An imperative approach for fluorosis mitigation: Amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation

Drinking of fluoride (F−) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge. Therefore, defluoridation without disturbing water quality is imperative. Hydroxyapatite (HAP) is proved to have a potential application for deflu...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental management Vol. 245; pp. 230 - 237
Main Authors Sankannavar, Ravi, Chaudhari, Sanjeev
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drinking of fluoride (F−) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge. Therefore, defluoridation without disturbing water quality is imperative. Hydroxyapatite (HAP) is proved to have a potential application for defluoridation; however, its dissolution during defluoridation is a concern for its implementation. Experiments conducted by suspending HAP in F− solution and deionized water without F− show that former had high residual pH and PO43− than the latter with Ca2+ being absent in the former. This indicates that Ca2+ had participated in defluoridation and promoted HAP dissolution when Ca2+ was unavailable. Hence, HAP dissolution seems to be a governing step for defluoridation. However, higher residual PO43− and pH affect drinking water quality, and its usage may pose additional health problems. Thus, Ca2+ deficient defluoridated water is unfit for drinking unless it is treated further. Hence, the present work proposes a novel method to overcome HAP dissolution by amending aqueous Ca2+ to F− water. The results show that amending Ca2+ efficiently prevents HAP dissolution and enhances defluoridation capacity as an added feature. Furthermore, speciation using MINEQL+ and FTIR of fluoride-calcium treated HAPs suggest the possibility of defluoridation by aqueous CaF+ adsorption onto HAP besides F− ion exchange with OH−. [Display omitted] •HAP dissolution in defluoridation makes the treated water unfit for drinking.•Amending aqueous Ca2+ to F− water suppressed the HAP dissolution in defluoridation.•Aqueous Ca2+ amendment to F−-water provides Ca2+-enriched alkaline drinking-water.•Amending aqueous Ca2+ showed enhanced defluoridation capacity for HAP.•Deflouridation occurred by adsorption of aqueous CaF+ and ion-exchange.
AbstractList Drinking of fluoride (F−) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge. Therefore, defluoridation without disturbing water quality is imperative. Hydroxyapatite (HAP) is proved to have a potential application for defluoridation; however, its dissolution during defluoridation is a concern for its implementation. Experiments conducted by suspending HAP in F− solution and deionized water without F− show that former had high residual pH and PO43− than the latter with Ca2+ being absent in the former. This indicates that Ca2+ had participated in defluoridation and promoted HAP dissolution when Ca2+ was unavailable. Hence, HAP dissolution seems to be a governing step for defluoridation. However, higher residual PO43− and pH affect drinking water quality, and its usage may pose additional health problems. Thus, Ca2+ deficient defluoridated water is unfit for drinking unless it is treated further. Hence, the present work proposes a novel method to overcome HAP dissolution by amending aqueous Ca2+ to F− water. The results show that amending Ca2+ efficiently prevents HAP dissolution and enhances defluoridation capacity as an added feature. Furthermore, speciation using MINEQL+ and FTIR of fluoride-calcium treated HAPs suggest the possibility of defluoridation by aqueous CaF+ adsorption onto HAP besides F− ion exchange with OH−. [Display omitted] •HAP dissolution in defluoridation makes the treated water unfit for drinking.•Amending aqueous Ca2+ to F− water suppressed the HAP dissolution in defluoridation.•Aqueous Ca2+ amendment to F−-water provides Ca2+-enriched alkaline drinking-water.•Amending aqueous Ca2+ showed enhanced defluoridation capacity for HAP.•Deflouridation occurred by adsorption of aqueous CaF+ and ion-exchange.
Drinking of fluoride (F-) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge. Therefore, defluoridation without disturbing water quality is imperative. Hydroxyapatite (HAP) is proved to have a potential application for defluoridation; however, its dissolution during defluoridation is a concern for its implementation. Experiments conducted by suspending HAP in F- solution and deionized water without F- show that former had high residual pH and PO43- than the latter with Ca2+ being absent in the former. This indicates that Ca2+ had participated in defluoridation and promoted HAP dissolution when Ca2+ was unavailable. Hence, HAP dissolution seems to be a governing step for defluoridation. However, higher residual PO43- and pH affect drinking water quality, and its usage may pose additional health problems. Thus, Ca2+ deficient defluoridated water is unfit for drinking unless it is treated further. Hence, the present work proposes a novel method to overcome HAP dissolution by amending aqueous Ca2+ to F- water. The results show that amending Ca2+ efficiently prevents HAP dissolution and enhances defluoridation capacity as an added feature. Furthermore, speciation using MINEQL+ and FTIR of fluoride-calcium treated HAPs suggest the possibility of defluoridation by aqueous CaF+ adsorption onto HAP besides F- ion exchange with OH-.Drinking of fluoride (F-) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge. Therefore, defluoridation without disturbing water quality is imperative. Hydroxyapatite (HAP) is proved to have a potential application for defluoridation; however, its dissolution during defluoridation is a concern for its implementation. Experiments conducted by suspending HAP in F- solution and deionized water without F- show that former had high residual pH and PO43- than the latter with Ca2+ being absent in the former. This indicates that Ca2+ had participated in defluoridation and promoted HAP dissolution when Ca2+ was unavailable. Hence, HAP dissolution seems to be a governing step for defluoridation. However, higher residual PO43- and pH affect drinking water quality, and its usage may pose additional health problems. Thus, Ca2+ deficient defluoridated water is unfit for drinking unless it is treated further. Hence, the present work proposes a novel method to overcome HAP dissolution by amending aqueous Ca2+ to F- water. The results show that amending Ca2+ efficiently prevents HAP dissolution and enhances defluoridation capacity as an added feature. Furthermore, speciation using MINEQL+ and FTIR of fluoride-calcium treated HAPs suggest the possibility of defluoridation by aqueous CaF+ adsorption onto HAP besides F- ion exchange with OH-.
Drinking of fluoride (F⁻) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge. Therefore, defluoridation without disturbing water quality is imperative. Hydroxyapatite (HAP) is proved to have a potential application for defluoridation; however, its dissolution during defluoridation is a concern for its implementation. Experiments conducted by suspending HAP in F⁻ solution and deionized water without F⁻ show that former had high residual pH and PO43− than the latter with Ca²⁺ being absent in the former. This indicates that Ca²⁺ had participated in defluoridation and promoted HAP dissolution when Ca²⁺ was unavailable. Hence, HAP dissolution seems to be a governing step for defluoridation. However, higher residual PO43− and pH affect drinking water quality, and its usage may pose additional health problems. Thus, Ca²⁺ deficient defluoridated water is unfit for drinking unless it is treated further. Hence, the present work proposes a novel method to overcome HAP dissolution by amending aqueous Ca²⁺ to F⁻ water. The results show that amending Ca²⁺ efficiently prevents HAP dissolution and enhances defluoridation capacity as an added feature. Furthermore, speciation using MINEQL+ and FTIR of fluoride-calcium treated HAPs suggest the possibility of defluoridation by aqueous CaF⁺ adsorption onto HAP besides F⁻ ion exchange with OH⁻.
Drinking of fluoride (F ) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge. Therefore, defluoridation without disturbing water quality is imperative. Hydroxyapatite (HAP) is proved to have a potential application for defluoridation; however, its dissolution during defluoridation is a concern for its implementation. Experiments conducted by suspending HAP in F solution and deionized water without F show that former had high residual pH and PO than the latter with Ca being absent in the former. This indicates that Ca had participated in defluoridation and promoted HAP dissolution when Ca was unavailable. Hence, HAP dissolution seems to be a governing step for defluoridation. However, higher residual PO and pH affect drinking water quality, and its usage may pose additional health problems. Thus, Ca deficient defluoridated water is unfit for drinking unless it is treated further. Hence, the present work proposes a novel method to overcome HAP dissolution by amending aqueous Ca to F water. The results show that amending Ca efficiently prevents HAP dissolution and enhances defluoridation capacity as an added feature. Furthermore, speciation using MINEQL+ and FTIR of fluoride-calcium treated HAPs suggest the possibility of defluoridation by aqueous CaF adsorption onto HAP besides F ion exchange with OH .
Author Chaudhari, Sanjeev
Sankannavar, Ravi
Author_xml – sequence: 1
  givenname: Ravi
  orcidid: 0000-0002-1590-5609
  surname: Sankannavar
  fullname: Sankannavar, Ravi
  email: ravi.sankannavar@gmail.com
  organization: Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
– sequence: 2
  givenname: Sanjeev
  surname: Chaudhari
  fullname: Chaudhari, Sanjeev
  organization: Centre for Environmental Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31154169$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFnwDykk3CdWznAQs0qmhBqsQG1pZj37QeJfZgJyNmyy_H84AFm7KKF9_5lHvOFbnwwSMhrxmUDFj9blNu0O8m7csKWFeCLKFtn5EVg04Wbc3hgqyAAytE0zWX5CqlDQDwijUvyCVnTApWdyvya-2pm7YY9ex2SPV2G4M2j3QIkQ7jEmJILtHJze4hE8G_p-sJvXX-geofC4YlUaNH45aJzoGmJecxJfq4tzH83OttDs1IrUspjMtBQJ2nFo9qZ4_Kl-T5oMeEr87fa_L99tO3m8_F_de7Lzfr-8Lwrp0LPYjW2AYqqGVTix7qXlij8xUNa5E1bQ-V4aKrWokMpW5AcDE03OSHaHnPr8nbkzefmH89zWpyyeA4an-4Q1VVFtVSCPEfKM9OJmqZ0TdndOkntGob3aTjXv2pOAPyBJjcZYo4_EUYqMOUaqPOU6rDlAqkylPm3Id_csbNx8LmqN34ZPrjKY250Z3DqJJx6A1aF9HMygb3hOE3_me_1Q
CitedBy_id crossref_primary_10_1016_j_jece_2020_103704
crossref_primary_10_1016_j_jhazmat_2020_124694
crossref_primary_10_1016_j_seppur_2022_122497
crossref_primary_10_1016_j_jwpe_2023_103765
crossref_primary_10_3390_ma16093605
crossref_primary_10_1016_j_apgeochem_2022_105358
crossref_primary_10_1016_j_hazl_2021_100033
crossref_primary_10_1007_s43207_022_00225_w
crossref_primary_10_1007_s11356_024_34452_x
crossref_primary_10_1007_s12403_024_00625_9
crossref_primary_10_1016_j_reactfunctpolym_2021_105067
crossref_primary_10_17159_sajs_2024_12879
crossref_primary_10_1016_j_jenvman_2020_110415
crossref_primary_10_1016_j_envpol_2022_119882
crossref_primary_10_5004_dwt_2021_26814
Cites_doi 10.1016/j.jenvman.2017.06.038
10.1021/es405135r
10.1016/j.scitotenv.2015.05.038
10.1111/j.1442-200X.1996.tb03536.x
10.1061/(ASCE)EE.1943-7870.0000692
10.1016/S0271-5317(97)00057-2
10.1371/journal.pone.0010895
10.1080/07315724.2000.10718083
10.1023/A:1015986410685
10.1021/es202750t
10.1016/0198-9715(92)90053-T
10.1021/ie201692q
10.1016/j.cej.2011.05.028
10.1007/s12665-014-3112-1
10.1007/s11270-016-2786-2
10.1016/j.jhazmat.2006.02.024
10.18203/2394-6040.ijcmph20171496
10.1081/CLT-100105154
10.1007/s10450-016-9802-0
10.1080/10643380701413310
10.3389/fchem.2018.00104
10.1351/PAC-CON-08-10-02
10.1016/j.jcrysgro.2014.03.036
10.1016/j.jhazmat.2007.11.048
10.4103/2230-8210.113752
10.1080/00194506.2013.785116
10.1016/j.watres.2003.08.014
10.1016/j.watres.2008.10.023
10.1038/bonekey.2015.74
10.1111/j.1600-0528.2004.00134.x
10.1016/j.watres.2006.04.031
10.4236/jwarp.2011.37056
10.5301/jn.5000242
10.1016/j.jwpe.2017.07.015
10.1016/j.jhazmat.2012.07.020
10.1042/CS20100377
10.1080/10934529.2016.1181445
10.1021/la803137u
10.1007/s10661-010-1348-0
10.1016/j.jenvman.2009.08.015
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2019.05.088
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
EndPage 237
ExternalDocumentID 31154169
10_1016_j_jenvman_2019_05_088
S030147971930708X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
SSH
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-af48cd702065764b06b4dca169718e178b02c349285e1e5a70434f73c704483b3
IEDL.DBID .~1
ISSN 0301-4797
1095-8630
IngestDate Thu Jul 10 18:48:52 EDT 2025
Fri Jul 11 05:58:48 EDT 2025
Wed Feb 19 02:34:21 EST 2025
Thu Apr 24 22:52:02 EDT 2025
Tue Jul 01 02:39:49 EDT 2025
Fri Feb 23 02:46:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Calcium amendment
Drinking water
Hydroxyapatite dissolution
Phosphate leaching
Fluorosis reversal
Fluoride removal
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-af48cd702065764b06b4dca169718e178b02c349285e1e5a70434f73c704483b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1590-5609
PMID 31154169
PQID 2234481465
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2271865444
proquest_miscellaneous_2234481465
pubmed_primary_31154169
crossref_primary_10_1016_j_jenvman_2019_05_088
crossref_citationtrail_10_1016_j_jenvman_2019_05_088
elsevier_sciencedirect_doi_10_1016_j_jenvman_2019_05_088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Meenakshi, Maheshwari (bib28) 2006; 137
Fan, Parker, Smith (bib15) 2003; 37
Gupta, Gupta, Seth, Gupta (bib18) 1996; 38
Yadugiri (bib53) 2011; 100
Guéguen, Pointillart (bib17) 2000; 19
Choukaife, Aljerf (bib13) 2017; 24
Schmoll, Howard, Chilton, Chorus (bib40) 2006
Smičiklas, Dimović, Plećaš, Mitrić (bib43) 2006; 40
Fawell, Bailey, Chilton, Dahi, Fewtrell, Magara (bib16) 2006
Prasad, Bhadauria (bib33) 2013; 17
Ritz, Hahn, Ketteler, Kuhlmann, Mann (bib36) 2012; 109
Sani, Adem, Fetter, Bosch, Diaz (bib38) 2016; 227
Sharma, Tsuchiya, Skobe, Tannous, Bartlett (bib41) 2010; 5
Bengtsson, Shchukarev, Persson, Sjöberg (bib6) 2009; 25
Bureau of Indian Standards (bib11) 2012
Anukam, Agu (bib3) 2017; 4
Samrat, Rao, SenGupta, Riotte, Mudakavi (bib37) 2018; 23
Bhatnagar, Kumar, Sillanpää (bib8) 2011; 171
Lessard (bib25) 2007
Bengtsson, Sjöberg (bib7) 2009; 81
Tang, Duan, Li, Zhang, Wu (bib51) 2018; 6
Sundaram, Viswanathan, Meenakshi (bib46) 2008; 155
Bahdod, El Asri, Saoiabi, Coradin, Laghzizil (bib5) 2009; 43
Medellin-Castillo, Padilla-Ortega, Tovar-García, Leyva-Ramos, Ocampo-Pérez, Carrasco-Marín, Berber-Mendoza (bib27) 2016; 22
Anjaneyulu, Kumar, Sankannavar, Rao (bib2) 2012; 51
Patel, Khalkho, Patel, Sheikh, Behera, Chaudhari, Prabhakar (bib32) 2014; 72
Sternitzke, Janousch, Heeb, Hering, Johnson (bib44) 2014; 396
Nie, Hu, Kong (bib31) 2012; 233–234
Susheela, Bhatnagar (bib50) 2002; 234
Aljerf, Choukaife (bib1) 2017; 24
Shreyas, Kanwar, Rao (bib42) 2013; 55
Heard, Hill, Cairns, Dart (bib20) 2001; 39
He, Cao (bib19) 1996; 29
MacDonald, Pathak, Singer, Jaffe (bib26) 2011; 3
Rafique, Naseem, Ozsvath, Hussain, Bhanger, Usmani (bib34) 2015; 530
Cerklewski (bib12) 1997; 17
Whelton, Ketley, McSweeney, O’mullane (bib52) 2004; 32
Delgadillo-Velasco, Hernández-Montoya, Cervantes, Montes-Morán, Lira-Berlanga (bib14) 2017; 201
Ayoob, Gupta, Bhat (bib4) 2008; 36
Brindha, Rajesh, Murugan, Elango (bib9) 2011; 172
Moshfegh, Goldman, Ahuja, Rhodes, LaComb (bib30) 2009
Sternitzke, Kaegi, Audinot, Lewin, Hering, Johnson (bib45) 2012; 46
Izuagie, Gitari, Gumbo (bib21) 2016; 51
Susheela (bib47) 1999; 77
Mohapatra, Anand, Mishra, Giles, Singh (bib29) 2009; 91
Brown, Razzaque (bib10) 2015; 4
Susheela (bib49) 2007
Schecher, McAvoy (bib39) 1992; 16
Jain, Elsayed (bib23) 2013; 26
Kanno, Sanders, Flynn, Lessard, Myneni (bib24) 2014; 48
Susheela (bib48) 2002; B68
Yakub, Soboyejo (bib54) 2013; 139
Jacobsen, Dahi (bib22) 1997
Razzaque (bib35) 2011; 120
Susheela (10.1016/j.jenvman.2019.05.088_bib50) 2002; 234
Fan (10.1016/j.jenvman.2019.05.088_bib15) 2003; 37
Yakub (10.1016/j.jenvman.2019.05.088_bib54) 2013; 139
Susheela (10.1016/j.jenvman.2019.05.088_bib47) 1999; 77
Jain (10.1016/j.jenvman.2019.05.088_bib23) 2013; 26
Brindha (10.1016/j.jenvman.2019.05.088_bib9) 2011; 172
Cerklewski (10.1016/j.jenvman.2019.05.088_bib12) 1997; 17
Sternitzke (10.1016/j.jenvman.2019.05.088_bib44) 2014; 396
Schmoll (10.1016/j.jenvman.2019.05.088_bib40) 2006
Smičiklas (10.1016/j.jenvman.2019.05.088_bib43) 2006; 40
Yadugiri (10.1016/j.jenvman.2019.05.088_bib53) 2011; 100
Samrat (10.1016/j.jenvman.2019.05.088_bib37) 2018; 23
Heard (10.1016/j.jenvman.2019.05.088_bib20) 2001; 39
Sternitzke (10.1016/j.jenvman.2019.05.088_bib45) 2012; 46
Jacobsen (10.1016/j.jenvman.2019.05.088_bib22) 1997
Bahdod (10.1016/j.jenvman.2019.05.088_bib5) 2009; 43
He (10.1016/j.jenvman.2019.05.088_bib19) 1996; 29
Rafique (10.1016/j.jenvman.2019.05.088_bib34) 2015; 530
Anukam (10.1016/j.jenvman.2019.05.088_bib3) 2017; 4
Bengtsson (10.1016/j.jenvman.2019.05.088_bib6) 2009; 25
Susheela (10.1016/j.jenvman.2019.05.088_bib49) 2007
Prasad (10.1016/j.jenvman.2019.05.088_bib33) 2013; 17
Moshfegh (10.1016/j.jenvman.2019.05.088_bib30) 2009
Bureau of Indian Standards (10.1016/j.jenvman.2019.05.088_bib11) 2012
Choukaife (10.1016/j.jenvman.2019.05.088_bib13) 2017; 24
Tang (10.1016/j.jenvman.2019.05.088_bib51) 2018; 6
Delgadillo-Velasco (10.1016/j.jenvman.2019.05.088_bib14) 2017; 201
Izuagie (10.1016/j.jenvman.2019.05.088_bib21) 2016; 51
Sani (10.1016/j.jenvman.2019.05.088_bib38) 2016; 227
Medellin-Castillo (10.1016/j.jenvman.2019.05.088_bib27) 2016; 22
Nie (10.1016/j.jenvman.2019.05.088_bib31) 2012; 233–234
Shreyas (10.1016/j.jenvman.2019.05.088_bib42) 2013; 55
Guéguen (10.1016/j.jenvman.2019.05.088_bib17) 2000; 19
Sharma (10.1016/j.jenvman.2019.05.088_bib41) 2010; 5
Bhatnagar (10.1016/j.jenvman.2019.05.088_bib8) 2011; 171
Aljerf (10.1016/j.jenvman.2019.05.088_bib1) 2017; 24
Razzaque (10.1016/j.jenvman.2019.05.088_bib35) 2011; 120
Patel (10.1016/j.jenvman.2019.05.088_bib32) 2014; 72
Whelton (10.1016/j.jenvman.2019.05.088_bib52) 2004; 32
Meenakshi (10.1016/j.jenvman.2019.05.088_bib28) 2006; 137
Gupta (10.1016/j.jenvman.2019.05.088_bib18) 1996; 38
Susheela (10.1016/j.jenvman.2019.05.088_bib48) 2002; B68
Schecher (10.1016/j.jenvman.2019.05.088_bib39) 1992; 16
Sundaram (10.1016/j.jenvman.2019.05.088_bib46) 2008; 155
Bengtsson (10.1016/j.jenvman.2019.05.088_bib7) 2009; 81
Lessard (10.1016/j.jenvman.2019.05.088_bib25) 2007
Brown (10.1016/j.jenvman.2019.05.088_bib10) 2015; 4
Kanno (10.1016/j.jenvman.2019.05.088_bib24) 2014; 48
Anjaneyulu (10.1016/j.jenvman.2019.05.088_bib2) 2012; 51
Ritz (10.1016/j.jenvman.2019.05.088_bib36) 2012; 109
MacDonald (10.1016/j.jenvman.2019.05.088_bib26) 2011; 3
Mohapatra (10.1016/j.jenvman.2019.05.088_bib29) 2009; 91
Fawell (10.1016/j.jenvman.2019.05.088_bib16) 2006
Ayoob (10.1016/j.jenvman.2019.05.088_bib4) 2008; 36
References_xml – volume: 19
  start-page: 119S
  year: 2000
  end-page: 136S
  ident: bib17
  article-title: The bioavailability of dietary calcium
  publication-title: J. Am. Coll. Nutr.
– volume: 139
  start-page: 995
  year: 2013
  end-page: 1003
  ident: bib54
  article-title: Adsorption of fluoride from water using sintered clay-hydroxyapatite composites
  publication-title: J. Environ. Eng.
– volume: 48
  start-page: 5798
  year: 2014
  end-page: 5807
  ident: bib24
  article-title: Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone
  publication-title: Environ. Sci. Technol.
– start-page: 94
  year: 1997
  end-page: 99
  ident: bib22
  article-title: Effect of calcium addition on the defluoridation capacity of bone char
  publication-title: 2nd International Workshop on Fluorosis Prevention and Defluoridation of Water
– volume: 396
  start-page: 71
  year: 2014
  end-page: 78
  ident: bib44
  article-title: Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride
  publication-title: J. Cryst. Growth
– year: 2007
  ident: bib49
  article-title: A Treatise on Fluorosis
– volume: 23
  start-page: 327
  year: 2018
  end-page: 337
  ident: bib37
  article-title: Defluoridation of reject water from a reverse osmosis unit and synthetic water using adsorption
  publication-title: J. Water Process Eng.
– volume: 155
  start-page: 206
  year: 2008
  end-page: 215
  ident: bib46
  article-title: Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies
  publication-title: J. Hazard Mater.
– volume: 201
  start-page: 277
  year: 2017
  end-page: 285
  ident: bib14
  article-title: Bone char with antibacterial properties for fluoride removal: preparation, characterization and water treatment
  publication-title: J. Environ. Manag.
– volume: 36
  start-page: 401
  year: 2008
  end-page: 470
  ident: bib4
  article-title: A conceptual overview on sustainable technologies for the defluoridation of drinking water
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 3
  start-page: 457
  year: 2011
  end-page: 472
  ident: bib26
  article-title: An integrated approach to address endemic fluorosis in Jharkhand, India
  publication-title: J. Water Resour. Prot.
– volume: 43
  start-page: 313
  year: 2009
  end-page: 318
  ident: bib5
  article-title: Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties
  publication-title: Water Res.
– year: 2006
  ident: bib16
  article-title: Fluoride in Drinking-Water
– volume: 32
  start-page: 9
  year: 2004
  end-page: 18
  ident: bib52
  article-title: A review of fluorosis in the European Union: prevalence, risk factors and aesthetic issues. Community Dent
  publication-title: Oral Epidemiol
– volume: 137
  start-page: 456
  year: 2006
  end-page: 463
  ident: bib28
  article-title: Fluoride in drinking water and its removal
  publication-title: J. Hazard Mater.
– volume: 37
  start-page: 4929
  year: 2003
  end-page: 4937
  ident: bib15
  article-title: Adsorption kinetics of fluoride on low cost materials
  publication-title: Water Res.
– year: 2012
  ident: bib11
  article-title: Indian Standard: Drinking Water Specification
– volume: 4
  start-page: 705
  year: 2015
  ident: bib10
  article-title: Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity
  publication-title: BoneKEy Rep.
– volume: 6
  start-page: 104
  year: 2018
  ident: bib51
  article-title: Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube
  publication-title: Front. Chem.
– volume: 227
  start-page: 90
  year: 2016
  ident: bib38
  article-title: Defluoridation performance comparison of nano-hydrotalcite/hydroxyapatite composite with calcined hydrotalcite and hydroxyapatite
  publication-title: Water, Air, Soil Pollut.
– volume: 17
  start-page: 907
  year: 1997
  end-page: 929
  ident: bib12
  article-title: Fluoride bioavailability-nutritional and clinical aspects
  publication-title: Nutr. Res.
– year: 2009
  ident: bib30
  article-title: What We Eat in America, NHANES 2005–2006: Usual Nutrient Intakes from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium
– volume: 171
  start-page: 811
  year: 2011
  end-page: 840
  ident: bib8
  article-title: Fluoride removal from water by adsorption - a review
  publication-title: Chem. Eng. J.
– volume: 22
  start-page: 951
  year: 2016
  end-page: 961
  ident: bib27
  article-title: Removal of fluoride from aqueous solution using acid and thermally treated bone char
  publication-title: Adsorption
– volume: 172
  start-page: 481
  year: 2011
  end-page: 492
  ident: bib9
  article-title: Fluoride contamination in groundwater in parts of Nalgonda district, Andhra Pradesh, India
  publication-title: Environ. Monit. Assess.
– volume: 46
  start-page: 802
  year: 2012
  end-page: 809
  ident: bib45
  article-title: Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer
  publication-title: Environ. Sci. Technol.
– volume: 530
  start-page: 271
  year: 2015
  end-page: 278
  ident: bib34
  article-title: Geochemical controls of high fluoride groundwater in Umarkot sub-district, Thar Desert, Pakistan
  publication-title: Sci. Total Environ.
– volume: 26
  start-page: 856
  year: 2013
  end-page: 864
  ident: bib23
  article-title: Dietary phosphate: what do we know about its toxicity
  publication-title: J. Nephrol.
– volume: 5
  year: 2010
  ident: bib41
  article-title: The acid test of fluoride: how pH modulates toxicity
  publication-title: PLoS One
– volume: 40
  start-page: 2267
  year: 2006
  end-page: 2274
  ident: bib43
  article-title: Removal of Co
  publication-title: Water Res.
– volume: 25
  start-page: 2355
  year: 2009
  end-page: 2362
  ident: bib6
  article-title: Phase transformations, ion-exchange, adsorption, and dissolution processes in aquatic fluorapatite systems
  publication-title: Langmuir
– volume: 29
  start-page: 212
  year: 1996
  end-page: 216
  ident: bib19
  article-title: Assessment of fluoride removal from drinking water by calcium phosphate systems
  publication-title: Fluoride
– volume: 81
  start-page: 1569
  year: 2009
  end-page: 1584
  ident: bib7
  article-title: Surface complexation and proton-promoted dissolution in aqueous apatite systems
  publication-title: Pure Appl. Chem.
– volume: 109
  start-page: 49
  year: 2012
  end-page: 55
  ident: bib36
  article-title: Phosphate additives in food - a health risk
  publication-title: Dtsch. Arztebl. Int.
– volume: 91
  start-page: 67
  year: 2009
  end-page: 77
  ident: bib29
  article-title: Review of fluoride removal from drinking water
  publication-title: J. Environ. Manag.
– volume: 17
  start-page: 620
  year: 2013
  end-page: 627
  ident: bib33
  article-title: Renal phosphate handling: Physiology
  publication-title: Indian J. Endocrinol. Metab.
– volume: 4
  start-page: 1445
  year: 2017
  end-page: 1449
  ident: bib3
  article-title: Health implications of inorganic phosphate additives in food products: a systematic review
  publication-title: Int. J. Community Med. Public Health
– volume: 234
  start-page: 335
  year: 2002
  end-page: 340
  ident: bib50
  article-title: Reversal of fluoride induced cell injury through elimination of fluoride and consumption of diet rich in essential nutrients and antioxidants
  publication-title: Mol. Cell. Biochem.
– volume: 24
  start-page: 407
  year: 2017
  end-page: 410
  ident: bib1
  article-title: Hydroxyapatite and fluoroapatite behavior with pH change
  publication-title: Int. Med. J.
– volume: 24
  start-page: 394
  year: 2017
  end-page: 397
  ident: bib13
  article-title: A descriptive study - in vitro: new validated method for checking HAp and FAp behaviours
  publication-title: Int. Med. J.
– volume: 51
  start-page: 810
  year: 2016
  end-page: 824
  ident: bib21
  article-title: Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: towards fluorosis mitigation
  publication-title: J. Environ. Sci. Health A
– volume: B68
  start-page: 389
  year: 2002
  end-page: 400
  ident: bib48
  article-title: Fluorosis in developing countries: remedial measures and approaches
  publication-title: Proc. Indian Natl. Sci. Acad.
– volume: 100
  start-page: 1475
  year: 2011
  end-page: 1477
  ident: bib53
  article-title: Fluorosis: a persistent problem
  publication-title: Curr. Sci.
– volume: 72
  start-page: 2033
  year: 2014
  end-page: 2049
  ident: bib32
  article-title: Fluoride contamination of groundwater in parts of Eastern India and a preliminary experimental study of fluoride adsorption by natural haematite iron ore and synthetic magnetite
  publication-title: Environ. Earth Sci.
– volume: 55
  start-page: 38
  year: 2013
  end-page: 49
  ident: bib42
  article-title: Chemical engineering and the mitigation of fluorosis
  publication-title: Indian Chem. Eng.
– volume: 77
  start-page: 1250
  year: 1999
  end-page: 1256
  ident: bib47
  article-title: Fluorosis management programme in India
  publication-title: Curr. Sci.
– year: 2006
  ident: bib40
  article-title: Protecting Groundwater for Health: Managing the Quality of Drinking-Water Sources
– volume: 39
  start-page: 349
  year: 2001
  end-page: 353
  ident: bib20
  article-title: Calcium neutralizes fluoride bioavailability in a lethal model of fluoride poisoning
  publication-title: J. Toxicol. Clin. Toxicol.
– volume: 38
  start-page: 513
  year: 1996
  end-page: 519
  ident: bib18
  article-title: Reversal of fluorosis in children
  publication-title: Pediatr. Int.
– volume: 16
  start-page: 65
  year: 1992
  end-page: 76
  ident: bib39
  article-title: MINEQL+: a software environment for chemical equilibrium modeling
  publication-title: Comput. Environ. Urban Syst.
– volume: 233–234
  start-page: 194
  year: 2012
  end-page: 199
  ident: bib31
  article-title: Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite
  publication-title: J. Hazard Mater.
– volume: 120
  start-page: 91
  year: 2011
  end-page: 97
  ident: bib35
  article-title: Phosphate toxicity: new insights into an old problem
  publication-title: Clin. Sci.
– volume: 51
  start-page: 8040
  year: 2012
  end-page: 8048
  ident: bib2
  article-title: Defluoridation of drinking water and rainwater harvesting using a solar still
  publication-title: Ind. Eng. Chem. Res.
– year: 2007
  ident: bib25
  article-title: Mechanisms of Fluoride Interactions with Hydroxyapatite: Implications for Understanding and Treatment of Fluorosis. B.S. Report
– volume: 201
  start-page: 277
  year: 2017
  ident: 10.1016/j.jenvman.2019.05.088_bib14
  article-title: Bone char with antibacterial properties for fluoride removal: preparation, characterization and water treatment
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.06.038
– volume: 48
  start-page: 5798
  year: 2014
  ident: 10.1016/j.jenvman.2019.05.088_bib24
  article-title: Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405135r
– volume: 530
  start-page: 271
  year: 2015
  ident: 10.1016/j.jenvman.2019.05.088_bib34
  article-title: Geochemical controls of high fluoride groundwater in Umarkot sub-district, Thar Desert, Pakistan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.05.038
– volume: 38
  start-page: 513
  year: 1996
  ident: 10.1016/j.jenvman.2019.05.088_bib18
  article-title: Reversal of fluorosis in children
  publication-title: Pediatr. Int.
  doi: 10.1111/j.1442-200X.1996.tb03536.x
– volume: 139
  start-page: 995
  year: 2013
  ident: 10.1016/j.jenvman.2019.05.088_bib54
  article-title: Adsorption of fluoride from water using sintered clay-hydroxyapatite composites
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000692
– volume: 17
  start-page: 907
  year: 1997
  ident: 10.1016/j.jenvman.2019.05.088_bib12
  article-title: Fluoride bioavailability-nutritional and clinical aspects
  publication-title: Nutr. Res.
  doi: 10.1016/S0271-5317(97)00057-2
– volume: 5
  year: 2010
  ident: 10.1016/j.jenvman.2019.05.088_bib41
  article-title: The acid test of fluoride: how pH modulates toxicity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010895
– volume: 19
  start-page: 119S
  year: 2000
  ident: 10.1016/j.jenvman.2019.05.088_bib17
  article-title: The bioavailability of dietary calcium
  publication-title: J. Am. Coll. Nutr.
  doi: 10.1080/07315724.2000.10718083
– year: 2007
  ident: 10.1016/j.jenvman.2019.05.088_bib49
– volume: 234
  start-page: 335
  year: 2002
  ident: 10.1016/j.jenvman.2019.05.088_bib50
  article-title: Reversal of fluoride induced cell injury through elimination of fluoride and consumption of diet rich in essential nutrients and antioxidants
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/A:1015986410685
– year: 2009
  ident: 10.1016/j.jenvman.2019.05.088_bib30
– volume: 46
  start-page: 802
  year: 2012
  ident: 10.1016/j.jenvman.2019.05.088_bib45
  article-title: Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202750t
– year: 2007
  ident: 10.1016/j.jenvman.2019.05.088_bib25
– volume: 109
  start-page: 49
  year: 2012
  ident: 10.1016/j.jenvman.2019.05.088_bib36
  article-title: Phosphate additives in food - a health risk
  publication-title: Dtsch. Arztebl. Int.
– volume: 16
  start-page: 65
  year: 1992
  ident: 10.1016/j.jenvman.2019.05.088_bib39
  article-title: MINEQL+: a software environment for chemical equilibrium modeling
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/0198-9715(92)90053-T
– volume: 51
  start-page: 8040
  year: 2012
  ident: 10.1016/j.jenvman.2019.05.088_bib2
  article-title: Defluoridation of drinking water and rainwater harvesting using a solar still
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201692q
– volume: 171
  start-page: 811
  year: 2011
  ident: 10.1016/j.jenvman.2019.05.088_bib8
  article-title: Fluoride removal from water by adsorption - a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.05.028
– volume: 72
  start-page: 2033
  year: 2014
  ident: 10.1016/j.jenvman.2019.05.088_bib32
  article-title: Fluoride contamination of groundwater in parts of Eastern India and a preliminary experimental study of fluoride adsorption by natural haematite iron ore and synthetic magnetite
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3112-1
– volume: 227
  start-page: 90
  issue: 3
  year: 2016
  ident: 10.1016/j.jenvman.2019.05.088_bib38
  article-title: Defluoridation performance comparison of nano-hydrotalcite/hydroxyapatite composite with calcined hydrotalcite and hydroxyapatite
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-016-2786-2
– volume: 137
  start-page: 456
  year: 2006
  ident: 10.1016/j.jenvman.2019.05.088_bib28
  article-title: Fluoride in drinking water and its removal
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2006.02.024
– volume: 4
  start-page: 1445
  year: 2017
  ident: 10.1016/j.jenvman.2019.05.088_bib3
  article-title: Health implications of inorganic phosphate additives in food products: a systematic review
  publication-title: Int. J. Community Med. Public Health
  doi: 10.18203/2394-6040.ijcmph20171496
– volume: 29
  start-page: 212
  year: 1996
  ident: 10.1016/j.jenvman.2019.05.088_bib19
  article-title: Assessment of fluoride removal from drinking water by calcium phosphate systems
  publication-title: Fluoride
– volume: 39
  start-page: 349
  year: 2001
  ident: 10.1016/j.jenvman.2019.05.088_bib20
  article-title: Calcium neutralizes fluoride bioavailability in a lethal model of fluoride poisoning
  publication-title: J. Toxicol. Clin. Toxicol.
  doi: 10.1081/CLT-100105154
– volume: 77
  start-page: 1250
  year: 1999
  ident: 10.1016/j.jenvman.2019.05.088_bib47
  article-title: Fluorosis management programme in India
  publication-title: Curr. Sci.
– start-page: 94
  year: 1997
  ident: 10.1016/j.jenvman.2019.05.088_bib22
  article-title: Effect of calcium addition on the defluoridation capacity of bone char
– volume: 22
  start-page: 951
  year: 2016
  ident: 10.1016/j.jenvman.2019.05.088_bib27
  article-title: Removal of fluoride from aqueous solution using acid and thermally treated bone char
  publication-title: Adsorption
  doi: 10.1007/s10450-016-9802-0
– year: 2006
  ident: 10.1016/j.jenvman.2019.05.088_bib16
– year: 2012
  ident: 10.1016/j.jenvman.2019.05.088_bib11
– volume: 36
  start-page: 401
  year: 2008
  ident: 10.1016/j.jenvman.2019.05.088_bib4
  article-title: A conceptual overview on sustainable technologies for the defluoridation of drinking water
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380701413310
– volume: 6
  start-page: 104
  year: 2018
  ident: 10.1016/j.jenvman.2019.05.088_bib51
  article-title: Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00104
– volume: 81
  start-page: 1569
  year: 2009
  ident: 10.1016/j.jenvman.2019.05.088_bib7
  article-title: Surface complexation and proton-promoted dissolution in aqueous apatite systems
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-CON-08-10-02
– volume: 396
  start-page: 71
  year: 2014
  ident: 10.1016/j.jenvman.2019.05.088_bib44
  article-title: Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2014.03.036
– volume: 155
  start-page: 206
  year: 2008
  ident: 10.1016/j.jenvman.2019.05.088_bib46
  article-title: Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2007.11.048
– volume: 17
  start-page: 620
  year: 2013
  ident: 10.1016/j.jenvman.2019.05.088_bib33
  article-title: Renal phosphate handling: Physiology
  publication-title: Indian J. Endocrinol. Metab.
  doi: 10.4103/2230-8210.113752
– volume: 55
  start-page: 38
  year: 2013
  ident: 10.1016/j.jenvman.2019.05.088_bib42
  article-title: Chemical engineering and the mitigation of fluorosis
  publication-title: Indian Chem. Eng.
  doi: 10.1080/00194506.2013.785116
– volume: 37
  start-page: 4929
  year: 2003
  ident: 10.1016/j.jenvman.2019.05.088_bib15
  article-title: Adsorption kinetics of fluoride on low cost materials
  publication-title: Water Res.
  doi: 10.1016/j.watres.2003.08.014
– volume: B68
  start-page: 389
  year: 2002
  ident: 10.1016/j.jenvman.2019.05.088_bib48
  article-title: Fluorosis in developing countries: remedial measures and approaches
  publication-title: Proc. Indian Natl. Sci. Acad.
– volume: 43
  start-page: 313
  year: 2009
  ident: 10.1016/j.jenvman.2019.05.088_bib5
  article-title: Adsorption of phenol from an aqueous solution by selected apatite adsorbents: kinetic process and impact of the surface properties
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.10.023
– volume: 4
  start-page: 705
  year: 2015
  ident: 10.1016/j.jenvman.2019.05.088_bib10
  article-title: Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity
  publication-title: BoneKEy Rep.
  doi: 10.1038/bonekey.2015.74
– year: 2006
  ident: 10.1016/j.jenvman.2019.05.088_bib40
– volume: 32
  start-page: 9
  year: 2004
  ident: 10.1016/j.jenvman.2019.05.088_bib52
  article-title: A review of fluorosis in the European Union: prevalence, risk factors and aesthetic issues. Community Dent
  publication-title: Oral Epidemiol
  doi: 10.1111/j.1600-0528.2004.00134.x
– volume: 24
  start-page: 407
  issue: 5
  year: 2017
  ident: 10.1016/j.jenvman.2019.05.088_bib1
  article-title: Hydroxyapatite and fluoroapatite behavior with pH change
  publication-title: Int. Med. J.
– volume: 40
  start-page: 2267
  year: 2006
  ident: 10.1016/j.jenvman.2019.05.088_bib43
  article-title: Removal of Co2+ from aqueous solutions by hydroxyapatite
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.04.031
– volume: 3
  start-page: 457
  year: 2011
  ident: 10.1016/j.jenvman.2019.05.088_bib26
  article-title: An integrated approach to address endemic fluorosis in Jharkhand, India
  publication-title: J. Water Resour. Prot.
  doi: 10.4236/jwarp.2011.37056
– volume: 100
  start-page: 1475
  issue: 10
  year: 2011
  ident: 10.1016/j.jenvman.2019.05.088_bib53
  article-title: Fluorosis: a persistent problem
  publication-title: Curr. Sci.
– volume: 26
  start-page: 856
  year: 2013
  ident: 10.1016/j.jenvman.2019.05.088_bib23
  article-title: Dietary phosphate: what do we know about its toxicity
  publication-title: J. Nephrol.
  doi: 10.5301/jn.5000242
– volume: 23
  start-page: 327
  year: 2018
  ident: 10.1016/j.jenvman.2019.05.088_bib37
  article-title: Defluoridation of reject water from a reverse osmosis unit and synthetic water using adsorption
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2017.07.015
– volume: 233–234
  start-page: 194
  year: 2012
  ident: 10.1016/j.jenvman.2019.05.088_bib31
  article-title: Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2012.07.020
– volume: 120
  start-page: 91
  year: 2011
  ident: 10.1016/j.jenvman.2019.05.088_bib35
  article-title: Phosphate toxicity: new insights into an old problem
  publication-title: Clin. Sci.
  doi: 10.1042/CS20100377
– volume: 51
  start-page: 810
  issue: 10
  year: 2016
  ident: 10.1016/j.jenvman.2019.05.088_bib21
  article-title: Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: towards fluorosis mitigation
  publication-title: J. Environ. Sci. Health A
  doi: 10.1080/10934529.2016.1181445
– volume: 25
  start-page: 2355
  year: 2009
  ident: 10.1016/j.jenvman.2019.05.088_bib6
  article-title: Phase transformations, ion-exchange, adsorption, and dissolution processes in aquatic fluorapatite systems
  publication-title: Langmuir
  doi: 10.1021/la803137u
– volume: 172
  start-page: 481
  year: 2011
  ident: 10.1016/j.jenvman.2019.05.088_bib9
  article-title: Fluoride contamination in groundwater in parts of Nalgonda district, Andhra Pradesh, India
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-010-1348-0
– volume: 91
  start-page: 67
  year: 2009
  ident: 10.1016/j.jenvman.2019.05.088_bib29
  article-title: Review of fluoride removal from drinking water
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2009.08.015
– volume: 24
  start-page: 394
  issue: 5
  year: 2017
  ident: 10.1016/j.jenvman.2019.05.088_bib13
  article-title: A descriptive study - in vitro: new validated method for checking HAp and FAp behaviours
  publication-title: Int. Med. J.
SSID ssj0003217
Score 2.3639805
Snippet Drinking of fluoride (F−) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge....
Drinking of fluoride (F ) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge....
Drinking of fluoride (F-) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge....
Drinking of fluoride (F⁻) contaminated water causes fluorosis and thus providing safe drinking water to the affected community remains a major challenge....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 230
SubjectTerms adsorption
calcium
Calcium amendment
defluoridation
drinking
Drinking water
Fluoride removal
fluorides
fluorosis
Fluorosis reversal
Fourier transform infrared spectroscopy
hydroxyapatite
Hydroxyapatite dissolution
ion exchange
Phosphate leaching
water pollution
water quality
Title An imperative approach for fluorosis mitigation: Amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation
URI https://dx.doi.org/10.1016/j.jenvman.2019.05.088
https://www.ncbi.nlm.nih.gov/pubmed/31154169
https://www.proquest.com/docview/2234481465
https://www.proquest.com/docview/2271865444
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9gAXRAuFpVAZiWt2s7ETJ9xWVasFRC9QaW-WvyKy6iarJkHi0kN_eWccpyskoBK3bGRHszNjz0s884aQDyKxwuTGRpktk4i7tIwA1asoZdZiTFHcd2v4epktr_jnVbraI2djLQymVYa9f9jT_W4d7syCNmfbqpp9828DohAAQcBv8xVWsHOBXj693aV5sMR33cXB-BVJ7Kp4Zuvp2tU_NwppUOeFJ_D0DVj-GJ_-hj99HLp4Tp4FAEkXg4yHZM_VR-TJWF_cHpHj813tGgwMi7d9Qe4WNa0AJQ9c33RkE6cAW2l53TcgT9XSTTWwbjT1R7qAZ2BsowpkavqWgkFN1W9o19C23_ocWvrjl8VUGIWp2Z2jeMAf3JlWNbXOP7oaWje9JFcX59_PllFowRAZVuRdpEoOhhSAKTN4MeE6zjS3Rs0zUHvu5iLXcWKQ4DBP3dylSsSc8VIwAxc8Z5odk_26qd1rQq3QOgGElXA82WOlil1SFkYb41hWxnpC-Kh4aQI_ObbJuJZjItpaBntJtJeMUwn2mpDpw7TtQNDx2IR8tKr8zdMkBJHHpr4fvUDCKsSjFVWj-iWALPi_EHXSf40BnWUp53xCXg0u9CAxch4BNC7e_L9wJ-Qp_hry396S_e6md-8AMHX61K-IU3Kw-PRleXkPr6EZLQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXBIXS5WkkrtnNxk6ccFtVrRZoe6GV9mb5FZFVN1mRBIkLB345Y8fpCgmoxC1K7GgyM_Z8jsffALzjieE61ybKTJlEzKZlhKheRik1xsUUyXy1hovLbHnNPq7S1R6cjGdhXFplmPuHOd3P1uHOLGhztq2q2We_GuAFRwiCfpuv7sF9hsPXlTGY_tjledDEl911rd1vJL47xjNbT9e2_raRjgd1XngGT1-B5Y8B6m8A1Aeis0fwMCBIshiEfAx7tj6Eg_GAcXsIR6e7w2vYMIze9gn8XNSkQpg8kH2TkU6cIG4l5U3foDxVSzbVQLvR1O_JAt_hghuRKFPTtwQtqqt-Q7qGtP3WJ9GSL9-Ny4WRLje7s8Tt8Ad_JlVNjPWvrobaTU_h-uz06mQZhRoMkaZF3kWyZGhJjqAyw5UJU3GmmNFynqHeczvnuYoT7RgO89TObSp5zCgrOdV4wXKq6BHs101tj4EYrlSCECthbmuPljK2SVlopbWlWRmrCbBR8UIHgnJXJ-NGjJloaxHsJZy9RJwKtNcEprfdtgNDx10d8tGq4jdXExhF7ur6dvQCgcPQ7a3I2qlfIMrC78Wwk_6rDeosSxljE3g2uNCtxI70CLFx8fz_hXsDB8uri3Nx_uHy0wt44J4MyXAvYb_72ttXiJ469dqPjl_q4hq7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+imperative+approach+for+fluorosis+mitigation%3A+Amending+aqueous+calcium+to+suppress+hydroxyapatite+dissolution+in+defluoridation&rft.jtitle=Journal+of+environmental+management&rft.au=Sankannavar%2C+Ravi&rft.au=Chaudhari%2C+Sanjeev&rft.date=2019-09-01&rft.issn=0301-4797&rft.volume=245+p.230-237&rft.spage=230&rft.epage=237&rft_id=info:doi/10.1016%2Fj.jenvman.2019.05.088&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon