Inducible regulating homologous recombination enables precise genome editing in Pichia pastoris without perturbing cellular fitness

A tetracycline repressor protein (TetR)/tetO2 inducible system was constructed and optimized in Pichia pastoris.The TetR/tetO2 inducible system dynamically enhanced homologous recombination (HR) for precise editing of multiple genes.Dynamically enhancing HR did not compromise cellular growth or prod...

Full description

Saved in:
Bibliographic Details
Published inTrends in biotechnology (Regular ed.) Vol. 43; no. 6; pp. 1385 - 1402
Main Authors Bai, Fan, Cai, Peng, Yao, Lun, Shen, Yiwei, Li, Yunxia, Zhou, Yongjin J.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2025
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A tetracycline repressor protein (TetR)/tetO2 inducible system was constructed and optimized in Pichia pastoris.The TetR/tetO2 inducible system dynamically enhanced homologous recombination (HR) for precise editing of multiple genes.Dynamically enhancing HR did not compromise cellular growth or product biosynthesis. The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness. [Display omitted] An anhydrotetracycline (aTc) inducible system was developed to dynamically overexpress homologous recombination-related genes for precise genome engineering in Pichia pastoris. By using this dynamic regulation system, the positive rate of precise gene editing reached 80%, without interrupting cellular growth or fatty alcohol production. An inducible CRISPR-Cas9 gene-editing strategy was constructed in Pichia pastoris, demonstrating excellent homologous recombination (HR) efficiency in genomic integration. This inducible system promoted the positive rates of genome integration of single and multiple genes by up to 80%, without comprising either cellular growth using methanol as a carbon source or fatty alcohol production; in addition, constitutively enhancing HR significantly impaired fatty alcohol biosynthesis. Currently, CRISPR-Cas9 gene-editing tools have successful applications in unconventional yeasts, and enhancement of the HR repair pathway could be a feasible strategy to increase the gene editing efficiency. However, enhancing HR also impacts cellular metabolism and production biosynthesis, effects that would be amplified in large-scale production. Thus, there is an urgent need to coordinate gene-editing efficiency and chemical production. In our study, although the inducible HR system was only performed in P. pastoris and evaluated for fatty alcohol production under shake flask fermentation, it should be evaluated for other products in larger scale biomanufacturing systems, such as bioreactors. Therefore, the current Technology Readiness Level (TRL) of this technology lies between 4 and 5.
AbstractList The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness.The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness.
The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/ tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness.
A tetracycline repressor protein (TetR)/tetO2 inducible system was constructed and optimized in Pichia pastoris.The TetR/tetO2 inducible system dynamically enhanced homologous recombination (HR) for precise editing of multiple genes.Dynamically enhancing HR did not compromise cellular growth or product biosynthesis. The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness. [Display omitted] An anhydrotetracycline (aTc) inducible system was developed to dynamically overexpress homologous recombination-related genes for precise genome engineering in Pichia pastoris. By using this dynamic regulation system, the positive rate of precise gene editing reached 80%, without interrupting cellular growth or fatty alcohol production. An inducible CRISPR-Cas9 gene-editing strategy was constructed in Pichia pastoris, demonstrating excellent homologous recombination (HR) efficiency in genomic integration. This inducible system promoted the positive rates of genome integration of single and multiple genes by up to 80%, without comprising either cellular growth using methanol as a carbon source or fatty alcohol production; in addition, constitutively enhancing HR significantly impaired fatty alcohol biosynthesis. Currently, CRISPR-Cas9 gene-editing tools have successful applications in unconventional yeasts, and enhancement of the HR repair pathway could be a feasible strategy to increase the gene editing efficiency. However, enhancing HR also impacts cellular metabolism and production biosynthesis, effects that would be amplified in large-scale production. Thus, there is an urgent need to coordinate gene-editing efficiency and chemical production. In our study, although the inducible HR system was only performed in P. pastoris and evaluated for fatty alcohol production under shake flask fermentation, it should be evaluated for other products in larger scale biomanufacturing systems, such as bioreactors. Therefore, the current Technology Readiness Level (TRL) of this technology lies between 4 and 5.
HighlightsA tetracycline repressor protein (TetR)/ tetO2 inducible system was constructed and optimized in Pichia pastoris. The TetR/ tetO2 inducible system dynamically enhanced homologous recombination (HR) for precise editing of multiple genes. Dynamically enhancing HR did not compromise cellular growth or product biosynthesis.
Author Yao, Lun
Shen, Yiwei
Li, Yunxia
Cai, Peng
Zhou, Yongjin J.
Bai, Fan
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0001-6257-9247
  surname: Bai
  fullname: Bai, Fan
  organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
– sequence: 2
  givenname: Peng
  orcidid: 0000-0001-5761-6744
  surname: Cai
  fullname: Cai, Peng
  organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
– sequence: 3
  givenname: Lun
  surname: Yao
  fullname: Yao, Lun
  organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
– sequence: 4
  givenname: Yiwei
  surname: Shen
  fullname: Shen, Yiwei
  organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
– sequence: 5
  givenname: Yunxia
  surname: Li
  fullname: Li, Yunxia
  organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
– sequence: 6
  givenname: Yongjin J.
  orcidid: 0000-0002-2369-3079
  surname: Zhou
  fullname: Zhou, Yongjin J.
  email: zhouyongjin@dicp.ac.cn
  organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40074635$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFnwCyxIVLgu18H6BCFR-VKoEEnC3Hnux6SexgO6Ce-eNM2KWHSqicLNnP-3pm3jkjJ847IOQpZzlnvH65z5PtE-hdLpiociZyxqoHZMPbpssK1tUnZINckzVN152Ssxj3jLGi6fgjcloy1pR1UW3IrytnFm37EWiA7TKqZN2W7vzkR7_1S8Rb7afeOnzwjoJTiEY647WNQLfg_AQUjP2js45-snpnFZ1VTD7YSH_atPNLojOEtIR-pTSMI_4U6GCTgxgfk4eDGiM8OZ7n5Ou7t18uP2TXH99fXb65znTRtSnrDXDdDFz0lTG8Vy2YohD9oOuBmUEJUSowTc950YlKVy0ruWpLXg9lBUYzKM7Ji4PvHPz3BWKSk41rMcoBtioLUQpWC46TuRflTV23vGwFos_voHu_BIeNoCGvMZ2urJB6dqSWfgIj52AnFW7k3yQQqA6ADj7GAMMtwplcE5d7eUxcrolLJiQmjrqLgw5wcj8sBBm1BacxEswoSePtvQ6v7zjo0Tqr1fgNbiDedsNlRIH8vG7VulSiwoUqRYEGr_5t8B8F_AZ8MuLU
Cites_doi 10.1021/acssynbio.1c00307
10.1021/je500225x
10.1038/nbt.1536
10.1073/pnas.2220816120
10.1038/s41467-020-16807-3
10.1038/ncomms6652
10.1002/biot.202400261
10.1007/s00253-024-13037-1
10.1016/j.jbiotec.2016.03.027
10.7717/peerj.4167
10.1016/j.cell.2017.06.052
10.1016/j.copbio.2021.01.008
10.1016/j.tibtech.2024.03.007
10.1021/acssynbio.1c00194
10.1002/biot.202300259
10.1016/j.synbio.2023.06.008
10.1186/s12934-019-1194-x
10.2144/05381BM04
10.1016/j.tibtech.2020.07.005
10.1002/biot.202400115
10.1093/nar/gks270
10.1002/jcp.29583
10.1021/acssuschemeng.3c00410
10.1080/09168451.2019.1693250
10.3389/fbioe.2020.610936
10.1093/nar/gkab535
10.1016/j.isci.2021.102168
10.1016/j.synbio.2021.04.005
10.1016/j.tibtech.2023.03.006
10.18388/abp.2003_3622
10.1016/j.tibtech.2023.06.012
10.1371/journal.pone.0039720
10.1194/jlr.M060954
10.1007/s00253-021-11688-y
10.1186/s40643-022-00551-1
10.1186/s12934-022-01908-z
10.1016/j.synbio.2017.08.002
10.1021/sb500363y
10.1016/S1097-2765(02)00705-0
10.1038/ncomms11709
10.1186/s13068-022-02242-7
10.1002/biot.202300033
10.1021/jacs.6b07394
10.1016/j.cell.2021.10.002
10.1021/acssynbio.1c00366
10.1073/pnas.2201711119
10.1016/j.molcel.2019.08.017
10.1073/pnas.0608451104
10.1074/jbc.272.45.28194
10.1016/j.biortech.2024.131396
10.1016/j.ymben.2018.04.017
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
2025. Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
– notice: 2025. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M0T
M1P
M2O
M7P
M7S
MBDVC
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
7S9
L.6
DOI 10.1016/j.tibtech.2025.02.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni)
Healthcare Administration Database
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Health Management
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
AGRICOLA



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3096
EndPage 1402
ExternalDocumentID 40074635
10_1016_j_tibtech_2025_02_005
S0167779925000423
1_s2_0_S0167779925000423
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABJCF
ABJNI
ABLJU
ABMAC
ABNUV
ABUDA
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AQUVI
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKOJK
BLXMC
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HLW
HMCUK
HVGLF
HZ~
IHE
J1W
KOM
L6V
LK8
LX3
M0T
M1P
M2O
M41
M7P
M7S
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q38
R2-
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSU
SSZ
T5K
TAE
TN5
UKHRP
WUQ
XPP
Y6R
Z5R
ZGI
ZMT
~02
~G-
~KM
AFCTW
AGRNS
ALIPV
BNPGV
RIG
SSH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-bde1c7f12b5dd1ba8ed332bfc6f0dfa224aed7b113925c58041a8416f45edc0e3
IEDL.DBID .~1
ISSN 0167-7799
1879-3096
IngestDate Fri Aug 22 20:38:17 EDT 2025
Thu Jul 10 21:43:33 EDT 2025
Sat Aug 23 14:56:11 EDT 2025
Sun Jun 08 01:32:56 EDT 2025
Tue Aug 05 12:04:17 EDT 2025
Sat Jun 28 18:15:12 EDT 2025
Fri Jun 27 03:51:19 EDT 2025
Tue Aug 26 19:34:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords dynamic regulation
genome editing
Komagataella pastoris
Pichia pastoris
homologous recombination
CRISPR-Cas9
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-bde1c7f12b5dd1ba8ed332bfc6f0dfa224aed7b113925c58041a8416f45edc0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6257-9247
0000-0001-5761-6744
0000-0002-2369-3079
PMID 40074635
PQID 3216202945
PQPubID 2031074
PageCount 18
ParticipantIDs proquest_miscellaneous_3242062146
proquest_miscellaneous_3176681482
proquest_journals_3216202945
pubmed_primary_40074635
crossref_primary_10_1016_j_tibtech_2025_02_005
elsevier_sciencedirect_doi_10_1016_j_tibtech_2025_02_005
elsevier_clinicalkeyesjournals_1_s2_0_S0167779925000423
elsevier_clinicalkey_doi_10_1016_j_tibtech_2025_02_005
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Trends in biotechnology (Regular ed.)
PublicationTitleAlternate Trends Biotechnol
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Garcia-Luis, Machin (bb0200) 2014; 5
Wu (bb0045) 2023; 11
Zhai (bb0215) 2023; 120
Karbalaei (bb0005) 2020; 235
Meesapyodsuk (bb0030) 2015; 56
Qiao (bb0070) 2023; 8
Zhao (bb0150) 2020; 11
Zhang (bb0025) 2020; 84
Krishnan (bb0210) 2020; 8
Gao (bb0050) 2024; 19
Murphy (bb0255) 2007; 104
Cai (bb0205) 2022; 119
Lobs (bb0230) 2017; 2
Ellis (bb0170) 2009; 27
Shen (bb0225) 2024; 412
Gao (bb0220) 2022; 15
Wang (bb0010) 2023; 18
Xie (bb0060) 2024; 42
Gao (bb0135) 2022; 11
Cai (bb0020) 2022; 9
Zhou (bb0245) 2016; 138
Hussmann (bb0115) 2021; 184
Cuperus (bb0160) 2015; 4
Gao (bb0180) 2021; 24
Krejci (bb0190) 2012; 40
Yan (bb0185) 2019; 76
Gao (bb0040) 2021; 6
Mitchler (bb0145) 2021; 69
Liao (bb0075) 2021; 105
Teng (bb0095) 2024; 42
Piazza (bb0195) 2017; 170
Guo (bb0055) 2023; 41
Frank-Vaillant, Marcand (bb0125) 2002; 10
Cai (bb0120) 2021; 49
Lin-Cereghino (bb0260) 2005; 38
Pena (bb0035) 2018; 50
Weninger (bb0080) 2016; 235
Naatsaari (bb0130) 2012; 7
Russmayer (bb0015) 2023; 18
Liu (bb0085) 2019; 18
Zhang (bb0140) 2022; 21
Liu (bb0235) 2022; 8
Wu (bb0105) 2024; 19
Pastwa, Błasiak (bb0110) 2003; 50
Dalvie (bb0065) 2022; 11
Gao (bb0240) 2022; 11
Sung (bb0175) 1997; 272
Zhou (bb0090) 2024; 108
Bolintineanu (bb0165) 2014; 59
Liu (bb0100) 2021; 39
Zhou (bb0250) 2016; 7
Barwell (bb0155) 2017; 5
Garcia-Luis (10.1016/j.tibtech.2025.02.005_bb0200) 2014; 5
Zhai (10.1016/j.tibtech.2025.02.005_bb0215) 2023; 120
Weninger (10.1016/j.tibtech.2025.02.005_bb0080) 2016; 235
Xie (10.1016/j.tibtech.2025.02.005_bb0060) 2024; 42
Krishnan (10.1016/j.tibtech.2025.02.005_bb0210) 2020; 8
Pastwa (10.1016/j.tibtech.2025.02.005_bb0110) 2003; 50
Zhou (10.1016/j.tibtech.2025.02.005_bb0245) 2016; 138
Zhou (10.1016/j.tibtech.2025.02.005_bb0250) 2016; 7
Liu (10.1016/j.tibtech.2025.02.005_bb0085) 2019; 18
Murphy (10.1016/j.tibtech.2025.02.005_bb0255) 2007; 104
Dalvie (10.1016/j.tibtech.2025.02.005_bb0065) 2022; 11
Pena (10.1016/j.tibtech.2025.02.005_bb0035) 2018; 50
Russmayer (10.1016/j.tibtech.2025.02.005_bb0015) 2023; 18
Frank-Vaillant (10.1016/j.tibtech.2025.02.005_bb0125) 2002; 10
Hussmann (10.1016/j.tibtech.2025.02.005_bb0115) 2021; 184
Sung (10.1016/j.tibtech.2025.02.005_bb0175) 1997; 272
Liu (10.1016/j.tibtech.2025.02.005_bb0100) 2021; 39
Gao (10.1016/j.tibtech.2025.02.005_bb0220) 2022; 15
Wang (10.1016/j.tibtech.2025.02.005_bb0010) 2023; 18
Gao (10.1016/j.tibtech.2025.02.005_bb0040) 2021; 6
Zhang (10.1016/j.tibtech.2025.02.005_bb0025) 2020; 84
Mitchler (10.1016/j.tibtech.2025.02.005_bb0145) 2021; 69
Qiao (10.1016/j.tibtech.2025.02.005_bb0070) 2023; 8
Cai (10.1016/j.tibtech.2025.02.005_bb0020) 2022; 9
Piazza (10.1016/j.tibtech.2025.02.005_bb0195) 2017; 170
Bolintineanu (10.1016/j.tibtech.2025.02.005_bb0165) 2014; 59
Wu (10.1016/j.tibtech.2025.02.005_bb0105) 2024; 19
Naatsaari (10.1016/j.tibtech.2025.02.005_bb0130) 2012; 7
Gao (10.1016/j.tibtech.2025.02.005_bb0240) 2022; 11
Shen (10.1016/j.tibtech.2025.02.005_bb0225) 2024; 412
Karbalaei (10.1016/j.tibtech.2025.02.005_bb0005) 2020; 235
Guo (10.1016/j.tibtech.2025.02.005_bb0055) 2023; 41
Cuperus (10.1016/j.tibtech.2025.02.005_bb0160) 2015; 4
Cai (10.1016/j.tibtech.2025.02.005_bb0120) 2021; 49
Lobs (10.1016/j.tibtech.2025.02.005_bb0230) 2017; 2
Meesapyodsuk (10.1016/j.tibtech.2025.02.005_bb0030) 2015; 56
Liao (10.1016/j.tibtech.2025.02.005_bb0075) 2021; 105
Ellis (10.1016/j.tibtech.2025.02.005_bb0170) 2009; 27
Gao (10.1016/j.tibtech.2025.02.005_bb0180) 2021; 24
Wu (10.1016/j.tibtech.2025.02.005_bb0045) 2023; 11
Teng (10.1016/j.tibtech.2025.02.005_bb0095) 2024; 42
Zhao (10.1016/j.tibtech.2025.02.005_bb0150) 2020; 11
Liu (10.1016/j.tibtech.2025.02.005_bb0235) 2022; 8
Cai (10.1016/j.tibtech.2025.02.005_bb0205) 2022; 119
Gao (10.1016/j.tibtech.2025.02.005_bb0050) 2024; 19
Gao (10.1016/j.tibtech.2025.02.005_bb0135) 2022; 11
Barwell (10.1016/j.tibtech.2025.02.005_bb0155) 2017; 5
Zhang (10.1016/j.tibtech.2025.02.005_bb0140) 2022; 21
Lin-Cereghino (10.1016/j.tibtech.2025.02.005_bb0260) 2005; 38
Yan (10.1016/j.tibtech.2025.02.005_bb0185) 2019; 76
Krejci (10.1016/j.tibtech.2025.02.005_bb0190) 2012; 40
Zhou (10.1016/j.tibtech.2025.02.005_bb0090) 2024; 108
References_xml – volume: 108
  start-page: 197
  year: 2024
  ident: bb0090
  article-title: CRISPR/Cas9-based toolkit for rapid marker recycling and combinatorial libraries in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 138
  start-page: 15368
  year: 2016
  end-page: 15377
  ident: bb0245
  article-title: Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2012
  ident: bb0130
  article-title: Deletion of the
  publication-title: PLoS ONE
– volume: 69
  start-page: 172
  year: 2021
  end-page: 181
  ident: bb0145
  article-title: Transcription factor-based biosensors: a molecular-guided approach for natural product engineering
  publication-title: Curr. Opin. Biotechnol.
– volume: 412
  year: 2024
  ident: bb0225
  article-title: Engineering high production of fatty alcohols from methanol by constructing coordinated dual biosynthetic pathways
  publication-title: Bioresour. Technol.
– volume: 11
  start-page: 497
  year: 2022
  end-page: 501
  ident: bb0065
  article-title: Simplified gene knockout by CRISPR-Cas9-induced homologous recombination
  publication-title: ACS Synth. Biol.
– volume: 2
  start-page: 198
  year: 2017
  end-page: 207
  ident: bb0230
  article-title: Genome and metabolic engineering in non-conventional yeasts: current advances and applications
  publication-title: Synth. Syst. Biotechnol.
– volume: 27
  start-page: 465
  year: 2009
  end-page: 471
  ident: bb0170
  article-title: Diversity-based, model-guided construction of synthetic gene networks with predicted functions
  publication-title: Nat. Biotechnol.
– volume: 9
  start-page: 58
  year: 2022
  ident: bb0020
  article-title: Microbial synthesis of long-chain α-alkenes from methanol by engineering
  publication-title: Bioresour. Bioprocess.
– volume: 11
  start-page: 6445
  year: 2023
  end-page: 6453
  ident: bb0045
  article-title: Efficient bioproduction of 3-hydroxypropionic acid from methanol by a synthetic yeast cell factory
  publication-title: ACS Sustain. Chem. Eng.
– volume: 42
  start-page: 1363
  year: 2024
  end-page: 1378
  ident: bb0060
  article-title: as a next-generation chassis for industrial biotechnology
  publication-title: Trends Biotechnol.
– volume: 272
  start-page: 28194
  year: 1997
  end-page: 28197
  ident: bb0175
  article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 1189
  year: 2002
  end-page: 1199
  ident: bb0125
  article-title: Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination
  publication-title: Mol. Cell
– volume: 8
  year: 2022
  ident: bb0235
  article-title: A programmable high-expression yeast platform responsive to user-defined signals
  publication-title: Sci. Adv.
– volume: 50
  start-page: 891
  year: 2003
  end-page: 908
  ident: bb0110
  article-title: Non-homologous DNA end joining
  publication-title: Acta Biochim. Pol.
– volume: 120
  year: 2023
  ident: bb0215
  article-title: Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 84
  start-page: 463
  year: 2020
  end-page: 470
  ident: bb0025
  article-title: Production of lycopene by metabolically engineered
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 40
  start-page: 5795
  year: 2012
  end-page: 5818
  ident: bb0190
  article-title: Homologous recombination and its regulation
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 623
  year: 2022
  end-page: 633
  ident: bb0240
  article-title: Synthetic biology toolkit for marker-less integration of multigene pathways into
  publication-title: ACS Synth. Biol.
– volume: 105
  start-page: 9211
  year: 2021
  end-page: 9218
  ident: bb0075
  article-title: A versatile toolbox for CRISPR-based genome engineering in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 59
  start-page: 3167
  year: 2014
  end-page: 3176
  ident: bb0165
  article-title: Investigation of changes in tetracycline repressor binding upon mutations in the tetracycline operator
  publication-title: J. Chem. Eng. Data
– volume: 11
  start-page: 547
  year: 2022
  end-page: 553
  ident: bb0135
  article-title: Enhancing homologous recombination efficiency in
  publication-title: ACS Synth. Biol.
– volume: 104
  start-page: 12726
  year: 2007
  end-page: 12731
  ident: bb0255
  article-title: Combinatorial promoter design for engineering noisy gene expression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  year: 2023
  ident: bb0015
  article-title: Customizing amino acid metabolism of
  publication-title: Biotechnol. J.
– volume: 235
  start-page: 5867
  year: 2020
  end-page: 5881
  ident: bb0005
  article-title: : a highly successful expression system for optimal synthesis of heterologous proteins
  publication-title: J. Cell. Physiol.
– volume: 19
  year: 2024
  ident: bb0050
  article-title: Engineering a versatile yeast platform for sesquiterpene production from glucose or methanol
  publication-title: Biotechnol. J.
– volume: 5
  year: 2017
  ident: bb0155
  article-title: Regulating the UAS/GAL4 system in adult
  publication-title: PeerJ
– volume: 18
  start-page: 144
  year: 2019
  ident: bb0085
  article-title: CRISPR-Cas9-mediated genomic multiloci integration in
  publication-title: Microb. Cell Factories
– volume: 76
  start-page: 699
  year: 2019
  end-page: 711
  ident: bb0185
  article-title: Rad52 restrains resection at DNA double-strand break ends in yeast
  publication-title: Mol. Cell
– volume: 5
  start-page: 5652
  year: 2014
  ident: bb0200
  article-title: Mus81-Mms4 and Yen1 resolve a novel anaphase bridge formed by noncanonical Holliday junctions
  publication-title: Nat. Commun.
– volume: 8
  start-page: 479
  year: 2023
  end-page: 485
  ident: bb0070
  article-title: An improved CRISPRi system in
  publication-title: Synth. Syst. Biotechnol.
– volume: 170
  start-page: 760
  year: 2017
  end-page: 773
  ident: bb0195
  article-title: Multi-invasions are recombination byproducts that induce chromosomal rearrangements
  publication-title: Cell
– volume: 19
  year: 2024
  ident: bb0105
  article-title: Efficient CRISPR-mediated C-to-T base editing in
  publication-title: Biotechnol. J.
– volume: 184
  start-page: 5653
  year: 2021
  end-page: 5669
  ident: bb0115
  article-title: Mapping the genetic landscape of DNA double-strand break repair
  publication-title: Cell
– volume: 7
  year: 2016
  ident: bb0250
  article-title: Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
  publication-title: Nat. Commun.
– volume: 6
  start-page: 110
  year: 2021
  end-page: 119
  ident: bb0040
  article-title: Development of synthetic biology tools to engineer
  publication-title: Synth. Syst. Biotechnol.
– volume: 49
  start-page: 7791
  year: 2021
  end-page: 7805
  ident: bb0120
  article-title: Recombination machinery engineering facilitates metabolic engineering of the industrial yeast
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 3095
  year: 2020
  ident: bb0150
  article-title: Genetic breakdown of a Tet-off conditional lethality system for insect population control
  publication-title: Nat. Commun.
– volume: 18
  year: 2023
  ident: bb0010
  article-title: Highly efficient expression and secretion of human lysozyme using multiple strategies in
  publication-title: Biotechnol. J.
– volume: 42
  start-page: 104
  year: 2024
  end-page: 118
  ident: bb0095
  article-title: The expanded CRISPR toolbox for constructing microbial cell factories
  publication-title: Trends Biotechnol.
– volume: 50
  start-page: 2
  year: 2018
  end-page: 15
  ident: bb0035
  article-title: Metabolic engineering of
  publication-title: Metab. Eng.
– volume: 4
  start-page: 842
  year: 2015
  end-page: 852
  ident: bb0160
  article-title: A tetO toolkit to alter expression of genes in
  publication-title: ACS Synth. Biol.
– volume: 56
  start-page: 2102
  year: 2015
  end-page: 2109
  ident: bb0030
  article-title: Metabolic engineering of
  publication-title: J. Lipid Res.
– volume: 21
  start-page: 182
  year: 2022
  ident: bb0140
  article-title: Fusing an exonuclease with Cas9 enhances homologous recombination in
  publication-title: Microb. Cell Factories
– volume: 41
  start-page: 1066
  year: 2023
  end-page: 1079
  ident: bb0055
  article-title: Bioconversion of C1 feedstocks for chemical production using
  publication-title: Trends Biotechnol.
– volume: 235
  start-page: 139
  year: 2016
  end-page: 149
  ident: bb0080
  article-title: Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast
  publication-title: J. Biotechnol.
– volume: 119
  year: 2022
  ident: bb0205
  article-title: Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 24
  year: 2021
  ident: bb0180
  article-title: Recombination machinery engineering for precise genome editing in methylotrophic yeast
  publication-title: iScience
– volume: 38
  start-page: 44
  year: 2005
  end-page: 48
  ident: bb0260
  article-title: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast
  publication-title: Biotechniques
– volume: 15
  start-page: 141
  year: 2022
  ident: bb0220
  article-title: Spatial–temporal regulation of fatty alcohol biosynthesis in yeast
  publication-title: Biotechnol. Biofuels
– volume: 8
  year: 2020
  ident: bb0210
  article-title: Biosynthesis of fatty alcohols in engineered microbial cell factories: advances and limitations
  publication-title: Front. Bioeng. Biotechnol.
– volume: 39
  start-page: 262
  year: 2021
  end-page: 273
  ident: bb0100
  article-title: Directed evolution of CRISPR/Cas systems for precise gene editing
  publication-title: Trends Biotechnol.
– volume: 11
  start-page: 623
  year: 2022
  ident: 10.1016/j.tibtech.2025.02.005_bb0240
  article-title: Synthetic biology toolkit for marker-less integration of multigene pathways into Pichia pastoris via CRISPR/Cas9
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.1c00307
– volume: 59
  start-page: 3167
  year: 2014
  ident: 10.1016/j.tibtech.2025.02.005_bb0165
  article-title: Investigation of changes in tetracycline repressor binding upon mutations in the tetracycline operator
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je500225x
– volume: 27
  start-page: 465
  year: 2009
  ident: 10.1016/j.tibtech.2025.02.005_bb0170
  article-title: Diversity-based, model-guided construction of synthetic gene networks with predicted functions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1536
– volume: 120
  year: 2023
  ident: 10.1016/j.tibtech.2025.02.005_bb0215
  article-title: Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2220816120
– volume: 11
  start-page: 3095
  year: 2020
  ident: 10.1016/j.tibtech.2025.02.005_bb0150
  article-title: Genetic breakdown of a Tet-off conditional lethality system for insect population control
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16807-3
– volume: 5
  start-page: 5652
  year: 2014
  ident: 10.1016/j.tibtech.2025.02.005_bb0200
  article-title: Mus81-Mms4 and Yen1 resolve a novel anaphase bridge formed by noncanonical Holliday junctions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6652
– volume: 19
  year: 2024
  ident: 10.1016/j.tibtech.2025.02.005_bb0050
  article-title: Engineering a versatile yeast platform for sesquiterpene production from glucose or methanol
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.202400261
– volume: 108
  start-page: 197
  year: 2024
  ident: 10.1016/j.tibtech.2025.02.005_bb0090
  article-title: CRISPR/Cas9-based toolkit for rapid marker recycling and combinatorial libraries in Komagataella phaffii
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-024-13037-1
– volume: 235
  start-page: 139
  year: 2016
  ident: 10.1016/j.tibtech.2025.02.005_bb0080
  article-title: Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2016.03.027
– volume: 5
  year: 2017
  ident: 10.1016/j.tibtech.2025.02.005_bb0155
  article-title: Regulating the UAS/GAL4 system in adult Drosophila with Tet-off GAL80 transgenes
  publication-title: PeerJ
  doi: 10.7717/peerj.4167
– volume: 170
  start-page: 760
  year: 2017
  ident: 10.1016/j.tibtech.2025.02.005_bb0195
  article-title: Multi-invasions are recombination byproducts that induce chromosomal rearrangements
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.052
– volume: 69
  start-page: 172
  year: 2021
  ident: 10.1016/j.tibtech.2025.02.005_bb0145
  article-title: Transcription factor-based biosensors: a molecular-guided approach for natural product engineering
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2021.01.008
– volume: 42
  start-page: 1363
  year: 2024
  ident: 10.1016/j.tibtech.2025.02.005_bb0060
  article-title: Ogataea polymorpha as a next-generation chassis for industrial biotechnology
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2024.03.007
– volume: 11
  start-page: 497
  year: 2022
  ident: 10.1016/j.tibtech.2025.02.005_bb0065
  article-title: Simplified gene knockout by CRISPR-Cas9-induced homologous recombination
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.1c00194
– volume: 18
  year: 2023
  ident: 10.1016/j.tibtech.2025.02.005_bb0010
  article-title: Highly efficient expression and secretion of human lysozyme using multiple strategies in Pichia pastoris
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.202300259
– volume: 8
  start-page: 479
  year: 2023
  ident: 10.1016/j.tibtech.2025.02.005_bb0070
  article-title: An improved CRISPRi system in Pichia pastoris
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2023.06.008
– volume: 18
  start-page: 144
  year: 2019
  ident: 10.1016/j.tibtech.2025.02.005_bb0085
  article-title: CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-019-1194-x
– volume: 38
  start-page: 44
  year: 2005
  ident: 10.1016/j.tibtech.2025.02.005_bb0260
  article-title: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris
  publication-title: Biotechniques
  doi: 10.2144/05381BM04
– volume: 39
  start-page: 262
  year: 2021
  ident: 10.1016/j.tibtech.2025.02.005_bb0100
  article-title: Directed evolution of CRISPR/Cas systems for precise gene editing
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.07.005
– volume: 19
  year: 2024
  ident: 10.1016/j.tibtech.2025.02.005_bb0105
  article-title: Efficient CRISPR-mediated C-to-T base editing in Komagataella phaffii
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.202400115
– volume: 40
  start-page: 5795
  year: 2012
  ident: 10.1016/j.tibtech.2025.02.005_bb0190
  article-title: Homologous recombination and its regulation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks270
– volume: 235
  start-page: 5867
  year: 2020
  ident: 10.1016/j.tibtech.2025.02.005_bb0005
  article-title: Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29583
– volume: 8
  year: 2022
  ident: 10.1016/j.tibtech.2025.02.005_bb0235
  article-title: A programmable high-expression yeast platform responsive to user-defined signals
  publication-title: Sci. Adv.
– volume: 11
  start-page: 6445
  year: 2023
  ident: 10.1016/j.tibtech.2025.02.005_bb0045
  article-title: Efficient bioproduction of 3-hydroxypropionic acid from methanol by a synthetic yeast cell factory
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c00410
– volume: 84
  start-page: 463
  year: 2020
  ident: 10.1016/j.tibtech.2025.02.005_bb0025
  article-title: Production of lycopene by metabolically engineered Pichia pastoris
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2019.1693250
– volume: 8
  year: 2020
  ident: 10.1016/j.tibtech.2025.02.005_bb0210
  article-title: Biosynthesis of fatty alcohols in engineered microbial cell factories: advances and limitations
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.610936
– volume: 49
  start-page: 7791
  year: 2021
  ident: 10.1016/j.tibtech.2025.02.005_bb0120
  article-title: Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab535
– volume: 24
  year: 2021
  ident: 10.1016/j.tibtech.2025.02.005_bb0180
  article-title: Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102168
– volume: 6
  start-page: 110
  year: 2021
  ident: 10.1016/j.tibtech.2025.02.005_bb0040
  article-title: Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2021.04.005
– volume: 41
  start-page: 1066
  year: 2023
  ident: 10.1016/j.tibtech.2025.02.005_bb0055
  article-title: Bioconversion of C1 feedstocks for chemical production using Pichia pastoris
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2023.03.006
– volume: 50
  start-page: 891
  year: 2003
  ident: 10.1016/j.tibtech.2025.02.005_bb0110
  article-title: Non-homologous DNA end joining
  publication-title: Acta Biochim. Pol.
  doi: 10.18388/abp.2003_3622
– volume: 42
  start-page: 104
  year: 2024
  ident: 10.1016/j.tibtech.2025.02.005_bb0095
  article-title: The expanded CRISPR toolbox for constructing microbial cell factories
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2023.06.012
– volume: 7
  year: 2012
  ident: 10.1016/j.tibtech.2025.02.005_bb0130
  article-title: Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0039720
– volume: 56
  start-page: 2102
  year: 2015
  ident: 10.1016/j.tibtech.2025.02.005_bb0030
  article-title: Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M060954
– volume: 105
  start-page: 9211
  year: 2021
  ident: 10.1016/j.tibtech.2025.02.005_bb0075
  article-title: A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-021-11688-y
– volume: 9
  start-page: 58
  year: 2022
  ident: 10.1016/j.tibtech.2025.02.005_bb0020
  article-title: Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris
  publication-title: Bioresour. Bioprocess.
  doi: 10.1186/s40643-022-00551-1
– volume: 21
  start-page: 182
  year: 2022
  ident: 10.1016/j.tibtech.2025.02.005_bb0140
  article-title: Fusing an exonuclease with Cas9 enhances homologous recombination in Pichia pastoris
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-022-01908-z
– volume: 2
  start-page: 198
  year: 2017
  ident: 10.1016/j.tibtech.2025.02.005_bb0230
  article-title: Genome and metabolic engineering in non-conventional yeasts: current advances and applications
  publication-title: Synth. Syst. Biotechnol.
  doi: 10.1016/j.synbio.2017.08.002
– volume: 4
  start-page: 842
  year: 2015
  ident: 10.1016/j.tibtech.2025.02.005_bb0160
  article-title: A tetO toolkit to alter expression of genes in Saccharomyces cerevisiae
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb500363y
– volume: 10
  start-page: 1189
  year: 2002
  ident: 10.1016/j.tibtech.2025.02.005_bb0125
  article-title: Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00705-0
– volume: 7
  year: 2016
  ident: 10.1016/j.tibtech.2025.02.005_bb0250
  article-title: Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11709
– volume: 15
  start-page: 141
  year: 2022
  ident: 10.1016/j.tibtech.2025.02.005_bb0220
  article-title: Spatial–temporal regulation of fatty alcohol biosynthesis in yeast
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-022-02242-7
– volume: 18
  year: 2023
  ident: 10.1016/j.tibtech.2025.02.005_bb0015
  article-title: Customizing amino acid metabolism of Pichia pastoris for recombinant protein production
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.202300033
– volume: 138
  start-page: 15368
  year: 2016
  ident: 10.1016/j.tibtech.2025.02.005_bb0245
  article-title: Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07394
– volume: 184
  start-page: 5653
  year: 2021
  ident: 10.1016/j.tibtech.2025.02.005_bb0115
  article-title: Mapping the genetic landscape of DNA double-strand break repair
  publication-title: Cell
  doi: 10.1016/j.cell.2021.10.002
– volume: 11
  start-page: 547
  year: 2022
  ident: 10.1016/j.tibtech.2025.02.005_bb0135
  article-title: Enhancing homologous recombination efficiency in Pichia pastoris for multiplex genome integration using short homology arms
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.1c00366
– volume: 119
  year: 2022
  ident: 10.1016/j.tibtech.2025.02.005_bb0205
  article-title: Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2201711119
– volume: 76
  start-page: 699
  year: 2019
  ident: 10.1016/j.tibtech.2025.02.005_bb0185
  article-title: Rad52 restrains resection at DNA double-strand break ends in yeast
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.08.017
– volume: 104
  start-page: 12726
  year: 2007
  ident: 10.1016/j.tibtech.2025.02.005_bb0255
  article-title: Combinatorial promoter design for engineering noisy gene expression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0608451104
– volume: 272
  start-page: 28194
  year: 1997
  ident: 10.1016/j.tibtech.2025.02.005_bb0175
  article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.45.28194
– volume: 412
  year: 2024
  ident: 10.1016/j.tibtech.2025.02.005_bb0225
  article-title: Engineering high production of fatty alcohols from methanol by constructing coordinated dual biosynthetic pathways
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2024.131396
– volume: 50
  start-page: 2
  year: 2018
  ident: 10.1016/j.tibtech.2025.02.005_bb0035
  article-title: Metabolic engineering of Pichia pastoris
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.04.017
SSID ssj0003791
Score 2.4726367
Snippet A tetracycline repressor protein (TetR)/tetO2 inducible system was constructed and optimized in Pichia pastoris.The TetR/tetO2 inducible system dynamically...
HighlightsA tetracycline repressor protein (TetR)/ tetO2 inducible system was constructed and optimized in Pichia pastoris. The TetR/ tetO2 inducible system...
The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1385
SubjectTerms adverse effects
Biosynthesis
biotechnology
Cell cycle
Cell growth
CRISPR
CRISPR-Cas9
dynamic regulation
Editing
Efficiency
fatty alcohols
Fitness
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene deletion
Gene Editing - methods
Gene Expression Regulation, Fungal
Genes
Genetic engineering
genome assembly
Genome editing
Genomes
Glucose
Homologous recombination
Homologous Recombination - genetics
Industrial applications
Internal Medicine
Kinases
Komagataella pastoris
methanol
Natural products
Pichia - genetics
Pichia pastoris
Proteins
Rad52 DNA Repair and Recombination Protein - genetics
Rad52 protein
RNA polymerase
Saccharomycetales - genetics
tetracycline
Yeast
yeasts
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtUwELWgLIAFKuUVKMhIbEMTx46dFUJVqwoJxIJKd2f5MRG34uaGm_QL-HFm8ioL-tgmthJlJjNn7PE5jH2glbUgoEpN0CKVIpapM1iseOWgJj42Eem889dv5dm5_LJSq2nBrZvaKueYOATquA20Rn5UiLzEQr2S6lP7OyXVKNpdnSQ07rMHRF1GXq1XS8GVFXpUzCNub62r6uoEz9EFZgRPNKlYIgo10naq63LTddhzyEGn--zJBB7559HaT9k9aA7Yw-NZs-2APf6HXvAZ-0O6HGHtfwHfjZLzeJn_3G4o4GHFz6ka3mBpPFiHw3CMquMtEV50wIm-dQMcs9swb93w72vqjOatG6hFOk6LuNvLnreww8zlaRRtBFBnK6_XPUXR5-z89OTH8Vk6iS6koahMn_oIedB1LryKMffOQCwK4etQ1lmsHWZ8B1H7HJGjUEERfZGjrctaKoghg-IF22u2Dbxi3DhjZFQeQWQmawwVXkMlQck64mUXEvZx_ty2Hbk17Nx0dmEn-1iyj82ERfskrJyNYueDoxjqLEb_2ybq_02EbvphO5vbDkdSr1upyVUECUUg1EyYWWZOmGTEGnd56OHsN3Z5zpUbJ-z9chu9hMzjGkDj24JIOw0RtN4wBqFVVpIqe8Jejj65fEM5iMgU6vXNL_CGPaK3HfveDtlev7uEt4iwev9u-I3-AsxBKC4
  priority: 102
  providerName: ProQuest
Title Inducible regulating homologous recombination enables precise genome editing in Pichia pastoris without perturbing cellular fitness
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0167779925000423
https://www.clinicalkey.es/playcontent/1-s2.0-S0167779925000423
https://dx.doi.org/10.1016/j.tibtech.2025.02.005
https://www.ncbi.nlm.nih.gov/pubmed/40074635
https://www.proquest.com/docview/3216202945
https://www.proquest.com/docview/3176681482
https://www.proquest.com/docview/3242062146
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOFS2vhbYyEtd0E8eOnWNZdVlYsaoKFXuz7NgRqbrZaJNeufDHmcljC4IC4pIozliOPJN5JDPfEPIav6xlzKeByiQLOHNJYBQEK1YYnyMeG3NY7_xhkcwu-fulWO6QyVALg2mVve7vdHqrrfuRcb-b46ooxh8xgV7KNGWI6Q9eAVawc4lSfvL1Ns0jll3XPMT3RurbKp7xFVgFi1CpECYy0UF3irvs013-Z2uHpo_IXu9A0tPuGffJji8PyP3J0LftgDz8AWLwMfmGvTmywl57uunazsMw_bJeodKDqJ9iRLyC8LjlEPVtKVVNKwS9qD1FCNeVp7BL7byipOcFZkfTyrTwIjXFD7nrm4ZWfgPWyyIV_gzA7FaaFw1q0ifkcnr2aTIL-sYLQRanqgms81Em84hZ4VxkjfIujpnNsyQPXW7A6hvvpI3Ae2QiEwhhZPD3Zc6Fd1no46dkt1yX_jmhyijFnbDgSIY8B3VhpU-5Fzx3MGyyETkZtltXHb6GHhLPrnTPH4380SHTwJ8RSQam6KF4FNSdBgvwt4nydxN93b-0tY50DZT6F8EaEbWd-ZNs_suih4Pc6O06MYsSoEk53H61vQ1SguwxpQfm6xiBOxWCtP6BBtyrMMHO7CPyrJPJ7R7ytpFMLF78_7O_JA_wqsuLOyS7zebGH4EH1tjj9hWDo1xKOKrp22Ny7_TdfLbA8_zi8xzOb84W5xffARq-OOs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAgcEIRtIEAjwdHEbru9HBBCgWFCFnFIpNya3iwmytjO2CPEmf_hG6nyFg4kcMnV7rYtV3Ut3VXvAbyinTXDXealJuFexG3sqRSTFS2UywmPjVvqdz44jGfH0ecTcbIGv4ZeGCqrHGxia6htaWiPfDvkQYyJehaJd9W5R6xRdLo6UGh0arHnfnzHlK1-u_sB5fua8-nHo52Z17MKeCbM0sbT1gUmyQOuhbWBVqmzYch1buLct7lCl6acTXSAoREXRhA-j6KzuTwSzhrfhfjcG3AzCtGTU2f69NNo-cOkY-gjLPEkybKLjqHtU_RAmmBZMSXlooMJFZf5wsti3dbnTe_CnT5YZe877boHa67YhI2dgSNuE27_AWd4H34SD4iZ6zPHlh3FPV5m38oFGdhyVTPKvheYirfawFzbtlWzigA2ascILnbhGHrTdt68YF_mVInNKtVCmdSMNo3LVcMqt0RPqWkUHTxQJS3L5w1Z7QdwfC3ieAjrRVm4x8BSlaaRFRqDVj_K0TTpxGWRE1Fu8bIyE3gz_G5ZdVgecihyO5W9fCTJR_pconwmEA9CkUOjKppWid7mXxOTv010dW8gahnIGkdSbV2ckKpwIqbA0HYC6Tizj4G62OZ_Xro16I0c33OxbCbwcryNWkLiUYVD4cuQQEJTAoS9YgyGcn5MLPATeNTp5PgPo5a0JhRPrv6AF7AxOzrYl_u7h3tP4RZ9eVdztwXrzXLlnmF01-jn7ZJi8PW61_Bv-gtm6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQTlgKC8AgWMBMewiRPncUAI2q5aCqsVolJvxo4dsVV3EzZZIc78K34dM3mVAy1cek3sJMqM52HPfB_AC9pZy7hN3SSLuRtyE7kqwWRFC2VzwmPjhvqdP06jg-Pw_Yk42YBffS8MlVX2NrEx1KbIaI98HHA_wkQ9DcU478oiZnuTN-U3lxik6KS1p9NoVeTI_viO6Vv1-nAPZf2S88n-590Dt2MYcLMgTWpXG-tnce5zLYzxtUqsCQKu8yzKPZMrdG_Kmlj7GCZxkQnC6lF0TpeHwprMswE-9xpsxpQVjWDz3f509mnwA0Hc8vURsngcp-l5_9D4FP2RJpBWTFC5aEFDxUWe8aLIt_GAk9twqwtd2dtW1-7Ahl1uw43dnjFuG27-AW54F34SK0g212eWrVrCe7zMvhYLMrfFumKUiy8wMW90g9mmiatiJcFtVJYReOzCMvStzbz5ks3mVJfNStUAm1SMtpCLdc1Ku0K_qWkUHUNQXS3L5zXZ8HtwfCUCuQ-jZbG0D4ElKklCIzSGsF6Yo6HSsU1DK8Lc4GWVOfCq_92ybJE9ZF_ydio7-UiSj_S4RPk4EPVCkX3bKhpaib7nXxPjv020VWcuKunLCkdSpV0Uk6pwoqnAQNeBZJjZRURtpPM_L93p9UYO7zlfRA48H26jlpB41NKi8GVAkKEJwcNeMgYDOy8iTngHHrQ6OfzDsKGwCcSjyz_gGVzH9Ss_HE6PHsMWfXhbgLcDo3q1tk8w1Kv1025NMfhy1cv4N2bhbHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inducible+regulating+homologous+recombination+enables+precise+genome+editing+in+Pichia+pastoris+without+perturbing+cellular+fitness&rft.jtitle=Trends+in+biotechnology+%28Regular+ed.%29&rft.au=Bai%2C+Fan&rft.au=Cai%2C+Peng&rft.au=Yao%2C+Lun&rft.au=Shen%2C+Yiwei&rft.date=2025-06-01&rft.issn=0167-7799&rft.volume=43&rft.issue=6&rft.spage=1385&rft.epage=1402&rft_id=info:doi/10.1016%2Fj.tibtech.2025.02.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tibtech_2025_02_005
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01677799%2FS0167779924X00074%2Fcov150h.gif