Artificial Bee Colony Algorithm for Single-Trial Electroencephalogram Analysis
In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise...
Saved in:
Published in | Clinical EEG and neuroscience Vol. 46; no. 2; pp. 119 - 125 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.04.2015
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain–computer interface applications. |
---|---|
AbstractList | In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications.In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. In this study, researchers propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phaselocking value, are then extracted for subsequent classification. Next, artificial bee colony algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. |
Author | Hu, Ya-Ping Hsu, Wei-Yen |
Author_xml | – sequence: 1 givenname: Wei-Yen surname: Hsu fullname: Hsu, Wei-Yen – sequence: 2 givenname: Ya-Ping surname: Hu fullname: Hu, Ya-Ping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25392006$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0bFu2zAQBmCicFE7bvdOgYAuWZQeSZMUR9dwmwBGO9SdBYo6OTQo0SHlwW8fCU6AwkCSicN9_-GOd0UmXeiQkK8UbilV6jsVAkDoBV0IXhRQfCAzRqXOBQM2IbOxnI_1KblKaQ_AJeOLT2TKBNcMQM7I72XsXeOsMz77gZitgg_dKVv6XYiuf2izJsTsr-t2HvNtHNXao-1jwM7i4cH4sIumzZad8afk0mfysTE-4Zfnd07-_VxvV3f55s-v-9Vyk1uuiz5X1qLSdV1ZYNAIVg2zU6s1xUrKWnJaN0ht1RhWMTQKpBbKANfCVMAoGD4nN-e-hxgej5j6snXJovemw3BMJVVABTA2LPoulYpzpQpOB_rtgu7DMQ6rjUrDgnMm5KCun9WxarEuD9G1Jp7Kl08dgDwDG0NKEZvSut70LnR9NM6XFMrxeuXl9YYgXARfer8Ryc-RZHb437iv-SdAI6WZ |
CitedBy_id | crossref_primary_10_1007_s00521_021_05779_0 crossref_primary_10_1007_s40815_016_0205_x crossref_primary_10_3233_BME_201081 crossref_primary_10_1088_1741_2552_14_1_011001 |
Cites_doi | 10.1142/S0129065712002979 10.1177/1550059412445051 10.1142/S0129065711002870 10.1016/j.jneumeth.2010.03.030 10.1016/S1388-2457(99)00141-8 10.1006/nimg.2002.1212 10.1142/S012906571350007X 10.1142/S0129065713500263 10.1002/0471221317 10.1007/3-540-45356-3_79 10.1177/1550059412463660 10.1007/s10898-007-9149-x 10.1177/1550059413477090 10.4067/S0716-97602003000100006 10.1016/S0013-4694(97)00022-2 10.1177/155005941104200107 10.1145/130385.130401 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.1016/S0925-2312(00)00286-1 10.1016/1350-4533(95)00024-0 10.1017/CBO9780511755743 10.1177/155005941004100111 10.1016/S0013-4694(97)00066-7 10.1177/1550059412456094 |
ContentType | Journal Article |
Copyright | EEG and Clinical Neuroscience Society (ECNS) 2014 EEG and Clinical Neuroscience Society (ECNS) 2014. Copyright SAGE PUBLICATIONS, INC. 2015 |
Copyright_xml | – notice: EEG and Clinical Neuroscience Society (ECNS) 2014 – notice: EEG and Clinical Neuroscience Society (ECNS) 2014. – notice: Copyright SAGE PUBLICATIONS, INC. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 7RV 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1177/1550059414538808 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Docstoc ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) CrossRef Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2169-5202 |
EndPage | 125 |
ExternalDocumentID | 3723085351 25392006 10_1177_1550059414538808 10.1177_1550059414538808 |
Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -TM .2E .2J .2N 01A 0R~ 29B 4.4 53G 54M 5GY 7RV 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AABMB AABOD AACMV AACTG AADUE AAEWN AAGLT AAGMC AAJPV AAKGS AAQDB AAQXI AARDL AARIX AATAA AATBZ AAUAS ABAWP ABCCA ABCJG ABEIX ABFWQ ABIDT ABJNI ABJZC ABKRH ABLUO ABNCE ABPNF ABQXT ABRHV ABUJY ABUWG ABVFX ACABN ACARO ACDSZ ACDXX ACFEJ ACGFS ACGZU ACIWK ACJER ACJTF ACLFY ACLZU ACOFE ACOXC ACPRK ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADNMO ADNON ADRRZ ADVBO ADYCS ADZYD ADZZY AECGH AEDTQ AEKYL AENEX AEONT AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKRA AFKRG AFMOU AFQAA AFRAH AFUIA AFWMB AGHKR AGKLV AGNHF AGPXR AGQPQ AGWFA AHDMH AHHFK AHMBA AJUZI AJXAJ ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN B8M BBRGL BDDNI BENPR BKEYQ BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD BYIEH CCPQU CDWPY CFDXU DB0 DC- DC. DF0 DO- DOPDO DV7 EBS EJD EMOBN EX3 F5P FEDTE FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HMCUK HVGLF HZ~ J8X K.F M1P NAPCQ O9- OVD P.B P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X ROL RXW S01 SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI UKHRP WOW ZONMY ZPPRI ZRKOI ZSSAH ZXP AAYXX AJGYC CITATION 3V. AADTT ACSBE ACTQU AEUIJ AIOMO ALTZF CGR CUY CVF DD0 ECM EIF M4V NPM 4T- 7TK 7XB 8FK AAPII AJVBE K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-c398t-7cce79ddbc020f52b8081c991eb66d631dfe1cbfa2b2ea706957a0395ab0210a3 |
IEDL.DBID | 7X7 |
ISSN | 1550-0594 |
IngestDate | Thu Jul 10 18:18:13 EDT 2025 Fri Jul 11 09:17:24 EDT 2025 Fri Jul 25 05:17:26 EDT 2025 Wed Feb 19 01:52:59 EST 2025 Thu Apr 24 23:09:00 EDT 2025 Tue Jul 01 05:30:30 EDT 2025 Tue Jun 17 22:31:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | artificial bee colony (ABC) brain–computer interface (BCI) independent component analysis (ICA) support vector machine (SVM) autoregressive (AR) model phase-locking value electroencephalogram (EEG) |
Language | English |
License | EEG and Clinical Neuroscience Society (ECNS) 2014. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-7cce79ddbc020f52b8081c991eb66d631dfe1cbfa2b2ea706957a0395ab0210a3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 25392006 |
PQID | 1690433256 |
PQPubID | 39840 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1701502225 proquest_miscellaneous_1673377831 proquest_journals_1690433256 pubmed_primary_25392006 crossref_citationtrail_10_1177_1550059414538808 crossref_primary_10_1177_1550059414538808 sage_journals_10_1177_1550059414538808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Wheaton |
PublicationTitle | Clinical EEG and neuroscience |
PublicationTitleAlternate | Clin EEG Neurosci |
PublicationYear | 2015 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Hsu 2013; 23 Hsu 2010; 189 Hsu 2013; 44 McFarland, McCane, David, Wolpaw 1997; 103 Hsu 2012; 43 Parra, Alvino, Tang 2002; 7 Hsu 2012; 22 Jasper 1958; 10 Lachaux, Rodriguez, Martinerie, Varela 1999; 8 Hsu 2014; 16 Karaboga, Basturk 2007; 39 Boser, Guyon, Vapnik 1992 Le Van Quyen 2003; 36 Pfurtscheller, Lopes da Silva 1999; 110 Nicolaou, Georgiou 2011; 42 Pardey, Roberts, Tarassenko 1995; 18 Nunez, Srinivasan, Westdorp 1997; 103 Hsu 2011; 21 Gao, Zheng, Wang 2010; 41 Tang, Pearlmutter, Zibulevsky, Carter 2000; 32-33 bibr17-1550059414538808 bibr21-1550059414538808 bibr20-1550059414538808 bibr26-1550059414538808 bibr4-1550059414538808 bibr8-1550059414538808 bibr13-1550059414538808 bibr5-1550059414538808 bibr22-1550059414538808 bibr18-1550059414538808 bibr9-1550059414538808 bibr14-1550059414538808 bibr10-1550059414538808 Jasper H (bibr23-1550059414538808) 1958; 10 Hsu WY (bibr25-1550059414538808) 2014; 16 bibr1-1550059414538808 bibr19-1550059414538808 bibr2-1550059414538808 bibr15-1550059414538808 bibr6-1550059414538808 bibr11-1550059414538808 bibr16-1550059414538808 bibr24-1550059414538808 bibr3-1550059414538808 bibr7-1550059414538808 bibr12-1550059414538808 |
References_xml | – volume: 32-33 start-page: 1115 year: 2000 end-page: 1120 article-title: Blind source separation of multichannel neuromagnetic responses publication-title: Neurocomputing – volume: 103 start-page: 386 year: 1997 end-page: 394 article-title: Spatial filter selection for EEG-based communication publication-title: Electroencephalogr Clin Neurophysiol – volume: 43 start-page: 87 year: 2012 end-page: 96 article-title: Enhanced active segment selection for single-trial EEG classification publication-title: Clin EEG Neurosci – volume: 36 start-page: 67 year: 2003 end-page: 88 article-title: Disentangling the dynamic core: a research program for a neurodynamics at the large-scale publication-title: Biol Res – start-page: 144 year: 1992 end-page: 152 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the 5th Annual Workshop on Computational Learning Theory – volume: 18 start-page: 2 year: 1995 end-page: 11 article-title: A review of parametric modeling techniques for EEG analysis publication-title: Med Eng Phys – volume: 16 start-page: 111 year: 2014 end-page: 120 article-title: Motor imagery electroencephalogram analysis using adaptive neural-fuzzy classification publication-title: Int J Fuzzy Syst – volume: 21 start-page: 335 year: 2011 end-page: 350 article-title: Continuous EEG signal analysis for asynchronous BCI application publication-title: Int J Neural Syst – volume: 39 start-page: 459 year: 2007 end-page: 471 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J Global Optim – volume: 44 start-page: 257 year: 2013 end-page: 264 article-title: Embedded Grey relation theory in Hopfield neural network: application to motor imagery EEG recognition publication-title: Clin EEG Neurosci – volume: 41 start-page: 53 year: 2010 end-page: 59 article-title: Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis publication-title: Clin EEG Neurosci – volume: 44 start-page: 31 year: 2013 end-page: 38 article-title: Embedded prediction in feature extraction: application to single-trial EEG discrimination publication-title: Clin EEG Neurosci – volume: 103 start-page: 499 year: 1997 end-page: 515 article-title: EEG coherency I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales publication-title: Electroencephalogr Clin Neurophysiol – volume: 110 start-page: 1842 year: 1999 end-page: 1857 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin Neurophysiol – volume: 23 start-page: 1350007 year: 2013 article-title: Single-trial motor imagery classification using asymmetry ratio, phase relation, wavelet-based fractal, and their selected combination publication-title: Int J Neural Syst – volume: 7 start-page: 223 year: 2002 end-page: 230 article-title: Linear spatial integration for single trial detection in encephalography publication-title: Neuroimage – volume: 22 start-page: 51 year: 2012 end-page: 62 article-title: Application of competitive Hopfield neural network to brain-computer interface systems publication-title: Int J Neural Syst – volume: 44 start-page: 105 year: 2013 end-page: 111 article-title: Independent component analysis and multiresolution asymmetry ratio for brain computer interface publication-title: Clin EEG Neurosci – volume: 8 start-page: 194 year: 1999 end-page: 208 article-title: Measuring phase synchrony in brain signals publication-title: Hum Brain Mapp – volume: 10 start-page: 371 year: 1958 end-page: 375 article-title: The ten-twenty electrode system of the international federation publication-title: Electroencephalogr Clin Neurophysiol – volume: 23 start-page: 1350026 year: 2013 article-title: Application of quantum-behaved particle swarm optimization to motor imagery EEG classification publication-title: Int J Neural Syst – volume: 42 start-page: 24 year: 2011 end-page: 28 article-title: The use of permutation entropy to characterize sleep electroencephalograms publication-title: Clin EEG Neurosci – volume: 189 start-page: 295 year: 2010 end-page: 302 article-title: EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features publication-title: J Neurosci Methods – ident: bibr18-1550059414538808 doi: 10.1142/S0129065712002979 – ident: bibr3-1550059414538808 doi: 10.1177/1550059412445051 – ident: bibr5-1550059414538808 doi: 10.1142/S0129065711002870 – ident: bibr11-1550059414538808 doi: 10.1016/j.jneumeth.2010.03.030 – ident: bibr4-1550059414538808 doi: 10.1016/S1388-2457(99)00141-8 – ident: bibr2-1550059414538808 doi: 10.1006/nimg.2002.1212 – ident: bibr14-1550059414538808 doi: 10.1142/S012906571350007X – ident: bibr20-1550059414538808 doi: 10.1142/S0129065713500263 – ident: bibr10-1550059414538808 doi: 10.1002/0471221317 – volume: 10 start-page: 371 year: 1958 ident: bibr23-1550059414538808 publication-title: Electroencephalogr Clin Neurophysiol – ident: bibr26-1550059414538808 doi: 10.1007/3-540-45356-3_79 – ident: bibr7-1550059414538808 doi: 10.1177/1550059412463660 – ident: bibr21-1550059414538808 doi: 10.1007/s10898-007-9149-x – ident: bibr1-1550059414538808 doi: 10.1177/1550059413477090 – ident: bibr19-1550059414538808 doi: 10.4067/S0716-97602003000100006 – volume: 16 start-page: 111 year: 2014 ident: bibr25-1550059414538808 publication-title: Int J Fuzzy Syst – ident: bibr24-1550059414538808 doi: 10.1016/S0013-4694(97)00022-2 – ident: bibr6-1550059414538808 doi: 10.1177/155005941104200107 – ident: bibr22-1550059414538808 doi: 10.1145/130385.130401 – ident: bibr15-1550059414538808 doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – ident: bibr9-1550059414538808 doi: 10.1016/S0925-2312(00)00286-1 – ident: bibr12-1550059414538808 doi: 10.1016/1350-4533(95)00024-0 – ident: bibr16-1550059414538808 doi: 10.1017/CBO9780511755743 – ident: bibr17-1550059414538808 doi: 10.1177/155005941004100111 – ident: bibr13-1550059414538808 doi: 10.1016/S0013-4694(97)00066-7 – ident: bibr8-1550059414538808 doi: 10.1177/1550059412456094 |
SSID | ssj0036234 |
Score | 2.0551805 |
Snippet | In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial... In this study, researchers propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial... |
SourceID | proquest pubmed crossref sage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | Algorithms Animals Bees Biomimetics - methods Brain Brain - physiology Brain Mapping - methods Brain-Computer Interfaces Electroencephalography Electroencephalography - methods Evoked Potentials - physiology Female Humans Male Neurosciences Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Statistics as Topic |
Title | Artificial Bee Colony Algorithm for Single-Trial Electroencephalogram Analysis |
URI | https://journals.sagepub.com/doi/full/10.1177/1550059414538808 https://www.ncbi.nlm.nih.gov/pubmed/25392006 https://www.proquest.com/docview/1690433256 https://www.proquest.com/docview/1673377831 https://www.proquest.com/docview/1701502225 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4UEuOL8bcokpkYEx8W2Lqu25MBAyEmEqOQ8Eba7iYPMFDgwf_e3tYN0chr22Vtr3f92rt-R8gtlfjaMoht19Pa5CmP2YJrxRPgQRiEPKIiDZDt-d2B9zRkQ3PhtjBhlblNTA11NFN4R15Hdw5ybTH_Yf5hY9Yo9K6aFBq7pIzUZRjSxYfFgUvb5syrrFG4jbwkazdlHcuwyPEY0qEEm9vSH6y5EeeVbj2dQ3JgMKPVzIR8RHYgOSZ7z8YrfkJ6WJMxQVgtAOtRG7Tky2pO3vUAluOppYGp9ab3qAnYfVxwVjtLfoNaPR-LlLZ6auX8JKdk0Gn3H7u2yZNgKxoGS5srBTyMIqk09ouZKzGbhtLAD6TvRz51ohgcJWPhShe0JPyQcdGgIRMST3yCnpFSMkvgAl9wUxmCDJD23YNYCcYjl0kvBB8ka_gVUs-naaQMiTjmspiMHMMb_ntiK-S--GKeEWhsaVvNZ35kVGkxWgu-Qm6Kaq0E6NkQCcxW2IZTynlAnS1tOF7u4PG2Qs4zqRYdcpmGiQ0c3h2K-cfP_-np5faeXpF9DaxYFuFTJaXl5wquNXhZylq6Qmuk3Gr3Xl6_AZ2y5xE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xIm28oP2EbmwzEpu0h6hNbMfJwzQBKyoDqmkrEm_Bdi7wUNIOiib-qf2Nu2uSMjatb7zaTuKc786fffZ3AFvS8W3LpAgiRdakvNKBNWR4FhWmSWpyaWcHZAdx_1h9OdEnS_CruQvDxyobnzhz1PnY8x55h8M5zLWl40-THwFnjeLoapNCo1KLA7z5SUu2q4_7n2l830XRXm-42w_qrAKBl2kyDYz3aNI8d56QUqEjx7knPMEkdHGcxzLMCwy9K2zkIqR-x6k2titTbR2vj6yk9z6AZSVpKdOC5Z3e4Ou3xvfTbFDFsQn3B8yEchsY7XAZF4VKMwFLcnci_Afd3jlZNpvs9h7Dao1SxXalVk9gCcun8PCojsM_gwHXVNwTYgdR7JILLW_E9uiMRDY9vxAEhcV3mhVHGAxZxUWvSrfDfmRybmdE2ReiYUR5Dsf3IsMX0CrHJa7znXHpUnQJE80rLLzVJo-0UynG6HQ3bkOnEVPma9pyzp4xysKaqfxvwbbhw_yJSUXZsaDtRiP5rDbeq-xW1dqwOa8ms-NYii1xfM1tjJTGJDJc0MbwdhIvqNuwVo3qvEORJmDa5d97z8P8x8f_09OXi3v6Fh71h0eH2eH-4OAVrBCs09X5og1oTS-v8TVBp6l7U-urgNP7NpHfOk0khw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9wwDLcYSGgviDE2DhjLpDFpD9Vdm6ZpHxDi6wQDTpMG0r11SerCw9E74BDiX-Ovw-7HMTbt3nht0jZxbMeOnZ8BvkrLty3j3AtCkqbQhcozmgTPYIhJnOhMmjJBthcdnoc_-qo_A4_NXRhOq2x0Yqmos6HjM_I2h3MYa0tF7bxOi_i5390eXXtcQYojrU05jYpFjvHhnty3262jfVrrzSDoHpztHXp1hQHPySQee9o51EmWWUdWU64Cy3UoHJlMaKMoi6Sf5eg7m5vABkhziBKlTUcmylj2lYyk776BOS2VzzKm-xNnj_aFKqJNHoDHmCjPIdI2P-NHfqgYiiV-uSX-Y-e-yDErt73uIizU9qrYqRjsHcxgsQTzp3VE_j30uKVCoRC7iGKPlGnxIHYGF0Sw8eWVIKNY_KL9cYDeGTO7OKgK77BGGV2aEjL7SjTYKMtw_ioU_ACzxbDAFb49Lm2CNmbI-RBzZ5TOAmXDBCO0qhO1oN2QKXU1gDnX0Rikfo1Z_jdhW_B98saoAu-Y0ne9oXxai_Ft-sx0LfgyaSYB5KiKKXB4x320lFrH0p_SR_PBErvWLfhYrepkQIEiE7XD0_vGy_zHz_8z0tXpI_0M8yQY6clR73gN3pJ9p6pEo3WYHd_c4SeyocZ2o2RWAb9fWzqeAPtkJ1c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Bee+Colony+Algorithm+for+Single-Trial+Electroencephalogram+Analysis&rft.jtitle=Clinical+EEG+and+neuroscience&rft.au=Hsu%2C+Wei-Yen&rft.au=Hu%2C+Ya-Ping&rft.date=2015-04-01&rft.issn=1550-0594&rft.eissn=2169-5202&rft.volume=46&rft.issue=2&rft.spage=119&rft.epage=125&rft_id=info:doi/10.1177%2F1550059414538808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1550059414538808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-0594&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-0594&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-0594&client=summon |