MOUSSE: Multi-Omics Using Subject-Specific SignaturEs

High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 13; no. 14; p. 3423
Main Authors Fiorentino, Giuseppe, Visintainer, Roberto, Domenici, Enrico, Lauria, Mario, Marchetti, Luca
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 08.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this problem, several multi-omics integration methods have been introduced but a commonly agreed standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based subject-specific signatures and the use of such signatures to derive subject similarity networks. A separate similarity network was derived for each omics, and the resulting networks were then carefully merged in a way that considered their informative content. We applied it to analyze survival in ten different types of cancer. We produced a meaningful clusterization of the subjects and obtained a higher average classification score than ten state-of-the-art algorithms tested on the same data. As further validation, we extracted from the subject-specific signatures a list of relevant features used for the clusterization and investigated their biological role in survival. We were able to verify that, according to the literature, these features are highly involved in cancer progression and differential survival.
AbstractList High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this problem, several multi-omics integration methods have been introduced but a commonly agreed standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based subject-specific signatures and the use of such signatures to derive subject similarity networks. A separate similarity network was derived for each omics, and the resulting networks were then carefully merged in a way that considered their informative content. We applied it to analyze survival in ten different types of cancer. We produced a meaningful clusterization of the subjects and obtained a higher average classification score than ten state-of-the-art algorithms tested on the same data. As further validation, we extracted from the subject-specific signatures a list of relevant features used for the clusterization and investigated their biological role in survival. We were able to verify that, according to the literature, these features are highly involved in cancer progression and differential survival.High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this problem, several multi-omics integration methods have been introduced but a commonly agreed standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based subject-specific signatures and the use of such signatures to derive subject similarity networks. A separate similarity network was derived for each omics, and the resulting networks were then carefully merged in a way that considered their informative content. We applied it to analyze survival in ten different types of cancer. We produced a meaningful clusterization of the subjects and obtained a higher average classification score than ten state-of-the-art algorithms tested on the same data. As further validation, we extracted from the subject-specific signatures a list of relevant features used for the clusterization and investigated their biological role in survival. We were able to verify that, according to the literature, these features are highly involved in cancer progression and differential survival.
Simple SummaryModern profiling technologies have led to relevant progress toward precision medicine and disease management. A new trend in patient classification is to integrate multiple data types for the same subjects to increase the chance of identifying meaningful phenotype groups. However, these methodologies are still in their infancy, with their performance varying widely depending on the biological conditions analyzed. We developed MOUSSE, a new unsupervised and normalization-free tool for multi-omics integration able to maintain good clustering performance across a wide range of omics data. We verified its efficiency in clustering patients based on survival for ten different cancer types. The results we obtained show a higher average score in classification performance than ten other state-of-the-art algorithms. We have further validated the method by identifying a list of biological features potentially involved in patient survival, finding a high degree of concordance with the literature.AbstractHigh-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this problem, several multi-omics integration methods have been introduced but a commonly agreed standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based subject-specific signatures and the use of such signatures to derive subject similarity networks. A separate similarity network was derived for each omics, and the resulting networks were then carefully merged in a way that considered their informative content. We applied it to analyze survival in ten different types of cancer. We produced a meaningful clusterization of the subjects and obtained a higher average classification score than ten state-of-the-art algorithms tested on the same data. As further validation, we extracted from the subject-specific signatures a list of relevant features used for the clusterization and investigated their biological role in survival. We were able to verify that, according to the literature, these features are highly involved in cancer progression and differential survival.
High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics, proteomics, metabolomics and transcriptomics. Omics data have been individually investigated to understand the molecular bases of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this problem, several multi-omics integration methods have been introduced but a commonly agreed standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based subject-specific signatures and the use of such signatures to derive subject similarity networks. A separate similarity network was derived for each omics, and the resulting networks were then carefully merged in a way that considered their informative content. We applied it to analyze survival in ten different types of cancer. We produced a meaningful clusterization of the subjects and obtained a higher average classification score than ten state-of-the-art algorithms tested on the same data. As further validation, we extracted from the subject-specific signatures a list of relevant features used for the clusterization and investigated their biological role in survival. We were able to verify that, according to the literature, these features are highly involved in cancer progression and differential survival.
Author Marchetti, Luca
Visintainer, Roberto
Fiorentino, Giuseppe
Lauria, Mario
Domenici, Enrico
AuthorAffiliation 1 Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; fiorentino@cosbi.eu (G.F.); visintainer@cosbi.eu (R.V.); domenici@cosbi.eu (E.D.); lauria@cosbi.eu (M.L.)
2 Department of Cellular, Computational, and Integrative Biology (CiBio), University of Trento, 38123 Povo, Italy
3 Department of Mathematics, University of Trento, 38123 Povo, Italy
AuthorAffiliation_xml – name: 1 Fondazione The Microsoft Research, University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy; fiorentino@cosbi.eu (G.F.); visintainer@cosbi.eu (R.V.); domenici@cosbi.eu (E.D.); lauria@cosbi.eu (M.L.)
– name: 3 Department of Mathematics, University of Trento, 38123 Povo, Italy
– name: 2 Department of Cellular, Computational, and Integrative Biology (CiBio), University of Trento, 38123 Povo, Italy
Author_xml – sequence: 1
  givenname: Giuseppe
  orcidid: 0000-0001-9513-608X
  surname: Fiorentino
  fullname: Fiorentino, Giuseppe
– sequence: 2
  givenname: Roberto
  surname: Visintainer
  fullname: Visintainer, Roberto
– sequence: 3
  givenname: Enrico
  orcidid: 0000-0001-7436-6919
  surname: Domenici
  fullname: Domenici, Enrico
– sequence: 4
  givenname: Mario
  orcidid: 0000-0001-5983-7292
  surname: Lauria
  fullname: Lauria, Mario
– sequence: 5
  givenname: Luca
  orcidid: 0000-0001-9043-7705
  surname: Marchetti
  fullname: Marchetti, Luca
BookMark eNp1kctLAzEQxoNUbK09ey148bI272Q9CFLqA1p6WHsO2Wy2pmyzNdkV_O_d0iJacC4zML_vYx6XoOdrbwG4RvCOkBROjPbGhogIooRicgYGGAqccJ7S3q-6D0YxbmAXhCDBxQXod3gqOUUDwBbLVZbN7seLtmpcstw6E8er6Px6nLX5xpomyXbWuNKZcebWXjdtmMUrcF7qKtrRMQ_B6mn2Nn1J5svn1-njPDEklU3CMWdMUlzCnAiNcksKaVNcpAWyHMFSyILLokyJESlGguS8REKyomDaSmJLMgQPB99dm29tYaxvgq7ULritDl-q1k797Xj3rtb1p5IEUoF5Z3B7NAj1R2tjo7YuGltV2tu6jQozxhDkmKEOvTlBN3UbfLfenqKUI9odeQgmB8qEOsZgy59hEFT7r6iTr3QKdqIwrtGNq_cTu-pf3TfNvJHI
CitedBy_id crossref_primary_10_3390_medsci11030044
crossref_primary_10_3389_fmolb_2022_962799
crossref_primary_10_3390_info14090513
Cites_doi 10.1038/srep41942
10.1007/s40291-015-0148-1
10.1101/gr.215129.116
10.3389/fonc.2018.00374
10.1214/aoms/1177729694
10.7717/peerj.8312
10.1016/j.cell.2018.02.052
10.1159/000327947
10.1093/bioinformatics/btz058
10.18632/oncotarget.11732
10.1080/15384101.2018.1534511
10.1038/nmeth.2016
10.1016/j.compbiolchem.2019.107120
10.3390/cancers11010053
10.3390/ht8010004
10.1093/nar/gky889
10.1016/j.gene.2020.144648
10.1016/j.bbagrm.2016.04.005
10.1137/1.9781611972832.28
10.1038/s41434-018-0029-4
10.1039/C5SC02902C
10.1007/s12263-015-0508-9
10.3389/fgene.2017.00084
10.1093/biostatistics/kxx017
10.1007/s00109-011-0775-x
10.1039/C7MO00051K
10.1158/0008-5472.CAN-11-2632
10.1371/journal.pone.0194225
10.1038/bjc.2017.164
10.1038/nmeth.2810
10.1371/journal.pone.0182559
10.1093/nar/gkv449
10.1007/s00521-013-1439-2
10.5114/wo.2014.47136
10.1186/s12859-015-0857-9
10.1038/nrg3868
10.1016/j.bbrc.2015.03.088
10.1186/s13046-019-1311-z
10.1093/bioinformatics/bty235
10.12659/MSM.916648
10.1016/j.omtn.2019.09.033
10.1007/s12035-014-9079-9
10.1016/j.euroneuro.2019.11.004
10.1007/s13402-017-0355-3
10.4161/sysb.26324
10.18632/oncotarget.24897
10.1145/1852102.1852106
10.1093/nar/gkaa1027
10.1214/12-AOAS597
10.1093/bioinformatics/btv244
10.1186/s12864-015-2223-8
10.1016/j.bbrc.2013.03.021
10.1155/2017/3017632
10.1038/srep32583
10.1073/pnas.1208949110
10.2202/1544-6115.1470
10.1093/bioinformatics/btt492
10.1038/s41386-018-0117-6
10.1002/stem.15
10.1093/bib/bbx167
10.1186/s40364-020-0186-7
10.1074/jbc.M109.095950
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/cancers13143423
DatabaseName CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Text complet a ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID PMC8304726
10_3390_cancers13143423
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c398t-62655842f0b37a1be3d8e92d9d1e610f78d68df93c792173b6f1785dd5ae83ef3
IEDL.DBID M48
ISSN 2072-6694
IngestDate Thu Aug 21 18:17:32 EDT 2025
Fri Jul 11 11:50:17 EDT 2025
Fri Jul 25 12:15:03 EDT 2025
Tue Jul 01 01:27:55 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-62655842f0b37a1be3d8e92d9d1e610f78d68df93c792173b6f1785dd5ae83ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7436-6919
0000-0001-9513-608X
0000-0001-5983-7292
0000-0001-9043-7705
OpenAccessLink https://www.proquest.com/docview/2554461442?pq-origsite=%requestingapplication%
PMID 34298641
PQID 2554461442
PQPubID 2032421
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8304726
proquest_miscellaneous_2555106251
proquest_journals_2554461442
crossref_primary_10_3390_cancers13143423
crossref_citationtrail_10_3390_cancers13143423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210708
PublicationDateYYYYMMDD 2021-07-08
PublicationDate_xml – month: 7
  year: 2021
  text: 20210708
  day: 8
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Cancers
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sahu (ref_64) 2016; 1859
Laks (ref_67) 2009; 27
Liu (ref_68) 2018; 173
Mo (ref_9) 2013; 110
Webber (ref_24) 2010; 28
Rappoport (ref_34) 2019; 35
Jia (ref_35) 2014; 24
Tian (ref_42) 2018; 25
Marchetti (ref_16) 2020; 31
Kim (ref_62) 2010; 285
Wani (ref_7) 2019; 83
ref_19
ref_18
Tarca (ref_38) 2013; 29
Liu (ref_56) 2019; 25
Bauer (ref_63) 2011; 27
Songsheng (ref_49) 2016; 7
Hu (ref_51) 2016; 20
Witten (ref_31) 2009; 8
Yang (ref_41) 2011; 89
Nguyen (ref_29) 2017; 27
ref_60
Carboni (ref_17) 2018; 43
Hoeng (ref_15) 2013; 1
ref_25
Fawzy (ref_54) 2015; 19
Wang (ref_47) 2016; 7
Nouri (ref_37) 2018; 34
ref_20
Ochoa (ref_69) 2021; 49
ref_28
ref_27
Li (ref_50) 2015; 460
ref_26
Kullback (ref_23) 1951; 22
Bersanelli (ref_4) 2016; 17
Takashima (ref_58) 2018; 9
Tini (ref_13) 2017; 20
Marbach (ref_39) 2012; 9
Wang (ref_11) 2014; 11
ref_36
Huang (ref_5) 2017; 8
Manvati (ref_40) 2020; 747
ref_32
Xin (ref_48) 2018; 16
Dougherty (ref_66) 2012; 72
Kim (ref_1) 2017; 14
Miao (ref_52) 2017; 7
Lacroix (ref_22) 2015; 10
Lauria (ref_14) 2015; 43
Ritchie (ref_6) 2015; 16
Rui (ref_44) 2020; 8
Lan (ref_53) 2018; 41
Jin (ref_65) 2013; 433
Zhou (ref_43) 2017; 117
Tang (ref_55) 2018; 8
Deng (ref_61) 2019; 38
Speicher (ref_30) 2015; 31
Zhang (ref_46) 2019; 18
Rappoport (ref_12) 2018; 46
Caberlotto (ref_21) 2016; 6
Mo (ref_33) 2018; 19
Zhang (ref_45) 2016; 53
Tomczak (ref_3) 2015; 1A
ref_2
ref_8
Dai (ref_59) 2018; 17
Lock (ref_10) 2013; 7
Xiao (ref_57) 2020; 8
References_xml – volume: 7
  start-page: 41942
  year: 2017
  ident: ref_52
  article-title: MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway
  publication-title: Sci. Rep.
  doi: 10.1038/srep41942
– volume: 19
  start-page: 213
  year: 2015
  ident: ref_54
  article-title: Circulating miRNA-122, miRNA-199a, and miRNA-16 as Biomarkers for Early Detection of Hepatocellular Carcinoma in Egyptian Patients with Chronic Hepatitis C Virus Infection
  publication-title: Mol. Diagn. Ther.
  doi: 10.1007/s40291-015-0148-1
– volume: 27
  start-page: 2025
  year: 2017
  ident: ref_29
  article-title: A novel approach for data integration and disease subtyping
  publication-title: Genome Res.
  doi: 10.1101/gr.215129.116
– volume: 16
  start-page: 1439
  year: 2018
  ident: ref_48
  article-title: miR-204 functions as a tumor suppressor gene, at least partly by suppressing CYP27A1 in glioblastoma
  publication-title: Oncol. Lett.
– volume: 8
  start-page: 374
  year: 2018
  ident: ref_55
  article-title: Prognostic Genes of Breast Cancer Identified by Gene Co-expression Network Analysis
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2018.00374
– volume: 22
  start-page: 79
  year: 1951
  ident: ref_23
  article-title: “On Information and Sufficiency,” The Annals of Mathematical Statistics
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177729694
– ident: ref_26
– volume: 8
  start-page: e8312
  year: 2020
  ident: ref_57
  article-title: Identification and validation of a three-gene signature as a candidate prognostic biomarker for lower grade glioma
  publication-title: PeerJ
  doi: 10.7717/peerj.8312
– volume: 173
  start-page: 400
  year: 2018
  ident: ref_68
  article-title: Abstract 3287: An integrated TCGA pan-cancer clinical data resource to drive high quality survival outcome analytics
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
– volume: 27
  start-page: 217
  year: 2011
  ident: ref_63
  article-title: Inhibition of Collagen XVI Expression Reduces Glioma Cell Invasiveness
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000327947
– volume: 35
  start-page: 3348
  year: 2019
  ident: ref_34
  article-title: NEMO: Cancer subtyping by integration of partial multi-omic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz058
– volume: 7
  start-page: 70058
  year: 2016
  ident: ref_49
  article-title: miR-204 suppresses the development and progression of human glioblastoma by targeting ATF2
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11732
– volume: 17
  start-page: 2386
  year: 2018
  ident: ref_59
  article-title: EXO1 overexpression is associated with poor prognosis of hepatocellular carcinoma patients
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2018.1534511
– volume: 9
  start-page: 796
  year: 2012
  ident: ref_39
  article-title: Wisdom of crowds for robust gene network inference
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2016
– volume: 83
  start-page: 107120
  year: 2019
  ident: ref_7
  article-title: Integrative approaches to reconstruct regulatory networks from multi-omics data: A review of state-of-the-art methods
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2019.107120
– ident: ref_60
  doi: 10.3390/cancers11010053
– ident: ref_8
  doi: 10.3390/ht8010004
– volume: 46
  start-page: 10546
  year: 2018
  ident: ref_12
  article-title: Multi-omic and multi-view clustering algorithms: Review and cancer benchmark
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky889
– volume: 747
  start-page: 144648
  year: 2020
  ident: ref_40
  article-title: Association of miR-760 with cancer: An overview
  publication-title: Gene
  doi: 10.1016/j.gene.2020.144648
– volume: 1859
  start-page: 833
  year: 2016
  ident: ref_64
  article-title: TOX3 regulates neural progenitor identity
  publication-title: Biochim. Biophys. Acta Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2016.04.005
– ident: ref_32
  doi: 10.1137/1.9781611972832.28
– ident: ref_27
– volume: 25
  start-page: 312
  year: 2018
  ident: ref_42
  article-title: Downreguation of FoxM1 by miR-214 inhibits proliferation and migration in hepatocellular carcinoma
  publication-title: Gene Ther.
  doi: 10.1038/s41434-018-0029-4
– volume: 7
  start-page: 1440
  year: 2016
  ident: ref_47
  article-title: N6-Methyladenine hinders RNA- and DNA-directed DNA synthesis: Application in human rRNA methylation analysis of clinical specimens
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02902C
– volume: 10
  start-page: 1
  year: 2015
  ident: ref_22
  article-title: Systems biology approaches to study the molecular effects of caloric restriction and polyphenols on aging processes
  publication-title: Genes Nutr.
  doi: 10.1007/s12263-015-0508-9
– volume: 20
  start-page: 5002
  year: 2016
  ident: ref_51
  article-title: miR-760 mediates chemoresistance through inhibition of epithelial mesenchymal transition in breast cancer cells
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 8
  start-page: 84
  year: 2017
  ident: ref_5
  article-title: More Is Better: Recent Progress in Multi-Omics Data Integration Methods
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00084
– volume: 19
  start-page: 71
  year: 2018
  ident: ref_33
  article-title: A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxx017
– volume: 89
  start-page: 1037
  year: 2011
  ident: ref_41
  article-title: MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-011-0775-x
– volume: 14
  start-page: 8
  year: 2017
  ident: ref_1
  article-title: Data integration and predictive modeling methods for multi-omics datasets
  publication-title: Mol. Omics
  doi: 10.1039/C7MO00051K
– volume: 72
  start-page: 4856
  year: 2012
  ident: ref_66
  article-title: Candidate Pathways for Promoting Differentiation or Quiescence of Oligodendrocyte Progenitor-like Cells in Glioma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2632
– ident: ref_18
  doi: 10.1371/journal.pone.0194225
– volume: 117
  start-page: 233
  year: 2017
  ident: ref_43
  article-title: MicroRNA-199b-5p attenuates TGF-β1-induced epithelial–mesenchymal transition in hepatocellular carcinoma
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2017.164
– volume: 11
  start-page: 333
  year: 2014
  ident: ref_11
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2810
– ident: ref_20
  doi: 10.1371/journal.pone.0182559
– volume: 43
  start-page: W188
  year: 2015
  ident: ref_14
  article-title: SCUDO: A tool for signature-based clustering of expression profiles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv449
– volume: 24
  start-page: 1477
  year: 2014
  ident: ref_35
  article-title: The latest research progress on spectral clustering
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1439-2
– volume: 1A
  start-page: A68
  year: 2015
  ident: ref_3
  article-title: The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge
  publication-title: Wspolczesna Onkol.
  doi: 10.5114/wo.2014.47136
– volume: 17
  start-page: 167
  year: 2016
  ident: ref_4
  article-title: Methods for the integration of multi-omics data: Mathematical aspects
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-015-0857-9
– volume: 16
  start-page: 85
  year: 2015
  ident: ref_6
  article-title: Methods of integrating data to uncover genotype–phenotype interactions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3868
– volume: 460
  start-page: 670
  year: 2015
  ident: ref_50
  article-title: miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.03.088
– volume: 38
  start-page: 316
  year: 2019
  ident: ref_61
  article-title: Nek2 augments sorafenib resistance by regulating the ubiquitination and localization of β-catenin in hepatocellular carcinoma
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-019-1311-z
– volume: 34
  start-page: i341
  year: 2018
  ident: ref_37
  article-title: A spectral clustering-based method for identifying clones from high-throughput B cell repertoire sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty235
– volume: 25
  start-page: 3624
  year: 2019
  ident: ref_56
  article-title: Identification of SEC61G as a Novel Prognostic Marker for Predicting Survival and Response to Therapies in Patients with Glioblastoma
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.916648
– volume: 18
  start-page: 871
  year: 2019
  ident: ref_46
  article-title: LncRNA LINC00963 Promotes Tumorigenesis and Radioresistance in Breast Cancer by Sponging miR-324-3p and Inducing ACK1 Expression
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.09.033
– volume: 53
  start-page: 1452
  year: 2016
  ident: ref_45
  article-title: Plasma miR-221/222 Family as Novel Descriptive and Prognostic Biomarkers for Glioma
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-014-9079-9
– volume: 31
  start-page: 69
  year: 2020
  ident: ref_16
  article-title: Gene expression signature of antidepressant treatment response/non-response in Flinders Sensitive Line rats subjected to maternal separation
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2019.11.004
– volume: 41
  start-page: 25
  year: 2018
  ident: ref_53
  article-title: Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma
  publication-title: Cell. Oncol.
  doi: 10.1007/s13402-017-0355-3
– volume: 1
  start-page: 193
  year: 2013
  ident: ref_15
  article-title: sbv IMPROVER Diagnostic Signature Challenge
  publication-title: Syst. Biomed.
  doi: 10.4161/sysb.26324
– volume: 9
  start-page: 19065
  year: 2018
  ident: ref_58
  article-title: Correlation between lower balance of Th2 helper T-cells and expression of PD-L1/PD-1 axis genes enables prognostic prediction in patients with glioblastoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24897
– volume: 28
  start-page: 1
  year: 2010
  ident: ref_24
  article-title: A similarity measure for indefinite rankings
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/1852102.1852106
– volume: 49
  start-page: D1302
  year: 2021
  ident: ref_69
  article-title: Open Targets Platform: Supporting systematic drug–target identification and prioritisation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1027
– volume: 7
  start-page: 523
  year: 2013
  ident: ref_10
  article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS597
– ident: ref_25
– volume: 31
  start-page: i268
  year: 2015
  ident: ref_30
  article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv244
– ident: ref_28
  doi: 10.1186/s12864-015-2223-8
– ident: ref_2
– volume: 433
  start-page: 496
  year: 2013
  ident: ref_65
  article-title: Cell surface Nestin is a biomarker for glioma stem cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.03.021
– ident: ref_19
  doi: 10.1155/2017/3017632
– volume: 6
  start-page: 32583
  year: 2016
  ident: ref_21
  article-title: Integration of transcriptomic and genomic data suggests candidate mechanisms for APOE4-mediated pathogenic action in Alzheimer’s disease
  publication-title: Sci. Rep.
  doi: 10.1038/srep32583
– volume: 110
  start-page: 4245
  year: 2013
  ident: ref_9
  article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1208949110
– volume: 8
  start-page: 28
  year: 2009
  ident: ref_31
  article-title: Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1470
– volume: 29
  start-page: 2892
  year: 2013
  ident: ref_38
  article-title: Strengths and limitations of microarray-based phenotype prediction: Lessons learned from the IMPROVER Diagnostic Signature Challenge
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt492
– volume: 43
  start-page: 2134
  year: 2018
  ident: ref_17
  article-title: Cross-species evidence from human and rat brain transcriptome for growth factor signaling pathway dysregulation in major depression
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-018-0117-6
– volume: 27
  start-page: 980
  year: 2009
  ident: ref_67
  article-title: Neurosphere Formation Is an Independent Predictor of Clinical Outcome in Malignant Glioma
  publication-title: Stem Cells
  doi: 10.1002/stem.15
– volume: 20
  start-page: 1269
  year: 2017
  ident: ref_13
  article-title: Multi-omics integration—a comparison of unsupervised clustering methodologies
  publication-title: Briefings Bioinform.
  doi: 10.1093/bib/bbx167
– ident: ref_36
– volume: 8
  start-page: 7
  year: 2020
  ident: ref_44
  article-title: The mir-767-105 cluster: A crucial factor related to the poor prognosis of hepatocellular carcinoma
  publication-title: Biomark. Res.
  doi: 10.1186/s40364-020-0186-7
– volume: 285
  start-page: 25957
  year: 2010
  ident: ref_62
  article-title: Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.095950
SSID ssj0000331767
Score 2.251588
Snippet High-throughput technologies make it possible to produce a large amount of data representing different biological layers, examples of which are genomics,...
Simple SummaryModern profiling technologies have led to relevant progress toward precision medicine and disease management. A new trend in patient...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3423
SubjectTerms Algorithms
Biomarkers
Cancer
Classification
Clustering
Data analysis
Datasets
Gene expression
Genomes
Integration
Medical prognosis
Metabolomics
Molecular modelling
Phenotypes
Pipelines
Precision medicine
Proteomics
Survival
Survival analysis
SummonAdditionalLinks – databaseName: Text complet a ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60BfEiPrFaJYIHL6tJNo9dL6KSUoS2Yi30FrIvLWham_b_O5tuUyvoeTcszGxmvnnsNwhdhpnmrowU9lUcY8Moh2lGXMxlQJnLJOPMvB3udKP2IHgahkObcCtsW-XSJpaGWo6FyZHfAPSFyAXgv383-cJmapSprtoRGpuoDiaYQvBVf0i6zy9VlsUl4B-jeMHpQyC-vxFGmNPCIwAUAp-su6MVxlzvkPzhclq7aMdiRed-odw9tKHyfbTVsdXwAxR2eoN-P7l1yle0uPc5EoVT9gA4YA9MggWX4-X1SDj90VvJ4ZkUh2jQSl4f29iOQcCCMDrDEHKEABN87XISZx5XRFLFfMmkpwD86JjKiErNiIgZBBiER9qLaShlmClKlCZHqJaPc3WMHClYIFwFeuBuAOvc05TpkHKSKZ4FtIGul9JIheUIN6MqPlKIFYz40l_ia6Cr6oPJgh7j763NpXhT-58U6UqrDXRRLcMNN2WLLFfjebkHDAfEaV4DxWtqqY40HNnrK_noveTKpqas6Ecn_x9-irZ906ti0ra0iWqz6VydAdiY8XN7o74BfHHW9Q
  priority: 102
  providerName: ProQuest
Title MOUSSE: Multi-Omics Using Subject-Specific SignaturEs
URI https://www.proquest.com/docview/2554461442
https://www.proquest.com/docview/2555106251
https://pubmed.ncbi.nlm.nih.gov/PMC8304726
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED50gvgi_sTpHBV88CXaNm2TCCIqUxGm4hzsrTRNooNZdZug_72XrJtOFHxOmsJdkvu-5PIdwG6cGemrRJNQM0asohzhGfWJVBEXvlBCCvt2uHmdXLajq07c-SoHVBpw8Cu1s_Wk2v3e_vvrxzEu-CPLOJGyH-TWPv1BQDH2IzqYhTkMS8yu0maJ9d22TDFUuoqyoc9CkiQiGkn9_DbGdJT6gp7TiZPfItH5EiyWENI7Gfl8GWZ0sQLzzfKSfBXi5k271Woceu5xLbl56uYDz6UGeLhN2HMX4qrOm27utboPTtqzMViD9nnj_uySlNURSE4FHxJkIjGih9D4krIskJoqrkWohAo0YiLDuEq4MoLmTCDvoDIxAeOxUnGmOdWGrkOleC70BngqF1Hua3SP9CNsl4HhwsRc0kzLLOJV2B9bI81L6XBbwaKXIoWw5kt_mK8Ke5MPXkaqGX93rY3Nm469nyLPQZqKXC-sws6kGSe-vc3ICv385vrgfoL0LagCm3LL5JdWOnu6peg-Ogltbm8bw2TzH6NvwUJo81jskS6vQWXYf9PbCESGsg5zp43r27s6zF50grqbbp80y9_Z
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9tAEB7RILV9qYC2aiiHkajUly32ro_dSghxBIUjATVE4s31XiVS61AchPhT_EZmHTsQJHjjeddeaWZ25ptjZwDWo8xKX8eGUJMkxHWUIzxjPpE65MIXWkjh3g53unG7Hx6eR-czcFe_hXFllbVOLBW1HioXI99A6IueC8J_unX5n7ipUS67Wo_QGIvFkbm9QZet2DzYQ_5-o3S_dbbbJtVUAaKY4COCCD5Cq0utL1mSBdIwzY2gWujAIJawCdcx11YwlQjE60zG1k2w1zrKDGfGMvzvG5gNGboyDZjdaXVPf02iOj5Dexwn4x5CjAl_QznmXRUBQ2ASUjZt_h4w7XRF5iMTtz8HHyps6m2PhWkeZky-AG87Vfb9I0Sdk36v1_rpla92ycm_gSq8subAQ_3jAjqkHGdvB8rrDf6UPUNbxSfovwqBPkMjH-bmC3haiVD5Bvku_RDXZWC5sBGXLDMyC3kTftTUSFXVk9yNxvibom_iyJc-IV8Tvk8-uBy343h-61JN3rS6l0X6IEVNWJss441yaZIsN8Prcg8qKvQLgyYkU2yZHOl6ck-v5IOLsjc3d2lMGi--fPgqvGufdY7T44Pu0Vd4T12djAsZ8yVojK6uzTICnZFcqaTLg9-vLdD3guMTmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ9ASQgvRlRCEfVIIPFl7d7ufeyaGKPSBoQWYmnC23H7pU30ilyJ8V_zr2P2elcsCbzxvHu3yezszG--AXbj3ClqEkuYTVPiO8oRkXNKlImEpNJIJX3tcH-QHIyir-fx-RL8a2phfFplIxMrQW0m2vvIOwh90XJB-M86rk6LON3vfbz8TfwEKR9pbcZpzFjkyP79g-Zb-eFwH-96j7Fe9-zLAaknDBDNpZgSRPMxamDmqOJpHirLjbCSGWlCi7jCpcIkwjjJdSoRu3OVOD_N3pg4t4Jbx_G_y7CSolVEW7DyuTs4_Tb38FCOujlJZ_2EOJe0o_1FXpUhR5ASMb6oCm_x7WJ25n_qrvcUntQ4Nfg0Y6x1WLLFM1jt15H45xD3T0bDYfd9UFXwkpNfY10GVf5BgLLIO3dINdrejXUwHH-v-od2yxcwehQCbUCrmBR2EwKjZaSpRR5QNMJ1FTohXSwUz63KI9GGdw01Ml33J_djMn5maKd48mV3yNeGt_MPLmetOe7fut2QN6vfaJndclQbdubL-Lp8yCQv7OS62oNCC23EsA3pwrXMj_T9uRdXivGPqk-38CFNlmw9fPgbWEVGzo4PB0cvYY35lBnvPRbb0JpeXdtXiHmm6nXNXAFcPDY_3wD7LBfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOUSSE%3A+Multi-Omics+Using+Subject-Specific+SignaturEs&rft.jtitle=Cancers&rft.au=Fiorentino%2C+Giuseppe&rft.au=Visintainer%2C+Roberto&rft.au=Domenici%2C+Enrico&rft.au=Lauria%2C+Mario&rft.date=2021-07-08&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=13&rft.issue=14&rft_id=info:doi/10.3390%2Fcancers13143423&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon