Inducible regulating homologous recombination enables precise genome editing in Pichia pastoris without perturbing cellular fitness
A tetracycline repressor protein (TetR)/tetO2 inducible system was constructed and optimized in Pichia pastoris.The TetR/tetO2 inducible system dynamically enhanced homologous recombination (HR) for precise editing of multiple genes.Dynamically enhancing HR did not compromise cellular growth or prod...
Saved in:
Published in | Trends in biotechnology (Regular ed.) Vol. 43; no. 6; pp. 1385 - 1402 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2025
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A tetracycline repressor protein (TetR)/tetO2 inducible system was constructed and optimized in Pichia pastoris.The TetR/tetO2 inducible system dynamically enhanced homologous recombination (HR) for precise editing of multiple genes.Dynamically enhancing HR did not compromise cellular growth or product biosynthesis.
The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness.
[Display omitted]
An anhydrotetracycline (aTc) inducible system was developed to dynamically overexpress homologous recombination-related genes for precise genome engineering in Pichia pastoris. By using this dynamic regulation system, the positive rate of precise gene editing reached 80%, without interrupting cellular growth or fatty alcohol production.
An inducible CRISPR-Cas9 gene-editing strategy was constructed in Pichia pastoris, demonstrating excellent homologous recombination (HR) efficiency in genomic integration. This inducible system promoted the positive rates of genome integration of single and multiple genes by up to 80%, without comprising either cellular growth using methanol as a carbon source or fatty alcohol production; in addition, constitutively enhancing HR significantly impaired fatty alcohol biosynthesis.
Currently, CRISPR-Cas9 gene-editing tools have successful applications in unconventional yeasts, and enhancement of the HR repair pathway could be a feasible strategy to increase the gene editing efficiency. However, enhancing HR also impacts cellular metabolism and production biosynthesis, effects that would be amplified in large-scale production. Thus, there is an urgent need to coordinate gene-editing efficiency and chemical production. In our study, although the inducible HR system was only performed in P. pastoris and evaluated for fatty alcohol production under shake flask fermentation, it should be evaluated for other products in larger scale biomanufacturing systems, such as bioreactors. Therefore, the current Technology Readiness Level (TRL) of this technology lies between 4 and 5. |
---|---|
AbstractList | The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness.The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness. The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/ tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness. A tetracycline repressor protein (TetR)/tetO2 inducible system was constructed and optimized in Pichia pastoris.The TetR/tetO2 inducible system dynamically enhanced homologous recombination (HR) for precise editing of multiple genes.Dynamically enhancing HR did not compromise cellular growth or product biosynthesis. The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing homologous recombination (HR) is helpful for improving the precision of genome editing, but results in stress to cellular fitness and is harmful for industrial applications. To overcome these challenges, we developed a tetracycline repressor protein (TetR)/tetO2 inducible system to dynamically regulate the HR-related gene RAD52 in P. pastoris. This approach significantly improved the positivity rate of single gene deletion to 81%. Furthermore, inducible overexpression of endogenous MUS81-MMS4 resulted in high-efficiency (81%) genome assembly of multiple genes. This inducible system had no adverse effect on cell growth in different media and resulted in greater fatty alcohol production from methanol compared with a strain constitutively overexpressing HR-related genes. We anticipate that this inducible regulation is applicable for enhancing HR for precise genome editing in P. pastoris and other non-conventional microbes without compromising cellular fitness. [Display omitted] An anhydrotetracycline (aTc) inducible system was developed to dynamically overexpress homologous recombination-related genes for precise genome engineering in Pichia pastoris. By using this dynamic regulation system, the positive rate of precise gene editing reached 80%, without interrupting cellular growth or fatty alcohol production. An inducible CRISPR-Cas9 gene-editing strategy was constructed in Pichia pastoris, demonstrating excellent homologous recombination (HR) efficiency in genomic integration. This inducible system promoted the positive rates of genome integration of single and multiple genes by up to 80%, without comprising either cellular growth using methanol as a carbon source or fatty alcohol production; in addition, constitutively enhancing HR significantly impaired fatty alcohol biosynthesis. Currently, CRISPR-Cas9 gene-editing tools have successful applications in unconventional yeasts, and enhancement of the HR repair pathway could be a feasible strategy to increase the gene editing efficiency. However, enhancing HR also impacts cellular metabolism and production biosynthesis, effects that would be amplified in large-scale production. Thus, there is an urgent need to coordinate gene-editing efficiency and chemical production. In our study, although the inducible HR system was only performed in P. pastoris and evaluated for fatty alcohol production under shake flask fermentation, it should be evaluated for other products in larger scale biomanufacturing systems, such as bioreactors. Therefore, the current Technology Readiness Level (TRL) of this technology lies between 4 and 5. HighlightsA tetracycline repressor protein (TetR)/ tetO2 inducible system was constructed and optimized in Pichia pastoris. The TetR/ tetO2 inducible system dynamically enhanced homologous recombination (HR) for precise editing of multiple genes. Dynamically enhancing HR did not compromise cellular growth or product biosynthesis. |
Author | Yao, Lun Shen, Yiwei Li, Yunxia Cai, Peng Zhou, Yongjin J. Bai, Fan |
Author_xml | – sequence: 1 givenname: Fan orcidid: 0000-0001-6257-9247 surname: Bai fullname: Bai, Fan organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China – sequence: 2 givenname: Peng orcidid: 0000-0001-5761-6744 surname: Cai fullname: Cai, Peng organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China – sequence: 3 givenname: Lun surname: Yao fullname: Yao, Lun organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China – sequence: 4 givenname: Yiwei surname: Shen fullname: Shen, Yiwei organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China – sequence: 5 givenname: Yunxia surname: Li fullname: Li, Yunxia organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China – sequence: 6 givenname: Yongjin J. orcidid: 0000-0002-2369-3079 surname: Zhou fullname: Zhou, Yongjin J. email: zhouyongjin@dicp.ac.cn organization: Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40074635$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFnwCyxIVLgu18H6BCFR-VKoEEnC3Hnux6SexgO6Ce-eNM2KWHSqicLNnP-3pm3jkjJ847IOQpZzlnvH65z5PtE-hdLpiociZyxqoHZMPbpssK1tUnZINckzVN152Ssxj3jLGi6fgjcloy1pR1UW3IrytnFm37EWiA7TKqZN2W7vzkR7_1S8Rb7afeOnzwjoJTiEY647WNQLfg_AQUjP2js45-snpnFZ1VTD7YSH_atPNLojOEtIR-pTSMI_4U6GCTgxgfk4eDGiM8OZ7n5Ou7t18uP2TXH99fXb65znTRtSnrDXDdDFz0lTG8Vy2YohD9oOuBmUEJUSowTc950YlKVy0ruWpLXg9lBUYzKM7Ji4PvHPz3BWKSk41rMcoBtioLUQpWC46TuRflTV23vGwFos_voHu_BIeNoCGvMZ2urJB6dqSWfgIj52AnFW7k3yQQqA6ADj7GAMMtwplcE5d7eUxcrolLJiQmjrqLgw5wcj8sBBm1BacxEswoSePtvQ6v7zjo0Tqr1fgNbiDedsNlRIH8vG7VulSiwoUqRYEGr_5t8B8F_AZ8MuLU |
Cites_doi | 10.1021/acssynbio.1c00307 10.1021/je500225x 10.1038/nbt.1536 10.1073/pnas.2220816120 10.1038/s41467-020-16807-3 10.1038/ncomms6652 10.1002/biot.202400261 10.1007/s00253-024-13037-1 10.1016/j.jbiotec.2016.03.027 10.7717/peerj.4167 10.1016/j.cell.2017.06.052 10.1016/j.copbio.2021.01.008 10.1016/j.tibtech.2024.03.007 10.1021/acssynbio.1c00194 10.1002/biot.202300259 10.1016/j.synbio.2023.06.008 10.1186/s12934-019-1194-x 10.2144/05381BM04 10.1016/j.tibtech.2020.07.005 10.1002/biot.202400115 10.1093/nar/gks270 10.1002/jcp.29583 10.1021/acssuschemeng.3c00410 10.1080/09168451.2019.1693250 10.3389/fbioe.2020.610936 10.1093/nar/gkab535 10.1016/j.isci.2021.102168 10.1016/j.synbio.2021.04.005 10.1016/j.tibtech.2023.03.006 10.18388/abp.2003_3622 10.1016/j.tibtech.2023.06.012 10.1371/journal.pone.0039720 10.1194/jlr.M060954 10.1007/s00253-021-11688-y 10.1186/s40643-022-00551-1 10.1186/s12934-022-01908-z 10.1016/j.synbio.2017.08.002 10.1021/sb500363y 10.1016/S1097-2765(02)00705-0 10.1038/ncomms11709 10.1186/s13068-022-02242-7 10.1002/biot.202300033 10.1021/jacs.6b07394 10.1016/j.cell.2021.10.002 10.1021/acssynbio.1c00366 10.1073/pnas.2201711119 10.1016/j.molcel.2019.08.017 10.1073/pnas.0608451104 10.1074/jbc.272.45.28194 10.1016/j.biortech.2024.131396 10.1016/j.ymben.2018.04.017 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. 2025. Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. – notice: 2025. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ GUQSH H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M0T M1P M2O M7P M7S MBDVC P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 7S9 L.6 |
DOI | 10.1016/j.tibtech.2025.02.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni) Healthcare Administration Database PML(ProQuest Medical Library) Research Library Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Health Management ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3096 |
EndPage | 1402 |
ExternalDocumentID | 40074635 10_1016_j_tibtech_2025_02_005 S0167779925000423 1_s2_0_S0167779925000423 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKC AAIKJ AAKOC AALRI AAMNW AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABJCF ABJNI ABLJU ABMAC ABNUV ABUDA ABUWG ABWVN ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADFRT ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEUYN AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHMBA AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AQUVI ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKOJK BLXMC BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HLW HMCUK HVGLF HZ~ IHE J1W KOM L6V LK8 LX3 M0T M1P M2O M41 M7P M7S MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q38 R2- RNS ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSU SSZ T5K TAE TN5 UKHRP WUQ XPP Y6R Z5R ZGI ZMT ~02 ~G- ~KM AFCTW AGRNS ALIPV BNPGV RIG SSH AAYXX CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-bde1c7f12b5dd1ba8ed332bfc6f0dfa224aed7b113925c58041a8416f45edc0e3 |
IEDL.DBID | .~1 |
ISSN | 0167-7799 1879-3096 |
IngestDate | Fri Aug 22 20:38:17 EDT 2025 Thu Jul 10 21:43:33 EDT 2025 Sat Aug 23 14:56:11 EDT 2025 Sun Jun 08 01:32:56 EDT 2025 Tue Aug 05 12:04:17 EDT 2025 Sat Jun 28 18:15:12 EDT 2025 Fri Jun 27 03:51:19 EDT 2025 Tue Aug 26 19:34:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | dynamic regulation genome editing Komagataella pastoris Pichia pastoris homologous recombination CRISPR-Cas9 |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-bde1c7f12b5dd1ba8ed332bfc6f0dfa224aed7b113925c58041a8416f45edc0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6257-9247 0000-0001-5761-6744 0000-0002-2369-3079 |
PMID | 40074635 |
PQID | 3216202945 |
PQPubID | 2031074 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_3242062146 proquest_miscellaneous_3176681482 proquest_journals_3216202945 pubmed_primary_40074635 crossref_primary_10_1016_j_tibtech_2025_02_005 elsevier_sciencedirect_doi_10_1016_j_tibtech_2025_02_005 elsevier_clinicalkeyesjournals_1_s2_0_S0167779925000423 elsevier_clinicalkey_doi_10_1016_j_tibtech_2025_02_005 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Trends in biotechnology (Regular ed.) |
PublicationTitleAlternate | Trends Biotechnol |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Garcia-Luis, Machin (bb0200) 2014; 5 Wu (bb0045) 2023; 11 Zhai (bb0215) 2023; 120 Karbalaei (bb0005) 2020; 235 Meesapyodsuk (bb0030) 2015; 56 Qiao (bb0070) 2023; 8 Zhao (bb0150) 2020; 11 Zhang (bb0025) 2020; 84 Krishnan (bb0210) 2020; 8 Gao (bb0050) 2024; 19 Murphy (bb0255) 2007; 104 Cai (bb0205) 2022; 119 Lobs (bb0230) 2017; 2 Ellis (bb0170) 2009; 27 Shen (bb0225) 2024; 412 Gao (bb0220) 2022; 15 Wang (bb0010) 2023; 18 Xie (bb0060) 2024; 42 Gao (bb0135) 2022; 11 Cai (bb0020) 2022; 9 Zhou (bb0245) 2016; 138 Hussmann (bb0115) 2021; 184 Cuperus (bb0160) 2015; 4 Gao (bb0180) 2021; 24 Krejci (bb0190) 2012; 40 Yan (bb0185) 2019; 76 Gao (bb0040) 2021; 6 Mitchler (bb0145) 2021; 69 Liao (bb0075) 2021; 105 Teng (bb0095) 2024; 42 Piazza (bb0195) 2017; 170 Guo (bb0055) 2023; 41 Frank-Vaillant, Marcand (bb0125) 2002; 10 Cai (bb0120) 2021; 49 Lin-Cereghino (bb0260) 2005; 38 Pena (bb0035) 2018; 50 Weninger (bb0080) 2016; 235 Naatsaari (bb0130) 2012; 7 Russmayer (bb0015) 2023; 18 Liu (bb0085) 2019; 18 Zhang (bb0140) 2022; 21 Liu (bb0235) 2022; 8 Wu (bb0105) 2024; 19 Pastwa, Błasiak (bb0110) 2003; 50 Dalvie (bb0065) 2022; 11 Gao (bb0240) 2022; 11 Sung (bb0175) 1997; 272 Zhou (bb0090) 2024; 108 Bolintineanu (bb0165) 2014; 59 Liu (bb0100) 2021; 39 Zhou (bb0250) 2016; 7 Barwell (bb0155) 2017; 5 Garcia-Luis (10.1016/j.tibtech.2025.02.005_bb0200) 2014; 5 Zhai (10.1016/j.tibtech.2025.02.005_bb0215) 2023; 120 Weninger (10.1016/j.tibtech.2025.02.005_bb0080) 2016; 235 Xie (10.1016/j.tibtech.2025.02.005_bb0060) 2024; 42 Krishnan (10.1016/j.tibtech.2025.02.005_bb0210) 2020; 8 Pastwa (10.1016/j.tibtech.2025.02.005_bb0110) 2003; 50 Zhou (10.1016/j.tibtech.2025.02.005_bb0245) 2016; 138 Zhou (10.1016/j.tibtech.2025.02.005_bb0250) 2016; 7 Liu (10.1016/j.tibtech.2025.02.005_bb0085) 2019; 18 Murphy (10.1016/j.tibtech.2025.02.005_bb0255) 2007; 104 Dalvie (10.1016/j.tibtech.2025.02.005_bb0065) 2022; 11 Pena (10.1016/j.tibtech.2025.02.005_bb0035) 2018; 50 Russmayer (10.1016/j.tibtech.2025.02.005_bb0015) 2023; 18 Frank-Vaillant (10.1016/j.tibtech.2025.02.005_bb0125) 2002; 10 Hussmann (10.1016/j.tibtech.2025.02.005_bb0115) 2021; 184 Sung (10.1016/j.tibtech.2025.02.005_bb0175) 1997; 272 Liu (10.1016/j.tibtech.2025.02.005_bb0100) 2021; 39 Gao (10.1016/j.tibtech.2025.02.005_bb0220) 2022; 15 Wang (10.1016/j.tibtech.2025.02.005_bb0010) 2023; 18 Gao (10.1016/j.tibtech.2025.02.005_bb0040) 2021; 6 Zhang (10.1016/j.tibtech.2025.02.005_bb0025) 2020; 84 Mitchler (10.1016/j.tibtech.2025.02.005_bb0145) 2021; 69 Qiao (10.1016/j.tibtech.2025.02.005_bb0070) 2023; 8 Cai (10.1016/j.tibtech.2025.02.005_bb0020) 2022; 9 Piazza (10.1016/j.tibtech.2025.02.005_bb0195) 2017; 170 Bolintineanu (10.1016/j.tibtech.2025.02.005_bb0165) 2014; 59 Wu (10.1016/j.tibtech.2025.02.005_bb0105) 2024; 19 Naatsaari (10.1016/j.tibtech.2025.02.005_bb0130) 2012; 7 Gao (10.1016/j.tibtech.2025.02.005_bb0240) 2022; 11 Shen (10.1016/j.tibtech.2025.02.005_bb0225) 2024; 412 Karbalaei (10.1016/j.tibtech.2025.02.005_bb0005) 2020; 235 Guo (10.1016/j.tibtech.2025.02.005_bb0055) 2023; 41 Cuperus (10.1016/j.tibtech.2025.02.005_bb0160) 2015; 4 Cai (10.1016/j.tibtech.2025.02.005_bb0120) 2021; 49 Lobs (10.1016/j.tibtech.2025.02.005_bb0230) 2017; 2 Meesapyodsuk (10.1016/j.tibtech.2025.02.005_bb0030) 2015; 56 Liao (10.1016/j.tibtech.2025.02.005_bb0075) 2021; 105 Ellis (10.1016/j.tibtech.2025.02.005_bb0170) 2009; 27 Gao (10.1016/j.tibtech.2025.02.005_bb0180) 2021; 24 Wu (10.1016/j.tibtech.2025.02.005_bb0045) 2023; 11 Teng (10.1016/j.tibtech.2025.02.005_bb0095) 2024; 42 Zhao (10.1016/j.tibtech.2025.02.005_bb0150) 2020; 11 Liu (10.1016/j.tibtech.2025.02.005_bb0235) 2022; 8 Cai (10.1016/j.tibtech.2025.02.005_bb0205) 2022; 119 Gao (10.1016/j.tibtech.2025.02.005_bb0050) 2024; 19 Gao (10.1016/j.tibtech.2025.02.005_bb0135) 2022; 11 Barwell (10.1016/j.tibtech.2025.02.005_bb0155) 2017; 5 Zhang (10.1016/j.tibtech.2025.02.005_bb0140) 2022; 21 Lin-Cereghino (10.1016/j.tibtech.2025.02.005_bb0260) 2005; 38 Yan (10.1016/j.tibtech.2025.02.005_bb0185) 2019; 76 Krejci (10.1016/j.tibtech.2025.02.005_bb0190) 2012; 40 Zhou (10.1016/j.tibtech.2025.02.005_bb0090) 2024; 108 |
References_xml | – volume: 108 start-page: 197 year: 2024 ident: bb0090 article-title: CRISPR/Cas9-based toolkit for rapid marker recycling and combinatorial libraries in publication-title: Appl. Microbiol. Biotechnol. – volume: 138 start-page: 15368 year: 2016 end-page: 15377 ident: bb0245 article-title: Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition publication-title: J. Am. Chem. Soc. – volume: 7 year: 2012 ident: bb0130 article-title: Deletion of the publication-title: PLoS ONE – volume: 69 start-page: 172 year: 2021 end-page: 181 ident: bb0145 article-title: Transcription factor-based biosensors: a molecular-guided approach for natural product engineering publication-title: Curr. Opin. Biotechnol. – volume: 412 year: 2024 ident: bb0225 article-title: Engineering high production of fatty alcohols from methanol by constructing coordinated dual biosynthetic pathways publication-title: Bioresour. Technol. – volume: 11 start-page: 497 year: 2022 end-page: 501 ident: bb0065 article-title: Simplified gene knockout by CRISPR-Cas9-induced homologous recombination publication-title: ACS Synth. Biol. – volume: 2 start-page: 198 year: 2017 end-page: 207 ident: bb0230 article-title: Genome and metabolic engineering in non-conventional yeasts: current advances and applications publication-title: Synth. Syst. Biotechnol. – volume: 27 start-page: 465 year: 2009 end-page: 471 ident: bb0170 article-title: Diversity-based, model-guided construction of synthetic gene networks with predicted functions publication-title: Nat. Biotechnol. – volume: 9 start-page: 58 year: 2022 ident: bb0020 article-title: Microbial synthesis of long-chain α-alkenes from methanol by engineering publication-title: Bioresour. Bioprocess. – volume: 11 start-page: 6445 year: 2023 end-page: 6453 ident: bb0045 article-title: Efficient bioproduction of 3-hydroxypropionic acid from methanol by a synthetic yeast cell factory publication-title: ACS Sustain. Chem. Eng. – volume: 42 start-page: 1363 year: 2024 end-page: 1378 ident: bb0060 article-title: as a next-generation chassis for industrial biotechnology publication-title: Trends Biotechnol. – volume: 272 start-page: 28194 year: 1997 end-page: 28197 ident: bb0175 article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase publication-title: J. Biol. Chem. – volume: 10 start-page: 1189 year: 2002 end-page: 1199 ident: bb0125 article-title: Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination publication-title: Mol. Cell – volume: 8 year: 2022 ident: bb0235 article-title: A programmable high-expression yeast platform responsive to user-defined signals publication-title: Sci. Adv. – volume: 50 start-page: 891 year: 2003 end-page: 908 ident: bb0110 article-title: Non-homologous DNA end joining publication-title: Acta Biochim. Pol. – volume: 120 year: 2023 ident: bb0215 article-title: Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 84 start-page: 463 year: 2020 end-page: 470 ident: bb0025 article-title: Production of lycopene by metabolically engineered publication-title: Biosci. Biotechnol. Biochem. – volume: 40 start-page: 5795 year: 2012 end-page: 5818 ident: bb0190 article-title: Homologous recombination and its regulation publication-title: Nucleic Acids Res. – volume: 11 start-page: 623 year: 2022 end-page: 633 ident: bb0240 article-title: Synthetic biology toolkit for marker-less integration of multigene pathways into publication-title: ACS Synth. Biol. – volume: 105 start-page: 9211 year: 2021 end-page: 9218 ident: bb0075 article-title: A versatile toolbox for CRISPR-based genome engineering in publication-title: Appl. Microbiol. Biotechnol. – volume: 59 start-page: 3167 year: 2014 end-page: 3176 ident: bb0165 article-title: Investigation of changes in tetracycline repressor binding upon mutations in the tetracycline operator publication-title: J. Chem. Eng. Data – volume: 11 start-page: 547 year: 2022 end-page: 553 ident: bb0135 article-title: Enhancing homologous recombination efficiency in publication-title: ACS Synth. Biol. – volume: 104 start-page: 12726 year: 2007 end-page: 12731 ident: bb0255 article-title: Combinatorial promoter design for engineering noisy gene expression publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 year: 2023 ident: bb0015 article-title: Customizing amino acid metabolism of publication-title: Biotechnol. J. – volume: 235 start-page: 5867 year: 2020 end-page: 5881 ident: bb0005 article-title: : a highly successful expression system for optimal synthesis of heterologous proteins publication-title: J. Cell. Physiol. – volume: 19 year: 2024 ident: bb0050 article-title: Engineering a versatile yeast platform for sesquiterpene production from glucose or methanol publication-title: Biotechnol. J. – volume: 5 year: 2017 ident: bb0155 article-title: Regulating the UAS/GAL4 system in adult publication-title: PeerJ – volume: 18 start-page: 144 year: 2019 ident: bb0085 article-title: CRISPR-Cas9-mediated genomic multiloci integration in publication-title: Microb. Cell Factories – volume: 76 start-page: 699 year: 2019 end-page: 711 ident: bb0185 article-title: Rad52 restrains resection at DNA double-strand break ends in yeast publication-title: Mol. Cell – volume: 5 start-page: 5652 year: 2014 ident: bb0200 article-title: Mus81-Mms4 and Yen1 resolve a novel anaphase bridge formed by noncanonical Holliday junctions publication-title: Nat. Commun. – volume: 8 start-page: 479 year: 2023 end-page: 485 ident: bb0070 article-title: An improved CRISPRi system in publication-title: Synth. Syst. Biotechnol. – volume: 170 start-page: 760 year: 2017 end-page: 773 ident: bb0195 article-title: Multi-invasions are recombination byproducts that induce chromosomal rearrangements publication-title: Cell – volume: 19 year: 2024 ident: bb0105 article-title: Efficient CRISPR-mediated C-to-T base editing in publication-title: Biotechnol. J. – volume: 184 start-page: 5653 year: 2021 end-page: 5669 ident: bb0115 article-title: Mapping the genetic landscape of DNA double-strand break repair publication-title: Cell – volume: 7 year: 2016 ident: bb0250 article-title: Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories publication-title: Nat. Commun. – volume: 6 start-page: 110 year: 2021 end-page: 119 ident: bb0040 article-title: Development of synthetic biology tools to engineer publication-title: Synth. Syst. Biotechnol. – volume: 49 start-page: 7791 year: 2021 end-page: 7805 ident: bb0120 article-title: Recombination machinery engineering facilitates metabolic engineering of the industrial yeast publication-title: Nucleic Acids Res. – volume: 11 start-page: 3095 year: 2020 ident: bb0150 article-title: Genetic breakdown of a Tet-off conditional lethality system for insect population control publication-title: Nat. Commun. – volume: 18 year: 2023 ident: bb0010 article-title: Highly efficient expression and secretion of human lysozyme using multiple strategies in publication-title: Biotechnol. J. – volume: 42 start-page: 104 year: 2024 end-page: 118 ident: bb0095 article-title: The expanded CRISPR toolbox for constructing microbial cell factories publication-title: Trends Biotechnol. – volume: 50 start-page: 2 year: 2018 end-page: 15 ident: bb0035 article-title: Metabolic engineering of publication-title: Metab. Eng. – volume: 4 start-page: 842 year: 2015 end-page: 852 ident: bb0160 article-title: A tetO toolkit to alter expression of genes in publication-title: ACS Synth. Biol. – volume: 56 start-page: 2102 year: 2015 end-page: 2109 ident: bb0030 article-title: Metabolic engineering of publication-title: J. Lipid Res. – volume: 21 start-page: 182 year: 2022 ident: bb0140 article-title: Fusing an exonuclease with Cas9 enhances homologous recombination in publication-title: Microb. Cell Factories – volume: 41 start-page: 1066 year: 2023 end-page: 1079 ident: bb0055 article-title: Bioconversion of C1 feedstocks for chemical production using publication-title: Trends Biotechnol. – volume: 235 start-page: 139 year: 2016 end-page: 149 ident: bb0080 article-title: Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast publication-title: J. Biotechnol. – volume: 119 year: 2022 ident: bb0205 article-title: Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 24 year: 2021 ident: bb0180 article-title: Recombination machinery engineering for precise genome editing in methylotrophic yeast publication-title: iScience – volume: 38 start-page: 44 year: 2005 end-page: 48 ident: bb0260 article-title: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast publication-title: Biotechniques – volume: 15 start-page: 141 year: 2022 ident: bb0220 article-title: Spatial–temporal regulation of fatty alcohol biosynthesis in yeast publication-title: Biotechnol. Biofuels – volume: 8 year: 2020 ident: bb0210 article-title: Biosynthesis of fatty alcohols in engineered microbial cell factories: advances and limitations publication-title: Front. Bioeng. Biotechnol. – volume: 39 start-page: 262 year: 2021 end-page: 273 ident: bb0100 article-title: Directed evolution of CRISPR/Cas systems for precise gene editing publication-title: Trends Biotechnol. – volume: 11 start-page: 623 year: 2022 ident: 10.1016/j.tibtech.2025.02.005_bb0240 article-title: Synthetic biology toolkit for marker-less integration of multigene pathways into Pichia pastoris via CRISPR/Cas9 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.1c00307 – volume: 59 start-page: 3167 year: 2014 ident: 10.1016/j.tibtech.2025.02.005_bb0165 article-title: Investigation of changes in tetracycline repressor binding upon mutations in the tetracycline operator publication-title: J. Chem. Eng. Data doi: 10.1021/je500225x – volume: 27 start-page: 465 year: 2009 ident: 10.1016/j.tibtech.2025.02.005_bb0170 article-title: Diversity-based, model-guided construction of synthetic gene networks with predicted functions publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1536 – volume: 120 year: 2023 ident: 10.1016/j.tibtech.2025.02.005_bb0215 article-title: Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2220816120 – volume: 11 start-page: 3095 year: 2020 ident: 10.1016/j.tibtech.2025.02.005_bb0150 article-title: Genetic breakdown of a Tet-off conditional lethality system for insect population control publication-title: Nat. Commun. doi: 10.1038/s41467-020-16807-3 – volume: 5 start-page: 5652 year: 2014 ident: 10.1016/j.tibtech.2025.02.005_bb0200 article-title: Mus81-Mms4 and Yen1 resolve a novel anaphase bridge formed by noncanonical Holliday junctions publication-title: Nat. Commun. doi: 10.1038/ncomms6652 – volume: 19 year: 2024 ident: 10.1016/j.tibtech.2025.02.005_bb0050 article-title: Engineering a versatile yeast platform for sesquiterpene production from glucose or methanol publication-title: Biotechnol. J. doi: 10.1002/biot.202400261 – volume: 108 start-page: 197 year: 2024 ident: 10.1016/j.tibtech.2025.02.005_bb0090 article-title: CRISPR/Cas9-based toolkit for rapid marker recycling and combinatorial libraries in Komagataella phaffii publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-024-13037-1 – volume: 235 start-page: 139 year: 2016 ident: 10.1016/j.tibtech.2025.02.005_bb0080 article-title: Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2016.03.027 – volume: 5 year: 2017 ident: 10.1016/j.tibtech.2025.02.005_bb0155 article-title: Regulating the UAS/GAL4 system in adult Drosophila with Tet-off GAL80 transgenes publication-title: PeerJ doi: 10.7717/peerj.4167 – volume: 170 start-page: 760 year: 2017 ident: 10.1016/j.tibtech.2025.02.005_bb0195 article-title: Multi-invasions are recombination byproducts that induce chromosomal rearrangements publication-title: Cell doi: 10.1016/j.cell.2017.06.052 – volume: 69 start-page: 172 year: 2021 ident: 10.1016/j.tibtech.2025.02.005_bb0145 article-title: Transcription factor-based biosensors: a molecular-guided approach for natural product engineering publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2021.01.008 – volume: 42 start-page: 1363 year: 2024 ident: 10.1016/j.tibtech.2025.02.005_bb0060 article-title: Ogataea polymorpha as a next-generation chassis for industrial biotechnology publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2024.03.007 – volume: 11 start-page: 497 year: 2022 ident: 10.1016/j.tibtech.2025.02.005_bb0065 article-title: Simplified gene knockout by CRISPR-Cas9-induced homologous recombination publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.1c00194 – volume: 18 year: 2023 ident: 10.1016/j.tibtech.2025.02.005_bb0010 article-title: Highly efficient expression and secretion of human lysozyme using multiple strategies in Pichia pastoris publication-title: Biotechnol. J. doi: 10.1002/biot.202300259 – volume: 8 start-page: 479 year: 2023 ident: 10.1016/j.tibtech.2025.02.005_bb0070 article-title: An improved CRISPRi system in Pichia pastoris publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2023.06.008 – volume: 18 start-page: 144 year: 2019 ident: 10.1016/j.tibtech.2025.02.005_bb0085 article-title: CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris publication-title: Microb. Cell Factories doi: 10.1186/s12934-019-1194-x – volume: 38 start-page: 44 year: 2005 ident: 10.1016/j.tibtech.2025.02.005_bb0260 article-title: Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris publication-title: Biotechniques doi: 10.2144/05381BM04 – volume: 39 start-page: 262 year: 2021 ident: 10.1016/j.tibtech.2025.02.005_bb0100 article-title: Directed evolution of CRISPR/Cas systems for precise gene editing publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.07.005 – volume: 19 year: 2024 ident: 10.1016/j.tibtech.2025.02.005_bb0105 article-title: Efficient CRISPR-mediated C-to-T base editing in Komagataella phaffii publication-title: Biotechnol. J. doi: 10.1002/biot.202400115 – volume: 40 start-page: 5795 year: 2012 ident: 10.1016/j.tibtech.2025.02.005_bb0190 article-title: Homologous recombination and its regulation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks270 – volume: 235 start-page: 5867 year: 2020 ident: 10.1016/j.tibtech.2025.02.005_bb0005 article-title: Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29583 – volume: 8 year: 2022 ident: 10.1016/j.tibtech.2025.02.005_bb0235 article-title: A programmable high-expression yeast platform responsive to user-defined signals publication-title: Sci. Adv. – volume: 11 start-page: 6445 year: 2023 ident: 10.1016/j.tibtech.2025.02.005_bb0045 article-title: Efficient bioproduction of 3-hydroxypropionic acid from methanol by a synthetic yeast cell factory publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c00410 – volume: 84 start-page: 463 year: 2020 ident: 10.1016/j.tibtech.2025.02.005_bb0025 article-title: Production of lycopene by metabolically engineered Pichia pastoris publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2019.1693250 – volume: 8 year: 2020 ident: 10.1016/j.tibtech.2025.02.005_bb0210 article-title: Biosynthesis of fatty alcohols in engineered microbial cell factories: advances and limitations publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.610936 – volume: 49 start-page: 7791 year: 2021 ident: 10.1016/j.tibtech.2025.02.005_bb0120 article-title: Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab535 – volume: 24 year: 2021 ident: 10.1016/j.tibtech.2025.02.005_bb0180 article-title: Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha publication-title: iScience doi: 10.1016/j.isci.2021.102168 – volume: 6 start-page: 110 year: 2021 ident: 10.1016/j.tibtech.2025.02.005_bb0040 article-title: Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2021.04.005 – volume: 41 start-page: 1066 year: 2023 ident: 10.1016/j.tibtech.2025.02.005_bb0055 article-title: Bioconversion of C1 feedstocks for chemical production using Pichia pastoris publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2023.03.006 – volume: 50 start-page: 891 year: 2003 ident: 10.1016/j.tibtech.2025.02.005_bb0110 article-title: Non-homologous DNA end joining publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2003_3622 – volume: 42 start-page: 104 year: 2024 ident: 10.1016/j.tibtech.2025.02.005_bb0095 article-title: The expanded CRISPR toolbox for constructing microbial cell factories publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2023.06.012 – volume: 7 year: 2012 ident: 10.1016/j.tibtech.2025.02.005_bb0130 article-title: Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology publication-title: PLoS ONE doi: 10.1371/journal.pone.0039720 – volume: 56 start-page: 2102 year: 2015 ident: 10.1016/j.tibtech.2025.02.005_bb0030 article-title: Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance publication-title: J. Lipid Res. doi: 10.1194/jlr.M060954 – volume: 105 start-page: 9211 year: 2021 ident: 10.1016/j.tibtech.2025.02.005_bb0075 article-title: A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-021-11688-y – volume: 9 start-page: 58 year: 2022 ident: 10.1016/j.tibtech.2025.02.005_bb0020 article-title: Microbial synthesis of long-chain α-alkenes from methanol by engineering Pichia pastoris publication-title: Bioresour. Bioprocess. doi: 10.1186/s40643-022-00551-1 – volume: 21 start-page: 182 year: 2022 ident: 10.1016/j.tibtech.2025.02.005_bb0140 article-title: Fusing an exonuclease with Cas9 enhances homologous recombination in Pichia pastoris publication-title: Microb. Cell Factories doi: 10.1186/s12934-022-01908-z – volume: 2 start-page: 198 year: 2017 ident: 10.1016/j.tibtech.2025.02.005_bb0230 article-title: Genome and metabolic engineering in non-conventional yeasts: current advances and applications publication-title: Synth. Syst. Biotechnol. doi: 10.1016/j.synbio.2017.08.002 – volume: 4 start-page: 842 year: 2015 ident: 10.1016/j.tibtech.2025.02.005_bb0160 article-title: A tetO toolkit to alter expression of genes in Saccharomyces cerevisiae publication-title: ACS Synth. Biol. doi: 10.1021/sb500363y – volume: 10 start-page: 1189 year: 2002 ident: 10.1016/j.tibtech.2025.02.005_bb0125 article-title: Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00705-0 – volume: 7 year: 2016 ident: 10.1016/j.tibtech.2025.02.005_bb0250 article-title: Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories publication-title: Nat. Commun. doi: 10.1038/ncomms11709 – volume: 15 start-page: 141 year: 2022 ident: 10.1016/j.tibtech.2025.02.005_bb0220 article-title: Spatial–temporal regulation of fatty alcohol biosynthesis in yeast publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-022-02242-7 – volume: 18 year: 2023 ident: 10.1016/j.tibtech.2025.02.005_bb0015 article-title: Customizing amino acid metabolism of Pichia pastoris for recombinant protein production publication-title: Biotechnol. J. doi: 10.1002/biot.202300033 – volume: 138 start-page: 15368 year: 2016 ident: 10.1016/j.tibtech.2025.02.005_bb0245 article-title: Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07394 – volume: 184 start-page: 5653 year: 2021 ident: 10.1016/j.tibtech.2025.02.005_bb0115 article-title: Mapping the genetic landscape of DNA double-strand break repair publication-title: Cell doi: 10.1016/j.cell.2021.10.002 – volume: 11 start-page: 547 year: 2022 ident: 10.1016/j.tibtech.2025.02.005_bb0135 article-title: Enhancing homologous recombination efficiency in Pichia pastoris for multiplex genome integration using short homology arms publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.1c00366 – volume: 119 year: 2022 ident: 10.1016/j.tibtech.2025.02.005_bb0205 article-title: Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2201711119 – volume: 76 start-page: 699 year: 2019 ident: 10.1016/j.tibtech.2025.02.005_bb0185 article-title: Rad52 restrains resection at DNA double-strand break ends in yeast publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.08.017 – volume: 104 start-page: 12726 year: 2007 ident: 10.1016/j.tibtech.2025.02.005_bb0255 article-title: Combinatorial promoter design for engineering noisy gene expression publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0608451104 – volume: 272 start-page: 28194 year: 1997 ident: 10.1016/j.tibtech.2025.02.005_bb0175 article-title: Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.45.28194 – volume: 412 year: 2024 ident: 10.1016/j.tibtech.2025.02.005_bb0225 article-title: Engineering high production of fatty alcohols from methanol by constructing coordinated dual biosynthetic pathways publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2024.131396 – volume: 50 start-page: 2 year: 2018 ident: 10.1016/j.tibtech.2025.02.005_bb0035 article-title: Metabolic engineering of Pichia pastoris publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.04.017 |
SSID | ssj0003791 |
Score | 2.4726367 |
Snippet | A tetracycline repressor protein (TetR)/tetO2 inducible system was constructed and optimized in Pichia pastoris.The TetR/tetO2 inducible system dynamically... HighlightsA tetracycline repressor protein (TetR)/ tetO2 inducible system was constructed and optimized in Pichia pastoris. The TetR/ tetO2 inducible system... The methylotrophic yeast Pichia pastoris (also known as Komagataella pastoris) is an ideal host for producing proteins and natural products. Enhancing... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1385 |
SubjectTerms | adverse effects Biosynthesis biotechnology Cell cycle Cell growth CRISPR CRISPR-Cas9 dynamic regulation Editing Efficiency fatty alcohols Fitness Fungal Proteins - genetics Fungal Proteins - metabolism Gene deletion Gene Editing - methods Gene Expression Regulation, Fungal Genes Genetic engineering genome assembly Genome editing Genomes Glucose Homologous recombination Homologous Recombination - genetics Industrial applications Internal Medicine Kinases Komagataella pastoris methanol Natural products Pichia - genetics Pichia pastoris Proteins Rad52 DNA Repair and Recombination Protein - genetics Rad52 protein RNA polymerase Saccharomycetales - genetics tetracycline Yeast yeasts |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtUwELWgLIAFKuUVKMhIbEMTx46dFUJVqwoJxIJKd2f5MRG34uaGm_QL-HFm8ioL-tgmthJlJjNn7PE5jH2glbUgoEpN0CKVIpapM1iseOWgJj42Eem889dv5dm5_LJSq2nBrZvaKueYOATquA20Rn5UiLzEQr2S6lP7OyXVKNpdnSQ07rMHRF1GXq1XS8GVFXpUzCNub62r6uoEz9EFZgRPNKlYIgo10naq63LTddhzyEGn--zJBB7559HaT9k9aA7Yw-NZs-2APf6HXvAZ-0O6HGHtfwHfjZLzeJn_3G4o4GHFz6ka3mBpPFiHw3CMquMtEV50wIm-dQMcs9swb93w72vqjOatG6hFOk6LuNvLnreww8zlaRRtBFBnK6_XPUXR5-z89OTH8Vk6iS6koahMn_oIedB1LryKMffOQCwK4etQ1lmsHWZ8B1H7HJGjUEERfZGjrctaKoghg-IF22u2Dbxi3DhjZFQeQWQmawwVXkMlQck64mUXEvZx_ty2Hbk17Nx0dmEn-1iyj82ERfskrJyNYueDoxjqLEb_2ybq_02EbvphO5vbDkdSr1upyVUECUUg1EyYWWZOmGTEGnd56OHsN3Z5zpUbJ-z9chu9hMzjGkDj24JIOw0RtN4wBqFVVpIqe8Jejj65fEM5iMgU6vXNL_CGPaK3HfveDtlev7uEt4iwev9u-I3-AsxBKC4 priority: 102 providerName: ProQuest |
Title | Inducible regulating homologous recombination enables precise genome editing in Pichia pastoris without perturbing cellular fitness |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0167779925000423 https://www.clinicalkey.es/playcontent/1-s2.0-S0167779925000423 https://dx.doi.org/10.1016/j.tibtech.2025.02.005 https://www.ncbi.nlm.nih.gov/pubmed/40074635 https://www.proquest.com/docview/3216202945 https://www.proquest.com/docview/3176681482 https://www.proquest.com/docview/3242062146 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOFS2vhbYyEtd0E8eOnWNZdVlYsaoKFXuz7NgRqbrZaJNeufDHmcljC4IC4pIozliOPJN5JDPfEPIav6xlzKeByiQLOHNJYBQEK1YYnyMeG3NY7_xhkcwu-fulWO6QyVALg2mVve7vdHqrrfuRcb-b46ooxh8xgV7KNGWI6Q9eAVawc4lSfvL1Ns0jll3XPMT3RurbKp7xFVgFi1CpECYy0UF3irvs013-Z2uHpo_IXu9A0tPuGffJji8PyP3J0LftgDz8AWLwMfmGvTmywl57uunazsMw_bJeodKDqJ9iRLyC8LjlEPVtKVVNKwS9qD1FCNeVp7BL7byipOcFZkfTyrTwIjXFD7nrm4ZWfgPWyyIV_gzA7FaaFw1q0ifkcnr2aTIL-sYLQRanqgms81Em84hZ4VxkjfIujpnNsyQPXW7A6hvvpI3Ae2QiEwhhZPD3Zc6Fd1no46dkt1yX_jmhyijFnbDgSIY8B3VhpU-5Fzx3MGyyETkZtltXHb6GHhLPrnTPH4380SHTwJ8RSQam6KF4FNSdBgvwt4nydxN93b-0tY50DZT6F8EaEbWd-ZNs_suih4Pc6O06MYsSoEk53H61vQ1SguwxpQfm6xiBOxWCtP6BBtyrMMHO7CPyrJPJ7R7ytpFMLF78_7O_JA_wqsuLOyS7zebGH4EH1tjj9hWDo1xKOKrp22Ny7_TdfLbA8_zi8xzOb84W5xffARq-OOs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FcAgcEIRtIEAjwdHEbru9HBBCgWFCFnFIpNya3iwmytjO2CPEmf_hG6nyFg4kcMnV7rYtV3Ut3VXvAbyinTXDXealJuFexG3sqRSTFS2UywmPjVvqdz44jGfH0ecTcbIGv4ZeGCqrHGxia6htaWiPfDvkQYyJehaJd9W5R6xRdLo6UGh0arHnfnzHlK1-u_sB5fua8-nHo52Z17MKeCbM0sbT1gUmyQOuhbWBVqmzYch1buLct7lCl6acTXSAoREXRhA-j6KzuTwSzhrfhfjcG3AzCtGTU2f69NNo-cOkY-gjLPEkybKLjqHtU_RAmmBZMSXlooMJFZf5wsti3dbnTe_CnT5YZe877boHa67YhI2dgSNuE27_AWd4H34SD4iZ6zPHlh3FPV5m38oFGdhyVTPKvheYirfawFzbtlWzigA2ascILnbhGHrTdt68YF_mVInNKtVCmdSMNo3LVcMqt0RPqWkUHTxQJS3L5w1Z7QdwfC3ieAjrRVm4x8BSlaaRFRqDVj_K0TTpxGWRE1Fu8bIyE3gz_G5ZdVgecihyO5W9fCTJR_pconwmEA9CkUOjKppWid7mXxOTv010dW8gahnIGkdSbV2ckKpwIqbA0HYC6Tizj4G62OZ_Xro16I0c33OxbCbwcryNWkLiUYVD4cuQQEJTAoS9YgyGcn5MLPATeNTp5PgPo5a0JhRPrv6AF7AxOzrYl_u7h3tP4RZ9eVdztwXrzXLlnmF01-jn7ZJi8PW61_Bv-gtm6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQTlgKC8AgWMBMewiRPncUAI2q5aCqsVolJvxo4dsVV3EzZZIc78K34dM3mVAy1cek3sJMqM52HPfB_AC9pZy7hN3SSLuRtyE7kqwWRFC2VzwmPjhvqdP06jg-Pw_Yk42YBffS8MlVX2NrEx1KbIaI98HHA_wkQ9DcU478oiZnuTN-U3lxik6KS1p9NoVeTI_viO6Vv1-nAPZf2S88n-590Dt2MYcLMgTWpXG-tnce5zLYzxtUqsCQKu8yzKPZMrdG_Kmlj7GCZxkQnC6lF0TpeHwprMswE-9xpsxpQVjWDz3f509mnwA0Hc8vURsngcp-l5_9D4FP2RJpBWTFC5aEFDxUWe8aLIt_GAk9twqwtd2dtW1-7Ahl1uw43dnjFuG27-AW54F34SK0g212eWrVrCe7zMvhYLMrfFumKUiy8wMW90g9mmiatiJcFtVJYReOzCMvStzbz5ks3mVJfNStUAm1SMtpCLdc1Ku0K_qWkUHUNQXS3L5zXZ8HtwfCUCuQ-jZbG0D4ElKklCIzSGsF6Yo6HSsU1DK8Lc4GWVOfCq_92ybJE9ZF_ydio7-UiSj_S4RPk4EPVCkX3bKhpaib7nXxPjv020VWcuKunLCkdSpV0Uk6pwoqnAQNeBZJjZRURtpPM_L93p9UYO7zlfRA48H26jlpB41NKi8GVAkKEJwcNeMgYDOy8iTngHHrQ6OfzDsKGwCcSjyz_gGVzH9Ss_HE6PHsMWfXhbgLcDo3q1tk8w1Kv1025NMfhy1cv4N2bhbHo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inducible+regulating+homologous+recombination+enables+precise+genome+editing+in+Pichia+pastoris+without+perturbing+cellular+fitness&rft.jtitle=Trends+in+biotechnology+%28Regular+ed.%29&rft.au=Bai%2C+Fan&rft.au=Cai%2C+Peng&rft.au=Yao%2C+Lun&rft.au=Shen%2C+Yiwei&rft.date=2025-06-01&rft.issn=0167-7799&rft.volume=43&rft.issue=6&rft.spage=1385&rft.epage=1402&rft_id=info:doi/10.1016%2Fj.tibtech.2025.02.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tibtech_2025_02_005 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01677799%2FS0167779924X00074%2Fcov150h.gif |