Cryogenic indium-phosphide HEMT low-noise amplifiers at V-band

Indium-phosphide (InP) high electron-mobility transistors potentially have the lowest noise at frequencies below 100 GHz, especially when cryogenically cooled. We have designed monolithically integrated InP millimeter-wave low-noise amplifiers (LNAs) for the European Space Agency (ESA) science Planc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 48; no. 7; pp. 1283 - 1286
Main Authors Tanskanen, J.M., Kangaslahti, P., Ahtola, H., Jukkala, P., Karttaavi, T., Lahdes, M., Varis, J., Tuovinen, J.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Indium-phosphide (InP) high electron-mobility transistors potentially have the lowest noise at frequencies below 100 GHz, especially when cryogenically cooled. We have designed monolithically integrated InP millimeter-wave low-noise amplifiers (LNAs) for the European Space Agency (ESA) science Planck mission. The Planck LNA's design goal for noise temperature is 35 K at the ambient temperature of 20 K. The operation bandwidth is over 20% at 70 GHz. The maximum allowable power consumption for a Planck LNA (gain 20 dB) is P/sub be/=5 mW at 20 K. The chosen foundry for these LNA's was DaimlerChrysler Research, Ulm, Germany. The DaimlerChrysler 0.18-/spl mu/m InP process was used. This process is well suited for V-band LNA design, giving sufficient gain with very low noise. Several one-, two-, and three-stage amplifiers were designed. The best of them exhibited a noise figure lower than 5.5 dB with a gain higher than 14 dB over the 50-68-GHz range at room temperature. The best single-stage amplifier demonstrated a noise figure of 4.5 dB and a gain higher than 5 dS from 50 to 60 GHz at room temperature. On-wafer measurements on these monolithic-microwave integrated circuits (MMIC's) have been done at MilliLab, Espoo, Finland. For the module fabrication, MMIC chips will be mounted in a WR-15 waveguide split-block housing.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/22.853474