
Bougeret (apjad0a8abib4) 1984; 90
Exner (apjad0a8abib9) 2020; 125
Stansby (apjad0a8abib56) 2020; 4
Spreiter (apjad0a8abib55) 1995; 15
Balogh (apjad0a8abib2) 1999; 89
Kivelson (apjad0a8abib29) 2004; 33
Winslow (apjad0a8abib67) 2013; 118
Burlaga (apjad0a8abib6) 1978; 83
Bazer (apjad0a8abib3) 1959; 2
Jia (apjad0a8abib25) 2019; 124
Smith (apjad0a8abib54) 1989; 9
Wang (apjad0a8abib64) 2002; 567
Vernisse (apjad0a8abib62) 2017b; 137
Formisano (apjad0a8abib14) 1971; 19
Parker (apjad0a8abib42) 1963
Aizawa (apjad0a8abib1) 2021; 198
Köhnlein (apjad0a8abib30) 1996; 169
Whang (apjad0a8abib65) 1987; 92
Slavin (apjad0a8abib49) 1981; 86
Luhmann (apjad0a8abib35) 1993; 98
Smith (apjad0a8abib53) 1995; 16
Hapgood (apjad0a8abib19) 1991; 39
King (apjad0a8abib27) 1979; 84
Lai (apjad0a8abib33) 2010; 115
Eyni (apjad0a8abib11) 1982; 256
Lai (apjad0a8abib31) 2006; 111
Lai (apjad0a8abib32) 2008; 113
Schwenn (apjad0a8abib48) 2006; 123
Vernisse (apjad0a8abib63) 2018; 152
Diego (apjad0a8abib7) 2020; 125
Hajra (apjad0a8abib18) 2023; 951
He (apjad0a8abib20) 2022; 164
Vernisse (apjad0a8abib61) 2017a; 137
Masters (apjad0a8abib37) 2013; 118
Trávníček (apjad0a8abib59) 2010; 209
Slavin (apjad0a8abib52) 2019; 124
Hundhausen (apjad0a8abib22) 1987; 92
Schwenn (apjad0a8abib46) 1990
Mariani (apjad0a8abib36) 1978; 83
Kabin (apjad0a8abib26) 2000; 143
Paral (apjad0a8abib41) 2010; 37
Sun (apjad0a8abib58) 2022; 65
Ridley (apjad0a8abib44) 2007; 25
Exner (apjad0a8abib8) 2018; 153
Winslow (apjad0a8abib66) 2017; 122
Lavorenti (apjad0a8abib34) 2022; 664
McGregor (apjad0a8abib38) 2011; 116
Friedrichs (apjad0a8abib15) 1954
Eyni (apjad0a8abib10) 1980
Nishino (apjad0a8abib40) 2008; 101
Sarantos (apjad0a8abib45) 2009; 36
Fairfield (apjad0a8abib12) 1971; 76
Jia (apjad0a8abib24) 2015; 120
Winslow (apjad0a8abib68) 2020; 889
Steinitz (apjad0a8abib57) 1980; 241
Good (apjad0a8abib16) 2016; 291
References_xml – volume: 76
  start-page: 6700
  year: 1971
  ident: apjad0a8abib12
  publication-title: JGR
  doi: 10.1029/JA076i028p06700
– volume: 291
  start-page: 239
  year: 2016
  ident: apjad0a8abib16
  publication-title: SoPh
  doi: 10.1007/s11207-015-0828-3
– volume: 98
  start-page: 5559
  year: 1993
  ident: apjad0a8abib35
  publication-title: JGR
  doi: 10.1029/92JA02235
– volume: 13
  start-page: 513
  year: 1986
  ident: apjad0a8abib50
  publication-title: GRL
  doi: 10.1029/GL013i006p00513
– volume: 83
  start-page: 2177
  year: 1978
  ident: apjad0a8abib13
  publication-title: JGR
  doi: 10.1029/JA083iA05p02177
– volume: 113
  start-page: A06217
  year: 2008
  ident: apjad0a8abib32
  publication-title: JGRA
  doi: 10.1029/2007JA012790
– year: 1954
  ident: apjad0a8abib15
– volume: 889
  start-page: 184
  year: 2020
  ident: apjad0a8abib68
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6170
– volume: 891
  start-page: 159
  year: 2020
  ident: apjad0a8abib21
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab7349
– start-page: 147
  year: 1980
  ident: apjad0a8abib10
– volume: 123
  start-page: 127
  year: 2006
  ident: apjad0a8abib48
  publication-title: SSRv
  doi: 10.1007/s11214-006-9016-y
– volume: 65
  start-page: 25
  year: 2022
  ident: apjad0a8abib58
  publication-title: ScChD
  doi: 10.1007/s11430-021-9828-010.1007/s11430-021-9828-0
– volume: 567
  start-page: 1211
  year: 2002
  ident: apjad0a8abib64
  publication-title: ApJ
  doi: 10.1086/338757
– volume: 124
  start-page: 229
  year: 2019
  ident: apjad0a8abib25
  publication-title: JGR
  doi: 10.1029/2018JA026166
– volume: 298
  start-page: 60
  year: 2023
  ident: apjad0a8abib43
  publication-title: SoPh
  doi: 10.1007/s11207-023-02152-3
– volume: 118
  start-page: 2213
  year: 2013
  ident: apjad0a8abib67
  publication-title: JGR
  doi: 10.1002/jgra.50237
– volume: 115
  start-page: A10215
  year: 2010
  ident: apjad0a8abib33
  publication-title: JGRA
  doi: 10.1029/2010JA015317
– volume: 86
  start-page: 11401
  year: 1981
  ident: apjad0a8abib49
  publication-title: JGR
  doi: 10.1029/JA086iA13p11401
– volume: 209
  start-page: 11
  year: 2010
  ident: apjad0a8abib59
  publication-title: Icar
  doi: 10.1016/j.icarus.2010.01.008
– volume: 4
  start-page: 51
  year: 2020
  ident: apjad0a8abib56
  publication-title: RNAAS
  doi: 10.3847/2515-5172/ab873d
– volume: 92
  start-page: 11173
  year: 1987
  ident: apjad0a8abib22
  publication-title: JGR
  doi: 10.1029/JA092iA10p11173
– volume: 39
  start-page: 411
  year: 1991
  ident: apjad0a8abib19
  publication-title: P&SS
  doi: 10.1016/0032-0633(91)90003-S
– volume: 143
  start-page: 397
  year: 2000
  ident: apjad0a8abib26
  publication-title: Icar
  doi: 10.1006/icar.1999.6252
– volume: 9
  start-page: 159
  year: 1989
  ident: apjad0a8abib54
  publication-title: AdSpR
  doi: 10.1016/0273-1177(89)90110-5
– volume: 152
  start-page: 18
  year: 2018
  ident: apjad0a8abib63
  publication-title: P&SS
  doi: 10.1016/j.pss.2018.01.010
– volume: 169
  start-page: 209
  year: 1996
  ident: apjad0a8abib30
  publication-title: SoPh
  doi: 10.1007/BF00153841
– volume: 49
  start-page: 1619
  year: 2001
  ident: apjad0a8abib5
  publication-title: P&SS
  doi: 10.1016/S0032-0633(01)00098-8
– volume: 125
  start-page: e27691
  year: 2020
  ident: apjad0a8abib9
  publication-title: JGRA
  doi: 10.1029/2019JA027691
– volume: 25
  start-page: 533
  year: 2007
  ident: apjad0a8abib44
  publication-title: AnGeo
  doi: 10.5194/angeo-25-533-2007
– volume: 122
  start-page: 4960
  year: 2017
  ident: apjad0a8abib66
  publication-title: JGR
  doi: 10.1002/2016JA023548
– volume: 198
  start-page: 105176
  year: 2021
  ident: apjad0a8abib1
  publication-title: P&SS
  doi: 10.1016/j.pss.2021.105176
– volume: 256
  start-page: 259
  year: 1982
  ident: apjad0a8abib11
  publication-title: ApJ
  doi: 10.1086/159903
– volume: 33
  start-page: 2061
  year: 2004
  ident: apjad0a8abib29
  publication-title: AdSpR
  doi: 10.1016/j.asr.2003.08.042
– volume: 90
  start-page: 401
  year: 1984
  ident: apjad0a8abib4
  publication-title: SoPh
  doi: 10.1007/BF00173965
– volume: 111
  start-page: A01202
  year: 2006
  ident: apjad0a8abib31
  publication-title: JGRA
  doi: 10.1029/2004JA010724
– volume: 137
  start-page: 40
  year: 2017a
  ident: apjad0a8abib61
  publication-title: P&SS
  doi: 10.1016/j.pss.2016.08.012
– volume: 36
  start-page: L04107
  year: 2009
  ident: apjad0a8abib45
  publication-title: GRL
  doi: 10.1029/2008GL036747
– volume: 241
  start-page: 417
  year: 1980
  ident: apjad0a8abib57
  publication-title: ApJ
  doi: 10.1086/158355
– volume: 153
  start-page: 89
  year: 2018
  ident: apjad0a8abib8
  publication-title: P&SS
  doi: 10.1016/j.pss.2017.12.016
– volume: 37
  start-page: L19102
  year: 2010
  ident: apjad0a8abib41
  publication-title: GRL
  doi: 10.1029/2010GL044413
– volume: 19
  start-page: 1519
  year: 1971
  ident: apjad0a8abib14
  publication-title: P&SS
  doi: 10.1016/0032-0633(71)90011-0
– start-page: 99
  year: 1990
  ident: apjad0a8abib46
– volume: 92
  start-page: 4349
  year: 1987
  ident: apjad0a8abib65
  publication-title: JGR
  doi: 10.1029/JA092iA05p04349
– volume: 101
  start-page: 65003
  year: 2008
  ident: apjad0a8abib40
  publication-title: PRL
  doi: 10.1103/PhysRevLett.101.065003
– volume: 118
  start-page: 4381
  year: 2013
  ident: apjad0a8abib37
  publication-title: JGRA
  doi: 10.1002/jgra.50428
– volume: 216
  start-page: 1
  year: 2020
  ident: apjad0a8abib39
  publication-title: SSRv
  doi: 10.1007/s11214-020-00712-8
– volume: 15
  start-page: 433
  year: 1995
  ident: apjad0a8abib55
  publication-title: AdSpR
  doi: 10.1016/0273-1177(94)00128-N
– volume: 19
  start-page: 78
  year: 2023
  ident: apjad0a8abib60
  publication-title: NatPh
  doi: 10.1038/s41567-022-01837-z
– volume: 137
  start-page: 64
  year: 2017b
  ident: apjad0a8abib62
  publication-title: P&SS
  doi: 10.1016/j.pss.2017.01.012
– volume: 124
  start-page: 6613
  year: 2019
  ident: apjad0a8abib52
  publication-title: JGR
  doi: 10.1029/2019JA026892
– volume: 125
  start-page: e28281
  year: 2020
  ident: apjad0a8abib7
  publication-title: JGRA
  doi: 10.1029/2020JA028281
– volume: 670
  start-page: A174
  year: 2023
  ident: apjad0a8abib17
  publication-title: A&A
  doi: 10.1051/0004-6361/202245162
– volume: 120
  start-page: 4763
  year: 2015
  ident: apjad0a8abib24
  publication-title: JGR
  doi: 10.1002/2015JA021143
– volume: 16
  start-page: 153
  year: 1995
  ident: apjad0a8abib53
  publication-title: AdSpR
  doi: 10.1016/0273-1177(95)00327-B
– volume: 664
  start-page: A133
  year: 2022
  ident: apjad0a8abib34
  publication-title: A&A
  doi: 10.1051/0004-6361/202243911
– volume: 164
  start-page: 260
  year: 2022
  ident: apjad0a8abib20
  publication-title: AJ
  doi: 10.3847/1538-3881/ac9d89
– volume: 116
  start-page: A03101
  year: 2011
  ident: apjad0a8abib38
  publication-title: JGRA
  doi: 10.1029/2010JA015881
– volume: 122
  start-page: 7907
  year: 2017
  ident: apjad0a8abib23
  publication-title: JGR
  doi: 10.1002/2017JA024435
– volume: 83
  start-page: 5161
  year: 1978
  ident: apjad0a8abib36
  publication-title: JGR
  doi: 10.1029/JA083iA11p05161
– volume: 89
  start-page: 141
  year: 1999
  ident: apjad0a8abib2
  publication-title: SSRv
  doi: 10.1023/A:1005245306874
– volume: 86
  start-page: 4828
  year: 1981
  ident: apjad0a8abib28
  publication-title: JGR
  doi: 10.1029/JA086iA06p04828
– volume: 2
  start-page: 366
  year: 1959
  ident: apjad0a8abib3
  publication-title: PhFl
  doi: 10.1063/1.1724406
– year: 1963
  ident: apjad0a8abib42
– volume: 11
  start-page: 279
  year: 1984
  ident: apjad0a8abib51
  publication-title: GRL
  doi: 10.1029/GL011i003p00279
– volume: 83
  start-page: 5167
  year: 1978
  ident: apjad0a8abib6
  publication-title: JGR
  doi: 10.1029/JA083iA11p05167
– volume: 84
  start-page: 5938
  year: 1979
  ident: apjad0a8abib27
  publication-title: JGR
  doi: 10.1029/JA084iA10p05938
– volume: 951
  start-page: 75
  year: 2023
  ident: apjad0a8abib18
  publication-title: ApJ
  doi: 10.3847/1538-4357/acd370
– volume: 83
  start-page: 1011
  year: 1978
  ident: apjad0a8abib47
  publication-title: JGR
  doi: 10.1029/JA083iA03p01011
SSID ssj0004299
Score 2.4616926
Snippet In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M F ) of the solar wind is less than one....
In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number (MF) of the solar wind is less than one....
In the magnetohydrodynamic (MHD) perspective, the planet’s bow shock would disappear when the fast-mode Mach number ( M _F ) of the solar wind is less than...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms Astrophysics
Charged particles
Coronal mass ejection
Mach number
Magnetohydrodynamics
Mercury
Mercury (planet)
Planetary bow shocks
Solar cycle
Solar wind
Solar wind properties
Spacecraft
Wind data
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9VAFB5KRXAjWpVebWUWKriITTJz54Gr1lqKUC1o8e6GM6_eCiahicjd-Tf8e_4Sz2TSXooi7oYwZML5zuM7M3NOCHnmUUlkrEVRC-ULrgUUOihdzEFHpAssFXum2xbvxfEZf7eYLzbI6-tamLabXP8rHOZGwVmEyb4Z-tK90UYxyss98CUoJEe3mBIq3ef7wD6viyJrPXFfXggmF_mM8q9vuBGTxtb9GGlw-T_88xh0ju6RuxNbpPv52-6TjdBske39Pu1ft19X9AUdx3l7ot8it0_z6AFZnsB5E4Z2ufLoIvNv5-npurKStg1F7kcPL3roOlT3hD5tIz0Jlw7l_OvHz54etN_pxyV6TGpXFAPURdvTQxiA5pt7I6gPydnR209vjovprwqFY1oNhYsxIilRPGjQVkrtbR2hSqCAj8HV6Siz8jJ4n4wbKUbJHdSM2aoExJI9IptN24RtQoWMmBFVPKDD5NFxVbGoLMpVl9yCUzPy8kqupsvNMwwmHQkDkzAwCQOTMZiRgyT463mp7fX4AFXATCpgQulYtNKWEBzmTUq7uXBQWuahtt7bGXmOsJnJDPt_LLZ7Yx50X4wWlamMYqbzcUZ2roBfT6o15rqSc8kf_-cyT8idGjlQ3rHZIZvD5bewixxmsE9HXf0NAjbr2A
  priority: 102
  providerName: IOP Publishing
Title Magnetohydrodynamic Perspective on the Disappearance of Mercury’s Bow Shock by Helios Data Exploration
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad0a8a
https://www.proquest.com/docview/2915674474
https://doaj.org/article/e0c3fb7b0aec42889c56ca0b3da2bddb
Volume 961
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFA2lIPgiWpWutpIHLfRh2JlJdpI8ttZShbYLWtq3cPPV3YIzQ2ek7Fv_hn_PX-LNZNdaCvbFlxCGwIR7knPPzccNIe8dDhIRyiorK-kyrirIlJcqm4AKKBdYvOwZT1ucVEdn_MvF5OKvp77imbCUHjgZbuxzy4IRJgdvUSpLZSeVhdwwB6VxzkT2RZ-3CqZWNyKRZdOmJEP6HQ_TGoWBGIPLQd53QkOufnQt86Z9QMiDlzl8Tp4t5SHdS916QdZ8vUE297q4YN18X9AdOtTTekS3QZ5MU-0lmR3DZe37ZrZwyInpnXk6vbtKSZuaotijB_MO2hbHd4SbNoEe-2uLhv11-7Oj-80N_TpDiqRmQdEjzZuOHkAPNB3VG1B8Rc4OP337eJQtn1HILFOyz2wIAVWI5F6BMkIoZ8oARUQBXPC2jHuXhRPeuTibUVPk3ELJmClyQPDYa7JeN7XfJLQSAUOggntkSB4slwUL0qBdVc4NWDkiuyu76jZly9AYZUQMdMRARwx0wmBE9qPh_7SLea6HD4i-XqKvH0N_RD4gbHo577p__Gz7Xjtor7SqCl1oyXTrwohsrYC_a1QqDG4F54K_-R99fUuelqiI0vrNFlnvr3_4bVQ0vXk3DF4sP59OsTxl578B3qz39Q
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMQFQQF1oQUfAIlD2CT2xvaxZVmVR8tKULE3a_zqFolN1AShvfE3-Hv8EsZxyqoCIW5WZMXWfN88_JgxIU8ckkSEssrKSrqMqwoy5aXKJqAChgssJnvG2xbH1eEJf7OYLIZ3TvtcmLoZTP8LbKZCwUmEUb8Z2tJxr6Po5cUYXA4Sxo0LV8m1CUNnioR-zz5tEiNLNcS_PKuYWKRzyr_-5ZJf6sv3o7fBKfxho3vHM7tNbg0RI91P87tDrvjVNtnZb-Medv1lTZ_Rvp22KNptcn2eWnfJ8ghOV76rl2uHZjI9PU_nm-xKWq8oxn90etZC0yDlIwNoHeiRP7co65_ff7T0oP5GPyzRalKzpuikzuqWTqEDmm7v9cDeIyezVx9fHmbDywqZZUp2mQ0hYGAiuVegjBDKmTJAEYEBF7wt43Fm4YR3Lio4hhk5t1AyZoocEE92n2yt6pXfIbQSAVdFBfdoNHmwXBYsSINyVTk3YOWIPL-Qq25SAQ2NC4-IgY4Y6IiBThiMyEEU_O9-sfR1_wFpoAcaaJ9bFowwOXiLayep7KSykBvmoDTOmRF5irDpQRXbfwy2d6kfNJ-1qgpdaMk0UmpEdi-A33QqFa53BeeCP_jPYR6TG_PpTL97ffz2IblZYkiUNnB2yVZ3_tXvYUjTmUc9bX8Bpu_v0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamic+Perspective+on+the+Disappearance+of+Mercury%E2%80%99s+Bow+Shock+by+Helios+Data+Exploration&rft.jtitle=The+Astrophysical+journal&rft.au=Lai%2C+S+H&rft.au=Y-H%2C+Yang&rft.au=W-H+Ip&rft.date=2024-01-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=961&rft.issue=1&rft.spage=83&rft_id=info:doi/10.3847%2F1538-4357%2Fad0a8a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon