Meta-analysis of Voxel-Based Neuroimaging Studies using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI)
Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e.,...
Saved in:
Published in | Journal of visualized experiments no. 153 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
27.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e., voxels can only be "statistically significant" or "non-statistically significant"). Here, we detail how to conduct a meta-analysis using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method that uses a standard permutation test to assess whether effects are not null. We also show how to grade the strength of the evidence according to a set of criteria that considers a range of statistical significance levels (from more liberal to more conservative), the amount of data or the detection of potential biases (e.g., small-study effect and excess of significance). To exemplify the procedure, we detail the conduction of a meta-analysis of voxel-based morphometry studies in obsessive-compulsive disorder, and we provide all the data already extracted from the manuscripts to allow the reader to replicate the meta-analysis easily. SDM-PSI can also be used for meta-analyses of functional magnetic resonance imaging, diffusion tensor imaging, position emission tomography and surface-based morphometry studies. |
---|---|
AbstractList | Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e., voxels can only be "statistically significant" or "non-statistically significant"). Here, we detail how to conduct a meta-analysis using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method that uses a standard permutation test to assess whether effects are not null. We also show how to grade the strength of the evidence according to a set of criteria that considers a range of statistical significance levels (from more liberal to more conservative), the amount of data or the detection of potential biases (e.g., small-study effect and excess of significance). To exemplify the procedure, we detail the conduction of a meta-analysis of voxel-based morphometry studies in obsessive-compulsive disorder, and we provide all the data already extracted from the manuscripts to allow the reader to replicate the meta-analysis easily. SDM-PSI can also be used for meta-analyses of functional magnetic resonance imaging, diffusion tensor imaging, position emission tomography and surface-based morphometry studies. Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e., voxels can only be "statistically significant" or "non-statistically significant"). Here, we detail how to conduct a meta-analysis using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method that uses a standard permutation test to assess whether effects are not null. We also show how to grade the strength of the evidence according to a set of criteria that considers a range of statistical significance levels (from more liberal to more conservative), the amount of data or the detection of potential biases (e.g., small-study effect and excess of significance). To exemplify the procedure, we detail the conduction of a meta-analysis of voxel-based morphometry studies in obsessive-compulsive disorder, and we provide all the data already extracted from the manuscripts to allow the reader to replicate the meta-analysis easily. SDM-PSI can also be used for meta-analyses of functional magnetic resonance imaging, diffusion tensor imaging, position emission tomography and surface-based morphometry studies.Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e., voxels can only be "statistically significant" or "non-statistically significant"). Here, we detail how to conduct a meta-analysis using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method that uses a standard permutation test to assess whether effects are not null. We also show how to grade the strength of the evidence according to a set of criteria that considers a range of statistical significance levels (from more liberal to more conservative), the amount of data or the detection of potential biases (e.g., small-study effect and excess of significance). To exemplify the procedure, we detail the conduction of a meta-analysis of voxel-based morphometry studies in obsessive-compulsive disorder, and we provide all the data already extracted from the manuscripts to allow the reader to replicate the meta-analysis easily. SDM-PSI can also be used for meta-analyses of functional magnetic resonance imaging, diffusion tensor imaging, position emission tomography and surface-based morphometry studies. |
Author | Solanes, Aleix Vieta, Eduard Albajes-Eizagirre, Anton Radua, Joaquim Mataix-Cols, David Ioannidis, John P. A. Solé, Brisa Fullana, Miquel Angel Torrent, Carla Bonnín, Caterina Mar Fusar-Poli, Paolo |
Author_xml | – sequence: 1 givenname: Anton surname: Albajes-Eizagirre fullname: Albajes-Eizagirre, Anton – sequence: 2 givenname: Aleix surname: Solanes fullname: Solanes, Aleix – sequence: 3 givenname: Miquel Angel surname: Fullana fullname: Fullana, Miquel Angel – sequence: 4 givenname: John P. A. surname: Ioannidis fullname: Ioannidis, John P. A. – sequence: 5 givenname: Paolo surname: Fusar-Poli fullname: Fusar-Poli, Paolo – sequence: 6 givenname: Carla surname: Torrent fullname: Torrent, Carla – sequence: 7 givenname: Brisa surname: Solé fullname: Solé, Brisa – sequence: 8 givenname: Caterina Mar surname: Bonnín fullname: Bonnín, Caterina Mar – sequence: 9 givenname: Eduard surname: Vieta fullname: Vieta, Eduard – sequence: 10 givenname: David surname: Mataix-Cols fullname: Mataix-Cols, David – sequence: 11 givenname: Joaquim surname: Radua fullname: Radua, Joaquim |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31840658$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:142456521$$DView record from Swedish Publication Index |
BookMark | eNqF0V1v1SAYB3BiZtzrVzC9MZlZqlCgwKWbup1kxy05arwjT9unk9nT1gLZzreX8zKj3sgN8OTHP8BzSPb6oUdCThh9w5Vhb6XRgj0jB8wImlOtvu39sd4nh97fU1oWVOoXZJ8zLWgp9QFZzTFADj10K-98NrTZ1-ERu_wcPDbZJ4zT4JZw5_q7bBFi49Bn0W92iE1ebVSTzWEc18UHF75ntzgtY4Dghn6dt4jVPdYhm6WYdPp08X6e3y5mr4_J8xY6jye7-Yh8-fjh88VVfn1zObt4d53X3OiQmxpQMhSspdzIQhZGtJXmNaOqYqCAC6xAUmEqJThKAFUyUwKIgjdVW9b8iOTbXP-AY6zsOKUHTSs7gLO70o-0QiuU0KVJ_nTrx2n4GdEHu3S-xq6DHofobWG0NLQQBfs_5YXiSqSR6MsdjdUSm9-3eOpEAmdbUE-D9xO2tnbbTwwTuM4yatd9tps-J_3qH_0U-Lf7BXWZpNA |
CitedBy_id | crossref_primary_10_1186_s10194_020_01158_7 crossref_primary_10_3389_fpsyt_2021_807839 crossref_primary_10_3390_brainsci12091192 crossref_primary_10_1007_s10548_021_00824_6 crossref_primary_10_1016_j_jad_2024_06_040 crossref_primary_10_3389_fpsyt_2022_955741 crossref_primary_10_1002_brb3_3057 crossref_primary_10_3390_medicina57111136 crossref_primary_10_1016_j_neubiorev_2021_06_020 crossref_primary_10_1016_j_neuroimage_2022_119204 crossref_primary_10_3389_fnins_2022_921931 crossref_primary_10_1007_s11682_021_00503_x crossref_primary_10_1016_j_schres_2021_05_008 crossref_primary_10_1155_2021_8841720 crossref_primary_10_1038_s41598_022_25051_2 crossref_primary_10_3389_fpsyt_2021_671348 crossref_primary_10_1016_j_jpsychires_2025_03_032 crossref_primary_10_1038_s41398_022_02130_6 crossref_primary_10_3389_fnagi_2021_627919 crossref_primary_10_1007_s00415_025_12934_3 crossref_primary_10_3389_fpsyt_2021_670739 crossref_primary_10_3389_fneur_2022_999375 crossref_primary_10_30773_pi_2021_0383 crossref_primary_10_3389_fneur_2023_1036413 crossref_primary_10_1016_j_rpsmen_2022_06_007 crossref_primary_10_1016_j_wneu_2024_01_138 crossref_primary_10_1016_j_sleep_2025_02_028 crossref_primary_10_1038_s41398_022_02157_9 crossref_primary_10_3389_fnins_2020_600423 crossref_primary_10_1016_j_neubiorev_2021_02_035 crossref_primary_10_3389_fneur_2022_1022793 crossref_primary_10_1038_s41537_023_00338_z crossref_primary_10_1016_j_jpsychires_2022_09_015 crossref_primary_10_1017_S0033291723003410 crossref_primary_10_3389_fneur_2025_1510115 crossref_primary_10_1016_j_rpsm_2021_07_001 crossref_primary_10_3389_fnagi_2022_914049 crossref_primary_10_18632_aging_202368 crossref_primary_10_3389_fnagi_2020_00213 crossref_primary_10_1016_j_arr_2024_102240 crossref_primary_10_1007_s00406_024_01946_1 crossref_primary_10_1080_02701367_2022_2026285 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 ADTPV AOWAS |
DOI | 10.3791/59841 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1940-087X |
ExternalDocumentID | oai_swepub_ki_se_474869 31840658 10_3791_59841 |
Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 223 29L 53G 5GY AAHBH AAHTB AAYXX ABPEJ ACGFO ADBBV AKRSQ ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 E3Z GX1 OK1 RPM SJN NPM 7X8 7S9 L.6 2WC ADTPV AOIJS AOWAS DIK HYE |
ID | FETCH-LOGICAL-c398t-9cae51e41f039525294fb83c107b1a7a34eba5049b743e5aa76196aa423dbf6c3 |
ISSN | 1940-087X |
IngestDate | Mon Aug 25 03:38:46 EDT 2025 Fri Jul 11 03:34:46 EDT 2025 Thu Jul 10 23:52:59 EDT 2025 Thu Jan 02 22:58:16 EST 2025 Tue Jul 01 05:27:30 EDT 2025 Thu Apr 24 22:53:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 153 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c398t-9cae51e41f039525294fb83c107b1a7a34eba5049b743e5aa76196aa423dbf6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.jove.com/59841 |
PMID | 31840658 |
PQID | 2327374444 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_474869 proquest_miscellaneous_2985902421 proquest_miscellaneous_2327374444 pubmed_primary_31840658 crossref_citationtrail_10_3791_59841 crossref_primary_10_3791_59841 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-27 |
PublicationDateYYYYMMDD | 2019-11-27 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of visualized experiments |
PublicationTitleAlternate | J Vis Exp |
PublicationYear | 2019 |
SSID | ssj0062058 |
Score | 2.4999044 |
Snippet | Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of... |
SourceID | swepub proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | image analysis magnetic resonance imaging meta-analysis morphometry obsessive-compulsive disorder tomography |
Title | Meta-analysis of Voxel-Based Neuroimaging Studies using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31840658 https://www.proquest.com/docview/2327374444 https://www.proquest.com/docview/2985902421 http://kipublications.ki.se/Default.aspx?queryparsed=id:142456521 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx8ZgjN2XXYoGZWwYd7ElX_RYRroymm4PCeTNSLYM3pLY1HZp8wP2u3dkKUrShtHND7aRxbHR-aJzybkgdAAiLxRCeq4YUAkGShq7nISxGylhl4k04F0zmNFZeDKh36bBtNf7vRG11DbiMF3uzCv5H67CGPBVZcn-A2ctURiAe-AvnIHDcL4Vj0ey4S7fKCtyUV7KmaskU-Z0lSqLue5CVOtwQaftXAM1iCwzK3PmvKqsR7aCjbptrBpZt0L5aRxFRvtn62zuVnWxciDcVGsvilrlaS6B9rp7gFXcj2aC_5S1OyyW8GHnJsZX9TG2rp5Shd_WJvmmuLQAA1uZ6wS2kao5C8haxeN20C5V86WsqFfxxc4P46Y1Lg2Pqdw-XSHA7MJMxZzG0VQLqR1jBpQBcapDGbCYeq6-7JIKJGJKKtjn21W3z74nx5PT02Q8nI7voLs-mBuqE8bXqQ0VCv1B1-fVfsJ99NCQ_dwR3dZpbhgq16rQdprL-DF6ZHiDjzR-nqCeXDxF93QT0qtn6GoLRbjM8QaK8CaKsEER7lCE1yjCGTYowgpFeANFip5BEdYowh8Nhj49R5Pj4fjLiWsacrgpYXHjspTLwJPUyweEBX7gM5qLmKTeIBIejzihUvAAbE4BeqkMOFc-spBzUNkzkYcpeYH2FuVCvkKY-LnwacqiLPSpyBhnsUeyiEVeIAVsHn10sFrSJDXV6lXTlFkCVqta-aRb-T7at9MqXZ7l-oT3K34ksHGqf8MAxGVbJ2BKRCSicPxlDotVeSPqA52Xmpn2NUT5RkB_76MPmrv2iarYboZ-wZ1MaETjkL2-xWveoAfrH8RbtNect_IdaL2N2O8g-QdXYLM4 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analysis+of+voxel-based+neuroimaging+studies+using+seed-based+d+mapping+with+permutation+of+subject+images+%28sdm-psi%29&rft.jtitle=Journal+of+visualized+experiments&rft.au=Albajes-Eizagirre%2C+Anton&rft.au=Solanes%2C+Aleix&rft.au=Fullana%2C+Miquel+Angel&rft.au=Ioannidis%2C+John+P+A&rft.date=2019-11-27&rft.issn=1940-087X&rft.eissn=1940-087X&rft.issue=153+p.e59841-e59841&rft_id=info:doi/10.3791%2F59841&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-087X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-087X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-087X&client=summon |