Synthetic magnetite, maghemite, and haematite activation of persulphate for orange G degradation

Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that i...

Full description

Saved in:
Bibliographic Details
Published inJournal of contaminant hydrology Vol. 215; pp. 73 - 85
Main Authors Ike, Ikechukwu A., Duke, Mikel
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2018
Subjects
Online AccessGet full text
ISSN0169-7722
1873-6009
1873-6009
DOI10.1016/j.jconhyd.2018.07.004

Cover

Abstract Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes. [Display omitted] •Iron oxide (IO) activation of persulphate (PS) was mainly homogeneous•Activation explained by defects but not by mineralogy, surface area or OH•PS activation by IO was no better than dissolved Fe activation•IO did not activate PS to degrade Orange G under a neutral condition•IO inhibited orange G oxidisation by PS under alkaline conditions
AbstractList Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes.
Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes. [Display omitted] •Iron oxide (IO) activation of persulphate (PS) was mainly homogeneous•Activation explained by defects but not by mineralogy, surface area or OH•PS activation by IO was no better than dissolved Fe activation•IO did not activate PS to degrade Orange G under a neutral condition•IO inhibited orange G oxidisation by PS under alkaline conditions
Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes.Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes.
Author Ike, Ikechukwu A.
Duke, Mikel
Author_xml – sequence: 1
  givenname: Ikechukwu A.
  orcidid: 0000-0003-3842-7934
  surname: Ike
  fullname: Ike, Ikechukwu A.
  email: ikechukwu.ike@live.vu.edu.au
– sequence: 2
  givenname: Mikel
  orcidid: 0000-0002-3383-0006
  surname: Duke
  fullname: Duke, Mikel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30037489$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFjwDKkQMJYztZ2-KAqgpapEocgLNx7cnGq8Re7Gyl_fZ4__TSy578pPm9mfG8K3IRYkBC3lNoKNDl53WztjEMO9cwoLIB0QC0r8iCSsHrJYC6IIvCqVoIxi7JVc5rABAS5BtyyQG4aKVakL-_dmEecPa2mswqFDHjp70ccDpIE1w1GJzMvlIZO_unImOoYl9tMOXtuBlMqfQxVTGZsMLqrnK4SsYduLfkdW_GjO9O7zX58_3b79v7-uHn3Y_bm4faciXnWnJZFgVJW-laaFsQ3NquaztnLCgjO-UcZculdahELzmzkrXMiEfVMgDG-TX5eOy7SfHfFvOsJ58tjqMJGLdZM1qOQVXH5XkURJnMFYeCfjih28cJnd4kP5m0088HLMCXI2BTzDlhr62fDx-fk_GjpqD3cem1PsWl93FpELrEVdzdC_fzgHO-r0cflos-eUw6W4_BovMJ7axd9Gc6_AdAybDn
CitedBy_id crossref_primary_10_1007_s10853_023_08167_2
crossref_primary_10_1016_j_cej_2022_138192
crossref_primary_10_1016_j_cej_2019_123804
crossref_primary_10_1016_j_chemosphere_2024_141766
crossref_primary_10_1007_s11356_019_07415_w
crossref_primary_10_1016_j_cej_2019_123140
crossref_primary_10_1016_j_cej_2018_12_024
crossref_primary_10_1016_j_jece_2021_105345
crossref_primary_10_1016_j_jobe_2021_102199
crossref_primary_10_1016_j_cej_2019_03_084
crossref_primary_10_1016_j_seppur_2023_125634
crossref_primary_10_1016_j_chemosphere_2021_133463
crossref_primary_10_1016_j_conbuildmat_2021_124848
crossref_primary_10_1016_j_watres_2019_114929
Cites_doi 10.1016/j.cej.2017.07.132
10.1016/j.cej.2015.08.107
10.1016/j.jhazmat.2010.12.017
10.1016/j.seppur.2010.01.012
10.1021/es503741d
10.1180/claymin.1981.016.4.06
10.1016/j.jhazmat.2016.10.013
10.1021/acs.est.5b03634
10.1021/es400262n
10.1021/ie9002848
10.1080/10643380802039303
10.1021/ja00443a030
10.1016/j.chemosphere.2013.12.037
10.1016/j.jhazmat.2010.06.068
10.1016/j.chemosphere.2012.01.001
10.1021/es400728c
10.1016/j.jmmm.2013.10.012
10.1016/j.cej.2012.05.040
10.1080/10643389.2014.970681
10.1016/j.cej.2016.09.077
10.1016/j.memsci.2017.06.056
10.1016/j.cej.2015.08.120
10.1039/f19797501073
10.1063/1.1599959
10.1016/j.jconhyd.2010.04.002
10.1016/j.scitotenv.2016.07.032
10.1016/j.micromeso.2009.03.005
10.1021/acs.est.5b04815
10.1016/j.jece.2017.07.069
10.1063/1.555808
10.1346/CCMN.1983.0310309
10.1016/j.watres.2014.10.006
10.1016/j.chemosphere.2008.01.045
10.1016/j.jhazmat.2011.09.011
10.3133/sir20095086
10.1021/es8019462
10.1351/pac198557040603
10.1021/acssuschemeng.7b04840
10.1002/cjce.20673
10.1016/j.cej.2018.01.034
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconhyd.2018.07.004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Environmental Sciences
EISSN 1873-6009
EndPage 85
ExternalDocumentID 30037489
10_1016_j_jconhyd_2018_07_004
S0169772218300135
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
UAO
VJK
WUQ
XPP
Y6R
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c398t-83877208148d4044073cc5545dac09a859dd1266cde97f832c8242a7b94200233
IEDL.DBID AIKHN
ISSN 0169-7722
1873-6009
IngestDate Fri Sep 05 03:48:55 EDT 2025
Fri Sep 05 05:16:42 EDT 2025
Wed Feb 19 02:33:39 EST 2025
Tue Jul 01 00:32:04 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri Feb 23 02:30:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crystalline inhomogeneities
SSA
Iron oxide
PS
ISCO
Mineralogy
Ms
Persulfate
OG
In-situ chemical oxidation
Surface area
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-83877208148d4044073cc5545dac09a859dd1266cde97f832c8242a7b94200233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3383-0006
0000-0003-3842-7934
PMID 30037489
PQID 2075543930
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2116919538
proquest_miscellaneous_2075543930
pubmed_primary_30037489
crossref_citationtrail_10_1016_j_jconhyd_2018_07_004
crossref_primary_10_1016_j_jconhyd_2018_07_004
elsevier_sciencedirect_doi_10_1016_j_jconhyd_2018_07_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of contaminant hydrology
PublicationTitleAlternate J Contam Hydrol
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wacławek, Lutze, Grübel, Padil, Černík, Dionysiou (bb0195) 2017; 330
Wu, Prulho, Brigante, Dong, Hanna, Mailhot (bb0210) 2017; 322
Mahmed, Heczko, Lancok, Hannula (bb0120) 2014; 353
Drumond Chequer, de Oliveira, Anastacio Ferraz, Carvalho, Boldrin Zanoni, de Oliveir (bb0060) 2013
Ahmad, Teel, Watts (bb0010) 2013; 47
Ike, Foster, Shinn, Watson, Orbell, Greenlee, Duke (bb0075) 2017; 5
Mullaney, Lorenz, Arntson (bb0125) 2009; vol. 2009–5086
Xu, Li (bb0215) 2010; 72
Zhang, Zhang, Teng, Fan (bb0225) 2015; 45
Rochester, Topham (bb0150) 1979; 75
Do, Kwon, Kong (bb0055) 2010; 182
Liu, Bruton, Li, Buren, Prasse, Doyle, Sedlak (bb0110) 2016; 50
Neta, Madhavan, Zemel, Fessenden (bb0130) 1977; 99
Ahmad, Teel, Watts (bb0005) 2010; 115
Usman, Faure, Ruby, Hanna (bb0190) 2012; 87
WHO (bb0205) 2003
Tsitonaki, Petri, Crimi, Mosbæk, Siegrist, Bjerg (bb0185) 2010; 40
Wei, Gao, Li, Deng, Zhou, Li (bb0200) 2016; 285
Chen, Murugananthan, Zhang (bb0035) 2016; 283
Sanciolo, Zou, Gray, Leslie, Stevens (bb0160) 2008; 72
Avetta, Pensato, Minella, Malandrino, Maurino, Minero, Hanna, Vione (bb0020) 2015; 49
Ike, Dumée, Groth, Orbell, Duke (bb0080) 2017; 540
Stirling (bb0175) 1965
Liang, Su (bb0105) 2009; 48
Sing, Everett, Haul, Moscou, Pierotti, Rouquerol, Siemieniewska (bb0165) 1985; 57
Neta, Huie, Ross (bb0135) 1988; 17
Teel, Ahmad, Watts (bb0180) 2011; 196
Ike, Linden, Orbell, Duke (bb0085) 2018; 338
Rodriguez, Vasquez, Costa, Romero, Santos (bb0155) 2014; 101
Fang, Gao, Dionysiou, Liu, Zhou (bb0065) 2013; 47
Stein, Russak, Sivan, Yechieli, Rahav, Oren, Kasher (bb0170) 2016; 50
Lutze, Kerlin, Schmidt (bb0115) 2015; 72
Ahmed, Barbati, Doumenq, Chiron (bb0015) 2012; 197
Cornell, Schwertmann (bb0040) 2003
Johnson, Tratnyek, Johnson (bb0095) 2008; 42
Babou-Kammoe, Hamoudi, Larachi, Belkacemi (bb0025) 2012; 90
Devi, Das, Dalai (bb0045) 2016; 571
Borggaard (bb0030) 1983; 31
Ike, Orbell, Duke (bb0090) 2018; 6
Kirillov (bb0100) 2009; 122
Goya, Berquó, Fonseca, Morales (bb0070) 2003; 94
Ocampo (bb0140) 2009
Rendon, Serna (bb0145) 1981; 16
Ding, Liu, Ji, Yang, Chen, Jiang, Cai (bb0050) 2017; 308
Yan, Lei, Zhu, Anjum, Zou, Tang (bb0220) 2011; 186
Rendon (10.1016/j.jconhyd.2018.07.004_bb0145) 1981; 16
Neta (10.1016/j.jconhyd.2018.07.004_bb0135) 1988; 17
WHO (10.1016/j.jconhyd.2018.07.004_bb0205) 2003
Chen (10.1016/j.jconhyd.2018.07.004_bb0035) 2016; 283
Liang (10.1016/j.jconhyd.2018.07.004_bb0105) 2009; 48
Ahmad (10.1016/j.jconhyd.2018.07.004_bb0010) 2013; 47
Do (10.1016/j.jconhyd.2018.07.004_bb0055) 2010; 182
Mullaney (10.1016/j.jconhyd.2018.07.004_bb0125) 2009; vol. 2009–5086
Tsitonaki (10.1016/j.jconhyd.2018.07.004_bb0185) 2010; 40
Wei (10.1016/j.jconhyd.2018.07.004_bb0200) 2016; 285
Avetta (10.1016/j.jconhyd.2018.07.004_bb0020) 2015; 49
Ding (10.1016/j.jconhyd.2018.07.004_bb0050) 2017; 308
Lutze (10.1016/j.jconhyd.2018.07.004_bb0115) 2015; 72
Ike (10.1016/j.jconhyd.2018.07.004_bb0080) 2017; 540
Teel (10.1016/j.jconhyd.2018.07.004_bb0180) 2011; 196
Fang (10.1016/j.jconhyd.2018.07.004_bb0065) 2013; 47
Ike (10.1016/j.jconhyd.2018.07.004_bb0090) 2018; 6
Ahmad (10.1016/j.jconhyd.2018.07.004_bb0005) 2010; 115
Yan (10.1016/j.jconhyd.2018.07.004_bb0220) 2011; 186
Johnson (10.1016/j.jconhyd.2018.07.004_bb0095) 2008; 42
Babou-Kammoe (10.1016/j.jconhyd.2018.07.004_bb0025) 2012; 90
Zhang (10.1016/j.jconhyd.2018.07.004_bb0225) 2015; 45
Ocampo (10.1016/j.jconhyd.2018.07.004_bb0140) 2009
Stein (10.1016/j.jconhyd.2018.07.004_bb0170) 2016; 50
Liu (10.1016/j.jconhyd.2018.07.004_bb0110) 2016; 50
Sanciolo (10.1016/j.jconhyd.2018.07.004_bb0160) 2008; 72
Wacławek (10.1016/j.jconhyd.2018.07.004_bb0195) 2017; 330
Usman (10.1016/j.jconhyd.2018.07.004_bb0190) 2012; 87
Stirling (10.1016/j.jconhyd.2018.07.004_bb0175) 1965
Devi (10.1016/j.jconhyd.2018.07.004_bb0045) 2016; 571
Borggaard (10.1016/j.jconhyd.2018.07.004_bb0030) 1983; 31
Mahmed (10.1016/j.jconhyd.2018.07.004_bb0120) 2014; 353
Wu (10.1016/j.jconhyd.2018.07.004_bb0210) 2017; 322
Ahmed (10.1016/j.jconhyd.2018.07.004_bb0015) 2012; 197
Drumond Chequer (10.1016/j.jconhyd.2018.07.004_bb0060) 2013
Goya (10.1016/j.jconhyd.2018.07.004_bb0070) 2003; 94
Rodriguez (10.1016/j.jconhyd.2018.07.004_bb0155) 2014; 101
Cornell (10.1016/j.jconhyd.2018.07.004_bb0040) 2003
Neta (10.1016/j.jconhyd.2018.07.004_bb0130) 1977; 99
Xu (10.1016/j.jconhyd.2018.07.004_bb0215) 2010; 72
Ike (10.1016/j.jconhyd.2018.07.004_bb0085) 2018; 338
Rochester (10.1016/j.jconhyd.2018.07.004_bb0150) 1979; 75
Ike (10.1016/j.jconhyd.2018.07.004_bb0075) 2017; 5
Kirillov (10.1016/j.jconhyd.2018.07.004_bb0100) 2009; 122
Sing (10.1016/j.jconhyd.2018.07.004_bb0165) 1985; 57
References_xml – volume: 285
  start-page: 660
  year: 2016
  end-page: 670
  ident: bb0200
  article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water
  publication-title: Chem. Eng. J.
– volume: 353
  start-page: 15
  year: 2014
  end-page: 22
  ident: bb0120
  article-title: The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere
  publication-title: J. Magn. Magn. Mater.
– volume: 283
  start-page: 1357
  year: 2016
  end-page: 1365
  ident: bb0035
  article-title: Degradation of p-Nitrophenol by thermally activated persulfate in soil system
  publication-title: Chem. Eng. J.
– volume: 338
  start-page: 651
  year: 2018
  end-page: 669
  ident: bb0085
  article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes
  publication-title: Chem. Eng. J.
– volume: 182
  start-page: 933
  year: 2010
  end-page: 936
  ident: bb0055
  article-title: Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 9350
  year: 2008
  end-page: 9356
  ident: bb0095
  article-title: Persulfate persistence under thermal activation conditions
  publication-title: Environ. Sci. Technol.
– year: 2013
  ident: bb0060
  article-title: Textile Dyes: Dyeing Process and Environmental Impact
  publication-title: Eco-Friendly Textile Dyeing and Finishing
– volume: 101
  start-page: 86
  year: 2014
  end-page: 92
  ident: bb0155
  article-title: Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI)
  publication-title: Chemosphere
– volume: 186
  start-page: 1398
  year: 2011
  end-page: 1404
  ident: bb0220
  article-title: Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate
  publication-title: J. Hazard. Mater.
– year: 1965
  ident: bb0175
  article-title: Radicals in Organic Chemistry
– volume: 40
  start-page: 55
  year: 2010
  end-page: 91
  ident: bb0185
  article-title: In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 72
  start-page: 349
  year: 2015
  end-page: 360
  ident: bb0115
  article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate
  publication-title: Water Res.
– volume: 330
  start-page: 44
  year: 2017
  end-page: 62
  ident: bb0195
  article-title: Chemistry of persulfates in water and wastewater treatment: a review
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 5864
  year: 2013
  end-page: 5871
  ident: bb0010
  article-title: Mechanism of persulfate activation by phenols
  publication-title: Environ Sci Technol
– volume: 49
  start-page: 1043
  year: 2015
  end-page: 1050
  ident: bb0020
  article-title: Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions
  publication-title: Environ. Sci. Technol.
– year: 2003
  ident: bb0040
  article-title: The Iron Oxides: Structures, Properties, Reactions, Occurences and Uses
– volume: 99
  start-page: 163
  year: 1977
  end-page: 164
  ident: bb0130
  article-title: Rate constants and mechanism of reaction of SO4*- with aromatic compounds
  publication-title: J. Am. Chem. Soc.
– volume: 75
  start-page: 1073
  year: 1979
  end-page: 1088
  ident: bb0150
  article-title: Infrared study of surface hydroxyl groups on haematite
  publication-title: J. Chem. Soc. Faraday Transactions 1
– volume: 87
  start-page: 234
  year: 2012
  end-page: 240
  ident: bb0190
  article-title: Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils
  publication-title: Chemosphere
– volume: 31
  start-page: 230
  year: 1983
  end-page: 232
  ident: bb0030
  article-title: Effect of surface area and mineralogy of iron oxides on their surface charge and anion adsorption properties
  publication-title: Clay Clay Miner.
– volume: 571
  start-page: 643
  year: 2016
  end-page: 657
  ident: bb0045
  article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 375
  year: 1981
  end-page: 381
  ident: bb0145
  article-title: IR spectra of powder haematite: effects of particle size and shape
  publication-title: Clay Miner.
– volume: 72
  start-page: 105
  year: 2010
  end-page: 111
  ident: bb0215
  article-title: Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion
  publication-title: Sep. Purif. Technol.
– volume: 122
  start-page: 234
  year: 2009
  end-page: 239
  ident: bb0100
  article-title: Surface area and pore volume of a system of particles as a function of their size and packing
  publication-title: Microporous Mesoporous Mater.
– volume: 322 (
  start-page: 380
  year: 2017
  end-page: 386
  ident: bb0210
  article-title: Activation of persulfate by Fe(III) species: implications for 4-tert-butylphenol degradation
  publication-title: J. Hazard. Mater.
– volume: 115
  start-page: 34
  year: 2010
  end-page: 45
  ident: bb0005
  article-title: Persulfate activation by subsurface minerals
  publication-title: J. Contam. Hydrol.
– volume: 50
  start-page: 1955
  year: 2016
  end-page: 1963
  ident: bb0170
  article-title: Saline groundwater from coastal aquifers as a source for desalination
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 4345
  year: 2018
  end-page: 4353
  ident: bb0090
  article-title: Activation of persulfate at waste heat temperatures for humic acid degradation
  publication-title: ACS Sustain. Chem. Eng.
– volume: vol. 2009–5086
  start-page: 41
  year: 2009
  ident: bb0125
  article-title: Chloride in groundwater and surface water in areas underlain by the glacial aquifer system, Northern United States
  publication-title: U.S. Geological Survey Scientific Investigations Report
– year: 2009
  ident: bb0140
  article-title: Persulfate Activation by Organic Compounds, in: Department of Civil and Environmental Engineering
– volume: 47
  start-page: 4605
  year: 2013
  end-page: 4611
  ident: bb0065
  article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 4014
  year: 2017
  end-page: 4023
  ident: bb0075
  article-title: Advanced oxidation of orange G using phosphonic acid stabilised zerovalent iron
  publication-title: J. Environ. Chem. Eng.
– volume: 48
  start-page: 5558
  year: 2009
  end-page: 5562
  ident: bb0105
  article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate
  publication-title: Industrial Eng. Chem.
– volume: 90
  start-page: 26
  year: 2012
  end-page: 33
  ident: bb0025
  article-title: Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions
  publication-title: Can. J. Chem. Eng.
– volume: 540
  start-page: 200
  year: 2017
  end-page: 211
  ident: bb0080
  article-title: Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure PVDF mixed matrix membranes
  publication-title: J. Membr. Sci.
– volume: 45
  start-page: 1756
  year: 2015
  end-page: 1800
  ident: bb0225
  article-title: Sulfate radical and its application in decontamination technologies
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 308
  start-page: 330
  year: 2017
  end-page: 339
  ident: bb0050
  article-title: Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 890
  year: 2016
  end-page: 898
  ident: bb0110
  article-title: Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products
  publication-title: Environ. Sci. Technol.
– volume: 72
  start-page: 243
  year: 2008
  end-page: 249
  ident: bb0160
  article-title: Accelerated seeded precipitation pre-treatment of municipal wastewater to reduce scaling
  publication-title: Chemosphere
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  ident: bb0165
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity
  publication-title: Pure Appl. Chem.
– volume: 197
  start-page: 440
  year: 2012
  end-page: 447
  ident: bb0015
  article-title: Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination
  publication-title: Chem. Eng. J.
– volume: 94
  start-page: 3520
  year: 2003
  ident: bb0070
  article-title: Static and dynamic magnetic properties of spherical magnetite nanoparticles
  publication-title: J. Appl. Phys.
– year: 2003
  ident: bb0205
  article-title: Chloride in Drinking-water
  publication-title: Background Document for Development of WHO Guidelines for Drinking-water Quality
– volume: 17
  start-page: 1027
  year: 1988
  end-page: 1284
  ident: bb0135
  article-title: Rate constants for reactions of inorganic radicals in aqueous solution
  publication-title: Journal of Physical and Chemical Reference Data
– volume: 196
  start-page: 153
  year: 2011
  end-page: 159
  ident: bb0180
  article-title: Persulfate activation by naturally occurring trace minerals
  publication-title: J. Hazard. Mater.
– volume: 330
  start-page: 44
  year: 2017
  ident: 10.1016/j.jconhyd.2018.07.004_bb0195
  article-title: Chemistry of persulfates in water and wastewater treatment: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.132
– volume: 283
  start-page: 1357
  year: 2016
  ident: 10.1016/j.jconhyd.2018.07.004_bb0035
  article-title: Degradation of p-Nitrophenol by thermally activated persulfate in soil system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.107
– volume: 186
  start-page: 1398
  year: 2011
  ident: 10.1016/j.jconhyd.2018.07.004_bb0220
  article-title: Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.12.017
– volume: 72
  start-page: 105
  year: 2010
  ident: 10.1016/j.jconhyd.2018.07.004_bb0215
  article-title: Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2010.01.012
– volume: 49
  start-page: 1043
  year: 2015
  ident: 10.1016/j.jconhyd.2018.07.004_bb0020
  article-title: Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503741d
– volume: 16
  start-page: 375
  year: 1981
  ident: 10.1016/j.jconhyd.2018.07.004_bb0145
  article-title: IR spectra of powder haematite: effects of particle size and shape
  publication-title: Clay Miner.
  doi: 10.1180/claymin.1981.016.4.06
– volume: 322 (
  start-page: 380
  year: 2017
  ident: 10.1016/j.jconhyd.2018.07.004_bb0210
  article-title: Activation of persulfate by Fe(III) species: implications for 4-tert-butylphenol degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.10.013
– volume: 50
  start-page: 1955
  year: 2016
  ident: 10.1016/j.jconhyd.2018.07.004_bb0170
  article-title: Saline groundwater from coastal aquifers as a source for desalination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03634
– year: 2009
  ident: 10.1016/j.jconhyd.2018.07.004_bb0140
– volume: 47
  start-page: 4605
  year: 2013
  ident: 10.1016/j.jconhyd.2018.07.004_bb0065
  article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400262n
– volume: 48
  start-page: 5558
  year: 2009
  ident: 10.1016/j.jconhyd.2018.07.004_bb0105
  article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate
  publication-title: Industrial Eng. Chem.
  doi: 10.1021/ie9002848
– volume: 40
  start-page: 55
  year: 2010
  ident: 10.1016/j.jconhyd.2018.07.004_bb0185
  article-title: In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380802039303
– volume: 99
  start-page: 163
  year: 1977
  ident: 10.1016/j.jconhyd.2018.07.004_bb0130
  article-title: Rate constants and mechanism of reaction of SO4*- with aromatic compounds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00443a030
– volume: 101
  start-page: 86
  year: 2014
  ident: 10.1016/j.jconhyd.2018.07.004_bb0155
  article-title: Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.12.037
– volume: 182
  start-page: 933
  year: 2010
  ident: 10.1016/j.jconhyd.2018.07.004_bb0055
  article-title: Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.06.068
– year: 2003
  ident: 10.1016/j.jconhyd.2018.07.004_bb0205
  article-title: Chloride in Drinking-water
– volume: 87
  start-page: 234
  year: 2012
  ident: 10.1016/j.jconhyd.2018.07.004_bb0190
  article-title: Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.01.001
– volume: 47
  start-page: 5864
  year: 2013
  ident: 10.1016/j.jconhyd.2018.07.004_bb0010
  article-title: Mechanism of persulfate activation by phenols
  publication-title: Environ Sci Technol
  doi: 10.1021/es400728c
– volume: 353
  start-page: 15
  year: 2014
  ident: 10.1016/j.jconhyd.2018.07.004_bb0120
  article-title: The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2013.10.012
– year: 2003
  ident: 10.1016/j.jconhyd.2018.07.004_bb0040
– volume: 197
  start-page: 440
  year: 2012
  ident: 10.1016/j.jconhyd.2018.07.004_bb0015
  article-title: Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.05.040
– volume: 45
  start-page: 1756
  year: 2015
  ident: 10.1016/j.jconhyd.2018.07.004_bb0225
  article-title: Sulfate radical and its application in decontamination technologies
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2014.970681
– volume: 308
  start-page: 330
  year: 2017
  ident: 10.1016/j.jconhyd.2018.07.004_bb0050
  article-title: Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.077
– volume: 540
  start-page: 200
  year: 2017
  ident: 10.1016/j.jconhyd.2018.07.004_bb0080
  article-title: Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure PVDF mixed matrix membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.06.056
– volume: 285
  start-page: 660
  year: 2016
  ident: 10.1016/j.jconhyd.2018.07.004_bb0200
  article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.120
– volume: 75
  start-page: 1073
  year: 1979
  ident: 10.1016/j.jconhyd.2018.07.004_bb0150
  article-title: Infrared study of surface hydroxyl groups on haematite
  publication-title: J. Chem. Soc. Faraday Transactions 1
  doi: 10.1039/f19797501073
– volume: 94
  start-page: 3520
  year: 2003
  ident: 10.1016/j.jconhyd.2018.07.004_bb0070
  article-title: Static and dynamic magnetic properties of spherical magnetite nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1599959
– volume: 115
  start-page: 34
  year: 2010
  ident: 10.1016/j.jconhyd.2018.07.004_bb0005
  article-title: Persulfate activation by subsurface minerals
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2010.04.002
– volume: 571
  start-page: 643
  year: 2016
  ident: 10.1016/j.jconhyd.2018.07.004_bb0045
  article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.032
– volume: 122
  start-page: 234
  year: 2009
  ident: 10.1016/j.jconhyd.2018.07.004_bb0100
  article-title: Surface area and pore volume of a system of particles as a function of their size and packing
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2009.03.005
– volume: 50
  start-page: 890
  year: 2016
  ident: 10.1016/j.jconhyd.2018.07.004_bb0110
  article-title: Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04815
– volume: 5
  start-page: 4014
  year: 2017
  ident: 10.1016/j.jconhyd.2018.07.004_bb0075
  article-title: Advanced oxidation of orange G using phosphonic acid stabilised zerovalent iron
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.07.069
– year: 2013
  ident: 10.1016/j.jconhyd.2018.07.004_bb0060
  article-title: Textile Dyes: Dyeing Process and Environmental Impact
– year: 1965
  ident: 10.1016/j.jconhyd.2018.07.004_bb0175
– volume: 17
  start-page: 1027
  year: 1988
  ident: 10.1016/j.jconhyd.2018.07.004_bb0135
  article-title: Rate constants for reactions of inorganic radicals in aqueous solution
  publication-title: Journal of Physical and Chemical Reference Data
  doi: 10.1063/1.555808
– volume: 31
  start-page: 230
  year: 1983
  ident: 10.1016/j.jconhyd.2018.07.004_bb0030
  article-title: Effect of surface area and mineralogy of iron oxides on their surface charge and anion adsorption properties
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1983.0310309
– volume: 72
  start-page: 349
  year: 2015
  ident: 10.1016/j.jconhyd.2018.07.004_bb0115
  article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.006
– volume: 72
  start-page: 243
  year: 2008
  ident: 10.1016/j.jconhyd.2018.07.004_bb0160
  article-title: Accelerated seeded precipitation pre-treatment of municipal wastewater to reduce scaling
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.01.045
– volume: 196
  start-page: 153
  year: 2011
  ident: 10.1016/j.jconhyd.2018.07.004_bb0180
  article-title: Persulfate activation by naturally occurring trace minerals
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.09.011
– volume: vol. 2009–5086
  start-page: 41
  year: 2009
  ident: 10.1016/j.jconhyd.2018.07.004_bb0125
  article-title: Chloride in groundwater and surface water in areas underlain by the glacial aquifer system, Northern United States
  doi: 10.3133/sir20095086
– volume: 42
  start-page: 9350
  year: 2008
  ident: 10.1016/j.jconhyd.2018.07.004_bb0095
  article-title: Persulfate persistence under thermal activation conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8019462
– volume: 57
  start-page: 603
  year: 1985
  ident: 10.1016/j.jconhyd.2018.07.004_bb0165
  article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198557040603
– volume: 6
  start-page: 4345
  year: 2018
  ident: 10.1016/j.jconhyd.2018.07.004_bb0090
  article-title: Activation of persulfate at waste heat temperatures for humic acid degradation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b04840
– volume: 90
  start-page: 26
  year: 2012
  ident: 10.1016/j.jconhyd.2018.07.004_bb0025
  article-title: Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.20673
– volume: 338
  start-page: 651
  year: 2018
  ident: 10.1016/j.jconhyd.2018.07.004_bb0085
  article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.034
SSID ssj0007808
Score 2.29676
Snippet Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 73
SubjectTerms Crystalline inhomogeneities
hematite
In-situ chemical oxidation
iron
Iron oxide
maghemite
magnetite
Mineralogy
oxidation
Persulfate
phosphates
Surface area
Title Synthetic magnetite, maghemite, and haematite activation of persulphate for orange G degradation
URI https://dx.doi.org/10.1016/j.jconhyd.2018.07.004
https://www.ncbi.nlm.nih.gov/pubmed/30037489
https://www.proquest.com/docview/2075543930
https://www.proquest.com/docview/2116919538
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT-swDLdgHN7jgGA8YHwpSBzptixpmxwRAgYILoDErS9tMsYE3QTjsAt_O3abDpD4kLilVVJFTmz_0tg_A-wS5YnlYRzYtC0D6Top6hwaw9Sgv8bjBs8EZSOfX0Tda3l6E97MwEGVC0Nhld72lza9sNb-TctLszW6u2tdEo8IYkPy8QRkwlmY6wgdhTWY2z85615MDXKsisJ01J_AZOctkac1aA7w2NmfEGcoVwWNpy_Z9omL-gqCFq7oaBEWPIZk--U0l2DG5XWYf8csWIeVw7cENuzqNfipDn981fP-ZBn-X05yxH_4FfZgbnPKN3N71CQSAWqa3LK-KVhdx45RCkT5A5cNe2yEuJEi2xGrMgS-DLdSfuvYMbNEP1FWavoH10eHVwfdwFdcCDKh1ThQQqGAECVIZSUVo45FliHgCK3J2tqoUFvL0aVn1um4h8YgU-jiTZxqScEeQqxALR_mbg2YimUkjZZRigCTp8poRBaK99IeF5ELdQNkJeQk83TkVBXjPqnizgaJX5uE1iZp00W5bEBzOmxU8nH8NEBVK5h82FgJ-oyfhu5UK56g0tFNisnd8PkJO8UoFaFF-5s-nHiINDqUBqyW22U6Y-Fpf9Z_P7kN-EtPZSziJtTGj89uC_HRON2G2eYL3_Za8ArFhg2y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIADgvEazyBxpNtK0jU5IgSM5wWQuIW0yRgTdBOMwy78duw2ZSDxkLhFbVJFTmx_aezPADtEeWLDKA5s0hCBcHsJ6hwaw8Sgv8bjRphyyka-uGy2bsTpbXQ7BgdlLgyFVXrbX9j03Fr7J3UvzXr_4aF-RTwiiA3JxxOQicZhUkQ8pri-2tsoziOWeVk66k1Qcm-UxlPv1rp46OwMiTE0lDmJpy_Y9o2D-gmA5o7oaA5mPYJk-8Uk52HMZRWY-cQrWIGlw1H6Gnb1-vtSgSlf87wzXIC7q2GG6A-_wp7MfUbZZm6XmkQhQE2TWdYxOafrwDFKgCh-37Jem_URNVJcOyJVhrCX4UbK7h07ZpbIJ4o6TYtwc3R4fdAKfL2FIOVKDgLJJQoIMYKQVlAp6pinKcKNyJq0oYyMlLUhOvTUOhW30RSkEh28iRMlKNSD8yWYyHqZWwEmY9EURolmgvAyTKRRiCtk2E7aIW-6SFVBlELWqScjp5oYj7qMOutqvzaa1kY36JpcVKH2MaxfsHH8NUCWK6i_bCuNHuOvodvlimtUObpHMZnrvb5gpxilwhVv_NInJBYihe6kCsvFdvmYMfekP6v_n9wWTLWuL871-cnl2RpM05siKnEdJgbPr24DkdIg2cw14R0PEg59
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+magnetite%2C+maghemite%2C+and+haematite+activation+of+persulphate+for+orange+G+degradation&rft.jtitle=Journal+of+contaminant+hydrology&rft.au=Ike%2C+Ikechukwu+A&rft.au=Duke%2C+Mikel&rft.date=2018-08-01&rft.eissn=1873-6009&rft.volume=215&rft.spage=73&rft_id=info:doi/10.1016%2Fj.jconhyd.2018.07.004&rft_id=info%3Apmid%2F30037489&rft.externalDocID=30037489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7722&client=summon