Selective degradation of organic micropollutants by activation of peroxymonosulfate by Se@NC: Role of Se doping and nonradical pathway mechanism

In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic studies show that PMS would be adsorbed onto the surface of Se@NC-900 to form an active complex (Se@NC-900/PMS*), and the active Se@NC-900/P...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 452; p. 131202
Main Authors Chai, Yandong, Dai, Hongling, Zhan, Peng, Liu, Zhaochen, Huang, Zhen, Tan, Chaoqun, Hu, Fengping, Xu, Xing, Peng, Xiaoming
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic studies show that PMS would be adsorbed onto the surface of Se@NC-900 to form an active complex (Se@NC-900/PMS*), and the active Se@NC-900/PMS* could oxidize phenol by the rapid decomposition of PMS. Specifically, electrons are extracted by Se@NC-900/PMS* and then transferred to the surface of Se@NC-900, which can trigger the degradation of phenol. Notably, it is found that the local charge redistribution caused by the doping of Se can activate the catalytic potential of the intrinsically inert carbon skeleton through density flooding theory (DFT) calculations. The XLogP, ΔE, VIP, and ELUMO (Se@NC/PMS)-HOMO (pollutants) and degradation rate constants of different micropollutants were correlated well linearly. This indicates that the Se@NC-900/PMS system has a great selectivity for the degradation of pollutants. Overall, these findings not only illustrate the role of Se in tuning the electronic structure of Se@NC-x to enhance the activation of PMS, but also bridge the gap in our knowledge about the physicochemical properties and degradation performance of Se@NC catalysts. [Display omitted] •Se@NC-x was used as catalysts to activate the PMS for micropollutants degradation.•Se@NC-x shows its universality and stability in the PMS-based oxidation process.•The Se@NC-x /PMS system catalytic mechanisms were elucidated.•The relation of parameters and degradation rate constants are correlated linearly.
AbstractList In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic studies show that PMS would be adsorbed onto the surface of Se@NC-900 to form an active complex (Se@NC-900/PMS*), and the active Se@NC-900/PMS* could oxidize phenol by the rapid decomposition of PMS. Specifically, electrons are extracted by Se@NC-900/PMS* and then transferred to the surface of Se@NC-900, which can trigger the degradation of phenol. Notably, it is found that the local charge redistribution caused by the doping of Se can activate the catalytic potential of the intrinsically inert carbon skeleton through density flooding theory (DFT) calculations. The XLogP, ΔE, VIP, and ELUMO (Se@NC/PMS)-HOMO (pollutants) and degradation rate constants of different micropollutants were correlated well linearly. This indicates that the Se@NC-900/PMS system has a great selectivity for the degradation of pollutants. Overall, these findings not only illustrate the role of Se in tuning the electronic structure of Se@NC-x to enhance the activation of PMS, but also bridge the gap in our knowledge about the physicochemical properties and degradation performance of Se@NC catalysts. [Display omitted] •Se@NC-x was used as catalysts to activate the PMS for micropollutants degradation.•Se@NC-x shows its universality and stability in the PMS-based oxidation process.•The Se@NC-x /PMS system catalytic mechanisms were elucidated.•The relation of parameters and degradation rate constants are correlated linearly.
In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic studies show that PMS would be adsorbed onto the surface of Se@NC-900 to form an active complex (Se@NC-900/PMS*), and the active Se@NC-900/PMS* could oxidize phenol by the rapid decomposition of PMS. Specifically, electrons are extracted by Se@NC-900/PMS* and then transferred to the surface of Se@NC-900, which can trigger the degradation of phenol. Notably, it is found that the local charge redistribution caused by the doping of Se can activate the catalytic potential of the intrinsically inert carbon skeleton through density flooding theory (DFT) calculations. The XLogP, ΔE, VIP, and E and degradation rate constants of different micropollutants were correlated well linearly. This indicates that the Se@NC-900/PMS system has a great selectivity for the degradation of pollutants. Overall, these findings not only illustrate the role of Se in tuning the electronic structure of Se@NC-x to enhance the activation of PMS, but also bridge the gap in our knowledge about the physicochemical properties and degradation performance of Se@NC catalysts.
In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic studies show that PMS would be adsorbed onto the surface of Se@NC-900 to form an active complex (Se@NC-900/PMS*), and the active Se@NC-900/PMS* could oxidize phenol by the rapid decomposition of PMS. Specifically, electrons are extracted by Se@NC-900/PMS* and then transferred to the surface of Se@NC-900, which can trigger the degradation of phenol. Notably, it is found that the local charge redistribution caused by the doping of Se can activate the catalytic potential of the intrinsically inert carbon skeleton through density flooding theory (DFT) calculations. The XLogP, ΔE, VIP, and ELUMO (Se@NC/PMS)-HOMO (pollutants) and degradation rate constants of different micropollutants were correlated well linearly. This indicates that the Se@NC-900/PMS system has a great selectivity for the degradation of pollutants. Overall, these findings not only illustrate the role of Se in tuning the electronic structure of Se@NC-x to enhance the activation of PMS, but also bridge the gap in our knowledge about the physicochemical properties and degradation performance of Se@NC catalysts.In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic studies show that PMS would be adsorbed onto the surface of Se@NC-900 to form an active complex (Se@NC-900/PMS*), and the active Se@NC-900/PMS* could oxidize phenol by the rapid decomposition of PMS. Specifically, electrons are extracted by Se@NC-900/PMS* and then transferred to the surface of Se@NC-900, which can trigger the degradation of phenol. Notably, it is found that the local charge redistribution caused by the doping of Se can activate the catalytic potential of the intrinsically inert carbon skeleton through density flooding theory (DFT) calculations. The XLogP, ΔE, VIP, and ELUMO (Se@NC/PMS)-HOMO (pollutants) and degradation rate constants of different micropollutants were correlated well linearly. This indicates that the Se@NC-900/PMS system has a great selectivity for the degradation of pollutants. Overall, these findings not only illustrate the role of Se in tuning the electronic structure of Se@NC-x to enhance the activation of PMS, but also bridge the gap in our knowledge about the physicochemical properties and degradation performance of Se@NC catalysts.
In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic studies show that PMS would be adsorbed onto the surface of Se@NC-900 to form an active complex (Se@NC-900/PMS*), and the active Se@NC-900/PMS* could oxidize phenol by the rapid decomposition of PMS. Specifically, electrons are extracted by Se@NC-900/PMS* and then transferred to the surface of Se@NC-900, which can trigger the degradation of phenol. Notably, it is found that the local charge redistribution caused by the doping of Se can activate the catalytic potential of the intrinsically inert carbon skeleton through density flooding theory (DFT) calculations. The XLogP, ΔE, VIP, and ELUMO ₍Sₑ@NC/PMS₎₋HOMO ₍ₚₒₗₗᵤₜₐₙₜₛ₎ and degradation rate constants of different micropollutants were correlated well linearly. This indicates that the Se@NC-900/PMS system has a great selectivity for the degradation of pollutants. Overall, these findings not only illustrate the role of Se in tuning the electronic structure of Se@NC-x to enhance the activation of PMS, but also bridge the gap in our knowledge about the physicochemical properties and degradation performance of Se@NC catalysts.
ArticleNumber 131202
Author Zhan, Peng
Peng, Xiaoming
Dai, Hongling
Xu, Xing
Chai, Yandong
Hu, Fengping
Liu, Zhaochen
Huang, Zhen
Tan, Chaoqun
Author_xml – sequence: 1
  givenname: Yandong
  surname: Chai
  fullname: Chai, Yandong
  organization: School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
– sequence: 2
  givenname: Hongling
  surname: Dai
  fullname: Dai, Hongling
  organization: School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
– sequence: 3
  givenname: Peng
  surname: Zhan
  fullname: Zhan, Peng
  organization: Jiangxi Water Resources Institute, Nanchang 330013, PR China
– sequence: 4
  givenname: Zhaochen
  surname: Liu
  fullname: Liu, Zhaochen
  organization: School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
– sequence: 5
  givenname: Zhen
  surname: Huang
  fullname: Huang, Zhen
  organization: School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
– sequence: 6
  givenname: Chaoqun
  surname: Tan
  fullname: Tan, Chaoqun
  organization: Department of Municipal Engineering, Southeast University, Nanjing 210000, PR China
– sequence: 7
  givenname: Fengping
  surname: Hu
  fullname: Hu, Fengping
  organization: School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
– sequence: 8
  givenname: Xing
  surname: Xu
  fullname: Xu, Xing
  organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
– sequence: 9
  givenname: Xiaoming
  surname: Peng
  fullname: Peng, Xiaoming
  email: pengxiaoming70@ecjtu.edu.cn
  organization: School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36934627$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2P0zAQhi20iO0u_ASQj1xS7DhxbDiwqOJLWoFE4WxNnUnrKomD7SyUX8FPJqFlD1x6msvzvqOZ54pc9L5HQp5ytuSMyxf75X4HvzpIy5zlYskFn-YDsuCqEpkQQl6QBROsyITSxSW5inHPGONVWTwil0JqUci8WpDfa2zRJneHtMZtgBqS8z31DfVhC72ztHM2-MG37ZigT5FuDhTmwD04YPA_D53vfRzbBhLOyBpvPq1e0i--xZlZT_V-cP2WQl_T6ZRpk7PQ0gHS7gccaId2N62L3WPysIE24pPTvCbf3r39uvqQ3X5-_3H15jazQquUVZoziRqZFLIQtZS6BN1IKEspaqtR5mWlwCpoVK2qvGQN8A0CWmFVXRa5uCbPj71D8N9HjMl0LlpsW-jRj9GInEmuCpHrs2heKVVprfO59dkJHTcd1mYIroNwMP8ePgHlEZieGmPA5h7hzMxizd6cxJpZrDmKnXKv_stZl_4qSAFcezb9-pjG6aN3DoOJ1mFvsXZhsm9q7840_AG1NcPu
CitedBy_id crossref_primary_10_1016_j_jece_2025_115686
crossref_primary_10_1016_j_scitotenv_2024_175402
crossref_primary_10_1016_j_seppur_2023_123938
crossref_primary_10_1016_j_watres_2024_122621
crossref_primary_10_1073_pnas_2313387121
crossref_primary_10_1002_adfm_202417441
crossref_primary_10_1016_j_apsusc_2025_163005
crossref_primary_10_1016_j_jece_2023_110797
crossref_primary_10_1016_j_seppur_2024_128023
crossref_primary_10_1016_j_seppur_2025_131845
crossref_primary_10_1016_j_jhazmat_2023_131790
crossref_primary_10_1016_j_seppur_2023_124586
crossref_primary_10_1016_j_cej_2024_154548
crossref_primary_10_1016_j_seppur_2024_129916
crossref_primary_10_1016_j_jcis_2024_06_019
crossref_primary_10_1039_D4EN00476K
crossref_primary_10_1039_D3GC04804G
crossref_primary_10_1016_j_envres_2023_116745
crossref_primary_10_1016_j_jclepro_2024_141365
crossref_primary_10_1016_j_jclepro_2024_141000
crossref_primary_10_1016_j_seppur_2024_128381
crossref_primary_10_1016_j_seppur_2024_127681
crossref_primary_10_1016_j_envres_2025_121013
crossref_primary_10_1016_j_jclepro_2024_143392
crossref_primary_10_1016_j_jhazmat_2023_132413
crossref_primary_10_1016_j_jcis_2025_137428
crossref_primary_10_1016_j_jcis_2024_07_185
crossref_primary_10_1016_j_cej_2024_148633
crossref_primary_10_1016_j_jclepro_2023_139150
crossref_primary_10_1016_j_jece_2023_110257
crossref_primary_10_1016_j_jece_2024_113723
crossref_primary_10_1016_j_cej_2024_157235
crossref_primary_10_1002_smll_202408538
crossref_primary_10_1016_j_seppur_2024_128646
crossref_primary_10_1016_j_jcis_2024_07_195
crossref_primary_10_1016_j_jclepro_2023_137883
crossref_primary_10_1016_j_envpol_2024_124683
crossref_primary_10_1016_j_envres_2023_117773
crossref_primary_10_1016_j_jece_2024_115215
crossref_primary_10_1016_j_cej_2024_151932
crossref_primary_10_1016_j_jcis_2024_08_203
crossref_primary_10_1016_j_apsusc_2024_161976
crossref_primary_10_1016_j_cej_2024_154631
crossref_primary_10_1016_j_seppur_2023_125980
crossref_primary_10_1016_j_fuel_2024_132285
crossref_primary_10_1016_j_seppur_2023_124933
crossref_primary_10_1016_j_apcatb_2025_125054
crossref_primary_10_1016_j_ccr_2024_215749
crossref_primary_10_1016_j_jwpe_2025_107109
crossref_primary_10_1016_j_jece_2023_110079
crossref_primary_10_1016_j_jece_2024_113867
crossref_primary_10_1016_j_jcis_2025_01_226
crossref_primary_10_1016_j_jhazmat_2025_137971
crossref_primary_10_1016_j_psep_2024_09_120
crossref_primary_10_1016_j_envres_2025_120912
crossref_primary_10_1002_smll_202409803
crossref_primary_10_1016_j_apcata_2024_119560
crossref_primary_10_1016_j_cej_2024_149269
crossref_primary_10_1016_j_seppur_2024_126962
crossref_primary_10_3390_catal15020121
crossref_primary_10_1039_D4NJ00572D
crossref_primary_10_1051_e3sconf_202452702010
crossref_primary_10_1016_j_seppur_2023_125409
crossref_primary_10_1016_j_apsusc_2023_159236
crossref_primary_10_1016_j_chemosphere_2024_143250
crossref_primary_10_1016_j_seppur_2024_127243
crossref_primary_10_1016_j_cej_2024_152037
crossref_primary_10_1021_acs_inorgchem_4c03730
crossref_primary_10_1016_j_seppur_2024_127405
crossref_primary_10_1016_j_seppur_2024_127404
crossref_primary_10_1016_j_jhazmat_2024_133924
crossref_primary_10_1016_j_apcatb_2023_123289
crossref_primary_10_1016_j_jece_2024_113243
crossref_primary_10_1016_j_seppur_2023_124607
crossref_primary_10_1007_s11356_024_35167_9
crossref_primary_10_1016_j_scitotenv_2024_177326
crossref_primary_10_1016_j_apcatb_2025_125193
crossref_primary_10_1016_j_jclepro_2023_140384
crossref_primary_10_1016_j_jwpe_2023_104057
crossref_primary_10_1016_j_jallcom_2023_170991
crossref_primary_10_1016_j_cej_2024_154168
crossref_primary_10_1016_j_dwt_2024_100190
crossref_primary_10_1016_j_snb_2023_134779
crossref_primary_10_1016_j_apcatb_2024_124385
crossref_primary_10_1016_j_seppur_2024_128729
crossref_primary_10_1016_j_cej_2023_145440
crossref_primary_10_1016_j_apcatb_2024_123695
crossref_primary_10_1016_j_seppur_2024_127912
crossref_primary_10_1016_j_envres_2024_120249
crossref_primary_10_1016_j_watres_2024_122675
crossref_primary_10_1016_j_apsusc_2025_162643
crossref_primary_10_1016_j_seppur_2025_131972
crossref_primary_10_1016_j_cej_2023_147050
crossref_primary_10_1016_j_seppur_2024_128313
crossref_primary_10_1016_j_jhazmat_2023_132316
crossref_primary_10_1016_j_watres_2025_123264
crossref_primary_10_1016_j_jallcom_2024_173771
Cites_doi 10.1016/j.cej.2020.127921
10.1002/anie.202207268
10.1016/j.cclet.2023.108278
10.1016/j.chemosphere.2022.136149
10.1016/j.apcatb.2022.122245
10.1016/j.cclet.2023.108272
10.1021/acs.est.2c01261
10.1016/j.resconrec.2021.106003
10.1021/acs.est.1c01618
10.1016/j.apcatb.2019.118302
10.1021/acsnano.2c05558
10.1021/acs.est.1c05980
10.1016/j.jece.2022.108264
10.1016/j.jhazmat.2021.125294
10.1002/adfm.201906194
10.1021/acs.est.1c07469
10.1016/j.apcatb.2022.121206
10.1016/j.watres.2021.116856
10.1016/j.watres.2020.115504
10.1016/j.apcatb.2023.122558
10.1016/j.apcatb.2021.120926
10.1021/acs.est.2c01781
10.1016/j.apcatb.2022.122188
10.1016/j.jhazmat.2023.130971
10.1021/acsami.1c09107
10.1016/j.cej.2021.130803
10.1016/j.watres.2022.118797
10.1016/j.watres.2018.10.087
10.1021/acs.est.1c08562
10.1021/acs.est.2c01968
10.1016/j.apcatb.2021.120832
10.1016/j.jcis.2021.10.150
10.1039/C9EE01899A
10.1016/j.watres.2022.118288
10.1021/acscatal.0c02638
10.1038/s41467-020-19180-3
10.1016/j.apcatb.2020.119033
10.1016/j.jhazmat.2022.130549
10.1016/j.cej.2021.132245
10.1016/j.watres.2021.117288
10.1002/anie.202212542
10.1016/j.apcatb.2022.121891
10.1016/j.scitotenv.2020.140492
10.1016/j.scitotenv.2021.151502
10.1016/j.seppur.2021.118511
10.1016/j.apcatb.2022.121304
10.1016/j.cej.2021.129583
10.1039/D0CS01032D
10.1016/j.seppur.2022.120525
10.1016/j.jcis.2021.08.027
10.1016/j.watres.2020.116061
10.1007/s12274-022-4371-x
10.1016/j.watres.2022.118243
10.1016/j.pmatsci.2020.100654
10.1016/j.watres.2022.118275
10.1021/acsestwater.1c00495
10.1021/acs.est.9b01361
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2023.131202
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 36934627
10_1016_j_jhazmat_2023_131202
S0304389423004843
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SSH
T9H
TAE
VH1
WUQ
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-79106e9e063643d6695a9f6a5563dc9e62578ac8af8d87250fa1beaec3c8d5423
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Wed Jul 02 03:22:02 EDT 2025
Fri Jul 11 03:19:07 EDT 2025
Wed Feb 19 02:23:59 EST 2025
Tue Jul 01 01:05:57 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Fri Feb 23 02:35:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Open-circuit potential
Se
Electronic structure
Degradation performance
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-79106e9e063643d6695a9f6a5563dc9e62578ac8af8d87250fa1beaec3c8d5423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36934627
PQID 2788799922
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3206184329
proquest_miscellaneous_2788799922
pubmed_primary_36934627
crossref_primary_10_1016_j_jhazmat_2023_131202
crossref_citationtrail_10_1016_j_jhazmat_2023_131202
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2023_131202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-15
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Min, Zhang, Xie, Si, Chai (bib52) 2021; 413
Shang, Xu, Gao, Wang, Duan (bib36) 2021; 50
Tuan, Liu, Kwon, Thanh, Munagapati, Wen (bib39) 2022; 606
Kim, Xu, Xin, Earnshaw, Ashok, Kim (bib13) 2021; 13
Gao, Zhou, Pang, Jiang, Shen, Song (bib8) 2021; 193
Zhang, Wu, Li, Chen, Hou (bib53) 2023; 449
Liang, Duan, Xu, Chen, Zhang, Zhao (bib18) 2021; 55
Gan, Lu, Li, Liu, Chen, Tong (bib7) 2023; 445
Peng, Wu, Zhao, Wang, Dai, Xu (bib31) 2022; 427
Fagan, Villamena, Zweier, Weavers (bib6) 2022; 56
Sun, Zhang, Yang, Ma, Mei, Zhang (bib38) 2022; 307
Mahato, Tabassian, Nguyen, Oh, Nam, Hwang (bib27) 2020; 11
Yin, Wu, Shang, Chen, Wu, Wang (bib48) 2023; 329
Dai, Zhou, Wang (bib3) 2021; 417
Li, He, Lu, Yan, Duan, Chen (bib14) 2022; 177
Li, Ye, Xie, Li, Lv, Wang (bib17) 2022; 10
Ren, Yin, Zhang, Lv, Zhang (bib34) 2021; 420
Wei, Miao, Ge, Lang, Yu, Zhang (bib44) 2022; 56
Wang, Cheng, Jin, He, Zhang, Ren (bib41) 2022; 61
Zhen, Sun, Qie, Zhang, Liu, Lu (bib57) 2023; 324
Nguyen, Ali Delbari, Mousavi, Sabahi Namini, Ghasemi, Van Le (bib28) 2021
Qiao, Hwang, Li, Wang, Samarakoon, Karakalos (bib33) 2019; 12
Pan, Liu, Sun, Xu, Liu (bib29) 2020; 10
Peng, Yang, Hu, Tan, Pan, Dai (bib32) 2022; 287
Wan, Hu, Zhou (bib40) 2022; 816
Liang, Chen, Li, Liu, Yan, Wang (bib19) 2022; 608
Huang, Zhang, Wang, Tang, Sun (bib11) 2022; 303
Zhao, Lu, Fan, Luan, Gu, Lou (bib56) 2022; 61
Wang, Zhang, Yin, Liu, Liu, Yang (bib42) 2022; 319
Liu, He, Li, Zhao (bib20) 2023; 451
Yu, Feng, Tang, Pang, Zeng, Lu (bib49) 2020; 111
Luo, Zhang, Zhou, Xiong, Huang, Peng (bib25) 2022; 215
Xu, Chu, Yu, Li, Wang, Li (bib45) 2022; 16
Liu, Pan, Li, Wang, Zhang, Song (bib22) 2022; 2
Head, Gerhard, Inglis, Nunez Garcia, Chowdhury, Reynolds (bib10) 2020; 183
Du, Zhang, Shang, Wang, Li, Yue (bib5) 2020; 262
Kan, Zhang, Xu, Wei, Shang (bib12) 2023
Li, Wang (bib16) 2022; 15
Song, Wang, Wang, Wang, Li, Zhang (bib37) 2019; 53
Chen, Su, Ding, Yang, Zuo, He (bib2) 2022; 308
Luo, Li, Wang, Zhang, Nasir Khan, Sun (bib26) 2019; 148
Yang, Hou, Zhang, Gao, Li, Shang (bib46) 2022; 56
Zhang, Zhang, Zhang, Zheng, Mo, Han (bib51) 2020; 30
Zhu, Fang, Liu, Dong, Song, Shen (bib58) 2022; 56
Zhang, Huang, Ma, Pei, Luo, Ke (bib54) 2021; 201
Zhang, Li, Akiyama, Bingham, Kubuki (bib50) 2022; 56
Guo, Long, Huang, Yu, Wang (bib9) 2022; 215
Liu, Lai, Zhou, Zhang, Chen, Yan (bib21) 2022; 221
Liu, Liu, Qin, Ye, Wei, Miao (bib23) 2022; 56
Cai, Deng, Ling, Ye, Sun, Deng (bib1) 2022; 215
Shang, Kan, Xu (bib35) 2023
Li, Li, Yu, Zhao, Yan, Chen (bib15) 2020; 741
Liu, Wang, Wu, Wang, Li, Fan (bib24) 2022; 310
Dou, Cheng, Lu, Tian, Xu, He (bib4) 2022; 301
Zhao, Liu, Hammouda, Doshi, Guijarro, Min (bib55) 2020; 272
Peng, Wu, Zhao, Wang, Dai, Wei (bib30) 2022; 429
Yang, Long, Huang, Liu (bib47) 2023; 324
Wang, Qiu, Pang, Gao, Zhou, Cao (bib43) 2020; 172
Li (10.1016/j.jhazmat.2023.131202_bib15) 2020; 741
Li (10.1016/j.jhazmat.2023.131202_bib14) 2022; 177
Du (10.1016/j.jhazmat.2023.131202_bib5) 2020; 262
Peng (10.1016/j.jhazmat.2023.131202_bib31) 2022; 427
Sun (10.1016/j.jhazmat.2023.131202_bib38) 2022; 307
Tuan (10.1016/j.jhazmat.2023.131202_bib39) 2022; 606
Zhang (10.1016/j.jhazmat.2023.131202_bib53) 2023; 449
Zhu (10.1016/j.jhazmat.2023.131202_bib58) 2022; 56
Kim (10.1016/j.jhazmat.2023.131202_bib13) 2021; 13
Mahato (10.1016/j.jhazmat.2023.131202_bib27) 2020; 11
Zhao (10.1016/j.jhazmat.2023.131202_bib56) 2022; 61
Chen (10.1016/j.jhazmat.2023.131202_bib2) 2022; 308
Peng (10.1016/j.jhazmat.2023.131202_bib32) 2022; 287
Liu (10.1016/j.jhazmat.2023.131202_bib21) 2022; 221
Liu (10.1016/j.jhazmat.2023.131202_bib22) 2022; 2
Zhao (10.1016/j.jhazmat.2023.131202_bib55) 2020; 272
Yin (10.1016/j.jhazmat.2023.131202_bib48) 2023; 329
Fagan (10.1016/j.jhazmat.2023.131202_bib6) 2022; 56
Zhang (10.1016/j.jhazmat.2023.131202_bib51) 2020; 30
Nguyen (10.1016/j.jhazmat.2023.131202_bib28) 2021
Pan (10.1016/j.jhazmat.2023.131202_bib29) 2020; 10
Liu (10.1016/j.jhazmat.2023.131202_bib20) 2023; 451
Wan (10.1016/j.jhazmat.2023.131202_bib40) 2022; 816
Peng (10.1016/j.jhazmat.2023.131202_bib30) 2022; 429
Luo (10.1016/j.jhazmat.2023.131202_bib26) 2019; 148
Zhen (10.1016/j.jhazmat.2023.131202_bib57) 2023; 324
Liu (10.1016/j.jhazmat.2023.131202_bib23) 2022; 56
Dai (10.1016/j.jhazmat.2023.131202_bib3) 2021; 417
Yang (10.1016/j.jhazmat.2023.131202_bib46) 2022; 56
Li (10.1016/j.jhazmat.2023.131202_bib17) 2022; 10
Luo (10.1016/j.jhazmat.2023.131202_bib25) 2022; 215
Wei (10.1016/j.jhazmat.2023.131202_bib44) 2022; 56
Zhang (10.1016/j.jhazmat.2023.131202_bib50) 2022; 56
Wang (10.1016/j.jhazmat.2023.131202_bib42) 2022; 319
Ren (10.1016/j.jhazmat.2023.131202_bib34) 2021; 420
Gan (10.1016/j.jhazmat.2023.131202_bib7) 2023; 445
Shang (10.1016/j.jhazmat.2023.131202_bib36) 2021; 50
Yang (10.1016/j.jhazmat.2023.131202_bib47) 2023; 324
Li (10.1016/j.jhazmat.2023.131202_bib16) 2022; 15
Huang (10.1016/j.jhazmat.2023.131202_bib11) 2022; 303
Dou (10.1016/j.jhazmat.2023.131202_bib4) 2022; 301
Liang (10.1016/j.jhazmat.2023.131202_bib19) 2022; 608
Zhang (10.1016/j.jhazmat.2023.131202_bib52) 2021; 413
Song (10.1016/j.jhazmat.2023.131202_bib37) 2019; 53
Gao (10.1016/j.jhazmat.2023.131202_bib8) 2021; 193
Xu (10.1016/j.jhazmat.2023.131202_bib45) 2022; 16
Zhang (10.1016/j.jhazmat.2023.131202_bib54) 2021; 201
Guo (10.1016/j.jhazmat.2023.131202_bib9) 2022; 215
Liu (10.1016/j.jhazmat.2023.131202_bib24) 2022; 310
Shang (10.1016/j.jhazmat.2023.131202_bib35) 2023
Qiao (10.1016/j.jhazmat.2023.131202_bib33) 2019; 12
Wang (10.1016/j.jhazmat.2023.131202_bib43) 2020; 172
Cai (10.1016/j.jhazmat.2023.131202_bib1) 2022; 215
Head (10.1016/j.jhazmat.2023.131202_bib10) 2020; 183
Yu (10.1016/j.jhazmat.2023.131202_bib49) 2020; 111
Kan (10.1016/j.jhazmat.2023.131202_bib12) 2023
Liang (10.1016/j.jhazmat.2023.131202_bib18) 2021; 55
Wang (10.1016/j.jhazmat.2023.131202_bib41) 2022; 61
References_xml – volume: 215
  year: 2022
  ident: bib1
  article-title: Degradation of bisphenol A by UV/persulfate process in the presence of bromide: role of reactive bromine
  publication-title: Water Res
– volume: 30
  year: 2020
  ident: bib51
  article-title: Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO
  publication-title: Adv Funct Mater
– volume: 262
  year: 2020
  ident: bib5
  article-title: Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation
  publication-title: Appl Catal B: Environ
– volume: 61
  year: 2022
  ident: bib41
  article-title: A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions
  publication-title: Angew Chem Int Ed
– volume: 449
  year: 2023
  ident: bib53
  article-title: Applications of vacancy defect engineering in persulfate activation: performance and internal mechanism
  publication-title: J Hazard Mater
– volume: 608
  start-page: 1983
  year: 2022
  end-page: 1998
  ident: bib19
  article-title: Active sites decoration on sewage sludge-red mud complex biochar for persulfate activation to degrade sulfanilamide
  publication-title: J Colloid Interface Sci
– volume: 111
  year: 2020
  ident: bib49
  article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring
  publication-title: Prog Mater Sci
– volume: 215
  year: 2022
  ident: bib25
  article-title: Efficient activation of ferrate(VI) by colloid manganese dioxide: comprehensive elucidation of the surface-promoted mechanism
  publication-title: Water Res
– volume: 172
  year: 2020
  ident: bib43
  article-title: Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes
  publication-title: Water Res
– volume: 10
  year: 2022
  ident: bib17
  article-title: Insight into the performance and mechanism of peroxymonosulfate activation by B, N co-doped hierarchical porous carbon for phenol degradation
  publication-title: J Environ Chem Eng
– volume: 319
  year: 2022
  ident: bib42
  article-title: Adsorption and catalysis of peroxymonosulfate on carbocatalysts for phenol degradation: the role of pyrrolic-nitrogen
  publication-title: Appl Catal B: Environ
– volume: 148
  start-page: 416
  year: 2019
  end-page: 424
  ident: bib26
  article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition
  publication-title: Water Res
– volume: 308
  year: 2022
  ident: bib2
  article-title: Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon
  publication-title: Appl Catal B: Environ
– volume: 324
  year: 2023
  ident: bib47
  article-title: Single-atom copper embedded in two-dimensional MXene toward peroxymonosulfate activation to generate singlet oxygen with nearly 100% selectivity for enhanced Fenton-like reactions
  publication-title: Appl Catal B: Environ
– volume: 61
  year: 2022
  ident: bib56
  article-title: Surface-exposed single-Ni atoms with potential-driven dynamic behaviors for highly efficient electrocatalytic oxygen evolution
  publication-title: Angew Chem Int Ed
– volume: 13
  start-page: 52034
  year: 2021
  end-page: 52043
  ident: bib13
  article-title: KOH-activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor
  publication-title: ACS Appl Mater Interfaces
– volume: 324
  year: 2023
  ident: bib57
  article-title: Selectively efficient removal of micropollutants by N-doped carbon modified catalytic ceramic membrane: synergy of membrane confinement and surface reaction
  publication-title: Appl Catal B: Environ
– volume: 420
  year: 2021
  ident: bib34
  article-title: Trade-off between Fenton-like activity and structural stability of MILs(Fe)
  publication-title: Chem Eng J
– volume: 307
  year: 2022
  ident: bib38
  article-title: Efficient peroxymonosulfate activation of immobilized Fe–N–C catalyst on ceramsite for the continuous flow removal of phenol
  publication-title: Chemosphere
– volume: 417
  year: 2021
  ident: bib3
  article-title: Co/N co-doped carbonaceous polyhedron as efficient peroxymonosulfate activator for degradation of organic pollutants: role of cobalt
  publication-title: Chem Eng J
– volume: 55
  start-page: 10077
  year: 2021
  end-page: 10086
  ident: bib18
  article-title: Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV) versus surface-mediated electron transfer
  publication-title: Environ Sci Technol
– volume: 56
  start-page: 6699
  year: 2022
  end-page: 6709
  ident: bib58
  article-title: Insights into the crucial role of electron and spin structures in heteroatom-doped covalent triazine frameworks for removing organic micropollutants
  publication-title: Environ Sci Technol
– volume: 10
  start-page: 9735
  year: 2020
  end-page: 9740
  ident: bib29
  article-title: Reversible switch of a selenium-containing antioxidant system regulated by protein assembly
  publication-title: ACS Catal
– volume: 741
  year: 2020
  ident: bib15
  article-title: Efficient degradation of bentazone via peroxymonosulfate activation by 1D/2D γ-MnOOH-rGO under simulated sunlight: performance and mechanism insight
  publication-title: Sci Total Environ
– volume: 2
  start-page: 817
  year: 2022
  end-page: 829
  ident: bib22
  article-title: Enhanced mediated electron transfer pathway of peroxymonosulfate activation dominated with graphitic-N for the efficient degradation of various organic contaminants in multiple solutions
  publication-title: ACS EST Water
– volume: 56
  start-page: 11635
  year: 2022
  end-page: 11645
  ident: bib46
  article-title: Unveiling the origins of selective oxidation in single-atom catalysis via Co–N
  publication-title: Environ Sci Technol
– volume: 177
  year: 2022
  ident: bib14
  article-title: Municipal solid waste derived biochars for wastewater treatment: production, properties and applications
  publication-title: Resour, Conserv Recycl
– year: 2023
  ident: bib35
  article-title: Stability and regeneration of metal catalytic sites with different sizes in Fenton-like system
  publication-title: Chin Chem Lett
– volume: 445
  year: 2023
  ident: bib7
  article-title: Non-radical degradation of organic pharmaceuticals by g-C
  publication-title: J Hazard Mater
– volume: 215
  year: 2022
  ident: bib9
  article-title: Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation?
  publication-title: Water Res
– year: 2021
  ident: bib28
  article-title: WITHDRAWN: g-C
  publication-title: Sep Purif Technol
– volume: 287
  year: 2022
  ident: bib32
  article-title: Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe
  publication-title: Sep Purif Technol
– volume: 56
  start-page: 1321
  year: 2022
  end-page: 1330
  ident: bib50
  article-title: Elucidating the mechanistic origin of a spin state-dependent FeN
  publication-title: Environ Sci Technol
– volume: 50
  start-page: 5281
  year: 2021
  end-page: 5322
  ident: bib36
  article-title: Single-atom catalysis in advanced oxidation processes for environmental remediation
  publication-title: Chem Soc Rev
– volume: 413
  year: 2021
  ident: bib52
  article-title: Selenium and nitrogen co-doped biochar as a new metal-free catalyst for adsorption of phenol and activation of peroxymonosulfate: elucidating the enhanced catalytic performance and stability
  publication-title: J Hazard Mater
– volume: 221
  year: 2022
  ident: bib21
  article-title: Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: Insight into the intrinsic relationship between defects and
  publication-title: Water Res
– volume: 310
  year: 2022
  ident: bib24
  article-title: N-doped carbon dots decorated 3D g-C
  publication-title: Appl Catal B: Environ
– volume: 56
  start-page: 3729
  year: 2022
  end-page: 3738
  ident: bib6
  article-title: In situ EPR spin trapping and competition kinetics demonstrate temperature-dependent mechanisms of synergistic radical production by ultrasonically activated persulfate
  publication-title: Environ Sci Technol
– volume: 56
  start-page: 8984
  year: 2022
  end-page: 8992
  ident: bib44
  article-title: Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(III) formation and preferential electron transfer during degradation of phenols
  publication-title: Environ Sci Technol
– volume: 201
  year: 2021
  ident: bib54
  article-title: Efficient removal of bisphenol S by non-radical activation of peroxydisulfate in the presence of nano-graphite
  publication-title: Water Res
– volume: 606
  start-page: 929
  year: 2022
  end-page: 940
  ident: bib39
  article-title: Ultrafine cobalt nanoparticle-embedded leaf-like hollow N-doped carbon as an enhanced catalyst for activating monopersulfate to degrade phenol
  publication-title: J Colloid Interface Sci
– volume: 427
  year: 2022
  ident: bib31
  article-title: Activation of peroxymonosulfate by single-atom Fe-g-C
  publication-title: Chem Eng J
– volume: 303
  year: 2022
  ident: bib11
  article-title: Enhancement of persulfate activation by Fe-biochar composites: synergism of Fe and N-doped biochar
  publication-title: Appl Catal B: Environ
– volume: 272
  year: 2020
  ident: bib55
  article-title: MIL-101(Fe)/g-C
  publication-title: Appl Catal B: Environ
– volume: 56
  start-page: 2665
  year: 2022
  end-page: 2676
  ident: bib23
  article-title: Selective removal of phenolic compounds by peroxydisulfate activation: inherent role of hydrophobicity and interface ROS
  publication-title: Environ Sci Technol
– volume: 16
  start-page: 13037
  year: 2022
  end-page: 13048
  ident: bib45
  article-title: Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ROS scavenging to relieve colitis
  publication-title: ACS Nano
– volume: 11
  start-page: 5358
  year: 2020
  ident: bib27
  article-title: CTF-based soft touch actuator for playing electronic piano
  publication-title: Nat Commun
– year: 2023
  ident: bib12
  article-title: Comparative study of raw and HNO
  publication-title: Chin Chem Lett
– volume: 451
  year: 2023
  ident: bib20
  article-title: Well-dispersed cobalt nanoparticles encapsulated on ZIF-8-derived N-doped porous carbon as an excellent peroxymonosulfate activator for sulfamethoxazole degradation
  publication-title: Chem Eng J
– volume: 12
  start-page: 2830
  year: 2019
  end-page: 2841
  ident: bib33
  article-title: 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity
  publication-title: Energy Environ Sci
– volume: 301
  year: 2022
  ident: bib4
  article-title: Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process
  publication-title: Appl Catal B: Environ
– volume: 193
  year: 2021
  ident: bib8
  article-title: Enhanced peroxymonosulfate activation via complexed Mn(II): a novel non-radical oxidation mechanism involving manganese intermediates
  publication-title: Water Res
– volume: 183
  year: 2020
  ident: bib10
  article-title: Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay
  publication-title: Water Res
– volume: 15
  start-page: 6888
  year: 2022
  end-page: 6923
  ident: bib16
  article-title: Understanding the structure-performance relationship of active sites at atomic scale
  publication-title: Nano Res
– volume: 429
  year: 2022
  ident: bib30
  article-title: Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: electron-transfer mechanism
  publication-title: Chem Eng J
– volume: 53
  start-page: 5337
  year: 2019
  end-page: 5348
  ident: bib37
  article-title: Insights into heteroatom-doped graphene for catalytic ozonation: active centers, reactive oxygen species evolution, and catalytic mechanism
  publication-title: Environ Sci Technol
– volume: 816
  year: 2022
  ident: bib40
  article-title: Catalytic mechanism of nitrogen-doped biochar under different pyrolysis temperatures: the crucial roles of nitrogen incorporation and carbon configuration
  publication-title: Sci Total Environ
– volume: 329
  year: 2023
  ident: bib48
  article-title: Microenvironment modulation of cobalt single-atom catalysts for boosting both radical oxidation and electron-transfer process in Fenton-like system
  publication-title: Appl Catal B: Environ
– volume: 417
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib3
  article-title: Co/N co-doped carbonaceous polyhedron as efficient peroxymonosulfate activator for degradation of organic pollutants: role of cobalt
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127921
– volume: 61
  issue: 33
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib41
  article-title: A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202207268
– year: 2023
  ident: 10.1016/j.jhazmat.2023.131202_bib35
  article-title: Stability and regeneration of metal catalytic sites with different sizes in Fenton-like system
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2023.108278
– volume: 307
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib38
  article-title: Efficient peroxymonosulfate activation of immobilized Fe–N–C catalyst on ceramsite for the continuous flow removal of phenol
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136149
– volume: 324
  year: 2023
  ident: 10.1016/j.jhazmat.2023.131202_bib47
  article-title: Single-atom copper embedded in two-dimensional MXene toward peroxymonosulfate activation to generate singlet oxygen with nearly 100% selectivity for enhanced Fenton-like reactions
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2022.122245
– year: 2023
  ident: 10.1016/j.jhazmat.2023.131202_bib12
  article-title: Comparative study of raw and HNO3-modified porous carbon from waste printed circuit boards for sulfadiazine adsorption: experiment and DFT study
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2023.108272
– volume: 56
  start-page: 11635
  issue: 16
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib46
  article-title: Unveiling the origins of selective oxidation in single-atom catalysis via Co–N4–C intensified radical and nonradical pathways
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c01261
– volume: 177
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib14
  article-title: Municipal solid waste derived biochars for wastewater treatment: production, properties and applications
  publication-title: Resour, Conserv Recycl
  doi: 10.1016/j.resconrec.2021.106003
– volume: 55
  start-page: 10077
  issue: 14
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib18
  article-title: Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV) versus surface-mediated electron transfer
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.1c01618
– volume: 262
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib5
  article-title: Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2019.118302
– volume: 16
  start-page: 13037
  issue: 8
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib45
  article-title: Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ROS scavenging to relieve colitis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05558
– volume: 56
  start-page: 1321
  issue: 2
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib50
  article-title: Elucidating the mechanistic origin of a spin state-dependent FeNx–C catalyst toward organic contaminant oxidation via peroxymonosulfate activation
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.1c05980
– volume: 10
  issue: 5
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib17
  article-title: Insight into the performance and mechanism of peroxymonosulfate activation by B, N co-doped hierarchical porous carbon for phenol degradation
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2022.108264
– volume: 413
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib52
  article-title: Selenium and nitrogen co-doped biochar as a new metal-free catalyst for adsorption of phenol and activation of peroxymonosulfate: elucidating the enhanced catalytic performance and stability
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125294
– volume: 30
  issue: 3
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib51
  article-title: Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO2 reduction
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201906194
– volume: 56
  start-page: 2665
  issue: 4
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib23
  article-title: Selective removal of phenolic compounds by peroxydisulfate activation: inherent role of hydrophobicity and interface ROS
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.1c07469
– volume: 308
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib2
  article-title: Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2022.121206
– volume: 193
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib8
  article-title: Enhanced peroxymonosulfate activation via complexed Mn(II): a novel non-radical oxidation mechanism involving manganese intermediates
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.116856
– volume: 172
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib43
  article-title: Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115504
– volume: 329
  year: 2023
  ident: 10.1016/j.jhazmat.2023.131202_bib48
  article-title: Microenvironment modulation of cobalt single-atom catalysts for boosting both radical oxidation and electron-transfer process in Fenton-like system
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2023.122558
– volume: 303
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib11
  article-title: Enhancement of persulfate activation by Fe-biochar composites: synergism of Fe and N-doped biochar
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2021.120926
– volume: 56
  start-page: 6699
  issue: 10
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib58
  article-title: Insights into the crucial role of electron and spin structures in heteroatom-doped covalent triazine frameworks for removing organic micropollutants
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c01781
– volume: 324
  year: 2023
  ident: 10.1016/j.jhazmat.2023.131202_bib57
  article-title: Selectively efficient removal of micropollutants by N-doped carbon modified catalytic ceramic membrane: synergy of membrane confinement and surface reaction
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2022.122188
– volume: 449
  year: 2023
  ident: 10.1016/j.jhazmat.2023.131202_bib53
  article-title: Applications of vacancy defect engineering in persulfate activation: performance and internal mechanism
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2023.130971
– volume: 13
  start-page: 52034
  issue: 44
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib13
  article-title: KOH-activated hollow ZIF-8 derived porous carbon: nanoarchitectured control for upgraded capacitive deionization and supercapacitor
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c09107
– volume: 427
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib31
  article-title: Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe–Nx sites
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.130803
– volume: 221
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib21
  article-title: Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: Insight into the intrinsic relationship between defects and 1O2 generation
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118797
– volume: 148
  start-page: 416
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131202_bib26
  article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.10.087
– volume: 56
  start-page: 3729
  issue: 6
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib6
  article-title: In situ EPR spin trapping and competition kinetics demonstrate temperature-dependent mechanisms of synergistic radical production by ultrasonically activated persulfate
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.1c08562
– volume: 56
  start-page: 8984
  issue: 12
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib44
  article-title: Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(III) formation and preferential electron transfer during degradation of phenols
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c01968
– volume: 301
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib4
  article-title: Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2021.120832
– volume: 608
  start-page: 1983
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib19
  article-title: Active sites decoration on sewage sludge-red mud complex biochar for persulfate activation to degrade sulfanilamide
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.10.150
– volume: 12
  start-page: 2830
  issue: 9
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131202_bib33
  article-title: 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity
  publication-title: Energy Environ Sci
  doi: 10.1039/C9EE01899A
– volume: 215
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib1
  article-title: Degradation of bisphenol A by UV/persulfate process in the presence of bromide: role of reactive bromine
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118288
– volume: 10
  start-page: 9735
  issue: 17
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib29
  article-title: Reversible switch of a selenium-containing antioxidant system regulated by protein assembly
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c02638
– volume: 11
  start-page: 5358
  issue: 1
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib27
  article-title: CTF-based soft touch actuator for playing electronic piano
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19180-3
– volume: 272
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib55
  article-title: MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2020.119033
– volume: 445
  year: 2023
  ident: 10.1016/j.jhazmat.2023.131202_bib7
  article-title: Non-radical degradation of organic pharmaceuticals by g-C3N4 under visible light irradiation: the overlooked role of excitonic energy transfer
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022.130549
– volume: 429
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib30
  article-title: Activation of peroxymonosulfate by single atom Co-N-C catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: electron-transfer mechanism
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.132245
– volume: 201
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib54
  article-title: Efficient removal of bisphenol S by non-radical activation of peroxydisulfate in the presence of nano-graphite
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117288
– volume: 61
  issue: 45
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib56
  article-title: Surface-exposed single-Ni atoms with potential-driven dynamic behaviors for highly efficient electrocatalytic oxygen evolution
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202212542
– volume: 319
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib42
  article-title: Adsorption and catalysis of peroxymonosulfate on carbocatalysts for phenol degradation: the role of pyrrolic-nitrogen
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2022.121891
– volume: 741
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib15
  article-title: Efficient degradation of bentazone via peroxymonosulfate activation by 1D/2D γ-MnOOH-rGO under simulated sunlight: performance and mechanism insight
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.140492
– volume: 816
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib40
  article-title: Catalytic mechanism of nitrogen-doped biochar under different pyrolysis temperatures: the crucial roles of nitrogen incorporation and carbon configuration
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.151502
– year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib28
  article-title: WITHDRAWN: g-C3N4-nanosheet/ZnCr2O4 S-scheme heterojunction photocatalyst with enhanced visible-light photocatalytic activity for degradation of phenol and tetracycline
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2021.118511
– volume: 310
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib24
  article-title: N-doped carbon dots decorated 3D g-C3N4 for visible-light driven peroxydisulfate activation: insights of non-radical route induced by Na+ doping
  publication-title: Appl Catal B: Environ
  doi: 10.1016/j.apcatb.2022.121304
– volume: 420
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib34
  article-title: Trade-off between Fenton-like activity and structural stability of MILs(Fe)
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2021.129583
– volume: 50
  start-page: 5281
  issue: 8
  year: 2021
  ident: 10.1016/j.jhazmat.2023.131202_bib36
  article-title: Single-atom catalysis in advanced oxidation processes for environmental remediation
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS01032D
– volume: 451
  year: 2023
  ident: 10.1016/j.jhazmat.2023.131202_bib20
  article-title: Well-dispersed cobalt nanoparticles encapsulated on ZIF-8-derived N-doped porous carbon as an excellent peroxymonosulfate activator for sulfamethoxazole degradation
  publication-title: Chem Eng J
– volume: 287
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib32
  article-title: Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe2O4@MoS2 by activation of peroxymonosulfate
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2022.120525
– volume: 606
  start-page: 929
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib39
  article-title: Ultrafine cobalt nanoparticle-embedded leaf-like hollow N-doped carbon as an enhanced catalyst for activating monopersulfate to degrade phenol
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.08.027
– volume: 183
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib10
  article-title: Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.116061
– volume: 15
  start-page: 6888
  issue: 8
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib16
  article-title: Understanding the structure-performance relationship of active sites at atomic scale
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4371-x
– volume: 215
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib25
  article-title: Efficient activation of ferrate(VI) by colloid manganese dioxide: comprehensive elucidation of the surface-promoted mechanism
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118243
– volume: 111
  year: 2020
  ident: 10.1016/j.jhazmat.2023.131202_bib49
  article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2020.100654
– volume: 215
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib9
  article-title: Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation?
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118275
– volume: 2
  start-page: 817
  issue: 5
  year: 2022
  ident: 10.1016/j.jhazmat.2023.131202_bib22
  article-title: Enhanced mediated electron transfer pathway of peroxymonosulfate activation dominated with graphitic-N for the efficient degradation of various organic contaminants in multiple solutions
  publication-title: ACS EST Water
  doi: 10.1021/acsestwater.1c00495
– volume: 53
  start-page: 5337
  issue: 9
  year: 2019
  ident: 10.1016/j.jhazmat.2023.131202_bib37
  article-title: Insights into heteroatom-doped graphene for catalytic ozonation: active centers, reactive oxygen species evolution, and catalytic mechanism
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b01361
SSID ssj0001754
Score 2.6573367
Snippet In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 131202
SubjectTerms carbon
Degradation performance
Electronic structure
imidazole
Open-circuit potential
phenol
pollutants
Title Selective degradation of organic micropollutants by activation of peroxymonosulfate by Se@NC: Role of Se doping and nonradical pathway mechanism
URI https://dx.doi.org/10.1016/j.jhazmat.2023.131202
https://www.ncbi.nlm.nih.gov/pubmed/36934627
https://www.proquest.com/docview/2788799922
https://www.proquest.com/docview/3206184329
Volume 452
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKucChgvIKj8pIXHeTtb1-9EQVUYVXDoRKvVlery0S5aUmoQ0HfgM_mZl9pCBRVeK4q_GutTP2fFrPfB8hb7zJFTfeJWXhVSKM4IlmkSeF9krJmLmi6q_4PJSDM_HhPD_fI_22FwbLKpu9v97Tq926udNtvmZ3OR53R3ioB-kW8ACGoUDGTyEURnn687rMA9JjTSGFJwBgfd3F052kk2_uBwDDFDXE04xnrPm78o_8dBP-rPLQ6QNy0ABIelLP8SHZC_NDcv8PWsFDcueTu3xEfo0qiRvYzWiJjBC1eBJdRForOXk6w2K8JWodo5TwihZbim0O33eGSCJ-tYVAXaw20wioFE1G4e2wf0y_LKYBbUbw-Krpirp5SeeoVlAd_VDUOr50WzoL2Fw8Xs0ek7PTd1_7g6TRX0g8N3qNTJY9GUwAFAO4pZTS5M5E6ZBTrPQmSFzuzmsXdakVYKnosiK44LnXZQ5-eUL24bXhGaEyj15FQBvORWF6wqmMhYwHJiNzqqc7RLRf3fqGnBw1Mqa2rUKb2MZZFp1la2d1SLobtqzZOW4boFuX2r_CzEIGuW3o6zYELCxBPFdx87DYrCzDikyDBL8323DWq6R1mOmQp3X87GbMpeFCMvX8_yf3gtzDK6xhy_KXZH99sQmvAC2ti6NqORyRuyfvPw6GvwFiKRV8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHBOW15WUkOCa7sR0nRkICFaot3e6BbaXejOPYYlf7UrPLshz4DfwX_iAzeWxBoqqE1GtiJ5ZnPDPJzHwfIS-tihOurAnyzCaBUIIHKfM8yFKbJNJHJiv7K476snsiPp7Gp1vkV9MLg2WVte2vbHppresr7Xo32_PhsD3ApB64W4gHUA1Fw2B96NYr-G4r3hy8ByG_Ymz_w_FeN6ipBQLLVbpAkMaOdMqBgwaXnEupYqO8NAiXlVvlJGqysanxaZ4mECZ4E2XOOMttmscC0Q7A7l8XYC6QNiH8cV5XAv64wqzClAMs77xtqD0KR1_Md4hEQyQtDyMesfp3zj8c4kUBb-n49u-Q23XESt9Vm3KXbLnpDrn1B47hDrnWM6t75Oeg5NQB80lzhKCo2JrozNOKOsrSCVb_zZFcGbmLC5qtKfZVfN0MRNTyb2s4GbNiOfYQBuOQgXvb33tNP83GDscM4PFllxc105xOkR6hzDVRJFdemTWdOOxmHhaT--TkSqTygGzDa90jQmXsbeIhvDHGC9URJomYi7hj0jOTdNIWEc2ua1ujoSMpx1g3ZW8jXQtLo7B0JawWCTfT5hUcyGUT0kak-i-91uCyLpv6olEBDWceEzlm6mbLQjMsAVWIKHzxGM46JZcPUy3ysNKfzYq5VFxIluz-_-Kekxvd46Oe7h30Dx-Tm3gHC-ii-AnZXpwt3VMI1RbZs_JoUPL5qs_ib8dPUM4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+degradation+of+organic+micropollutants+by+activation+of+peroxymonosulfate+by+Se%40NC%3A+Role+of+Se+doping+and+nonradical+pathway+mechanism&rft.jtitle=Journal+of+hazardous+materials&rft.au=Chai%2C+Yandong&rft.au=Dai%2C+Hongling&rft.au=Zhan%2C+Peng&rft.au=Liu%2C+Zhaochen&rft.date=2023-06-15&rft.issn=0304-3894&rft.volume=452&rft.spage=131202&rft_id=info:doi/10.1016%2Fj.jhazmat.2023.131202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2023_131202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon