Meta-analysis of Voxel-Based Neuroimaging Studies using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI)

Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e.,...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualized experiments no. 153
Main Authors Albajes-Eizagirre, Anton, Solanes, Aleix, Fullana, Miquel Angel, Ioannidis, John P. A., Fusar-Poli, Paolo, Torrent, Carla, Solé, Brisa, Bonnín, Caterina Mar, Vieta, Eduard, Mataix-Cols, David, Radua, Joaquim
Format Journal Article
LanguageEnglish
Published United States 27.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e., voxels can only be "statistically significant" or "non-statistically significant"). Here, we detail how to conduct a meta-analysis using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method that uses a standard permutation test to assess whether effects are not null. We also show how to grade the strength of the evidence according to a set of criteria that considers a range of statistical significance levels (from more liberal to more conservative), the amount of data or the detection of potential biases (e.g., small-study effect and excess of significance). To exemplify the procedure, we detail the conduction of a meta-analysis of voxel-based morphometry studies in obsessive-compulsive disorder, and we provide all the data already extracted from the manuscripts to allow the reader to replicate the meta-analysis easily. SDM-PSI can also be used for meta-analyses of functional magnetic resonance imaging, diffusion tensor imaging, position emission tomography and surface-based morphometry studies.
AbstractList Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e., voxels can only be "statistically significant" or "non-statistically significant"). Here, we detail how to conduct a meta-analysis using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method that uses a standard permutation test to assess whether effects are not null. We also show how to grade the strength of the evidence according to a set of criteria that considers a range of statistical significance levels (from more liberal to more conservative), the amount of data or the detection of potential biases (e.g., small-study effect and excess of significance). To exemplify the procedure, we detail the conduction of a meta-analysis of voxel-based morphometry studies in obsessive-compulsive disorder, and we provide all the data already extracted from the manuscripts to allow the reader to replicate the meta-analysis easily. SDM-PSI can also be used for meta-analyses of functional magnetic resonance imaging, diffusion tensor imaging, position emission tomography and surface-based morphometry studies.
Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e., voxels can only be "statistically significant" or "non-statistically significant"). Here, we detail how to conduct a meta-analysis using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method that uses a standard permutation test to assess whether effects are not null. We also show how to grade the strength of the evidence according to a set of criteria that considers a range of statistical significance levels (from more liberal to more conservative), the amount of data or the detection of potential biases (e.g., small-study effect and excess of significance). To exemplify the procedure, we detail the conduction of a meta-analysis of voxel-based morphometry studies in obsessive-compulsive disorder, and we provide all the data already extracted from the manuscripts to allow the reader to replicate the meta-analysis easily. SDM-PSI can also be used for meta-analyses of functional magnetic resonance imaging, diffusion tensor imaging, position emission tomography and surface-based morphometry studies.Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of peaks of statistical significance, and reduce the assessment of the evidence to a binary classification exclusively based on p-values (i.e., voxels can only be "statistically significant" or "non-statistically significant"). Here, we detail how to conduct a meta-analysis using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), a novel method that uses a standard permutation test to assess whether effects are not null. We also show how to grade the strength of the evidence according to a set of criteria that considers a range of statistical significance levels (from more liberal to more conservative), the amount of data or the detection of potential biases (e.g., small-study effect and excess of significance). To exemplify the procedure, we detail the conduction of a meta-analysis of voxel-based morphometry studies in obsessive-compulsive disorder, and we provide all the data already extracted from the manuscripts to allow the reader to replicate the meta-analysis easily. SDM-PSI can also be used for meta-analyses of functional magnetic resonance imaging, diffusion tensor imaging, position emission tomography and surface-based morphometry studies.
Author Solanes, Aleix
Vieta, Eduard
Albajes-Eizagirre, Anton
Radua, Joaquim
Mataix-Cols, David
Ioannidis, John P. A.
Solé, Brisa
Fullana, Miquel Angel
Torrent, Carla
Bonnín, Caterina Mar
Fusar-Poli, Paolo
Author_xml – sequence: 1
  givenname: Anton
  surname: Albajes-Eizagirre
  fullname: Albajes-Eizagirre, Anton
– sequence: 2
  givenname: Aleix
  surname: Solanes
  fullname: Solanes, Aleix
– sequence: 3
  givenname: Miquel Angel
  surname: Fullana
  fullname: Fullana, Miquel Angel
– sequence: 4
  givenname: John P. A.
  surname: Ioannidis
  fullname: Ioannidis, John P. A.
– sequence: 5
  givenname: Paolo
  surname: Fusar-Poli
  fullname: Fusar-Poli, Paolo
– sequence: 6
  givenname: Carla
  surname: Torrent
  fullname: Torrent, Carla
– sequence: 7
  givenname: Brisa
  surname: Solé
  fullname: Solé, Brisa
– sequence: 8
  givenname: Caterina Mar
  surname: Bonnín
  fullname: Bonnín, Caterina Mar
– sequence: 9
  givenname: Eduard
  surname: Vieta
  fullname: Vieta, Eduard
– sequence: 10
  givenname: David
  surname: Mataix-Cols
  fullname: Mataix-Cols, David
– sequence: 11
  givenname: Joaquim
  surname: Radua
  fullname: Radua, Joaquim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31840658$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:142456521$$DView record from Swedish Publication Index
BookMark eNqF0V1v1SAYB3BiZtzrVzC9MZlZqlCgwKWbup1kxy05arwjT9unk9nT1gLZzreX8zKj3sgN8OTHP8BzSPb6oUdCThh9w5Vhb6XRgj0jB8wImlOtvu39sd4nh97fU1oWVOoXZJ8zLWgp9QFZzTFADj10K-98NrTZ1-ERu_wcPDbZJ4zT4JZw5_q7bBFi49Bn0W92iE1ebVSTzWEc18UHF75ntzgtY4Dghn6dt4jVPdYhm6WYdPp08X6e3y5mr4_J8xY6jye7-Yh8-fjh88VVfn1zObt4d53X3OiQmxpQMhSspdzIQhZGtJXmNaOqYqCAC6xAUmEqJThKAFUyUwKIgjdVW9b8iOTbXP-AY6zsOKUHTSs7gLO70o-0QiuU0KVJ_nTrx2n4GdEHu3S-xq6DHofobWG0NLQQBfs_5YXiSqSR6MsdjdUSm9-3eOpEAmdbUE-D9xO2tnbbTwwTuM4yatd9tps-J_3qH_0U-Lf7BXWZpNA
CitedBy_id crossref_primary_10_1186_s10194_020_01158_7
crossref_primary_10_3389_fpsyt_2021_807839
crossref_primary_10_3390_brainsci12091192
crossref_primary_10_1007_s10548_021_00824_6
crossref_primary_10_1016_j_jad_2024_06_040
crossref_primary_10_3389_fpsyt_2022_955741
crossref_primary_10_1002_brb3_3057
crossref_primary_10_3390_medicina57111136
crossref_primary_10_1016_j_neubiorev_2021_06_020
crossref_primary_10_1016_j_neuroimage_2022_119204
crossref_primary_10_3389_fnins_2022_921931
crossref_primary_10_1007_s11682_021_00503_x
crossref_primary_10_1016_j_schres_2021_05_008
crossref_primary_10_1155_2021_8841720
crossref_primary_10_1038_s41598_022_25051_2
crossref_primary_10_3389_fpsyt_2021_671348
crossref_primary_10_1016_j_jpsychires_2025_03_032
crossref_primary_10_1038_s41398_022_02130_6
crossref_primary_10_3389_fnagi_2021_627919
crossref_primary_10_1007_s00415_025_12934_3
crossref_primary_10_3389_fpsyt_2021_670739
crossref_primary_10_3389_fneur_2022_999375
crossref_primary_10_30773_pi_2021_0383
crossref_primary_10_3389_fneur_2023_1036413
crossref_primary_10_1016_j_rpsmen_2022_06_007
crossref_primary_10_1016_j_wneu_2024_01_138
crossref_primary_10_1016_j_sleep_2025_02_028
crossref_primary_10_1038_s41398_022_02157_9
crossref_primary_10_3389_fnins_2020_600423
crossref_primary_10_1016_j_neubiorev_2021_02_035
crossref_primary_10_3389_fneur_2022_1022793
crossref_primary_10_1038_s41537_023_00338_z
crossref_primary_10_1016_j_jpsychires_2022_09_015
crossref_primary_10_1017_S0033291723003410
crossref_primary_10_3389_fneur_2025_1510115
crossref_primary_10_1016_j_rpsm_2021_07_001
crossref_primary_10_3389_fnagi_2022_914049
crossref_primary_10_18632_aging_202368
crossref_primary_10_3389_fnagi_2020_00213
crossref_primary_10_1016_j_arr_2024_102240
crossref_primary_10_1007_s00406_024_01946_1
crossref_primary_10_1080_02701367_2022_2026285
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
ADTPV
AOWAS
DOI 10.3791/59841
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1940-087X
ExternalDocumentID oai_swepub_ki_se_474869
31840658
10_3791_59841
Genre Video-Audio Media
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
223
29L
53G
5GY
AAHBH
AAHTB
AAYXX
ABPEJ
ACGFO
ADBBV
AKRSQ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
E3Z
GX1
OK1
RPM
SJN
NPM
7X8
7S9
L.6
2WC
ADTPV
AOIJS
AOWAS
DIK
HYE
ID FETCH-LOGICAL-c398t-9cae51e41f039525294fb83c107b1a7a34eba5049b743e5aa76196aa423dbf6c3
ISSN 1940-087X
IngestDate Mon Aug 25 03:38:46 EDT 2025
Fri Jul 11 03:34:46 EDT 2025
Thu Jul 10 23:52:59 EDT 2025
Thu Jan 02 22:58:16 EST 2025
Tue Jul 01 05:27:30 EDT 2025
Thu Apr 24 22:53:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 153
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-9cae51e41f039525294fb83c107b1a7a34eba5049b743e5aa76196aa423dbf6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.jove.com/59841
PMID 31840658
PQID 2327374444
PQPubID 23479
ParticipantIDs swepub_primary_oai_swepub_ki_se_474869
proquest_miscellaneous_2985902421
proquest_miscellaneous_2327374444
pubmed_primary_31840658
crossref_citationtrail_10_3791_59841
crossref_primary_10_3791_59841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-27
PublicationDateYYYYMMDD 2019-11-27
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of visualized experiments
PublicationTitleAlternate J Vis Exp
PublicationYear 2019
SSID ssj0062058
Score 2.4999044
Snippet Most methods for conducting meta-analysis of voxel-based neuroimaging studies do not assess whether effects are not null, but whether there is a convergence of...
SourceID swepub
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms image analysis
magnetic resonance imaging
meta-analysis
morphometry
obsessive-compulsive disorder
tomography
Title Meta-analysis of Voxel-Based Neuroimaging Studies using Seed-based d Mapping with Permutation of Subject Images (SDM-PSI)
URI https://www.ncbi.nlm.nih.gov/pubmed/31840658
https://www.proquest.com/docview/2327374444
https://www.proquest.com/docview/2985902421
http://kipublications.ki.se/Default.aspx?queryparsed=id:142456521
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZx8ZgjN2XXYoGZWwYd7ElX_RYRroymm4PCeTNSLYM3pLY1HZp8wP2u3dkKUrShtHND7aRxbHR-aJzybkgdAAiLxRCeq4YUAkGShq7nISxGylhl4k04F0zmNFZeDKh36bBtNf7vRG11DbiMF3uzCv5H67CGPBVZcn-A2ctURiAe-AvnIHDcL4Vj0ey4S7fKCtyUV7KmaskU-Z0lSqLue5CVOtwQaftXAM1iCwzK3PmvKqsR7aCjbptrBpZt0L5aRxFRvtn62zuVnWxciDcVGsvilrlaS6B9rp7gFXcj2aC_5S1OyyW8GHnJsZX9TG2rp5Shd_WJvmmuLQAA1uZ6wS2kao5C8haxeN20C5V86WsqFfxxc4P46Y1Lg2Pqdw-XSHA7MJMxZzG0VQLqR1jBpQBcapDGbCYeq6-7JIKJGJKKtjn21W3z74nx5PT02Q8nI7voLs-mBuqE8bXqQ0VCv1B1-fVfsJ99NCQ_dwR3dZpbhgq16rQdprL-DF6ZHiDjzR-nqCeXDxF93QT0qtn6GoLRbjM8QaK8CaKsEER7lCE1yjCGTYowgpFeANFip5BEdYowh8Nhj49R5Pj4fjLiWsacrgpYXHjspTLwJPUyweEBX7gM5qLmKTeIBIejzihUvAAbE4BeqkMOFc-spBzUNkzkYcpeYH2FuVCvkKY-LnwacqiLPSpyBhnsUeyiEVeIAVsHn10sFrSJDXV6lXTlFkCVqta-aRb-T7at9MqXZ7l-oT3K34ksHGqf8MAxGVbJ2BKRCSicPxlDotVeSPqA52Xmpn2NUT5RkB_76MPmrv2iarYboZ-wZ1MaETjkL2-xWveoAfrH8RbtNect_IdaL2N2O8g-QdXYLM4
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analysis+of+voxel-based+neuroimaging+studies+using+seed-based+d+mapping+with+permutation+of+subject+images+%28sdm-psi%29&rft.jtitle=Journal+of+visualized+experiments&rft.au=Albajes-Eizagirre%2C+Anton&rft.au=Solanes%2C+Aleix&rft.au=Fullana%2C+Miquel+Angel&rft.au=Ioannidis%2C+John+P+A&rft.date=2019-11-27&rft.issn=1940-087X&rft.eissn=1940-087X&rft.issue=153+p.e59841-e59841&rft_id=info:doi/10.3791%2F59841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1940-087X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1940-087X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1940-087X&client=summon