Synthetic magnetite, maghemite, and haematite activation of persulphate for orange G degradation
Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that i...
Saved in:
Published in | Journal of contaminant hydrology Vol. 215; pp. 73 - 85 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-7722 1873-6009 1873-6009 |
DOI | 10.1016/j.jconhyd.2018.07.004 |
Cover
Abstract | Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes.
[Display omitted]
•Iron oxide (IO) activation of persulphate (PS) was mainly homogeneous•Activation explained by defects but not by mineralogy, surface area or OH•PS activation by IO was no better than dissolved Fe activation•IO did not activate PS to degrade Orange G under a neutral condition•IO inhibited orange G oxidisation by PS under alkaline conditions |
---|---|
AbstractList | Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes. Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes. [Display omitted] •Iron oxide (IO) activation of persulphate (PS) was mainly homogeneous•Activation explained by defects but not by mineralogy, surface area or OH•PS activation by IO was no better than dissolved Fe activation•IO did not activate PS to degrade Orange G under a neutral condition•IO inhibited orange G oxidisation by PS under alkaline conditions Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes.Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes. |
Author | Ike, Ikechukwu A. Duke, Mikel |
Author_xml | – sequence: 1 givenname: Ikechukwu A. orcidid: 0000-0003-3842-7934 surname: Ike fullname: Ike, Ikechukwu A. email: ikechukwu.ike@live.vu.edu.au – sequence: 2 givenname: Mikel orcidid: 0000-0002-3383-0006 surname: Duke fullname: Duke, Mikel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30037489$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFjwDKkQMJYztZ2-KAqgpapEocgLNx7cnGq8Re7Gyl_fZ4__TSy578pPm9mfG8K3IRYkBC3lNoKNDl53WztjEMO9cwoLIB0QC0r8iCSsHrJYC6IIvCqVoIxi7JVc5rABAS5BtyyQG4aKVakL-_dmEecPa2mswqFDHjp70ccDpIE1w1GJzMvlIZO_unImOoYl9tMOXtuBlMqfQxVTGZsMLqrnK4SsYduLfkdW_GjO9O7zX58_3b79v7-uHn3Y_bm4faciXnWnJZFgVJW-laaFsQ3NquaztnLCgjO-UcZculdahELzmzkrXMiEfVMgDG-TX5eOy7SfHfFvOsJ58tjqMJGLdZM1qOQVXH5XkURJnMFYeCfjih28cJnd4kP5m0088HLMCXI2BTzDlhr62fDx-fk_GjpqD3cem1PsWl93FpELrEVdzdC_fzgHO-r0cflos-eUw6W4_BovMJ7axd9Gc6_AdAybDn |
CitedBy_id | crossref_primary_10_1007_s10853_023_08167_2 crossref_primary_10_1016_j_cej_2022_138192 crossref_primary_10_1016_j_cej_2019_123804 crossref_primary_10_1016_j_chemosphere_2024_141766 crossref_primary_10_1007_s11356_019_07415_w crossref_primary_10_1016_j_cej_2019_123140 crossref_primary_10_1016_j_cej_2018_12_024 crossref_primary_10_1016_j_jece_2021_105345 crossref_primary_10_1016_j_jobe_2021_102199 crossref_primary_10_1016_j_cej_2019_03_084 crossref_primary_10_1016_j_seppur_2023_125634 crossref_primary_10_1016_j_chemosphere_2021_133463 crossref_primary_10_1016_j_conbuildmat_2021_124848 crossref_primary_10_1016_j_watres_2019_114929 |
Cites_doi | 10.1016/j.cej.2017.07.132 10.1016/j.cej.2015.08.107 10.1016/j.jhazmat.2010.12.017 10.1016/j.seppur.2010.01.012 10.1021/es503741d 10.1180/claymin.1981.016.4.06 10.1016/j.jhazmat.2016.10.013 10.1021/acs.est.5b03634 10.1021/es400262n 10.1021/ie9002848 10.1080/10643380802039303 10.1021/ja00443a030 10.1016/j.chemosphere.2013.12.037 10.1016/j.jhazmat.2010.06.068 10.1016/j.chemosphere.2012.01.001 10.1021/es400728c 10.1016/j.jmmm.2013.10.012 10.1016/j.cej.2012.05.040 10.1080/10643389.2014.970681 10.1016/j.cej.2016.09.077 10.1016/j.memsci.2017.06.056 10.1016/j.cej.2015.08.120 10.1039/f19797501073 10.1063/1.1599959 10.1016/j.jconhyd.2010.04.002 10.1016/j.scitotenv.2016.07.032 10.1016/j.micromeso.2009.03.005 10.1021/acs.est.5b04815 10.1016/j.jece.2017.07.069 10.1063/1.555808 10.1346/CCMN.1983.0310309 10.1016/j.watres.2014.10.006 10.1016/j.chemosphere.2008.01.045 10.1016/j.jhazmat.2011.09.011 10.3133/sir20095086 10.1021/es8019462 10.1351/pac198557040603 10.1021/acssuschemeng.7b04840 10.1002/cjce.20673 10.1016/j.cej.2018.01.034 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jconhyd.2018.07.004 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Environmental Sciences |
EISSN | 1873-6009 |
EndPage | 85 |
ExternalDocumentID | 30037489 10_1016_j_jconhyd_2018_07_004 S0169772218300135 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UAO VJK WUQ XPP Y6R ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-83877208148d4044073cc5545dac09a859dd1266cde97f832c8242a7b94200233 |
IEDL.DBID | AIKHN |
ISSN | 0169-7722 1873-6009 |
IngestDate | Fri Sep 05 03:48:55 EDT 2025 Fri Sep 05 05:16:42 EDT 2025 Wed Feb 19 02:33:39 EST 2025 Tue Jul 01 00:32:04 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:30:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crystalline inhomogeneities SSA Iron oxide PS ISCO Mineralogy Ms Persulfate OG In-situ chemical oxidation Surface area |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-83877208148d4044073cc5545dac09a859dd1266cde97f832c8242a7b94200233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3383-0006 0000-0003-3842-7934 |
PMID | 30037489 |
PQID | 2075543930 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2116919538 proquest_miscellaneous_2075543930 pubmed_primary_30037489 crossref_citationtrail_10_1016_j_jconhyd_2018_07_004 crossref_primary_10_1016_j_jconhyd_2018_07_004 elsevier_sciencedirect_doi_10_1016_j_jconhyd_2018_07_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of contaminant hydrology |
PublicationTitleAlternate | J Contam Hydrol |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wacławek, Lutze, Grübel, Padil, Černík, Dionysiou (bb0195) 2017; 330 Wu, Prulho, Brigante, Dong, Hanna, Mailhot (bb0210) 2017; 322 Mahmed, Heczko, Lancok, Hannula (bb0120) 2014; 353 Drumond Chequer, de Oliveira, Anastacio Ferraz, Carvalho, Boldrin Zanoni, de Oliveir (bb0060) 2013 Ahmad, Teel, Watts (bb0010) 2013; 47 Ike, Foster, Shinn, Watson, Orbell, Greenlee, Duke (bb0075) 2017; 5 Mullaney, Lorenz, Arntson (bb0125) 2009; vol. 2009–5086 Xu, Li (bb0215) 2010; 72 Zhang, Zhang, Teng, Fan (bb0225) 2015; 45 Rochester, Topham (bb0150) 1979; 75 Do, Kwon, Kong (bb0055) 2010; 182 Liu, Bruton, Li, Buren, Prasse, Doyle, Sedlak (bb0110) 2016; 50 Neta, Madhavan, Zemel, Fessenden (bb0130) 1977; 99 Ahmad, Teel, Watts (bb0005) 2010; 115 Usman, Faure, Ruby, Hanna (bb0190) 2012; 87 WHO (bb0205) 2003 Tsitonaki, Petri, Crimi, Mosbæk, Siegrist, Bjerg (bb0185) 2010; 40 Wei, Gao, Li, Deng, Zhou, Li (bb0200) 2016; 285 Chen, Murugananthan, Zhang (bb0035) 2016; 283 Sanciolo, Zou, Gray, Leslie, Stevens (bb0160) 2008; 72 Avetta, Pensato, Minella, Malandrino, Maurino, Minero, Hanna, Vione (bb0020) 2015; 49 Ike, Dumée, Groth, Orbell, Duke (bb0080) 2017; 540 Stirling (bb0175) 1965 Liang, Su (bb0105) 2009; 48 Sing, Everett, Haul, Moscou, Pierotti, Rouquerol, Siemieniewska (bb0165) 1985; 57 Neta, Huie, Ross (bb0135) 1988; 17 Teel, Ahmad, Watts (bb0180) 2011; 196 Ike, Linden, Orbell, Duke (bb0085) 2018; 338 Rodriguez, Vasquez, Costa, Romero, Santos (bb0155) 2014; 101 Fang, Gao, Dionysiou, Liu, Zhou (bb0065) 2013; 47 Stein, Russak, Sivan, Yechieli, Rahav, Oren, Kasher (bb0170) 2016; 50 Lutze, Kerlin, Schmidt (bb0115) 2015; 72 Ahmed, Barbati, Doumenq, Chiron (bb0015) 2012; 197 Cornell, Schwertmann (bb0040) 2003 Johnson, Tratnyek, Johnson (bb0095) 2008; 42 Babou-Kammoe, Hamoudi, Larachi, Belkacemi (bb0025) 2012; 90 Devi, Das, Dalai (bb0045) 2016; 571 Borggaard (bb0030) 1983; 31 Ike, Orbell, Duke (bb0090) 2018; 6 Kirillov (bb0100) 2009; 122 Goya, Berquó, Fonseca, Morales (bb0070) 2003; 94 Ocampo (bb0140) 2009 Rendon, Serna (bb0145) 1981; 16 Ding, Liu, Ji, Yang, Chen, Jiang, Cai (bb0050) 2017; 308 Yan, Lei, Zhu, Anjum, Zou, Tang (bb0220) 2011; 186 Rendon (10.1016/j.jconhyd.2018.07.004_bb0145) 1981; 16 Neta (10.1016/j.jconhyd.2018.07.004_bb0135) 1988; 17 WHO (10.1016/j.jconhyd.2018.07.004_bb0205) 2003 Chen (10.1016/j.jconhyd.2018.07.004_bb0035) 2016; 283 Liang (10.1016/j.jconhyd.2018.07.004_bb0105) 2009; 48 Ahmad (10.1016/j.jconhyd.2018.07.004_bb0010) 2013; 47 Do (10.1016/j.jconhyd.2018.07.004_bb0055) 2010; 182 Mullaney (10.1016/j.jconhyd.2018.07.004_bb0125) 2009; vol. 2009–5086 Tsitonaki (10.1016/j.jconhyd.2018.07.004_bb0185) 2010; 40 Wei (10.1016/j.jconhyd.2018.07.004_bb0200) 2016; 285 Avetta (10.1016/j.jconhyd.2018.07.004_bb0020) 2015; 49 Ding (10.1016/j.jconhyd.2018.07.004_bb0050) 2017; 308 Lutze (10.1016/j.jconhyd.2018.07.004_bb0115) 2015; 72 Ike (10.1016/j.jconhyd.2018.07.004_bb0080) 2017; 540 Teel (10.1016/j.jconhyd.2018.07.004_bb0180) 2011; 196 Fang (10.1016/j.jconhyd.2018.07.004_bb0065) 2013; 47 Ike (10.1016/j.jconhyd.2018.07.004_bb0090) 2018; 6 Ahmad (10.1016/j.jconhyd.2018.07.004_bb0005) 2010; 115 Yan (10.1016/j.jconhyd.2018.07.004_bb0220) 2011; 186 Johnson (10.1016/j.jconhyd.2018.07.004_bb0095) 2008; 42 Babou-Kammoe (10.1016/j.jconhyd.2018.07.004_bb0025) 2012; 90 Zhang (10.1016/j.jconhyd.2018.07.004_bb0225) 2015; 45 Ocampo (10.1016/j.jconhyd.2018.07.004_bb0140) 2009 Stein (10.1016/j.jconhyd.2018.07.004_bb0170) 2016; 50 Liu (10.1016/j.jconhyd.2018.07.004_bb0110) 2016; 50 Sanciolo (10.1016/j.jconhyd.2018.07.004_bb0160) 2008; 72 Wacławek (10.1016/j.jconhyd.2018.07.004_bb0195) 2017; 330 Usman (10.1016/j.jconhyd.2018.07.004_bb0190) 2012; 87 Stirling (10.1016/j.jconhyd.2018.07.004_bb0175) 1965 Devi (10.1016/j.jconhyd.2018.07.004_bb0045) 2016; 571 Borggaard (10.1016/j.jconhyd.2018.07.004_bb0030) 1983; 31 Mahmed (10.1016/j.jconhyd.2018.07.004_bb0120) 2014; 353 Wu (10.1016/j.jconhyd.2018.07.004_bb0210) 2017; 322 Ahmed (10.1016/j.jconhyd.2018.07.004_bb0015) 2012; 197 Drumond Chequer (10.1016/j.jconhyd.2018.07.004_bb0060) 2013 Goya (10.1016/j.jconhyd.2018.07.004_bb0070) 2003; 94 Rodriguez (10.1016/j.jconhyd.2018.07.004_bb0155) 2014; 101 Cornell (10.1016/j.jconhyd.2018.07.004_bb0040) 2003 Neta (10.1016/j.jconhyd.2018.07.004_bb0130) 1977; 99 Xu (10.1016/j.jconhyd.2018.07.004_bb0215) 2010; 72 Ike (10.1016/j.jconhyd.2018.07.004_bb0085) 2018; 338 Rochester (10.1016/j.jconhyd.2018.07.004_bb0150) 1979; 75 Ike (10.1016/j.jconhyd.2018.07.004_bb0075) 2017; 5 Kirillov (10.1016/j.jconhyd.2018.07.004_bb0100) 2009; 122 Sing (10.1016/j.jconhyd.2018.07.004_bb0165) 1985; 57 |
References_xml | – volume: 285 start-page: 660 year: 2016 end-page: 670 ident: bb0200 article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water publication-title: Chem. Eng. J. – volume: 353 start-page: 15 year: 2014 end-page: 22 ident: bb0120 article-title: The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere publication-title: J. Magn. Magn. Mater. – volume: 283 start-page: 1357 year: 2016 end-page: 1365 ident: bb0035 article-title: Degradation of p-Nitrophenol by thermally activated persulfate in soil system publication-title: Chem. Eng. J. – volume: 338 start-page: 651 year: 2018 end-page: 669 ident: bb0085 article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes publication-title: Chem. Eng. J. – volume: 182 start-page: 933 year: 2010 end-page: 936 ident: bb0055 article-title: Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand publication-title: J. Hazard. Mater. – volume: 42 start-page: 9350 year: 2008 end-page: 9356 ident: bb0095 article-title: Persulfate persistence under thermal activation conditions publication-title: Environ. Sci. Technol. – year: 2013 ident: bb0060 article-title: Textile Dyes: Dyeing Process and Environmental Impact publication-title: Eco-Friendly Textile Dyeing and Finishing – volume: 101 start-page: 86 year: 2014 end-page: 92 ident: bb0155 article-title: Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI) publication-title: Chemosphere – volume: 186 start-page: 1398 year: 2011 end-page: 1404 ident: bb0220 article-title: Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate publication-title: J. Hazard. Mater. – year: 1965 ident: bb0175 article-title: Radicals in Organic Chemistry – volume: 40 start-page: 55 year: 2010 end-page: 91 ident: bb0185 article-title: In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 72 start-page: 349 year: 2015 end-page: 360 ident: bb0115 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. – volume: 330 start-page: 44 year: 2017 end-page: 62 ident: bb0195 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chem. Eng. J. – volume: 47 start-page: 5864 year: 2013 end-page: 5871 ident: bb0010 article-title: Mechanism of persulfate activation by phenols publication-title: Environ Sci Technol – volume: 49 start-page: 1043 year: 2015 end-page: 1050 ident: bb0020 article-title: Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions publication-title: Environ. Sci. Technol. – year: 2003 ident: bb0040 article-title: The Iron Oxides: Structures, Properties, Reactions, Occurences and Uses – volume: 99 start-page: 163 year: 1977 end-page: 164 ident: bb0130 article-title: Rate constants and mechanism of reaction of SO4*- with aromatic compounds publication-title: J. Am. Chem. Soc. – volume: 75 start-page: 1073 year: 1979 end-page: 1088 ident: bb0150 article-title: Infrared study of surface hydroxyl groups on haematite publication-title: J. Chem. Soc. Faraday Transactions 1 – volume: 87 start-page: 234 year: 2012 end-page: 240 ident: bb0190 article-title: Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils publication-title: Chemosphere – volume: 31 start-page: 230 year: 1983 end-page: 232 ident: bb0030 article-title: Effect of surface area and mineralogy of iron oxides on their surface charge and anion adsorption properties publication-title: Clay Clay Miner. – volume: 571 start-page: 643 year: 2016 end-page: 657 ident: bb0045 article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. – volume: 16 start-page: 375 year: 1981 end-page: 381 ident: bb0145 article-title: IR spectra of powder haematite: effects of particle size and shape publication-title: Clay Miner. – volume: 72 start-page: 105 year: 2010 end-page: 111 ident: bb0215 article-title: Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion publication-title: Sep. Purif. Technol. – volume: 122 start-page: 234 year: 2009 end-page: 239 ident: bb0100 article-title: Surface area and pore volume of a system of particles as a function of their size and packing publication-title: Microporous Mesoporous Mater. – volume: 322 ( start-page: 380 year: 2017 end-page: 386 ident: bb0210 article-title: Activation of persulfate by Fe(III) species: implications for 4-tert-butylphenol degradation publication-title: J. Hazard. Mater. – volume: 115 start-page: 34 year: 2010 end-page: 45 ident: bb0005 article-title: Persulfate activation by subsurface minerals publication-title: J. Contam. Hydrol. – volume: 50 start-page: 1955 year: 2016 end-page: 1963 ident: bb0170 article-title: Saline groundwater from coastal aquifers as a source for desalination publication-title: Environ. Sci. Technol. – volume: 6 start-page: 4345 year: 2018 end-page: 4353 ident: bb0090 article-title: Activation of persulfate at waste heat temperatures for humic acid degradation publication-title: ACS Sustain. Chem. Eng. – volume: vol. 2009–5086 start-page: 41 year: 2009 ident: bb0125 article-title: Chloride in groundwater and surface water in areas underlain by the glacial aquifer system, Northern United States publication-title: U.S. Geological Survey Scientific Investigations Report – year: 2009 ident: bb0140 article-title: Persulfate Activation by Organic Compounds, in: Department of Civil and Environmental Engineering – volume: 47 start-page: 4605 year: 2013 end-page: 4611 ident: bb0065 article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs publication-title: Environ. Sci. Technol. – volume: 5 start-page: 4014 year: 2017 end-page: 4023 ident: bb0075 article-title: Advanced oxidation of orange G using phosphonic acid stabilised zerovalent iron publication-title: J. Environ. Chem. Eng. – volume: 48 start-page: 5558 year: 2009 end-page: 5562 ident: bb0105 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Industrial Eng. Chem. – volume: 90 start-page: 26 year: 2012 end-page: 33 ident: bb0025 article-title: Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions publication-title: Can. J. Chem. Eng. – volume: 540 start-page: 200 year: 2017 end-page: 211 ident: bb0080 article-title: Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure PVDF mixed matrix membranes publication-title: J. Membr. Sci. – volume: 45 start-page: 1756 year: 2015 end-page: 1800 ident: bb0225 article-title: Sulfate radical and its application in decontamination technologies publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 308 start-page: 330 year: 2017 end-page: 339 ident: bb0050 article-title: Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway publication-title: Chem. Eng. J. – volume: 50 start-page: 890 year: 2016 end-page: 898 ident: bb0110 article-title: Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products publication-title: Environ. Sci. Technol. – volume: 72 start-page: 243 year: 2008 end-page: 249 ident: bb0160 article-title: Accelerated seeded precipitation pre-treatment of municipal wastewater to reduce scaling publication-title: Chemosphere – volume: 57 start-page: 603 year: 1985 end-page: 619 ident: bb0165 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity publication-title: Pure Appl. Chem. – volume: 197 start-page: 440 year: 2012 end-page: 447 ident: bb0015 article-title: Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination publication-title: Chem. Eng. J. – volume: 94 start-page: 3520 year: 2003 ident: bb0070 article-title: Static and dynamic magnetic properties of spherical magnetite nanoparticles publication-title: J. Appl. Phys. – year: 2003 ident: bb0205 article-title: Chloride in Drinking-water publication-title: Background Document for Development of WHO Guidelines for Drinking-water Quality – volume: 17 start-page: 1027 year: 1988 end-page: 1284 ident: bb0135 article-title: Rate constants for reactions of inorganic radicals in aqueous solution publication-title: Journal of Physical and Chemical Reference Data – volume: 196 start-page: 153 year: 2011 end-page: 159 ident: bb0180 article-title: Persulfate activation by naturally occurring trace minerals publication-title: J. Hazard. Mater. – volume: 330 start-page: 44 year: 2017 ident: 10.1016/j.jconhyd.2018.07.004_bb0195 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.132 – volume: 283 start-page: 1357 year: 2016 ident: 10.1016/j.jconhyd.2018.07.004_bb0035 article-title: Degradation of p-Nitrophenol by thermally activated persulfate in soil system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.107 – volume: 186 start-page: 1398 year: 2011 ident: 10.1016/j.jconhyd.2018.07.004_bb0220 article-title: Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.12.017 – volume: 72 start-page: 105 year: 2010 ident: 10.1016/j.jconhyd.2018.07.004_bb0215 article-title: Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2010.01.012 – volume: 49 start-page: 1043 year: 2015 ident: 10.1016/j.jconhyd.2018.07.004_bb0020 article-title: Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es503741d – volume: 16 start-page: 375 year: 1981 ident: 10.1016/j.jconhyd.2018.07.004_bb0145 article-title: IR spectra of powder haematite: effects of particle size and shape publication-title: Clay Miner. doi: 10.1180/claymin.1981.016.4.06 – volume: 322 ( start-page: 380 year: 2017 ident: 10.1016/j.jconhyd.2018.07.004_bb0210 article-title: Activation of persulfate by Fe(III) species: implications for 4-tert-butylphenol degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.10.013 – volume: 50 start-page: 1955 year: 2016 ident: 10.1016/j.jconhyd.2018.07.004_bb0170 article-title: Saline groundwater from coastal aquifers as a source for desalination publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03634 – year: 2009 ident: 10.1016/j.jconhyd.2018.07.004_bb0140 – volume: 47 start-page: 4605 year: 2013 ident: 10.1016/j.jconhyd.2018.07.004_bb0065 article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs publication-title: Environ. Sci. Technol. doi: 10.1021/es400262n – volume: 48 start-page: 5558 year: 2009 ident: 10.1016/j.jconhyd.2018.07.004_bb0105 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Industrial Eng. Chem. doi: 10.1021/ie9002848 – volume: 40 start-page: 55 year: 2010 ident: 10.1016/j.jconhyd.2018.07.004_bb0185 article-title: In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380802039303 – volume: 99 start-page: 163 year: 1977 ident: 10.1016/j.jconhyd.2018.07.004_bb0130 article-title: Rate constants and mechanism of reaction of SO4*- with aromatic compounds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00443a030 – volume: 101 start-page: 86 year: 2014 ident: 10.1016/j.jconhyd.2018.07.004_bb0155 article-title: Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.12.037 – volume: 182 start-page: 933 year: 2010 ident: 10.1016/j.jconhyd.2018.07.004_bb0055 article-title: Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of diesel-contaminated soil and sand publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.06.068 – year: 2003 ident: 10.1016/j.jconhyd.2018.07.004_bb0205 article-title: Chloride in Drinking-water – volume: 87 start-page: 234 year: 2012 ident: 10.1016/j.jconhyd.2018.07.004_bb0190 article-title: Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.01.001 – volume: 47 start-page: 5864 year: 2013 ident: 10.1016/j.jconhyd.2018.07.004_bb0010 article-title: Mechanism of persulfate activation by phenols publication-title: Environ Sci Technol doi: 10.1021/es400728c – volume: 353 start-page: 15 year: 2014 ident: 10.1016/j.jconhyd.2018.07.004_bb0120 article-title: The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2013.10.012 – year: 2003 ident: 10.1016/j.jconhyd.2018.07.004_bb0040 – volume: 197 start-page: 440 year: 2012 ident: 10.1016/j.jconhyd.2018.07.004_bb0015 article-title: Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.05.040 – volume: 45 start-page: 1756 year: 2015 ident: 10.1016/j.jconhyd.2018.07.004_bb0225 article-title: Sulfate radical and its application in decontamination technologies publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2014.970681 – volume: 308 start-page: 330 year: 2017 ident: 10.1016/j.jconhyd.2018.07.004_bb0050 article-title: Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: identification of radicals and degradation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.077 – volume: 540 start-page: 200 year: 2017 ident: 10.1016/j.jconhyd.2018.07.004_bb0080 article-title: Effects of dope sonication and hydrophilic polymer addition on the properties of low pressure PVDF mixed matrix membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.06.056 – volume: 285 start-page: 660 year: 2016 ident: 10.1016/j.jconhyd.2018.07.004_bb0200 article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.120 – volume: 75 start-page: 1073 year: 1979 ident: 10.1016/j.jconhyd.2018.07.004_bb0150 article-title: Infrared study of surface hydroxyl groups on haematite publication-title: J. Chem. Soc. Faraday Transactions 1 doi: 10.1039/f19797501073 – volume: 94 start-page: 3520 year: 2003 ident: 10.1016/j.jconhyd.2018.07.004_bb0070 article-title: Static and dynamic magnetic properties of spherical magnetite nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.1599959 – volume: 115 start-page: 34 year: 2010 ident: 10.1016/j.jconhyd.2018.07.004_bb0005 article-title: Persulfate activation by subsurface minerals publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2010.04.002 – volume: 571 start-page: 643 year: 2016 ident: 10.1016/j.jconhyd.2018.07.004_bb0045 article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.032 – volume: 122 start-page: 234 year: 2009 ident: 10.1016/j.jconhyd.2018.07.004_bb0100 article-title: Surface area and pore volume of a system of particles as a function of their size and packing publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2009.03.005 – volume: 50 start-page: 890 year: 2016 ident: 10.1016/j.jconhyd.2018.07.004_bb0110 article-title: Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04815 – volume: 5 start-page: 4014 year: 2017 ident: 10.1016/j.jconhyd.2018.07.004_bb0075 article-title: Advanced oxidation of orange G using phosphonic acid stabilised zerovalent iron publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.07.069 – year: 2013 ident: 10.1016/j.jconhyd.2018.07.004_bb0060 article-title: Textile Dyes: Dyeing Process and Environmental Impact – year: 1965 ident: 10.1016/j.jconhyd.2018.07.004_bb0175 – volume: 17 start-page: 1027 year: 1988 ident: 10.1016/j.jconhyd.2018.07.004_bb0135 article-title: Rate constants for reactions of inorganic radicals in aqueous solution publication-title: Journal of Physical and Chemical Reference Data doi: 10.1063/1.555808 – volume: 31 start-page: 230 year: 1983 ident: 10.1016/j.jconhyd.2018.07.004_bb0030 article-title: Effect of surface area and mineralogy of iron oxides on their surface charge and anion adsorption properties publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1983.0310309 – volume: 72 start-page: 349 year: 2015 ident: 10.1016/j.jconhyd.2018.07.004_bb0115 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. doi: 10.1016/j.watres.2014.10.006 – volume: 72 start-page: 243 year: 2008 ident: 10.1016/j.jconhyd.2018.07.004_bb0160 article-title: Accelerated seeded precipitation pre-treatment of municipal wastewater to reduce scaling publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.01.045 – volume: 196 start-page: 153 year: 2011 ident: 10.1016/j.jconhyd.2018.07.004_bb0180 article-title: Persulfate activation by naturally occurring trace minerals publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.09.011 – volume: vol. 2009–5086 start-page: 41 year: 2009 ident: 10.1016/j.jconhyd.2018.07.004_bb0125 article-title: Chloride in groundwater and surface water in areas underlain by the glacial aquifer system, Northern United States doi: 10.3133/sir20095086 – volume: 42 start-page: 9350 year: 2008 ident: 10.1016/j.jconhyd.2018.07.004_bb0095 article-title: Persulfate persistence under thermal activation conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es8019462 – volume: 57 start-page: 603 year: 1985 ident: 10.1016/j.jconhyd.2018.07.004_bb0165 article-title: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity publication-title: Pure Appl. Chem. doi: 10.1351/pac198557040603 – volume: 6 start-page: 4345 year: 2018 ident: 10.1016/j.jconhyd.2018.07.004_bb0090 article-title: Activation of persulfate at waste heat temperatures for humic acid degradation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04840 – volume: 90 start-page: 26 year: 2012 ident: 10.1016/j.jconhyd.2018.07.004_bb0025 article-title: Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.20673 – volume: 338 start-page: 651 year: 2018 ident: 10.1016/j.jconhyd.2018.07.004_bb0085 article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.034 |
SSID | ssj0007808 |
Score | 2.29676 |
Snippet | Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 73 |
SubjectTerms | Crystalline inhomogeneities hematite In-situ chemical oxidation iron Iron oxide maghemite magnetite Mineralogy oxidation Persulfate phosphates Surface area |
Title | Synthetic magnetite, maghemite, and haematite activation of persulphate for orange G degradation |
URI | https://dx.doi.org/10.1016/j.jconhyd.2018.07.004 https://www.ncbi.nlm.nih.gov/pubmed/30037489 https://www.proquest.com/docview/2075543930 https://www.proquest.com/docview/2116919538 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT-swDLdgHN7jgGA8YHwpSBzptixpmxwRAgYILoDErS9tMsYE3QTjsAt_O3abDpD4kLilVVJFTmz_0tg_A-wS5YnlYRzYtC0D6Top6hwaw9Sgv8bjBs8EZSOfX0Tda3l6E97MwEGVC0Nhld72lza9sNb-TctLszW6u2tdEo8IYkPy8QRkwlmY6wgdhTWY2z85615MDXKsisJ01J_AZOctkac1aA7w2NmfEGcoVwWNpy_Z9omL-gqCFq7oaBEWPIZk--U0l2DG5XWYf8csWIeVw7cENuzqNfipDn981fP-ZBn-X05yxH_4FfZgbnPKN3N71CQSAWqa3LK-KVhdx45RCkT5A5cNe2yEuJEi2xGrMgS-DLdSfuvYMbNEP1FWavoH10eHVwfdwFdcCDKh1ThQQqGAECVIZSUVo45FliHgCK3J2tqoUFvL0aVn1um4h8YgU-jiTZxqScEeQqxALR_mbg2YimUkjZZRigCTp8poRBaK99IeF5ELdQNkJeQk83TkVBXjPqnizgaJX5uE1iZp00W5bEBzOmxU8nH8NEBVK5h82FgJ-oyfhu5UK56g0tFNisnd8PkJO8UoFaFF-5s-nHiINDqUBqyW22U6Y-Fpf9Z_P7kN-EtPZSziJtTGj89uC_HRON2G2eYL3_Za8ArFhg2y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIADgvEazyBxpNtK0jU5IgSM5wWQuIW0yRgTdBOMwy78duw2ZSDxkLhFbVJFTmx_aezPADtEeWLDKA5s0hCBcHsJ6hwaw8Sgv8bjRphyyka-uGy2bsTpbXQ7BgdlLgyFVXrbX9j03Fr7J3UvzXr_4aF-RTwiiA3JxxOQicZhUkQ8pri-2tsoziOWeVk66k1Qcm-UxlPv1rp46OwMiTE0lDmJpy_Y9o2D-gmA5o7oaA5mPYJk-8Uk52HMZRWY-cQrWIGlw1H6Gnb1-vtSgSlf87wzXIC7q2GG6A-_wp7MfUbZZm6XmkQhQE2TWdYxOafrwDFKgCh-37Jem_URNVJcOyJVhrCX4UbK7h07ZpbIJ4o6TYtwc3R4fdAKfL2FIOVKDgLJJQoIMYKQVlAp6pinKcKNyJq0oYyMlLUhOvTUOhW30RSkEh28iRMlKNSD8yWYyHqZWwEmY9EURolmgvAyTKRRiCtk2E7aIW-6SFVBlELWqScjp5oYj7qMOutqvzaa1kY36JpcVKH2MaxfsHH8NUCWK6i_bCuNHuOvodvlimtUObpHMZnrvb5gpxilwhVv_NInJBYihe6kCsvFdvmYMfekP6v_n9wWTLWuL871-cnl2RpM05siKnEdJgbPr24DkdIg2cw14R0PEg59 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+magnetite%2C+maghemite%2C+and+haematite+activation+of+persulphate+for+orange+G+degradation&rft.jtitle=Journal+of+contaminant+hydrology&rft.au=Ike%2C+Ikechukwu+A&rft.au=Duke%2C+Mikel&rft.date=2018-08-01&rft.eissn=1873-6009&rft.volume=215&rft.spage=73&rft_id=info:doi/10.1016%2Fj.jconhyd.2018.07.004&rft_id=info%3Apmid%2F30037489&rft.externalDocID=30037489 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7722&client=summon |