Manganese doped iron–carbon composite for synergistic persulfate activation: Reactivity, stability, and mechanism
The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron–carbon (Mn–Fe–C), was tailor designed to promote t...
Saved in:
Published in | Journal of hazardous materials Vol. 405; p. 124228 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron–carbon (Mn–Fe–C), was tailor designed to promote the catalytic electron transfer. The Mn–Fe–C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO4•− was the main contributor for RhB degradation, while the roles of aqueous SO4•− and •OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe3+ and Fe2+ by Mn. Finally, the Mn–Fe–C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions.
[Display omitted]
•Mn–Fe–C composite was tailor-designed to promote catalytic electron transfer.•Oxygen functional groups on catalyst promoted PS activation and RhB degradation.•Redox cycle of Fe3+ and Fe2+ was accelerated by Mn for electron transfer.•The Mn–Fe–C composite exhibited excellent stability and reusability. |
---|---|
AbstractList | The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron-carbon (Mn-Fe-C), was tailor designed to promote the catalytic electron transfer. The Mn-Fe-C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO
was the main contributor for RhB degradation, while the roles of aqueous SO
and
OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe
and Fe
by Mn. Finally, the Mn-Fe-C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions. The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron-carbon (Mn-Fe-C), was tailor designed to promote the catalytic electron transfer. The Mn-Fe-C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO4•- was the main contributor for RhB degradation, while the roles of aqueous SO4•- and •OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe3+ and Fe2+ by Mn. Finally, the Mn-Fe-C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions.The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron-carbon (Mn-Fe-C), was tailor designed to promote the catalytic electron transfer. The Mn-Fe-C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO4•- was the main contributor for RhB degradation, while the roles of aqueous SO4•- and •OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe3+ and Fe2+ by Mn. Finally, the Mn-Fe-C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions. The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron-carbon (Mn-Fe-C), was tailor designed to promote the catalytic electron transfer. The Mn-Fe-C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO₄•⁻ was the main contributor for RhB degradation, while the roles of aqueous SO₄•⁻ and •OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe³⁺ and Fe²⁺ by Mn. Finally, the Mn-Fe-C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions. The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron–carbon (Mn–Fe–C), was tailor designed to promote the catalytic electron transfer. The Mn–Fe–C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO4•− was the main contributor for RhB degradation, while the roles of aqueous SO4•− and •OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe3+ and Fe2+ by Mn. Finally, the Mn–Fe–C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions. [Display omitted] •Mn–Fe–C composite was tailor-designed to promote catalytic electron transfer.•Oxygen functional groups on catalyst promoted PS activation and RhB degradation.•Redox cycle of Fe3+ and Fe2+ was accelerated by Mn for electron transfer.•The Mn–Fe–C composite exhibited excellent stability and reusability. |
ArticleNumber | 124228 |
Author | Song, Zhijun Shi, Yuejing Zhang, Yu Wu, Liguang Wang, Qian Cai, Meiqiang Dong, Chunying Wu, Wentao Dionysiou, Dionysios D. Jin, Micong Wei, Zongsu |
Author_xml | – sequence: 1 givenname: Meiqiang orcidid: 0000-0002-2566-276X surname: Cai fullname: Cai, Meiqiang email: caimeiqiang@163.com organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 2 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 3 givenname: Chunying surname: Dong fullname: Dong, Chunying organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 4 givenname: Wentao surname: Wu fullname: Wu, Wentao organization: School of Materials Science and Engineering, Taiyuan University of Science and Technology, 030024, China – sequence: 5 givenname: Qian surname: Wang fullname: Wang, Qian organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 6 givenname: Zhijun surname: Song fullname: Song, Zhijun organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 7 givenname: Yuejing surname: Shi fullname: Shi, Yuejing organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 8 givenname: Liguang surname: Wu fullname: Wu, Liguang organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 9 givenname: Micong surname: Jin fullname: Jin, Micong organization: Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China – sequence: 10 givenname: Dionysios D. surname: Dionysiou fullname: Dionysiou, Dionysios D. organization: Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221, USA – sequence: 11 givenname: Zongsu surname: Wei fullname: Wei, Zongsu email: zwei@eng.au.dk organization: Centre for Water Technology (WATEC), Department of Engineering, Aarhus University, Hangøvej 2, DK-8200 Aarhus N, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33246821$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1uFDEQhS0URCaBI4C8ZEEPbv90e2ARoSj8SEFICNZWtV2deNRtN7Yn0rDiDrkhJ6EzM9mwmZXt8veqVO-dkZMQAxLysmbLmtXN2_VyfQu_RyhLzvhc45Jz_YQsat2KSgjRnJAFE0xWQq_kKTnLec0Yq1sln5FTIbhsNK8XJH-FcAMBM1IXJ3TUpxj-_rm3kLoYqI3jFLMvSPuYaN4GTDc-F2_phClvhh7mL7DF30HxMbyj33H38mX7huYCnR92VwiOjmhvIfg8PidPexgyvjic5-Tnx6sfl5-r62-fvlx-uK6sWOlSaas73lrWWu0AXO3aznKuHCrZNA2y1qHVTef6HkTPZMM5gkbNehSt4BbEOXm97zul-GuDuZjRZ4vDMO8bN9lwNZumlVbqOCobJSUXq9WMvjqgm25EZ6bkR0hb8-jpDLzfAzbFnBP2xvqys6ck8IOpmXlI0KzNIUHzkKDZJzir1X_qxwHHdBd7Hc6O3nlMJluPwaLzCW0xLvojHf4BYf27yQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_131457 crossref_primary_10_1016_j_chemosphere_2022_135060 crossref_primary_10_1016_j_seppur_2022_122120 crossref_primary_10_1016_j_optmat_2022_112089 crossref_primary_10_1016_j_seppur_2024_129361 crossref_primary_10_1002_wer_1654 crossref_primary_10_1016_j_cej_2024_154065 crossref_primary_10_1016_j_chemosphere_2024_143000 crossref_primary_10_1016_j_seppur_2022_120625 crossref_primary_10_1007_s11356_023_31754_4 crossref_primary_10_1016_j_jhazmat_2022_129912 crossref_primary_10_1016_j_jcis_2022_03_126 crossref_primary_10_1016_j_jenvman_2023_119403 crossref_primary_10_1016_j_jhazmat_2021_126786 crossref_primary_10_1016_j_seppur_2024_127090 crossref_primary_10_1016_j_envres_2025_120766 crossref_primary_10_1016_j_jece_2024_114622 crossref_primary_10_1016_j_jwpe_2023_104740 crossref_primary_10_1016_j_arabjc_2023_105411 crossref_primary_10_1016_j_jece_2024_113805 crossref_primary_10_1016_j_jenvman_2025_124269 crossref_primary_10_1016_j_jhazmat_2022_129951 crossref_primary_10_1021_acs_iecr_1c04459 crossref_primary_10_1016_j_seppur_2022_120533 crossref_primary_10_1016_j_psep_2022_10_038 crossref_primary_10_1016_j_chemosphere_2022_136291 crossref_primary_10_1016_j_hazadv_2022_100095 crossref_primary_10_1016_j_jallcom_2022_164504 crossref_primary_10_1039_D4NJ05258G crossref_primary_10_1016_j_jclepro_2021_129625 crossref_primary_10_1007_s11356_024_33404_9 crossref_primary_10_1016_j_jclepro_2021_129624 crossref_primary_10_1007_s42773_022_00158_x crossref_primary_10_1007_s42773_024_00331_4 crossref_primary_10_1016_j_jece_2024_115229 crossref_primary_10_1016_j_jenvman_2022_114616 crossref_primary_10_1016_j_chemosphere_2022_137346 crossref_primary_10_1016_j_cej_2022_140996 crossref_primary_10_1016_j_chemosphere_2023_139129 crossref_primary_10_1016_j_eti_2022_102393 crossref_primary_10_1016_j_cej_2021_134238 crossref_primary_10_1016_j_jhazmat_2021_127066 crossref_primary_10_1016_j_seppur_2021_119580 crossref_primary_10_1016_j_cej_2023_146693 crossref_primary_10_1002_slct_202404631 crossref_primary_10_1039_D2EW00441K crossref_primary_10_2166_ws_2021_187 crossref_primary_10_1016_j_photonics_2023_101184 crossref_primary_10_1016_j_ecoenv_2024_116225 crossref_primary_10_1016_j_cjche_2024_06_005 crossref_primary_10_1016_j_envres_2024_119455 crossref_primary_10_1016_j_cej_2022_136182 crossref_primary_10_1016_j_chemosphere_2022_136937 crossref_primary_10_1016_j_jwpe_2024_106000 crossref_primary_10_1021_acs_langmuir_5c00170 crossref_primary_10_1016_j_scitotenv_2023_165535 crossref_primary_10_1016_j_cej_2022_140201 crossref_primary_10_1016_j_envres_2023_115998 |
Cites_doi | 10.1016/j.carbon.2018.03.079 10.1016/j.cej.2019.122070 10.1021/jf062018k 10.1016/j.ultsonch.2015.08.001 10.1016/j.rser.2019.04.029 10.1016/j.cej.2016.04.028 10.1016/j.apcata.2019.05.027 10.1016/0026-265X(70)90165-7 10.1007/s10854-019-01296-y 10.1016/j.cej.2019.123013 10.1007/s10854-019-01798-9 10.1016/j.dib.2019.104183 10.1016/j.seppur.2009.12.010 10.1016/j.cej.2018.10.035 10.1021/jp036211i 10.1016/j.jhazmat.2020.122395 10.1016/j.cej.2016.08.140 10.1016/j.jhazmat.2016.08.021 10.1016/j.cattod.2011.12.020 10.1016/j.scitotenv.2016.07.032 10.1016/j.cej.2019.122977 10.1016/j.jhazmat.2010.11.057 10.1021/ja01151a024 10.1016/j.scitotenv.2020.140020 10.1016/j.electacta.2015.01.092 10.1016/j.jhazmat.2015.07.038 10.1016/j.scitotenv.2020.141095 10.1021/es035121o 10.1016/j.cej.2018.08.015 10.1016/j.chemosphere.2017.05.061 10.1021/acs.est.7b02519 10.1016/j.jhazmat.2018.06.048 10.1016/j.cej.2018.02.083 10.1016/j.apcatb.2020.118717 10.1007/s11356-012-1385-z 10.1021/acs.est.6b05392 10.1021/es0484754 10.1016/j.scitotenv.2018.05.316 10.1016/j.apcatb.2014.02.031 10.1016/S0022-3093(02)01054-2 10.1016/j.watres.2007.03.019 10.1080/01919518708552148 10.1039/C9RA05669F 10.1016/j.apcatb.2016.01.059 10.1016/j.jhazmat.2020.122938 10.1016/j.cej.2020.126686 10.1016/j.ultsonch.2019.04.039 10.1016/j.electacta.2016.02.176 10.1016/j.watres.2016.05.065 10.1021/es1013714 10.1016/j.cej.2018.06.139 10.1016/j.cjche.2019.12.019 10.1016/j.apcatb.2017.10.007 10.1016/j.watres.2009.03.052 10.1016/j.bbamem.2016.12.005 10.1016/j.apsusc.2014.08.193 10.1016/j.apcatb.2014.10.051 10.1016/j.chemosphere.2017.05.156 10.1016/0304-4203(93)90108-Z 10.1016/j.wri.2018.10.001 10.1016/j.watres.2017.02.016 10.1016/j.jhazmat.2019.121900 10.1016/j.cej.2019.05.138 10.1016/j.jiec.2019.12.010 10.1061/(ASCE)EE.1943-7870.0000323 10.1021/ie9002848 10.1016/j.jtice.2017.07.026 10.1016/j.envint.2019.105024 10.1016/S0016-7037(99)00356-7 10.1016/j.cej.2019.04.187 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2020.124228 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 33246821 10_1016_j_jhazmat_2020_124228 S0304389420322184 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-8c8b27c07c8daad1d7bc225de54666e07dec86bdffa3f04622ea8e80fe3732ca3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Wed Jul 02 03:18:02 EDT 2025 Fri Jul 11 03:39:31 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Tue Jul 01 00:49:34 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Fri Feb 23 02:37:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mn doped Fe–C composite Iron redox cycle Surface bounded SO4 Reusability Persulfate Surface bounded SO4(•−) |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-8c8b27c07c8daad1d7bc225de54666e07dec86bdffa3f04622ea8e80fe3732ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2566-276X |
PMID | 33246821 |
PQID | 2465442399 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524285855 proquest_miscellaneous_2465442399 pubmed_primary_33246821 crossref_citationtrail_10_1016_j_jhazmat_2020_124228 crossref_primary_10_1016_j_jhazmat_2020_124228 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2020_124228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-05 |
PublicationDateYYYYMMDD | 2021-03-05 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yun, Yoo, Bae, Kim, Lee (bib68) 2017; 51 Li, Li, Liu, Zhang, Xu, Xiao, Long, Chen, Liao, Zhang, Lin, Zhang (bib34) 2020; 386 Kolthoff, IMiller (bib25) 1951; 73 Qualhato, Rocha, de Oliveira Lima, e Silva, Cardoso, Grisolia, de Sabóia-Morais (bib51) 2017; 183 Li, Cheng, Thomas (bib30) 2017; 29 Deshpande, Kumar (bib8) 2002; 306 Wei, Villamena, Weavers (bib58) 2017; 51 Ren, Lin, Ma, Yang, Feng, Fan (bib52) 2015; 165 Shah, Jan, Adnan (bib55) 2017; 80 Devi, Das, Dalai (bib9) 2016; 571 Duan, Ao, Zhang, Saunders, Sun, Shao, Wang (bib13) 2018; 222 Li, Liao, Ye, Yeh (bib31) 2020; 398 Chu, Lau, Fung (bib7) 2006; 54 Cai, Liu, Wang, Dong, Chen, Zeng, Xia, Zeng (bib4) 2019; 375 Lv, Lin, Yang, Cai, Jing, Yu, Jiang, Xing, Zou (bib39) 2018; 342 Tadic, Panjan, Damnjanovic, Milosevic (bib56) 2014; 320 Yu, Bao, Barker (bib66) 2004; 108 Yang, Yang, Shao, Niu, Wang (bib64) 2011; 186 Xu, Yang, Jia, Lian, Zhang, Feng, Liu, Xi, Jiang (bib62) 2019; 374 Sanad, Shalan, Bazid, Serea, Hashem, Nabih, Ahsan (bib54) 2019; 9 Lee, Kim, Kim, Kim, Jeong, Lee, Kim (bib27) 2020; 83 Mihály, Deák, Szigyártó, Bóta, Beke-Somfai, Varga (bib41) 2017; 1859 Li, Liu, Lin, Zhou, He, Yang (bib33) 2020; 382 Zhao, Zhang, Quan, Chen (bib71) 2010; 71 Furman, Teel, Ahmad, Merker, Watts, Asce (bib14) 2011; 137 Yao, Chen, Qin, Wu, Lian, Zhang, Wang (bib65) 2016; 101 Hori, Yamamoto, Hayakawa, Taniyasu, Yamashita, Kutsuna, Kiatagawa, Arakawa (bib18) 2005; 39 Vargas, Diosa, Mosquera (bib57) 2019; 25 Anipsitakis, Dionysiou (bib1) 2004; 38 Chandra, Yadava (bib5) 1970; 15 Wu, Hu, Peng, Cao, Du (bib59) 2016; 196 Zhang, Zhou, Yu, Ma, Yu (bib70) 2015; 160 Bisio, Gallo, Psaro, Tiozzo, Guidotti, Carniato (bib2) 2019; 581 Postma, Appelo (bib49) 2000; 64 Messih, Shalan, Sanad, Ahmed (bib40) 2019; 30 Liu, Du, Sun, Chang, Peng (bib38) 2020; 28 Lee, Lo, Chiueh, Chang (bib28) 2009; 43 Yang, Yan, Qian, Chen, Han, Su, Zhang, Ni, Chen (bib63) 2017; 184 Huang, Peng, Guo, Wang, Luo, Zhao, Xiong, Chen, Chen (bib19) 2018; 351 Zhang, Huang, He, Zhao, Feng (bib69) 2019; 358 Cai, Su, Zhu, Wei, Jin, Zhang, Dong, Wei (bib3) 2016; 28 Liang, Niu, Guo, Niu, Liang, Li, Tang, Lin, Zheng (bib36) 2021; 405 Nabih, Shalan, Serea, Goda, Sanad (bib44) 2019; 30 Nidheesh, Gandhimathi, Ramesh (bib46) 2013; 20 Zhu, Zhang, Fan, Liu, Li (bib72) 2020; 393 Liu, Liu, Tang, Wang, Yu, Zhang, Yu, Zou, Xie (bib37) 2020; 745 Cheng, Guo, Zhang, Wu, Liu (bib6) 2017; 113 Du, Bao, Liu, Ling, Zheng, Kim, Dionysiou (bib10) 2016; 320 Jain, Yadav, Kohout, Lahtinen, Garg, Sillanpää (bib20) 2018; 20 Li, Zhou, Pan, Xu (bib32) 2017; 307 Furman, Teel, Watts (bib15) 2010; 44 Kašlík, Kolařík, Filip, Medřík, Tomanec, Petr, Malina, Zbořil, Tratnyek (bib24) 2018; 354 Qin, Wang, Yuan, Xiong, Zhang, Zhang (bib50) 2020; 382 Yuan, Dai (bib67) 2014; 154–155 Glaze, Kang, Chapin (bib17) 1987; 9 Ji, Shi, Dong, Wei, Jiang, Lu (bib21) 2016; 298 Mohamed, Abukhadra, Shaban (bib42) 2018; 640–641 Xie, Dai, Chen (bib61) 2020; 739 Jung, Lee, Lee, Choi (bib23) 2019; 57 Duan, Ao, Zhou, Sun, Wang, Wang (bib12) 2016; 188 Li, Luo, Wang, Zhang, Zhang, Klu, Yan, Qi, Sun, Wang, Li (bib29) 2019; 372 Komlos, Kukkadapu, Zachara, Jaffé (bib26) 2007; 41 Duan, Qi, Feng, Peng, Wang, Yue, Shang, Li, Gao, Xu (bib11) 2020; 267 Gao, Wang, Rondinone, He, Liang (bib16) 2015; 300 Jiang, Zhang, Zhou, Liang, Li (bib22) 2018; 358 Liang, Su (bib35) 2009; 48 Munir, Ahmad, Saeed, Waseem, Rehan, Nizami, Zafar, Arshad, Sultana (bib43) 2019; 109 Peyton (bib48) 1993; 41 Romero-Pérez, Infantes-Molina, Jiménez-López, Roca Jalil, Sapag, Rodríguez-Castellón (bib53) 2012; 187 Neeli, Ramsurn (bib45) 2018; 134 Wu, Liang, Guan, Qian, He (bib60) 2019; 131 Parisi, Santoro (bib47) 1982; 58 Wei (10.1016/j.jhazmat.2020.124228_bib58) 2017; 51 Chandra (10.1016/j.jhazmat.2020.124228_bib5) 1970; 15 Hori (10.1016/j.jhazmat.2020.124228_bib18) 2005; 39 Ji (10.1016/j.jhazmat.2020.124228_bib21) 2016; 298 Parisi (10.1016/j.jhazmat.2020.124228_bib47) 1982; 58 Vargas (10.1016/j.jhazmat.2020.124228_bib57) 2019; 25 Lee (10.1016/j.jhazmat.2020.124228_bib28) 2009; 43 Zhang (10.1016/j.jhazmat.2020.124228_bib70) 2015; 160 Duan (10.1016/j.jhazmat.2020.124228_bib12) 2016; 188 Yun (10.1016/j.jhazmat.2020.124228_bib68) 2017; 51 Cai (10.1016/j.jhazmat.2020.124228_bib3) 2016; 28 Anipsitakis (10.1016/j.jhazmat.2020.124228_bib1) 2004; 38 Kašlík (10.1016/j.jhazmat.2020.124228_bib24) 2018; 354 Bisio (10.1016/j.jhazmat.2020.124228_bib2) 2019; 581 Du (10.1016/j.jhazmat.2020.124228_bib10) 2016; 320 Li (10.1016/j.jhazmat.2020.124228_bib34) 2020; 386 Jung (10.1016/j.jhazmat.2020.124228_bib23) 2019; 57 Li (10.1016/j.jhazmat.2020.124228_bib31) 2020; 398 Zhu (10.1016/j.jhazmat.2020.124228_bib72) 2020; 393 Liang (10.1016/j.jhazmat.2020.124228_bib36) 2021; 405 Xu (10.1016/j.jhazmat.2020.124228_bib62) 2019; 374 Yuan (10.1016/j.jhazmat.2020.124228_bib67) 2014; 154–155 Li (10.1016/j.jhazmat.2020.124228_bib29) 2019; 372 Munir (10.1016/j.jhazmat.2020.124228_bib43) 2019; 109 Qin (10.1016/j.jhazmat.2020.124228_bib50) 2020; 382 Tadic (10.1016/j.jhazmat.2020.124228_bib56) 2014; 320 Liu (10.1016/j.jhazmat.2020.124228_bib38) 2020; 28 Mihály (10.1016/j.jhazmat.2020.124228_bib41) 2017; 1859 Gao (10.1016/j.jhazmat.2020.124228_bib16) 2015; 300 Kolthoff (10.1016/j.jhazmat.2020.124228_bib25) 1951; 73 Nidheesh (10.1016/j.jhazmat.2020.124228_bib46) 2013; 20 Chu (10.1016/j.jhazmat.2020.124228_bib7) 2006; 54 Yang (10.1016/j.jhazmat.2020.124228_bib63) 2017; 184 Ren (10.1016/j.jhazmat.2020.124228_bib52) 2015; 165 Lv (10.1016/j.jhazmat.2020.124228_bib39) 2018; 342 Glaze (10.1016/j.jhazmat.2020.124228_bib17) 1987; 9 Qualhato (10.1016/j.jhazmat.2020.124228_bib51) 2017; 183 Li (10.1016/j.jhazmat.2020.124228_bib33) 2020; 382 Zhao (10.1016/j.jhazmat.2020.124228_bib71) 2010; 71 Zhang (10.1016/j.jhazmat.2020.124228_bib69) 2019; 358 Duan (10.1016/j.jhazmat.2020.124228_bib11) 2020; 267 Nabih (10.1016/j.jhazmat.2020.124228_bib44) 2019; 30 Cai (10.1016/j.jhazmat.2020.124228_bib4) 2019; 375 Xie (10.1016/j.jhazmat.2020.124228_bib61) 2020; 739 Wu (10.1016/j.jhazmat.2020.124228_bib59) 2016; 196 Furman (10.1016/j.jhazmat.2020.124228_bib14) 2011; 137 Peyton (10.1016/j.jhazmat.2020.124228_bib48) 1993; 41 Yu (10.1016/j.jhazmat.2020.124228_bib66) 2004; 108 Neeli (10.1016/j.jhazmat.2020.124228_bib45) 2018; 134 Huang (10.1016/j.jhazmat.2020.124228_bib19) 2018; 351 Sanad (10.1016/j.jhazmat.2020.124228_bib54) 2019; 9 Furman (10.1016/j.jhazmat.2020.124228_bib15) 2010; 44 Jiang (10.1016/j.jhazmat.2020.124228_bib22) 2018; 358 Yang (10.1016/j.jhazmat.2020.124228_bib64) 2011; 186 Deshpande (10.1016/j.jhazmat.2020.124228_bib8) 2002; 306 Mohamed (10.1016/j.jhazmat.2020.124228_bib42) 2018; 640–641 Komlos (10.1016/j.jhazmat.2020.124228_bib26) 2007; 41 Li (10.1016/j.jhazmat.2020.124228_bib30) 2017; 29 Liu (10.1016/j.jhazmat.2020.124228_bib37) 2020; 745 Shah (10.1016/j.jhazmat.2020.124228_bib55) 2017; 80 Liang (10.1016/j.jhazmat.2020.124228_bib35) 2009; 48 Cheng (10.1016/j.jhazmat.2020.124228_bib6) 2017; 113 Romero-Pérez (10.1016/j.jhazmat.2020.124228_bib53) 2012; 187 Devi (10.1016/j.jhazmat.2020.124228_bib9) 2016; 571 Li (10.1016/j.jhazmat.2020.124228_bib32) 2017; 307 Jain (10.1016/j.jhazmat.2020.124228_bib20) 2018; 20 Postma (10.1016/j.jhazmat.2020.124228_bib49) 2000; 64 Duan (10.1016/j.jhazmat.2020.124228_bib13) 2018; 222 Wu (10.1016/j.jhazmat.2020.124228_bib60) 2019; 131 Yao (10.1016/j.jhazmat.2020.124228_bib65) 2016; 101 Lee (10.1016/j.jhazmat.2020.124228_bib27) 2020; 83 Messih (10.1016/j.jhazmat.2020.124228_bib40) 2019; 30 |
References_xml | – volume: 358 start-page: 53 year: 2018 end-page: 61 ident: bib22 article-title: Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism publication-title: J. Hazard. Mater. – volume: 38 start-page: 3705 year: 2004 end-page: 3712 ident: bib1 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. – volume: 306 start-page: 149 year: 2002 end-page: 159 ident: bib8 article-title: Effect of method of preparation on photophysical properties of Rh-B impregnated sol-gel hosts publication-title: J. Non-Cryst. Solids – volume: 160 start-page: 254 year: 2015 end-page: 262 ident: bib70 article-title: Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: characterization, degradation activity and stability publication-title: Electrochim. Acta – volume: 405 year: 2021 ident: bib36 article-title: Incorporating Fe3C into B, N co-doped CNTs: non-radical-dominated peroxymonosulfate catalytic activation mechanism publication-title: Chem. Eng. J. – volume: 196 start-page: 252 year: 2016 end-page: 260 ident: bib59 article-title: In situ green synthesis of MnFe2O4 /reduced graphene oxide nanocomposite and its usage for fabricating high-performance LiMn 1/3Fe2/3PO4 /reduced graphene oxide/carbon cathode material for Li-ion batteries publication-title: Electrochim. Acta – volume: 28 start-page: 302 year: 2016 end-page: 310 ident: bib3 article-title: Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process publication-title: Ultrason. Sonochem. – volume: 41 start-page: 91 year: 1993 end-page: 103 ident: bib48 article-title: The free-radical chemistry of persulfate-based total organic carbon analyzers publication-title: Mar. Chem. – volume: 298 start-page: 225 year: 2016 end-page: 233 ident: bib21 article-title: Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution publication-title: Chem. Eng. J. – volume: 393 year: 2020 ident: bib72 article-title: Carbonate-enhanced catalytic activity and stability of Co3O4 nanowires for 1O2-driven bisphenol A degradation via peroxymonosulfate activation: critical roles of electron and proton acceptors publication-title: J. Hazard. Mater. – volume: 186 start-page: 659 year: 2011 end-page: 666 ident: bib64 article-title: Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature publication-title: J. Hazard. Mater. – volume: 48 start-page: 5558 year: 2009 end-page: 5562 ident: bib35 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Ind. Eng. Chem. Res. – volume: 183 start-page: 305 year: 2017 end-page: 314 ident: bib51 article-title: Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata publication-title: Chemosphere – volume: 137 start-page: 241 year: 2011 end-page: 247 ident: bib14 article-title: Effect of basicity on persulfate reactivity publication-title: J. Environ. Eng. – volume: 51 start-page: 10090 year: 2017 end-page: 10099 ident: bib68 article-title: Exploring the role of persulfate in the activation process: radical precursor versus electron acceptor publication-title: Environ. Sci. Technol. – volume: 386 year: 2020 ident: bib34 article-title: Zero-valent iron-manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: materials characterization, process optimization and removal mechanisms publication-title: J. Hazard. Mater. – volume: 398 year: 2020 ident: bib31 article-title: Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism publication-title: J. Hazard. Mater. – volume: 131 year: 2019 ident: bib60 article-title: Precise control of iron activating persulfate by current generation in an electrochemical membrane reactor publication-title: Environ. Int. – volume: 154–155 start-page: 252 year: 2014 end-page: 258 ident: bib67 article-title: Facile synthesis of sewage sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction publication-title: Appl. Catal. B Environ. – volume: 80 start-page: 391 year: 2017 end-page: 398 ident: bib55 article-title: Metal decorated montmorillonite as a catalyst for the degradation of polystyrene publication-title: J. Taiwan Inst. Chem. Eng. – volume: 44 start-page: 6423 year: 2010 end-page: 6428 ident: bib15 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. – volume: 9 start-page: 335 year: 1987 end-page: 352 ident: bib17 article-title: The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation publication-title: Ozone Sci. Eng. – volume: 58 start-page: 683 year: 1982 end-page: 689 ident: bib47 article-title: Spectrophotometric study of several rhodamines commonly used in microscopy publication-title: Boll. Soc. Ital. Biol. Sper. – volume: 108 start-page: 295 year: 2004 end-page: 308 ident: bib66 article-title: Free radical reactions involving Cl•, Cl2-•, and SO4•-in the 248 nm photolysis of aqueous solutions containing S2O82-and Cl- publication-title: J. Phys. Chem. A – volume: 184 start-page: 609 year: 2017 end-page: 617 ident: bib63 article-title: Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate publication-title: Chemosphere – volume: 351 start-page: 697 year: 2018 end-page: 707 ident: bib19 article-title: Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: Long-term study and scale up publication-title: Chem. Eng. J. – volume: 342 start-page: 228 year: 2018 end-page: 237 ident: bib39 article-title: Iron (III) metaphosphate/iron phosphide heterojunctions embedded in partly-graphitized carbon for enhancing charge transfer and power generation in microbial fuel cells publication-title: Chem. Eng. J. – volume: 222 start-page: 176 year: 2018 end-page: 181 ident: bib13 article-title: Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: core-shell layer dependence publication-title: Appl. Catal. B Environ. – volume: 571 start-page: 643 year: 2016 end-page: 657 ident: bib9 article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. – volume: 30 start-page: 9623 year: 2019 end-page: 9633 ident: bib44 article-title: Photocatalytic performance of TiO2@SiO2 nanocomposites for the treatment of different organic dyes publication-title: J. Mater. Sci. Mater. Electron. – volume: 71 start-page: 302 year: 2010 end-page: 307 ident: bib71 article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature publication-title: Sep. Purif. Technol. – volume: 83 start-page: 366 year: 2020 end-page: 374 ident: bib27 article-title: Effect of silica supports on deoxygenation of methyl palmitate over mesoporous silica-supported Ni/Al catalysts publication-title: J. Ind. Eng. Chem. – volume: 39 start-page: 2383 year: 2005 end-page: 2388 ident: bib18 article-title: Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant publication-title: Environ. Sci. Technol. – volume: 41 start-page: 2996 year: 2007 end-page: 3004 ident: bib26 article-title: Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction publication-title: Water Res. – volume: 9 start-page: 31021 year: 2019 end-page: 31029 ident: bib54 article-title: A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment publication-title: RSC Adv. – volume: 43 start-page: 2811 year: 2009 end-page: 2816 ident: bib28 article-title: Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate publication-title: Water Res. – volume: 51 start-page: 3410 year: 2017 end-page: 3417 ident: bib58 article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study publication-title: Environ. Sci. Technol. – volume: 30 start-page: 14291 year: 2019 end-page: 14299 ident: bib40 article-title: Facile approach to prepare ZnO@SiO publication-title: J. Mater. Sci. Mater. Electron. – volume: 1859 start-page: 459 year: 2017 end-page: 466 ident: bib41 article-title: Characterization of extracellular vesicles by IR spectroscopy: fast and simple classification based on amide and CH stretching vibrations publication-title: BBA Biomembranes – volume: 54 start-page: 10047 year: 2006 end-page: 10052 ident: bib7 article-title: Effects of combined and sequential addition of dual oxidants (H 2O2/S2O8 2-) on the aqueous carbofuran photodegradation publication-title: J. Agric. Food Chem. – volume: 20 start-page: 54 year: 2018 end-page: 74 ident: bib20 article-title: Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution publication-title: Water Resour. Ind. – volume: 354 start-page: 335 year: 2018 end-page: 345 ident: bib24 article-title: Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal publication-title: Chem. Eng. J. – volume: 73 start-page: 3055 year: 1951 end-page: 3059 ident: bib25 article-title: The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1 publication-title: J. Am. Chem. Soc. – volume: 382 year: 2020 ident: bib50 article-title: Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices publication-title: Chem. Eng. J. – volume: 320 start-page: 183 year: 2014 end-page: 187 ident: bib56 article-title: Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method publication-title: Appl. Surf. Sci. – volume: 358 start-page: 243 year: 2019 end-page: 252 ident: bib69 article-title: Sulfate radicals generation and refractory pollutants removal on defective facet-tailored TiO2 with reduced matrix effects publication-title: Chem. Eng. J. – volume: 745 year: 2020 ident: bib37 article-title: Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate publication-title: Sci. Total Environ. – volume: 57 start-page: 22 year: 2019 end-page: 28 ident: bib23 article-title: Ultrasound-assisted heterogeneous Fenton-like process for bisphenol A removal at neutral pH using hierarchically structured manganese dioxide/biochar nanocomposites as catalysts publication-title: Ultrason. Sonochem. – volume: 640–641 start-page: 352 year: 2018 end-page: 363 ident: bib42 article-title: Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties publication-title: Sci. Total Environ. – volume: 109 start-page: 321 year: 2019 end-page: 332 ident: bib43 article-title: Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst publication-title: Renew. Sustain. Energy Rev. – volume: 101 start-page: 281 year: 2016 end-page: 291 ident: bib65 article-title: Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction publication-title: Water Res. – volume: 113 start-page: 80 year: 2017 end-page: 88 ident: bib6 article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes publication-title: Water Res. – volume: 267 year: 2020 ident: bib11 article-title: Enhanced degradation of clothianidin in peroxymonosulfate / catalyst system via core-shell FeMn @ N-C and phosphate surrounding publication-title: Appl. Catal. B Environ. – volume: 29 year: 2017 ident: bib30 article-title: Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts publication-title: Adv. Mater. – volume: 307 start-page: 1092 year: 2017 end-page: 1104 ident: bib32 article-title: Pre-magnetized Fe0/persulfate for notably enhanced degradation and dechlorination of 2,4-dichlorophenol publication-title: Chem. Eng. J. – volume: 64 start-page: 1237 year: 2000 end-page: 1247 ident: bib49 article-title: Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling publication-title: Geochim. Cosmochim. Acta – volume: 15 start-page: 78 year: 1970 end-page: 82 ident: bib5 article-title: Oxidation of some phenolic compounds with Cu(III) publication-title: Microchem. J. – volume: 300 start-page: 443 year: 2015 end-page: 450 ident: bib16 article-title: Degradation of trichloroethene with a novel ball milled Fe–C nanocomposite publication-title: J. Hazard. Mater. – volume: 581 start-page: 133 year: 2019 end-page: 142 ident: bib2 article-title: Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes publication-title: Appl. Catal. A Gen. – volume: 375 year: 2019 ident: bib4 article-title: Activation of persulfate by photoexcited dye for antibiotic degradation: radical and nonradical reactions publication-title: Chem. Eng. J. – volume: 28 start-page: 1077 year: 2020 end-page: 1084 ident: bib38 article-title: A granular adsorbent-supported Fe/Ni nanoparticles activating persulfate system for simultaneous adsorption and degradation of ciprofloxacin publication-title: Chin. J. Chem. Eng. – volume: 320 start-page: 150 year: 2016 end-page: 159 ident: bib10 article-title: Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A publication-title: J. Hazard. Mater. – volume: 188 start-page: 98 year: 2016 end-page: 105 ident: bib12 article-title: Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation publication-title: Appl. Catal. B Environ. – volume: 187 start-page: 88 year: 2012 end-page: 96 ident: bib53 article-title: Al-pillared montmorillonite as a support for catalysts based on ruthenium sulfide in HDS reactions publication-title: Catal. Today – volume: 134 start-page: 480 year: 2018 end-page: 490 ident: bib45 article-title: Synthesis and formation mechanism of iron nanoparticles in graphitized carbon matrices using biochar from biomass model compounds as a support publication-title: Carbon – volume: 25 year: 2019 ident: bib57 article-title: Data on study of hematite nanoparticles obtained from Iron(III) oxide by the Pechini method publication-title: Data Brief – volume: 372 start-page: 774 year: 2019 end-page: 784 ident: bib29 article-title: Iron-Tannic modified cotton derived Fe publication-title: Chem. Eng. J. – volume: 739 year: 2020 ident: bib61 article-title: Feasibility study on applying the iron-activated persulfate system as a pre-treatment process for clofibric acid selective degradation in municipal wastewater publication-title: Sci. Total Environ. – volume: 382 year: 2020 ident: bib33 article-title: Catalytic oxidation of contaminants by Fe0 activated peroxymonosulfate process: Fe(IV) involvement, degradation intermediates and toxicity evaluation publication-title: Chem. Eng. J. – volume: 165 start-page: 572 year: 2015 end-page: 578 ident: bib52 article-title: Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water publication-title: Appl. Catal. B Environ. – volume: 20 start-page: 2099 year: 2013 end-page: 2132 ident: bib46 article-title: Degradation of dyes from aqueous solution by Fenton processes: a review publication-title: Environ. Sci. Pollut. Res. – volume: 374 start-page: 776 year: 2019 end-page: 786 ident: bib62 article-title: Heterogeneous catalytic degradation of 2,4-dinitrotoluene by the combined persulfate and hydrogen peroxide activated by the as-synthesized Fe-Mn binary oxides publication-title: Chem. Eng. J. – volume: 134 start-page: 480 year: 2018 ident: 10.1016/j.jhazmat.2020.124228_bib45 article-title: Synthesis and formation mechanism of iron nanoparticles in graphitized carbon matrices using biochar from biomass model compounds as a support publication-title: Carbon doi: 10.1016/j.carbon.2018.03.079 – volume: 375 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib4 article-title: Activation of persulfate by photoexcited dye for antibiotic degradation: radical and nonradical reactions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122070 – volume: 54 start-page: 10047 year: 2006 ident: 10.1016/j.jhazmat.2020.124228_bib7 article-title: Effects of combined and sequential addition of dual oxidants (H 2O2/S2O8 2-) on the aqueous carbofuran photodegradation publication-title: J. Agric. Food Chem. doi: 10.1021/jf062018k – volume: 28 start-page: 302 year: 2016 ident: 10.1016/j.jhazmat.2020.124228_bib3 article-title: Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.08.001 – volume: 109 start-page: 321 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib43 article-title: Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.04.029 – volume: 298 start-page: 225 year: 2016 ident: 10.1016/j.jhazmat.2020.124228_bib21 article-title: Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.028 – volume: 581 start-page: 133 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib2 article-title: Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2019.05.027 – volume: 15 start-page: 78 year: 1970 ident: 10.1016/j.jhazmat.2020.124228_bib5 article-title: Oxidation of some phenolic compounds with Cu(III) publication-title: Microchem. J. doi: 10.1016/0026-265X(70)90165-7 – volume: 30 start-page: 9623 issue: 10 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib44 article-title: Photocatalytic performance of TiO2@SiO2 nanocomposites for the treatment of different organic dyes publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-01296-y – volume: 382 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib33 article-title: Catalytic oxidation of contaminants by Fe0 activated peroxymonosulfate process: Fe(IV) involvement, degradation intermediates and toxicity evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123013 – volume: 30 start-page: 14291 issue: 15 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib40 article-title: Facile approach to prepare ZnO@SiO2 nanomaterials for photocatalytic degradation of some organic pollutant models publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-019-01798-9 – volume: 25 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib57 article-title: Data on study of hematite nanoparticles obtained from Iron(III) oxide by the Pechini method publication-title: Data Brief doi: 10.1016/j.dib.2019.104183 – volume: 71 start-page: 302 year: 2010 ident: 10.1016/j.jhazmat.2020.124228_bib71 article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.12.010 – volume: 358 start-page: 243 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib69 article-title: Sulfate radicals generation and refractory pollutants removal on defective facet-tailored TiO2 with reduced matrix effects publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.035 – volume: 108 start-page: 295 year: 2004 ident: 10.1016/j.jhazmat.2020.124228_bib66 article-title: Free radical reactions involving Cl•, Cl2-•, and SO4•-in the 248 nm photolysis of aqueous solutions containing S2O82-and Cl- publication-title: J. Phys. Chem. A doi: 10.1021/jp036211i – volume: 393 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib72 article-title: Carbonate-enhanced catalytic activity and stability of Co3O4 nanowires for 1O2-driven bisphenol A degradation via peroxymonosulfate activation: critical roles of electron and proton acceptors publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122395 – volume: 307 start-page: 1092 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib32 article-title: Pre-magnetized Fe0/persulfate for notably enhanced degradation and dechlorination of 2,4-dichlorophenol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.140 – volume: 320 start-page: 150 year: 2016 ident: 10.1016/j.jhazmat.2020.124228_bib10 article-title: Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.08.021 – volume: 187 start-page: 88 year: 2012 ident: 10.1016/j.jhazmat.2020.124228_bib53 article-title: Al-pillared montmorillonite as a support for catalysts based on ruthenium sulfide in HDS reactions publication-title: Catal. Today doi: 10.1016/j.cattod.2011.12.020 – volume: 571 start-page: 643 year: 2016 ident: 10.1016/j.jhazmat.2020.124228_bib9 article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.032 – volume: 382 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib50 article-title: Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122977 – volume: 186 start-page: 659 year: 2011 ident: 10.1016/j.jhazmat.2020.124228_bib64 article-title: Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.11.057 – volume: 73 start-page: 3055 year: 1951 ident: 10.1016/j.jhazmat.2020.124228_bib25 article-title: The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01151a024 – volume: 739 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib61 article-title: Feasibility study on applying the iron-activated persulfate system as a pre-treatment process for clofibric acid selective degradation in municipal wastewater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140020 – volume: 160 start-page: 254 year: 2015 ident: 10.1016/j.jhazmat.2020.124228_bib70 article-title: Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: characterization, degradation activity and stability publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.092 – volume: 300 start-page: 443 year: 2015 ident: 10.1016/j.jhazmat.2020.124228_bib16 article-title: Degradation of trichloroethene with a novel ball milled Fe–C nanocomposite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.07.038 – volume: 745 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib37 article-title: Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141095 – volume: 38 start-page: 3705 year: 2004 ident: 10.1016/j.jhazmat.2020.124228_bib1 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. doi: 10.1021/es035121o – volume: 354 start-page: 335 year: 2018 ident: 10.1016/j.jhazmat.2020.124228_bib24 article-title: Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.015 – volume: 183 start-page: 305 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib51 article-title: Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.05.061 – volume: 29 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib30 article-title: Carbon-based microbial-fuel-cell electrodes: from conductive supports to active catalysts publication-title: Adv. Mater. – volume: 51 start-page: 10090 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib68 article-title: Exploring the role of persulfate in the activation process: radical precursor versus electron acceptor publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02519 – volume: 358 start-page: 53 year: 2018 ident: 10.1016/j.jhazmat.2020.124228_bib22 article-title: Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.06.048 – volume: 342 start-page: 228 year: 2018 ident: 10.1016/j.jhazmat.2020.124228_bib39 article-title: Iron (III) metaphosphate/iron phosphide heterojunctions embedded in partly-graphitized carbon for enhancing charge transfer and power generation in microbial fuel cells publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.083 – volume: 267 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib11 article-title: Enhanced degradation of clothianidin in peroxymonosulfate / catalyst system via core-shell FeMn @ N-C and phosphate surrounding publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118717 – volume: 20 start-page: 2099 year: 2013 ident: 10.1016/j.jhazmat.2020.124228_bib46 article-title: Degradation of dyes from aqueous solution by Fenton processes: a review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1385-z – volume: 51 start-page: 3410 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib58 article-title: Kinetics and mechanism of ultrasonic activation of persulfate: an in situ EPR spin trapping study publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05392 – volume: 39 start-page: 2383 year: 2005 ident: 10.1016/j.jhazmat.2020.124228_bib18 article-title: Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant publication-title: Environ. Sci. Technol. doi: 10.1021/es0484754 – volume: 640–641 start-page: 352 year: 2018 ident: 10.1016/j.jhazmat.2020.124228_bib42 article-title: Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.316 – volume: 154–155 start-page: 252 year: 2014 ident: 10.1016/j.jhazmat.2020.124228_bib67 article-title: Facile synthesis of sewage sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.02.031 – volume: 306 start-page: 149 year: 2002 ident: 10.1016/j.jhazmat.2020.124228_bib8 article-title: Effect of method of preparation on photophysical properties of Rh-B impregnated sol-gel hosts publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(02)01054-2 – volume: 41 start-page: 2996 year: 2007 ident: 10.1016/j.jhazmat.2020.124228_bib26 article-title: Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction publication-title: Water Res. doi: 10.1016/j.watres.2007.03.019 – volume: 9 start-page: 335 year: 1987 ident: 10.1016/j.jhazmat.2020.124228_bib17 article-title: The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation publication-title: Ozone Sci. Eng. doi: 10.1080/01919518708552148 – volume: 9 start-page: 31021 issue: 53 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib54 article-title: A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment publication-title: RSC Adv. doi: 10.1039/C9RA05669F – volume: 188 start-page: 98 year: 2016 ident: 10.1016/j.jhazmat.2020.124228_bib12 article-title: Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.01.059 – volume: 398 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib31 article-title: Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122938 – volume: 405 year: 2021 ident: 10.1016/j.jhazmat.2020.124228_bib36 article-title: Incorporating Fe3C into B, N co-doped CNTs: non-radical-dominated peroxymonosulfate catalytic activation mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126686 – volume: 57 start-page: 22 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib23 article-title: Ultrasound-assisted heterogeneous Fenton-like process for bisphenol A removal at neutral pH using hierarchically structured manganese dioxide/biochar nanocomposites as catalysts publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.04.039 – volume: 196 start-page: 252 year: 2016 ident: 10.1016/j.jhazmat.2020.124228_bib59 article-title: In situ green synthesis of MnFe2O4 /reduced graphene oxide nanocomposite and its usage for fabricating high-performance LiMn 1/3Fe2/3PO4 /reduced graphene oxide/carbon cathode material for Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.176 – volume: 101 start-page: 281 year: 2016 ident: 10.1016/j.jhazmat.2020.124228_bib65 article-title: Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction publication-title: Water Res. doi: 10.1016/j.watres.2016.05.065 – volume: 44 start-page: 6423 year: 2010 ident: 10.1016/j.jhazmat.2020.124228_bib15 article-title: Mechanism of base activation of persulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es1013714 – volume: 351 start-page: 697 year: 2018 ident: 10.1016/j.jhazmat.2020.124228_bib19 article-title: Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: Long-term study and scale up publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.139 – volume: 28 start-page: 1077 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib38 article-title: A granular adsorbent-supported Fe/Ni nanoparticles activating persulfate system for simultaneous adsorption and degradation of ciprofloxacin publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2019.12.019 – volume: 222 start-page: 176 year: 2018 ident: 10.1016/j.jhazmat.2020.124228_bib13 article-title: Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: core-shell layer dependence publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.10.007 – volume: 43 start-page: 2811 year: 2009 ident: 10.1016/j.jhazmat.2020.124228_bib28 article-title: Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate publication-title: Water Res. doi: 10.1016/j.watres.2009.03.052 – volume: 1859 start-page: 459 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib41 article-title: Characterization of extracellular vesicles by IR spectroscopy: fast and simple classification based on amide and CH stretching vibrations publication-title: BBA Biomembranes doi: 10.1016/j.bbamem.2016.12.005 – volume: 320 start-page: 183 year: 2014 ident: 10.1016/j.jhazmat.2020.124228_bib56 article-title: Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.08.193 – volume: 58 start-page: 683 year: 1982 ident: 10.1016/j.jhazmat.2020.124228_bib47 article-title: Spectrophotometric study of several rhodamines commonly used in microscopy publication-title: Boll. Soc. Ital. Biol. Sper. – volume: 165 start-page: 572 year: 2015 ident: 10.1016/j.jhazmat.2020.124228_bib52 article-title: Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M = Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.10.051 – volume: 184 start-page: 609 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib63 article-title: Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.05.156 – volume: 41 start-page: 91 year: 1993 ident: 10.1016/j.jhazmat.2020.124228_bib48 article-title: The free-radical chemistry of persulfate-based total organic carbon analyzers publication-title: Mar. Chem. doi: 10.1016/0304-4203(93)90108-Z – volume: 20 start-page: 54 year: 2018 ident: 10.1016/j.jhazmat.2020.124228_bib20 article-title: Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution publication-title: Water Resour. Ind. doi: 10.1016/j.wri.2018.10.001 – volume: 113 start-page: 80 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib6 article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes publication-title: Water Res. doi: 10.1016/j.watres.2017.02.016 – volume: 386 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib34 article-title: Zero-valent iron-manganese bimetallic nanocomposites catalyze hypochlorite for enhanced thallium(I) oxidation and removal from wastewater: materials characterization, process optimization and removal mechanisms publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121900 – volume: 374 start-page: 776 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib62 article-title: Heterogeneous catalytic degradation of 2,4-dinitrotoluene by the combined persulfate and hydrogen peroxide activated by the as-synthesized Fe-Mn binary oxides publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.138 – volume: 83 start-page: 366 year: 2020 ident: 10.1016/j.jhazmat.2020.124228_bib27 article-title: Effect of silica supports on deoxygenation of methyl palmitate over mesoporous silica-supported Ni/Al catalysts publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.12.010 – volume: 137 start-page: 241 year: 2011 ident: 10.1016/j.jhazmat.2020.124228_bib14 article-title: Effect of basicity on persulfate reactivity publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000323 – volume: 48 start-page: 5558 year: 2009 ident: 10.1016/j.jhazmat.2020.124228_bib35 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9002848 – volume: 80 start-page: 391 year: 2017 ident: 10.1016/j.jhazmat.2020.124228_bib55 article-title: Metal decorated montmorillonite as a catalyst for the degradation of polystyrene publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2017.07.026 – volume: 131 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib60 article-title: Precise control of iron activating persulfate by current generation in an electrochemical membrane reactor publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105024 – volume: 64 start-page: 1237 year: 2000 ident: 10.1016/j.jhazmat.2020.124228_bib49 article-title: Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00356-7 – volume: 372 start-page: 774 year: 2019 ident: 10.1016/j.jhazmat.2020.124228_bib29 article-title: Iron-Tannic modified cotton derived Fe0/graphitized carbon with enhanced catalytic activity for Bisphenol A degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.187 |
SSID | ssj0001754 |
Score | 2.57006 |
Snippet | The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 124228 |
SubjectTerms | benzoquinones catalysts catalytic activity composite materials dyes electron paramagnetic resonance spectroscopy electron transfer ethanol Iron redox cycle manganese Mn doped Fe–C composite nitrobenzenes oxygen Persulfate phenol pollutants Reusability rhodamines Surface bounded SO4 |
Title | Manganese doped iron–carbon composite for synergistic persulfate activation: Reactivity, stability, and mechanism |
URI | https://dx.doi.org/10.1016/j.jhazmat.2020.124228 https://www.ncbi.nlm.nih.gov/pubmed/33246821 https://www.proquest.com/docview/2465442399 https://www.proquest.com/docview/2524285855 |
Volume | 405 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoEDKuW1PCojcST7SOzY6a2qqJZXD0Cl3izHHpddtdlVd1dVOVT9D_xDfgkzebRwKJW4JZEdWR7H8038zTcAb8jHRYVZnqDiEmZaFYkrfJpQEFfgKGa6KGuC7H4-PpAfDtXhGux2uTBMq2z3_mZPr3fr9smgnc3BfDIZfOVDPXK3kmuAc6DCGexS8yrvX1zTPMg9NhJSfAJAra-zeAbT_vS7-0HAkMLElHUWWA7rJv90E_6s_dDeBjxoAaTYacb4ENaw2oT7f8gKbsKdT-7sESw-u-rIcYFJEWZzDIIT2n5d_vTutJxVgrnkTNhCQbBVLM45B7AWbRZzQoSr40ggVHDWQ_PPdlt8wfqOUPtbQZCyJtXSpauCOEHOH54sTh7Dwd67b7vjpC2xkPisMMvEeFOm2g-1N8G5MAq69PSFB1SS4hoc6oDe5GWI0WWR81hTdAbNMGKms9S77AmsV7MKn4HQI4nRS9oBnZdKUhzozdB4JUPuY1lgD2Q3sda3-uNcBuPYdkSzqW3tYdketrFHD_pX3eaNAMdtHUxnNfvXSrLkJG7r-rqzsqWvjI9OyEyz1cKmLDvHWonFP9ooegkfs6oePG2WyNWIM8KtuUlHz_9_cC_gXsp8Gua_qZewvjxd4SsCRMtyq17xW3B35_3H8f5vKyINTg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB5BOLQ9VIW2NLSlW6nHmiS21173hlBRKCGHFiRuq_XuLCQCJyKJUHvqO_QN-ySd8U8KB0DiZltea7WzO_ONZ-YbgE9k47zEKAlQcguzVGaByWwYkBOXYc9HaZaXCbLDpH8SfzuVpyuw19TCcFplrfsrnV5q6_pJp17NznQ06vzgoB6Z25h7gLOjsgprzE4lW7C2e3DYHy4VMlnIikWKgwA04H8hT2e8Mz43vwgbkqcYMtUCM2LdZaLugqClKdp_Ac9rDCl2q2muwwoWG_DsBrPgBqwOzPVLmB2Z4sxwj0nhJlN0gmva_v7-Y81VPikEp5NzzhYKQq5i9pPLAEveZjElULi48IRDBRc-VL9tv4jvWN4RcP8sCFWWebV0aQonLpFLiEezy1dwsv_1eK8f1F0WAhtlah4oq_Iwtd3UKmeM67k0t3TIHcqYXBvspg6tSnLnvYk8l7KGaBSqrscojUJrotfQKiYFvgGR9mL0NiYlaCyJglxBq7rKytgl1ucZtiFuFlbbmoKcO2Fc6CbXbKxreWiWh67k0Yad5bBpxcHx0ADVSE3f2kya7MRDQz82UtZ00Dh6QmKaLGY6ZOY5pkvM7nlH0kc40irbsFltkeWMI4KuiQp7W4-f3Ad40j8-GujBwfDwLTwNOb2G0-HkO2jNrxb4nvDRPN-u9_8_UrMP_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manganese+doped+iron-carbon+composite+for+synergistic+persulfate+activation%3A+Reactivity%2C+stability%2C+and+mechanism&rft.jtitle=Journal+of+hazardous+materials&rft.au=Cai%2C+Meiqiang&rft.au=Zhang%2C+Yu&rft.au=Dong%2C+Chunying&rft.au=Wu%2C+Wentao&rft.date=2021-03-05&rft.issn=1873-3336&rft.eissn=1873-3336&rft.volume=405&rft.spage=124228&rft_id=info:doi/10.1016%2Fj.jhazmat.2020.124228&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |