Artificial Bee Colony Algorithm for Single-Trial Electroencephalogram Analysis

In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise...

Full description

Saved in:
Bibliographic Details
Published inClinical EEG and neuroscience Vol. 46; no. 2; pp. 119 - 125
Main Authors Hsu, Wei-Yen, Hu, Ya-Ping
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.04.2015
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain–computer interface applications.
AbstractList In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications.
In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications.In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications.
In this study, researchers propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phaselocking value, are then extracted for subsequent classification. Next, artificial bee colony algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications.
Author Hu, Ya-Ping
Hsu, Wei-Yen
Author_xml – sequence: 1
  givenname: Wei-Yen
  surname: Hsu
  fullname: Hsu, Wei-Yen
– sequence: 2
  givenname: Ya-Ping
  surname: Hu
  fullname: Hu, Ya-Ping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25392006$$D View this record in MEDLINE/PubMed
BookMark eNqF0bFu2zAQBmCicFE7bvdOgYAuWZQeSZMUR9dwmwBGO9SdBYo6OTQo0SHlwW8fCU6AwkCSicN9_-GOd0UmXeiQkK8UbilV6jsVAkDoBV0IXhRQfCAzRqXOBQM2IbOxnI_1KblKaQ_AJeOLT2TKBNcMQM7I72XsXeOsMz77gZitgg_dKVv6XYiuf2izJsTsr-t2HvNtHNXao-1jwM7i4cH4sIumzZad8afk0mfysTE-4Zfnd07-_VxvV3f55s-v-9Vyk1uuiz5X1qLSdV1ZYNAIVg2zU6s1xUrKWnJaN0ht1RhWMTQKpBbKANfCVMAoGD4nN-e-hxgej5j6snXJovemw3BMJVVABTA2LPoulYpzpQpOB_rtgu7DMQ6rjUrDgnMm5KCun9WxarEuD9G1Jp7Kl08dgDwDG0NKEZvSut70LnR9NM6XFMrxeuXl9YYgXARfer8Ryc-RZHb437iv-SdAI6WZ
CitedBy_id crossref_primary_10_1007_s00521_021_05779_0
crossref_primary_10_1007_s40815_016_0205_x
crossref_primary_10_3233_BME_201081
crossref_primary_10_1088_1741_2552_14_1_011001
Cites_doi 10.1142/S0129065712002979
10.1177/1550059412445051
10.1142/S0129065711002870
10.1016/j.jneumeth.2010.03.030
10.1016/S1388-2457(99)00141-8
10.1006/nimg.2002.1212
10.1142/S012906571350007X
10.1142/S0129065713500263
10.1002/0471221317
10.1007/3-540-45356-3_79
10.1177/1550059412463660
10.1007/s10898-007-9149-x
10.1177/1550059413477090
10.4067/S0716-97602003000100006
10.1016/S0013-4694(97)00022-2
10.1177/155005941104200107
10.1145/130385.130401
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.1016/S0925-2312(00)00286-1
10.1016/1350-4533(95)00024-0
10.1017/CBO9780511755743
10.1177/155005941004100111
10.1016/S0013-4694(97)00066-7
10.1177/1550059412456094
ContentType Journal Article
Copyright EEG and Clinical Neuroscience Society (ECNS) 2014
EEG and Clinical Neuroscience Society (ECNS) 2014.
Copyright SAGE PUBLICATIONS, INC. 2015
Copyright_xml – notice: EEG and Clinical Neuroscience Society (ECNS) 2014
– notice: EEG and Clinical Neuroscience Society (ECNS) 2014.
– notice: Copyright SAGE PUBLICATIONS, INC. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7RV
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1177/1550059414538808
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Docstoc
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest One Academic Middle East (New)
CrossRef

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2169-5202
EndPage 125
ExternalDocumentID 3723085351
25392006
10_1177_1550059414538808
10.1177_1550059414538808
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-TM
.2E
.2J
.2N
01A
0R~
29B
4.4
53G
54M
5GY
7RV
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACMV
AACTG
AADUE
AAEWN
AAGLT
AAGMC
AAJPV
AAKGS
AAQDB
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
ABAWP
ABCCA
ABCJG
ABEIX
ABFWQ
ABIDT
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPNF
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ACABN
ACARO
ACDSZ
ACDXX
ACFEJ
ACGFS
ACGZU
ACIWK
ACJER
ACJTF
ACLFY
ACLZU
ACOFE
ACOXC
ACPRK
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADNMO
ADNON
ADRRZ
ADVBO
ADYCS
ADZYD
ADZZY
AECGH
AEDTQ
AEKYL
AENEX
AEONT
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKRA
AFKRG
AFMOU
AFQAA
AFRAH
AFUIA
AFWMB
AGHKR
AGKLV
AGNHF
AGPXR
AGQPQ
AGWFA
AHDMH
AHHFK
AHMBA
AJUZI
AJXAJ
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8M
BBRGL
BDDNI
BENPR
BKEYQ
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
BYIEH
CCPQU
CDWPY
CFDXU
DB0
DC-
DC.
DF0
DO-
DOPDO
DV7
EBS
EJD
EMOBN
EX3
F5P
FEDTE
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HMCUK
HVGLF
HZ~
J8X
K.F
M1P
NAPCQ
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
ROL
RXW
S01
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
UKHRP
WOW
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
AAYXX
AJGYC
CITATION
3V.
AADTT
ACSBE
ACTQU
AEUIJ
AIOMO
ALTZF
CGR
CUY
CVF
DD0
ECM
EIF
M4V
NPM
4T-
7TK
7XB
8FK
AAPII
AJVBE
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c398t-7cce79ddbc020f52b8081c991eb66d631dfe1cbfa2b2ea706957a0395ab0210a3
IEDL.DBID 7X7
ISSN 1550-0594
IngestDate Thu Jul 10 18:18:13 EDT 2025
Fri Jul 11 09:17:24 EDT 2025
Fri Jul 25 05:17:26 EDT 2025
Wed Feb 19 01:52:59 EST 2025
Thu Apr 24 23:09:00 EDT 2025
Tue Jul 01 05:30:30 EDT 2025
Tue Jun 17 22:31:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords artificial bee colony (ABC)
brain–computer interface (BCI)
independent component analysis (ICA)
support vector machine (SVM)
autoregressive (AR) model
phase-locking value
electroencephalogram (EEG)
Language English
License EEG and Clinical Neuroscience Society (ECNS) 2014.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-7cce79ddbc020f52b8081c991eb66d631dfe1cbfa2b2ea706957a0395ab0210a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 25392006
PQID 1690433256
PQPubID 39840
PageCount 7
ParticipantIDs proquest_miscellaneous_1701502225
proquest_miscellaneous_1673377831
proquest_journals_1690433256
pubmed_primary_25392006
crossref_citationtrail_10_1177_1550059414538808
crossref_primary_10_1177_1550059414538808
sage_journals_10_1177_1550059414538808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Wheaton
PublicationTitle Clinical EEG and neuroscience
PublicationTitleAlternate Clin EEG Neurosci
PublicationYear 2015
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Hsu 2013; 23
Hsu 2010; 189
Hsu 2013; 44
McFarland, McCane, David, Wolpaw 1997; 103
Hsu 2012; 43
Parra, Alvino, Tang 2002; 7
Hsu 2012; 22
Jasper 1958; 10
Lachaux, Rodriguez, Martinerie, Varela 1999; 8
Hsu 2014; 16
Karaboga, Basturk 2007; 39
Boser, Guyon, Vapnik 1992
Le Van Quyen 2003; 36
Pfurtscheller, Lopes da Silva 1999; 110
Nicolaou, Georgiou 2011; 42
Pardey, Roberts, Tarassenko 1995; 18
Nunez, Srinivasan, Westdorp 1997; 103
Hsu 2011; 21
Gao, Zheng, Wang 2010; 41
Tang, Pearlmutter, Zibulevsky, Carter 2000; 32-33
bibr17-1550059414538808
bibr21-1550059414538808
bibr20-1550059414538808
bibr26-1550059414538808
bibr4-1550059414538808
bibr8-1550059414538808
bibr13-1550059414538808
bibr5-1550059414538808
bibr22-1550059414538808
bibr18-1550059414538808
bibr9-1550059414538808
bibr14-1550059414538808
bibr10-1550059414538808
Jasper H (bibr23-1550059414538808) 1958; 10
Hsu WY (bibr25-1550059414538808) 2014; 16
bibr1-1550059414538808
bibr19-1550059414538808
bibr2-1550059414538808
bibr15-1550059414538808
bibr6-1550059414538808
bibr11-1550059414538808
bibr16-1550059414538808
bibr24-1550059414538808
bibr3-1550059414538808
bibr7-1550059414538808
bibr12-1550059414538808
References_xml – volume: 32-33
  start-page: 1115
  year: 2000
  end-page: 1120
  article-title: Blind source separation of multichannel neuromagnetic responses
  publication-title: Neurocomputing
– volume: 103
  start-page: 386
  year: 1997
  end-page: 394
  article-title: Spatial filter selection for EEG-based communication
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 43
  start-page: 87
  year: 2012
  end-page: 96
  article-title: Enhanced active segment selection for single-trial EEG classification
  publication-title: Clin EEG Neurosci
– volume: 36
  start-page: 67
  year: 2003
  end-page: 88
  article-title: Disentangling the dynamic core: a research program for a neurodynamics at the large-scale
  publication-title: Biol Res
– start-page: 144
  year: 1992
  end-page: 152
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the 5th Annual Workshop on Computational Learning Theory
– volume: 18
  start-page: 2
  year: 1995
  end-page: 11
  article-title: A review of parametric modeling techniques for EEG analysis
  publication-title: Med Eng Phys
– volume: 16
  start-page: 111
  year: 2014
  end-page: 120
  article-title: Motor imagery electroencephalogram analysis using adaptive neural-fuzzy classification
  publication-title: Int J Fuzzy Syst
– volume: 21
  start-page: 335
  year: 2011
  end-page: 350
  article-title: Continuous EEG signal analysis for asynchronous BCI application
  publication-title: Int J Neural Syst
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J Global Optim
– volume: 44
  start-page: 257
  year: 2013
  end-page: 264
  article-title: Embedded Grey relation theory in Hopfield neural network: application to motor imagery EEG recognition
  publication-title: Clin EEG Neurosci
– volume: 41
  start-page: 53
  year: 2010
  end-page: 59
  article-title: Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis
  publication-title: Clin EEG Neurosci
– volume: 44
  start-page: 31
  year: 2013
  end-page: 38
  article-title: Embedded prediction in feature extraction: application to single-trial EEG discrimination
  publication-title: Clin EEG Neurosci
– volume: 103
  start-page: 499
  year: 1997
  end-page: 515
  article-title: EEG coherency I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin Neurophysiol
– volume: 23
  start-page: 1350007
  year: 2013
  article-title: Single-trial motor imagery classification using asymmetry ratio, phase relation, wavelet-based fractal, and their selected combination
  publication-title: Int J Neural Syst
– volume: 7
  start-page: 223
  year: 2002
  end-page: 230
  article-title: Linear spatial integration for single trial detection in encephalography
  publication-title: Neuroimage
– volume: 22
  start-page: 51
  year: 2012
  end-page: 62
  article-title: Application of competitive Hopfield neural network to brain-computer interface systems
  publication-title: Int J Neural Syst
– volume: 44
  start-page: 105
  year: 2013
  end-page: 111
  article-title: Independent component analysis and multiresolution asymmetry ratio for brain computer interface
  publication-title: Clin EEG Neurosci
– volume: 8
  start-page: 194
  year: 1999
  end-page: 208
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum Brain Mapp
– volume: 10
  start-page: 371
  year: 1958
  end-page: 375
  article-title: The ten-twenty electrode system of the international federation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 23
  start-page: 1350026
  year: 2013
  article-title: Application of quantum-behaved particle swarm optimization to motor imagery EEG classification
  publication-title: Int J Neural Syst
– volume: 42
  start-page: 24
  year: 2011
  end-page: 28
  article-title: The use of permutation entropy to characterize sleep electroencephalograms
  publication-title: Clin EEG Neurosci
– volume: 189
  start-page: 295
  year: 2010
  end-page: 302
  article-title: EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features
  publication-title: J Neurosci Methods
– ident: bibr18-1550059414538808
  doi: 10.1142/S0129065712002979
– ident: bibr3-1550059414538808
  doi: 10.1177/1550059412445051
– ident: bibr5-1550059414538808
  doi: 10.1142/S0129065711002870
– ident: bibr11-1550059414538808
  doi: 10.1016/j.jneumeth.2010.03.030
– ident: bibr4-1550059414538808
  doi: 10.1016/S1388-2457(99)00141-8
– ident: bibr2-1550059414538808
  doi: 10.1006/nimg.2002.1212
– ident: bibr14-1550059414538808
  doi: 10.1142/S012906571350007X
– ident: bibr20-1550059414538808
  doi: 10.1142/S0129065713500263
– ident: bibr10-1550059414538808
  doi: 10.1002/0471221317
– volume: 10
  start-page: 371
  year: 1958
  ident: bibr23-1550059414538808
  publication-title: Electroencephalogr Clin Neurophysiol
– ident: bibr26-1550059414538808
  doi: 10.1007/3-540-45356-3_79
– ident: bibr7-1550059414538808
  doi: 10.1177/1550059412463660
– ident: bibr21-1550059414538808
  doi: 10.1007/s10898-007-9149-x
– ident: bibr1-1550059414538808
  doi: 10.1177/1550059413477090
– ident: bibr19-1550059414538808
  doi: 10.4067/S0716-97602003000100006
– volume: 16
  start-page: 111
  year: 2014
  ident: bibr25-1550059414538808
  publication-title: Int J Fuzzy Syst
– ident: bibr24-1550059414538808
  doi: 10.1016/S0013-4694(97)00022-2
– ident: bibr6-1550059414538808
  doi: 10.1177/155005941104200107
– ident: bibr22-1550059414538808
  doi: 10.1145/130385.130401
– ident: bibr15-1550059414538808
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– ident: bibr9-1550059414538808
  doi: 10.1016/S0925-2312(00)00286-1
– ident: bibr12-1550059414538808
  doi: 10.1016/1350-4533(95)00024-0
– ident: bibr16-1550059414538808
  doi: 10.1017/CBO9780511755743
– ident: bibr17-1550059414538808
  doi: 10.1177/155005941004100111
– ident: bibr13-1550059414538808
  doi: 10.1016/S0013-4694(97)00066-7
– ident: bibr8-1550059414538808
  doi: 10.1177/1550059412456094
SSID ssj0036234
Score 2.0551805
Snippet In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial...
In this study, researchers propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial...
SourceID proquest
pubmed
crossref
sage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms Algorithms
Animals
Bees
Biomimetics - methods
Brain
Brain - physiology
Brain Mapping - methods
Brain-Computer Interfaces
Electroencephalography
Electroencephalography - methods
Evoked Potentials - physiology
Female
Humans
Male
Neurosciences
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Statistics as Topic
Title Artificial Bee Colony Algorithm for Single-Trial Electroencephalogram Analysis
URI https://journals.sagepub.com/doi/full/10.1177/1550059414538808
https://www.ncbi.nlm.nih.gov/pubmed/25392006
https://www.proquest.com/docview/1690433256
https://www.proquest.com/docview/1673377831
https://www.proquest.com/docview/1701502225
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4UEuOL8bcokpkYEx8W2Lqu25MBAyEmEqOQ8Eba7iYPMFDgwf_e3tYN0chr22Vtr3f92rt-R8gtlfjaMoht19Pa5CmP2YJrxRPgQRiEPKIiDZDt-d2B9zRkQ3PhtjBhlblNTA11NFN4R15Hdw5ybTH_Yf5hY9Yo9K6aFBq7pIzUZRjSxYfFgUvb5syrrFG4jbwkazdlHcuwyPEY0qEEm9vSH6y5EeeVbj2dQ3JgMKPVzIR8RHYgOSZ7z8YrfkJ6WJMxQVgtAOtRG7Tky2pO3vUAluOppYGp9ab3qAnYfVxwVjtLfoNaPR-LlLZ6auX8JKdk0Gn3H7u2yZNgKxoGS5srBTyMIqk09ouZKzGbhtLAD6TvRz51ohgcJWPhShe0JPyQcdGgIRMST3yCnpFSMkvgAl9wUxmCDJD23YNYCcYjl0kvBB8ka_gVUs-naaQMiTjmspiMHMMb_ntiK-S--GKeEWhsaVvNZ35kVGkxWgu-Qm6Kaq0E6NkQCcxW2IZTynlAnS1tOF7u4PG2Qs4zqRYdcpmGiQ0c3h2K-cfP_-np5faeXpF9DaxYFuFTJaXl5wquNXhZylq6Qmuk3Gr3Xl6_AZ2y5xE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xIm28oP2EbmwzEpu0h6hNbMfJwzQBKyoDqmkrEm_Bdi7wUNIOiib-qf2Nu2uSMjatb7zaTuKc786fffZ3AFvS8W3LpAgiRdakvNKBNWR4FhWmSWpyaWcHZAdx_1h9OdEnS_CruQvDxyobnzhz1PnY8x55h8M5zLWl40-THwFnjeLoapNCo1KLA7z5SUu2q4_7n2l830XRXm-42w_qrAKBl2kyDYz3aNI8d56QUqEjx7knPMEkdHGcxzLMCwy9K2zkIqR-x6k2titTbR2vj6yk9z6AZSVpKdOC5Z3e4Ou3xvfTbFDFsQn3B8yEchsY7XAZF4VKMwFLcnci_Afd3jlZNpvs9h7Dao1SxXalVk9gCcun8PCojsM_gwHXVNwTYgdR7JILLW_E9uiMRDY9vxAEhcV3mhVHGAxZxUWvSrfDfmRybmdE2ReiYUR5Dsf3IsMX0CrHJa7znXHpUnQJE80rLLzVJo-0UynG6HQ3bkOnEVPma9pyzp4xysKaqfxvwbbhw_yJSUXZsaDtRiP5rDbeq-xW1dqwOa8ms-NYii1xfM1tjJTGJDJc0MbwdhIvqNuwVo3qvEORJmDa5d97z8P8x8f_09OXi3v6Fh71h0eH2eH-4OAVrBCs09X5og1oTS-v8TVBp6l7U-urgNP7NpHfOk0khw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9wwDLcYSGgviDE2DhjLpDFpD9Vdm6ZpHxDi6wQDTpMG0r11SerCw9E74BDiX-Ovw-7HMTbt3nht0jZxbMeOnZ8BvkrLty3j3AtCkqbQhcozmgTPYIhJnOhMmjJBthcdnoc_-qo_A4_NXRhOq2x0Yqmos6HjM_I2h3MYa0tF7bxOi_i5390eXXtcQYojrU05jYpFjvHhnty3262jfVrrzSDoHpztHXp1hQHPySQee9o51EmWWUdWU64Cy3UoHJlMaKMoi6Sf5eg7m5vABkhziBKlTUcmylj2lYyk776BOS2VzzKm-xNnj_aFKqJNHoDHmCjPIdI2P-NHfqgYiiV-uSX-Y-e-yDErt73uIizU9qrYqRjsHcxgsQTzp3VE_j30uKVCoRC7iGKPlGnxIHYGF0Sw8eWVIKNY_KL9cYDeGTO7OKgK77BGGV2aEjL7SjTYKMtw_ioU_ACzxbDAFb49Lm2CNmbI-RBzZ5TOAmXDBCO0qhO1oN2QKXU1gDnX0Rikfo1Z_jdhW_B98saoAu-Y0ne9oXxai_Ft-sx0LfgyaSYB5KiKKXB4x320lFrH0p_SR_PBErvWLfhYrepkQIEiE7XD0_vGy_zHz_8z0tXpI_0M8yQY6clR73gN3pJ9p6pEo3WYHd_c4SeyocZ2o2RWAb9fWzqeAPtkJ1c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Bee+Colony+Algorithm+for+Single-Trial+Electroencephalogram+Analysis&rft.jtitle=Clinical+EEG+and+neuroscience&rft.au=Hsu%2C+Wei-Yen&rft.au=Hu%2C+Ya-Ping&rft.date=2015-04-01&rft.issn=1550-0594&rft.eissn=2169-5202&rft.volume=46&rft.issue=2&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1177%2F1550059414538808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1550059414538808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-0594&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-0594&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-0594&client=summon