Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine

Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence,...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 13; no. 23; p. 5921
Main Authors Fathi Kazerooni, Anahita, Bagley, Stephen J., Akbari, Hamed, Saxena, Sanjay, Bagheri, Sina, Guo, Jun, Chawla, Sanjeev, Nabavizadeh, Ali, Mohan, Suyash, Bakas, Spyridon, Davatzikos, Christos, Nasrallah, MacLean P.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.
AbstractList Simple SummaryRadiomics and radiogenomics offer new insight into high-grade glioma biology, as well as into glioma behavior in response to standard therapies. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the role of radiomics in providing more accurate diagnoses, prognostication, and surveillance of patients with high-grade glioma, and on the potential application of radiomics in clinical practice, with the overarching goal of advancing precision medicine for optimal patient care.AbstractMachine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.
Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.
Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.
Author Davatzikos, Christos
Fathi Kazerooni, Anahita
Nabavizadeh, Ali
Akbari, Hamed
Saxena, Sanjay
Bakas, Spyridon
Chawla, Sanjeev
Guo, Jun
Mohan, Suyash
Bagheri, Sina
Nasrallah, MacLean P.
Bagley, Stephen J.
AuthorAffiliation 1 Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; Anahita.Kazerooni@pennmedicine.upenn.edu (A.F.K.); Hamed.Akbari@pennmedicine.upenn.edu (H.A.); Sanjay.Saxena@Pennmedicine.upenn.edu (S.S.); Jun.Guo@Pennmedicine.upenn.edu (J.G.); Ali.Nabavizadeh@pennmedicine.upenn.edu (A.N.); Suyash.Mohan@pennmedicine.upenn.edu (S.M.); Spyridon.Bakas@pennmedicine.upenn.edu (S.B.); Christos.Davatzikos@pennmedicine.upenn.edu (C.D.)
4 Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
3 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; sbagley@pennmedicine.upenn.edu
2 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Sina.Bagheri@Pennmedicine.upenn.edu (S.B.); Sanjeev.Chawla@pennmedicine.upenn.edu (S.C.)
5 Department of Pathology & Laboratory Med
AuthorAffiliation_xml – name: 1 Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; Anahita.Kazerooni@pennmedicine.upenn.edu (A.F.K.); Hamed.Akbari@pennmedicine.upenn.edu (H.A.); Sanjay.Saxena@Pennmedicine.upenn.edu (S.S.); Jun.Guo@Pennmedicine.upenn.edu (J.G.); Ali.Nabavizadeh@pennmedicine.upenn.edu (A.N.); Suyash.Mohan@pennmedicine.upenn.edu (S.M.); Spyridon.Bakas@pennmedicine.upenn.edu (S.B.); Christos.Davatzikos@pennmedicine.upenn.edu (C.D.)
– name: 4 Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: 2 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Sina.Bagheri@Pennmedicine.upenn.edu (S.B.); Sanjeev.Chawla@pennmedicine.upenn.edu (S.C.)
– name: 3 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; sbagley@pennmedicine.upenn.edu
– name: 5 Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
Author_xml – sequence: 1
  givenname: Anahita
  surname: Fathi Kazerooni
  fullname: Fathi Kazerooni, Anahita
– sequence: 2
  givenname: Stephen J.
  surname: Bagley
  fullname: Bagley, Stephen J.
– sequence: 3
  givenname: Hamed
  orcidid: 0000-0001-9786-3707
  surname: Akbari
  fullname: Akbari, Hamed
– sequence: 4
  givenname: Sanjay
  surname: Saxena
  fullname: Saxena, Sanjay
– sequence: 5
  givenname: Sina
  surname: Bagheri
  fullname: Bagheri, Sina
– sequence: 6
  givenname: Jun
  orcidid: 0000-0003-0930-3238
  surname: Guo
  fullname: Guo, Jun
– sequence: 7
  givenname: Sanjeev
  orcidid: 0000-0001-6978-7284
  surname: Chawla
  fullname: Chawla, Sanjeev
– sequence: 8
  givenname: Ali
  surname: Nabavizadeh
  fullname: Nabavizadeh, Ali
– sequence: 9
  givenname: Suyash
  surname: Mohan
  fullname: Mohan, Suyash
– sequence: 10
  givenname: Spyridon
  surname: Bakas
  fullname: Bakas, Spyridon
– sequence: 11
  givenname: Christos
  surname: Davatzikos
  fullname: Davatzikos, Christos
– sequence: 12
  givenname: MacLean P.
  orcidid: 0000-0003-4861-0898
  surname: Nasrallah
  fullname: Nasrallah, MacLean P.
BookMark eNp1UU1LAzEQDaL42bPXBS9eVpNNk00ugkitQkURPYdsdtJGtklNtoL_3rRV0IJzyczkvZfMvCO064MHhE4JvqBU4kujvYGYCK0okxXZQYcVrquScznc_ZUfoEFKbzgHpaTm9T46oEMhGKbkEDXXi0XnjO5d8KkItnjWrQtzZ1KhfbuppuA3HeeLOzedleOoWyjGXQbqdbefQTGKesV_imBcymrFA7TOOA8naM_qLsHg-zxGr7ejl5u7cvI4vr-5npSGStGXjOGqqaVohK2wlaDbhlDLoDJEAiFSAtOkbiRlWlrSCNIaQYcNt0ZzK1pGj9HVRnexbObQGvB91J1aRDfX8VMF7dTfG-9maho-lOCMc4qzwPm3QAzvS0i9mrtkoOu0h7BMquJYsLz5YZ2hZ1vQt7CMPo-3RmGe_Vj9iG1QJoaUIlhlXL9edX7fdYpgtTJSbRmZeZdbvJ8h_mN8Ab8Xoww
CitedBy_id crossref_primary_10_1186_s12967_023_04222_3
crossref_primary_10_3390_cancers15061767
crossref_primary_10_3390_cancers14164052
crossref_primary_10_1007_s10278_023_00905_x
crossref_primary_10_1038_s41698_023_00413_9
crossref_primary_10_1097_RCT_0000000000001454
crossref_primary_10_1093_neuonc_noae260
crossref_primary_10_3390_diagnostics15010038
crossref_primary_10_1016_j_neo_2023_100886
crossref_primary_10_1016_S1470_2045_24_00316_4
crossref_primary_10_1016_j_neo_2022_100869
crossref_primary_10_1007_s44196_023_00230_9
crossref_primary_10_3390_cancers15184636
crossref_primary_10_1038_s41598_022_12699_z
crossref_primary_10_1038_s41598_024_55072_y
crossref_primary_10_1080_14789450_2024_2337004
crossref_primary_10_1093_noajnl_vdac083
crossref_primary_10_3390_ijms24076375
crossref_primary_10_3390_cancers14143401
crossref_primary_10_3390_cancers15061837
crossref_primary_10_1038_s41416_023_02317_8
crossref_primary_10_3389_fonc_2023_1191470
crossref_primary_10_1177_15330338241262483
crossref_primary_10_3390_diagnostics13152544
crossref_primary_10_1158_1078_0432_CCR_23_0009
crossref_primary_10_3390_cancers14122860
crossref_primary_10_3389_fonc_2023_1083080
crossref_primary_10_3390_cancers14164025
crossref_primary_10_1002_jmri_28377
crossref_primary_10_1007_s00521_023_08405_3
crossref_primary_10_3390_brainsci15020146
crossref_primary_10_1186_s40644_024_00682_y
crossref_primary_10_1016_j_urolonc_2024_02_008
Cites_doi 10.1148/radiol.2020191145
10.1093/neuonc/nox158
10.1615/CritRevOncog.2014011777
10.1148/radiol.14131691
10.1093/neuonc/noaa045
10.1200/JCO.2009.26.3541
10.1148/radiol.2021202553
10.1002/jmri.26907
10.1093/neuonc/noy027
10.1016/j.ccell.2018.06.006
10.1093/neuonc/nov127
10.1002/cncr.32790
10.1016/j.neuroimage.2018.10.003
10.1002/jmri.25963
10.1016/j.neuroimage.2010.09.074
10.1007/s10278-013-9622-7
10.1093/neuonc/noz199
10.1093/nop/npz039
10.1038/sdata.2017.117
10.1007/s00234-015-1576-7
10.1007/s00401-016-1545-1
10.1109/TBME.2010.2053540
10.1200/CCI.19.00121
10.1038/s41568-018-0016-5
10.1016/j.ccr.2009.12.020
10.1117/1.JMI.7.3.031505
10.1002/jmri.27105
10.1371/journal.pone.0025451
10.1016/j.rcl.2021.02.002
10.1016/j.cell.2013.09.034
10.1016/j.nic.2020.09.010
10.1007/s00262-020-02836-w
10.1158/1078-0432.CCR-20-0736
10.1148/radiol.2019190913
10.1016/j.phro.2021.09.007
10.1158/1078-0432.CCR-19-2556
10.1007/978-3-030-59713-9_30
10.1371/journal.pone.0035236
10.1093/neuonc/noaa215.679
10.1016/j.ymeth.2020.06.003
10.1117/1.JMI.8.3.031902
10.1158/1078-0432.CCR-16-1871
10.1109/TMI.2014.2377694
10.3174/ajnr.A5421
10.1148/radiol.2018180200
10.1038/s41467-019-11007-0
10.1038/s41467-020-17139-y
10.1093/neuonc/noz233
10.1093/neuonc/nop020
10.1038/s41416-021-01387-w
10.1093/neuonc/noaa141
10.1093/neuonc/noy033
10.1016/j.neuroimage.2020.117127
10.3390/pr9010045
10.1158/1055-9965.EPI-20-0075
10.1007/s11910-014-0506-0
10.1007/s00401-016-1646-x
10.1007/s12094-016-1497-x
10.1126/science.1254257
10.1038/s41598-021-94560-3
10.3174/ajnr.A4474
10.1007/s00432-020-03153-6
10.1016/j.ajpath.2012.01.040
10.1016/j.neuroimage.2017.11.024
10.1038/s41598-020-68857-8
10.1093/neuonc/noy133
10.1002/jmri.25497
10.1007/s11060-017-2375-2
10.1093/neuonc/noaa290
10.1007/s11060-019-03132-z
10.1016/j.mri.2019.05.041
10.3174/ajnr.A5391
10.15586/codon.glioblastoma.2017.ch1
10.1155/2011/732413
10.1093/neuonc/noab106
10.1109/MIS.2015.60
10.2214/AJR.17.18754
10.1148/radiol.2016161382
10.1148/radiol.13122697
10.1093/neuros/nyab307
10.1148/radiol.2015151169
10.1056/NEJMoa043331
10.1148/radiol.14131731
10.1016/j.mri.2019.04.012
10.1227/NEU.0000000000001202
10.1093/neuonc/noy132
10.1111/bpa.12171
10.1186/s40478-020-0889-x
10.1093/noajnl/vdaa128
10.1148/radiol.13120118
10.1016/j.nicl.2016.03.007
10.3322/caac.21552
10.1038/s41598-018-22739-2
10.1093/neuonc/noaa177
10.1126/scitranslmed.aaa7582
10.1148/radiol.2491072000
10.1016/j.media.2016.06.037
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/cancers13235921
DatabaseName CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 2072-6694
ExternalDocumentID PMC8656630
10_3390_cancers13235921
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c398t-5502b798b8f20f9eadb13f5e2c19e1199e5a17b935a9f1b81dc834b6fca6f8d53
IEDL.DBID M48
ISSN 2072-6694
IngestDate Thu Aug 21 18:17:27 EDT 2025
Fri Jul 11 10:24:37 EDT 2025
Fri Jul 25 11:46:46 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Tue Jul 01 01:28:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-5502b798b8f20f9eadb13f5e2c19e1199e5a17b935a9f1b81dc834b6fca6f8d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Equally contributing co-authors.
ORCID 0000-0003-0930-3238
0000-0003-4861-0898
0000-0001-6978-7284
0000-0001-9786-3707
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers13235921
PMID 34885031
PQID 2608069215
PQPubID 2032421
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8656630
proquest_miscellaneous_2608533947
proquest_journals_2608069215
crossref_citationtrail_10_3390_cancers13235921
crossref_primary_10_3390_cancers13235921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211125
PublicationDateYYYYMMDD 2021-11-25
PublicationDate_xml – month: 11
  year: 2021
  text: 20211125
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Cancers
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_92
Tomaszewski (ref_9) 2021; 298
ref_91
ref_90
Cooper (ref_77) 2012; 180
Bilello (ref_51) 2016; 12
ref_98
Coates (ref_48) 2021; 8
Kristensen (ref_22) 2020; 7
Modanwal (ref_97) 2020; 11314
ref_15
Akbari (ref_37) 2018; 20
Filipovych (ref_63) 2011; 54
Louis (ref_6) 2021; 23
Hegi (ref_20) 2005; 352
Davatzikos (ref_16) 2020; 22
Kickingereder (ref_57) 2016; 281
Haider (ref_25) 2020; 22
Beig (ref_54) 2020; 26
Elshafeey (ref_43) 2019; 10
Fortin (ref_94) 2018; 167
Menze (ref_89) 2014; 34
Rivera (ref_103) 2010; 12
Ellingson (ref_52) 2015; 15
Lin (ref_79) 2020; 146
Gutman (ref_42) 2013; 267
Jackson (ref_76) 2011; 2011
Madabhushi (ref_75) 2016; 33
Singh (ref_49) 2021; 125
Zhou (ref_27) 2018; 39
Lohmann (ref_7) 2021; 188
Davatzikos (ref_93) 2020; 22
Bakas (ref_85) 2017; 4
Vanderbeek (ref_19) 2018; 20
Davatzikos (ref_64) 2019; 197
Shah (ref_102) 2020; 22
Khanna (ref_10) 2021; 89
Ellingson (ref_23) 2017; 134
Gevaert (ref_47) 2014; 273
(ref_66) 2014; 19
Chawla (ref_28) 2020; 52
Macyszyn (ref_33) 2016; 18
Kim (ref_45) 2019; 21
ref_86
Gillies (ref_13) 2020; 29
Saria (ref_65) 2015; 30
ref_84
Zhovannik (ref_88) 2021; 20
Scarpazza (ref_95) 2020; 220
Akbari (ref_38) 2020; 126
Zhou (ref_69) 2017; 46
Akbari (ref_40) 2021; 11
Rathore (ref_61) 2018; 8
Park (ref_55) 2020; 294
Bakas (ref_11) 2020; 52
Wen (ref_29) 2010; 28
ref_50
Mansouri (ref_21) 2019; 21
Hosny (ref_31) 2018; 18
Wang (ref_44) 2016; 37
Zwanenburg (ref_73) 2020; 295
Georgescu (ref_1) 2020; 8
Itakura (ref_62) 2015; 7
Akbari (ref_39) 2016; 78
Gillies (ref_12) 2016; 278
Gatenby (ref_8) 2013; 269
Oh (ref_18) 2020; 11
Pope (ref_53) 2008; 249
Boxerman (ref_82) 2020; 22
Strauss (ref_24) 2021; 31
ref_60
Jain (ref_46) 2021; 23
Gutman (ref_58) 2015; 57
Calabrese (ref_70) 2020; 10
Dewey (ref_96) 2019; 64
Ye (ref_80) 2020; 26
Jain (ref_87) 2014; 272
Bi (ref_30) 2019; 69
Louis (ref_99) 2017; 133
Yao (ref_72) 2019; 21
ref_34
Badve (ref_56) 2021; 59
Bae (ref_104) 2018; 289
Ellingson (ref_81) 2015; 17
Louis (ref_106) 2014; 24
Bakas (ref_36) 2017; 23
(ref_32) 2016; 18
Choi (ref_101) 2021; 23
Verhaak (ref_17) 2010; 17
Chow (ref_68) 2018; 210
Park (ref_100) 2018; 39
Ostrom (ref_3) 2017; 19
Doyle (ref_74) 2010; 59
Patel (ref_26) 2014; 344
Yao (ref_71) 2019; 142
Brennan (ref_4) 2013; 155
ref_41
Louis (ref_5) 2016; 131
ref_2
Kazerooni (ref_67) 2018; 48
Bakas (ref_35) 2020; 7
Binder (ref_59) 2018; 34
Davatzikos (ref_14) 2019; 64
Clark (ref_83) 2013; 26
Kim (ref_78) 2021; 70
Rathore (ref_105) 2020; 2
References_xml – volume: 295
  start-page: 328
  year: 2020
  ident: ref_73
  article-title: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping
  publication-title: Radiology
  doi: 10.1148/radiol.2020191145
– volume: 19
  start-page: v1
  year: 2017
  ident: ref_3
  article-title: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/nox158
– volume: 19
  start-page: 327
  year: 2014
  ident: ref_66
  article-title: Glioblastoma heterogeneity and cancer cell plasticity
  publication-title: Crit. Rev. Oncog.
  doi: 10.1615/CritRevOncog.2014011777
– volume: 272
  start-page: 484
  year: 2014
  ident: ref_87
  article-title: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: Focus on the nonenhancing component of the tumor
  publication-title: Radiology
  doi: 10.1148/radiol.14131691
– volume: 22
  start-page: 886
  year: 2020
  ident: ref_16
  article-title: AI-based prognostic imaging biomarkers for precision neuro-oncology: The ReSPOND consortium
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noaa045
– volume: 28
  start-page: 1963
  year: 2010
  ident: ref_29
  article-title: Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2009.26.3541
– volume: 298
  start-page: 505
  year: 2021
  ident: ref_9
  article-title: The biological meaning of radiomic features
  publication-title: Radiology
  doi: 10.1148/radiol.2021202553
– volume: 52
  start-page: 54
  year: 2020
  ident: ref_11
  article-title: Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26907
– volume: 20
  start-page: 1034
  year: 2018
  ident: ref_19
  article-title: The clinical trials landscape for glioblastoma: Is it adequate to develop new treatments?
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noy027
– volume: 34
  start-page: 163
  year: 2018
  ident: ref_59
  article-title: Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.06.006
– volume: 18
  start-page: 417
  year: 2016
  ident: ref_33
  article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/nov127
– volume: 126
  start-page: 2625
  year: 2020
  ident: ref_38
  article-title: Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma
  publication-title: Cancer
  doi: 10.1002/cncr.32790
– volume: 197
  start-page: 652
  year: 2019
  ident: ref_64
  article-title: Machine learning in neuroimaging: Progress and challenges
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.003
– volume: 48
  start-page: 938
  year: 2018
  ident: ref_67
  article-title: Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25963
– volume: 54
  start-page: 2185
  year: 2011
  ident: ref_63
  article-title: Semi-supervised cluster analysis of imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.074
– volume: 26
  start-page: 1045
  year: 2013
  ident: ref_83
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 22
  start-page: 402
  year: 2020
  ident: ref_102
  article-title: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noz199
– volume: 7
  start-page: 68
  year: 2020
  ident: ref_22
  article-title: Do we really know who has an MGMT methylated glioma? Results of an international survey regarding use of MGMT analyses for glioma
  publication-title: Neuro-Oncol. Pract.
  doi: 10.1093/nop/npz039
– volume: 4
  start-page: 170117
  year: 2017
  ident: ref_85
  article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.117
– volume: 57
  start-page: 1227
  year: 2015
  ident: ref_58
  article-title: Somatic mutations associated with MRI-derived volumetric features in glioblastoma
  publication-title: Neuroradiology
  doi: 10.1007/s00234-015-1576-7
– volume: 131
  start-page: 803
  year: 2016
  ident: ref_5
  article-title: The 2016 World Health Organization classification of tumors of the central nervous system: A summary
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1545-1
– volume: 59
  start-page: 1205
  year: 2010
  ident: ref_74
  article-title: A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2053540
– ident: ref_34
  doi: 10.1200/CCI.19.00121
– volume: 18
  start-page: 500
  year: 2018
  ident: ref_31
  article-title: Artificial intelligence in radiology
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0016-5
– volume: 17
  start-page: 98
  year: 2010
  ident: ref_17
  article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.12.020
– volume: 7
  start-page: 031505
  year: 2020
  ident: ref_35
  article-title: Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): Advanced radiomic features may compensate for lack of advanced MRI modalities
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.7.3.031505
– volume: 11314
  start-page: 1131413
  year: 2020
  ident: ref_97
  article-title: MRI image harmonization using cycle-consistent generative adversarial network
  publication-title: Med. Imaging 2020 Comput.-Aided Diagn.
– volume: 52
  start-page: 978
  year: 2020
  ident: ref_28
  article-title: Emerging MRI Techniques to Redefine Treatment Response in Patients with Glioblastoma
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27105
– ident: ref_50
  doi: 10.1371/journal.pone.0025451
– volume: 59
  start-page: 441
  year: 2021
  ident: ref_56
  article-title: Radiogenomics of Gliomas
  publication-title: Radiol. Clin. N. Am.
  doi: 10.1016/j.rcl.2021.02.002
– ident: ref_86
– volume: 155
  start-page: 462
  year: 2013
  ident: ref_4
  article-title: The somatic genomic landscape of glioblastoma
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.034
– volume: 31
  start-page: 103
  year: 2021
  ident: ref_24
  article-title: Imaging glioblastoma posttreatment: Progression, pseudoprogression, pseudoresponse, radiation necrosis
  publication-title: Neuroimaging Clin.
  doi: 10.1016/j.nic.2020.09.010
– volume: 70
  start-page: 1995
  year: 2021
  ident: ref_78
  article-title: Absolute quantification of tumor-infiltrating immune cells in high-grade glioma identifies prognostic and radiomics values
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-020-02836-w
– ident: ref_92
– volume: 26
  start-page: 5388
  year: 2020
  ident: ref_80
  article-title: Diffusion Histology Imaging Combining Diffusion Basis Spectrum Imaging (DBSI) and Machine Learning Improves Detection and Classification of Glioblastoma Pathology
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-20-0736
– volume: 294
  start-page: 388
  year: 2020
  ident: ref_55
  article-title: Prediction of core signaling pathway by using diffusionand perfusion-based mri radiomics and next-generation sequencing in isocitrate dehydrogenase wild-type glioblastoma
  publication-title: Radiology
  doi: 10.1148/radiol.2019190913
– volume: 20
  start-page: 30
  year: 2021
  ident: ref_88
  article-title: Radiomics integration into a picture archiving and communication system
  publication-title: Phys. Imaging Radiat. Oncol.
  doi: 10.1016/j.phro.2021.09.007
– volume: 26
  start-page: 1866
  year: 2020
  ident: ref_54
  article-title: Radiogenomic-Based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in glioblastoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-2556
– ident: ref_15
  doi: 10.1007/978-3-030-59713-9_30
– volume: 17
  start-page: 1188
  year: 2015
  ident: ref_81
  article-title: Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials
  publication-title: Neuro-oncology
– ident: ref_60
  doi: 10.1371/journal.pone.0035236
– volume: 22
  start-page: ii162
  year: 2020
  ident: ref_93
  article-title: NIMG-66. Ai-Based Prognostic Imaging Biomarkers for Precision Neurooncology and the Respond Consortium
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noaa215.679
– volume: 188
  start-page: 112
  year: 2021
  ident: ref_7
  article-title: Radiomics in neuro-oncology: Basics, workflow, and applications
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.06.003
– volume: 8
  start-page: 031902
  year: 2021
  ident: ref_48
  article-title: Radiomic and radiogenomic modeling for radiotherapy: Strategies, pitfalls, and challenges
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.8.3.031902
– volume: 23
  start-page: 4724
  year: 2017
  ident: ref_36
  article-title: In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: The φ-index
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-1871
– volume: 34
  start-page: 1993
  year: 2014
  ident: ref_89
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 39
  start-page: 37
  year: 2018
  ident: ref_100
  article-title: Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5421
– volume: 289
  start-page: 797
  year: 2018
  ident: ref_104
  article-title: Radiomic MRI phenotyping of glioblastoma: Improving survival prediction
  publication-title: Radiology
  doi: 10.1148/radiol.2018180200
– volume: 10
  start-page: 3170
  year: 2019
  ident: ref_43
  article-title: Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11007-0
– volume: 11
  start-page: 3288
  year: 2020
  ident: ref_18
  article-title: Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17139-y
– volume: 22
  start-page: 450
  year: 2020
  ident: ref_25
  article-title: Toward a standard pathological and molecular characterization of recurrent glioma in adults: A Response Assessment in Neuro-Oncology effort
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noz233
– volume: 12
  start-page: 116
  year: 2010
  ident: ref_103
  article-title: MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/nop020
– volume: 125
  start-page: 641
  year: 2021
  ident: ref_49
  article-title: Radiomics and radiogenomics in gliomas: A contemporary update
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-021-01387-w
– volume: 21
  start-page: 1184
  year: 2019
  ident: ref_72
  article-title: Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH-and oxygen-sensitive molecular MRI
  publication-title: Neuro-oncology
– volume: 22
  start-page: 1262
  year: 2020
  ident: ref_82
  article-title: Consensus Recommendations for a Dynamic Susceptibility Contrast MRI Protocol for Use in High-Grade Gliomas
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noaa141
– volume: 20
  start-page: 1068
  year: 2018
  ident: ref_37
  article-title: In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noy033
– volume: 220
  start-page: 117127
  year: 2020
  ident: ref_95
  article-title: Neuroharmony: A new tool for harmonizing volumetric MRI data from unseen scanners
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117127
– ident: ref_41
  doi: 10.3390/pr9010045
– volume: 29
  start-page: 2556
  year: 2020
  ident: ref_13
  article-title: Radiomics improves cancer screening and early detection
  publication-title: Cancer Epidemiol. Prev. Biomark.
  doi: 10.1158/1055-9965.EPI-20-0075
– ident: ref_84
– volume: 15
  start-page: 506
  year: 2015
  ident: ref_52
  article-title: Radiogenomics and imaging phenotypes in glioblastoma: Novel observations and correlation with molecular characteristics
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-014-0506-0
– volume: 133
  start-page: 1
  year: 2017
  ident: ref_99
  article-title: Announcing cIMPACT-NOW: The consortium to inform molecular and practical approaches to CNS tumor taxonomy
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1646-x
– volume: 18
  start-page: 1062
  year: 2016
  ident: ref_32
  article-title: Survival in glioblastoma: A review on the impact of treatment modalities
  publication-title: Clin. Transl. Oncol.
  doi: 10.1007/s12094-016-1497-x
– ident: ref_90
– volume: 344
  start-page: 1396
  year: 2014
  ident: ref_26
  article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
  publication-title: Science
  doi: 10.1126/science.1254257
– volume: 11
  start-page: 15011
  year: 2021
  ident: ref_40
  article-title: Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94560-3
– volume: 37
  start-page: 28
  year: 2016
  ident: ref_44
  article-title: Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4474
– ident: ref_98
– volume: 146
  start-page: 1253
  year: 2020
  ident: ref_79
  article-title: Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-020-03153-6
– volume: 180
  start-page: 2108
  year: 2012
  ident: ref_77
  article-title: The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2012.01.040
– volume: 167
  start-page: 104
  year: 2018
  ident: ref_94
  article-title: Harmonization of cortical thickness measurements across scanners and sites
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.11.024
– volume: 10
  start-page: 11852
  year: 2020
  ident: ref_70
  article-title: A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68857-8
– volume: 21
  start-page: 404
  year: 2019
  ident: ref_45
  article-title: Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noy133
– volume: 46
  start-page: 115
  year: 2017
  ident: ref_69
  article-title: Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25497
– volume: 134
  start-page: 495
  year: 2017
  ident: ref_23
  article-title: Pseudoprogression, radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-017-2375-2
– volume: 23
  start-page: 177
  year: 2021
  ident: ref_46
  article-title: Radiogenomics identifying important biological pathways in gliomas
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noaa290
– volume: 142
  start-page: 587
  year: 2019
  ident: ref_71
  article-title: pH-weighted amine chemical exchange saturation transfer echoplanar imaging (CEST-EPI) as a potential early biomarker for bevacizumab failure in recurrent glioblastoma
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-019-03132-z
– volume: 64
  start-page: 160
  year: 2019
  ident: ref_96
  article-title: DeepHarmony: A deep learning approach to contrast harmonization across scanner changes
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.05.041
– volume: 39
  start-page: 208
  year: 2018
  ident: ref_27
  article-title: Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5391
– ident: ref_2
  doi: 10.15586/codon.glioblastoma.2017.ch1
– volume: 2011
  start-page: 732413
  year: 2011
  ident: ref_76
  article-title: Challenges in Immunotherapy Presented by the Glioblastoma Multiforme Microenvironment
  publication-title: Clin. Dev. Immunol.
  doi: 10.1155/2011/732413
– volume: 23
  start-page: 1231
  year: 2021
  ident: ref_6
  article-title: The 2021 WHO classification of tumors of the central nervous system: A summary
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noab106
– volume: 30
  start-page: 70
  year: 2015
  ident: ref_65
  article-title: Subtyping: What it is and its role in precision medicine
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2015.60
– volume: 210
  start-page: 30
  year: 2018
  ident: ref_68
  article-title: Imaging genetic heterogeneity in glioblastoma and other glial tumors: Review of current methods and future directions
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.17.18754
– volume: 281
  start-page: 907
  year: 2016
  ident: ref_57
  article-title: Radiogenomics of glioblastoma: Machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features
  publication-title: Radiology
  doi: 10.1148/radiol.2016161382
– volume: 269
  start-page: 8
  year: 2013
  ident: ref_8
  article-title: Quantitative imaging in cancer evolution and ecology
  publication-title: Radiology
  doi: 10.1148/radiol.13122697
– volume: 89
  start-page: 928
  year: 2021
  ident: ref_10
  article-title: Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyab307
– volume: 278
  start-page: 563
  year: 2016
  ident: ref_12
  article-title: Radiomics: Images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 352
  start-page: 997
  year: 2005
  ident: ref_20
  article-title: MGMT gene silencing and benefit from temozolomide in glioblastoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa043331
– volume: 273
  start-page: 168
  year: 2014
  ident: ref_47
  article-title: Glioblastoma multiforme: Exploratory radiogenomic analysis by using quantitative image features
  publication-title: Radiology
  doi: 10.1148/radiol.14131731
– volume: 64
  start-page: 49
  year: 2019
  ident: ref_14
  article-title: Precision diagnostics based on machine learning-derived imaging
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.04.012
– volume: 78
  start-page: 572
  year: 2016
  ident: ref_39
  article-title: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0000000000001202
– volume: 21
  start-page: 167
  year: 2019
  ident: ref_21
  article-title: MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noy132
– volume: 24
  start-page: 429
  year: 2014
  ident: ref_106
  article-title: I nternational S ociety of N europathology-H aarlem C onsensus G uidelines for N ervous S ystem T umor C lassification and G rading
  publication-title: Brain Pathol.
  doi: 10.1111/bpa.12171
– volume: 8
  start-page: 10
  year: 2020
  ident: ref_1
  article-title: Genetic and histologic spatiotemporal evolution of recurrent, multifocal, multicentric and metastatic glioblastoma
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-020-0889-x
– volume: 2
  start-page: iv22
  year: 2020
  ident: ref_105
  article-title: Multi-institutional noninvasive in vivo characterization of IDH, 1p/19q, and EGFRvIII in glioma using neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk)
  publication-title: Neuro-Oncol. Adv.
  doi: 10.1093/noajnl/vdaa128
– volume: 267
  start-page: 560
  year: 2013
  ident: ref_42
  article-title: MR imaging predictors of molecular profile and survival: Multi-institutional study of the TCGA glioblastoma data set
  publication-title: Radiology
  doi: 10.1148/radiol.13120118
– volume: 12
  start-page: 34
  year: 2016
  ident: ref_51
  article-title: Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2016.03.007
– volume: 69
  start-page: 127
  year: 2019
  ident: ref_30
  article-title: Artificial intelligence in cancer imaging: Clinical challenges and applications. CA
  publication-title: Cancer J. Clin.
  doi: 10.3322/caac.21552
– volume: 8
  start-page: 5087
  year: 2018
  ident: ref_61
  article-title: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22739-2
– ident: ref_91
– volume: 23
  start-page: 304
  year: 2021
  ident: ref_101
  article-title: Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics
  publication-title: Neuro-oncology
  doi: 10.1093/neuonc/noaa177
– volume: 7
  start-page: 303ra138
  year: 2015
  ident: ref_62
  article-title: Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa7582
– volume: 249
  start-page: 268
  year: 2008
  ident: ref_53
  article-title: Relationship between gene expression and enhancement in glioblastoma multiforme: Exploratory DNA microarray analysis
  publication-title: Radiology
  doi: 10.1148/radiol.2491072000
– volume: 33
  start-page: 170
  year: 2016
  ident: ref_75
  article-title: Image analysis and machine learning in digital pathology: Challenges and opportunities
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.037
SSID ssj0000331767
Score 2.4910624
Snippet Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and...
Simple SummaryRadiomics and radiogenomics offer new insight into high-grade glioma biology, as well as into glioma behavior in response to standard therapies....
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5921
SubjectTerms Biology
Biomarkers
Brain cancer
Brain tumors
Clinical decision making
Clinical outcomes
Clinical trials
Genomics
Glioma
Learning algorithms
Machine learning
Magnetic resonance imaging
Medical imaging
Medical prognosis
Metastases
Oncology
Pathophysiology
Patients
Precision medicine
Predictions
Radiomics
Surgery
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_akxZfirVKz15LBB98iW42m93kqVzLqRQUEQXflmySxYNjz-6dD_73ztzmTk_Qx3wRmEkyv8l8ARwUtUcQ7Mm7P_M8U3XGTShynmsERyQDnaZo5POL_Owm-3erbuOH2yy6VS7fxMVD7aeO_siPEXfrJDcooX7f_-dUNYqsq7GExkfYwCdY6x5s_BldXF6tflkSifIxL7qcPhL1-2NHxGxnqIRJZVKxLo6eMea6h-QLkXOyBV8iVmTDjrlf4UNotuFTVz3ycRs-n0e7-Deohi_s0GxasyvrxxRvPGO28V2LsrEuesYNI-8OftpaH9jpZEwuQtSLWJCNWkvrL9tYe4ctN9mBm5PR9d8zHqsncCeNnnNUPdKqMLrSdZrUBk9MJWStQuqECUIYE5QVRWWksqYWFbLGaZlR7I_Na-2V3IVeM23Cd2CpS60rnLDeucwm0qhKaxkQGcjcyFz34WhJxNLF1OJU4WJSoopBVC9fUb0Ph6sF911WjbenDpZcKeP1mpXPh6EP-6thvBhk7bBNmD50cxDLmqzoQ7HGzdWWlFp7faQZ3y1SbGuCuTLZe3_zH7CZkouLEDxVA-jN24fwEzHKvPoVD-ITvunptw
  priority: 102
  providerName: ProQuest
Title Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine
URI https://www.proquest.com/docview/2608069215
https://www.proquest.com/docview/2608533947
https://pubmed.ncbi.nlm.nih.gov/PMC8656630
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdC2Mvpbux9BI02MNe1FmSdXsopRtpSiGllAXyZmRZZoHgbE4K7b_vObaTNqOFPloXy5wj-XwfOhdCvpmyABBcoHd_WrBUlSlz0WimLYAjtIHBYjTy6EpfjNPLiZo8lgPqBLh4ltphPalxPTu--3d_Cgf-BBknUPYfAeVTL4BXSeUwqHwHzJLBcgajDus3v2UJprKpKCsSI5jWLm1T_Tz3jk0r9Qg9Nx0nn1ii8z2y20FIetbq_D3ZitUH8nbUXZJ_JPnZk0tpOi_pjS-mGHy8oL4q2idMzdq0TCuKrh5sWPsi0uFsiv5C2ArAkA5qj_Ov664QD10t8omMzwe_f12wrpQCC9LZJQMeInLjbG5LkZQOtk_OZamiCNxFzp2LynOTO6m8K3kOegpWphgI5HVpCyU_k-1qXsUvhIogfDCB-yKE1CfSqdxaGQEmSO2ktj1yvBJdFro841juYpYB30BZZ__Juke-ryf8bVNsvDz0cKWLbLVVMmBkNtHQq3rk67obTgleffgqzm_bMQBsXWp6xGzocL0k5tne7Kmmf5p82xYxr0z2X_-dB-SdQN8XzplQh2R7Wd_GIwAvy7xPdn4Orq5v-uTNcML7zRZ9AGXR8Y8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqXhcEBQQKQWMBBIX07W9D_uAUIG0KW2iqmql3hav7RWRqk27SYX6p_iNzGR30wYJbj2uH_JqZuz57HkBvMtKjyDYk3d_7HmclDE3IUt5qhEckQ50mqKRR-N0eBp_P0vO1uB3FwtDbpXdmbg4qP3U0Rv5NuJuHaUGNdTni0tOVaPIutqV0GjE4iBc_8Ir2-zT_jfk73spdwcnX4e8rSrAnTJ6zhGSyyIzutCljEqDlCyEKpMgnTBBCGNCYkVWGJVYU4oCf9lpFVNMjE1L7alKBB7567FKI9mD9S-D8dHx8lUnUqiP06zJIaSUibYdMa-e4aVPJUaKVfV3g2lXPTJvqbjdx_CoxaZspxGmJ7AWqg2411SrvN6A-6PWDv8Uip1bdm82Ldmx9ROKb54xW_nmi7K_LlomFSNvEr5XWx_Y3vmEXJKoFbEnG9SW5h_Vba0f1i3yDE7vhK7PoVdNq_ACmHTSuswJ652LbaRMUmitAiIRlRqV6j587IiYuzaVOVXUOM_xSkNUz_-ieh8-LCdcNFk8_j10q-NK3m7nWX4jfH14u-zGjUjWFVuF6VUzBrGzibM-ZCvcXC5JqbxXe6rJz0VKb02wWkWb_1_8DTwYnowO88P98cFLeCjJvUYILpMt6M3rq_AK8dG8eN0KJYMfd70P_gA5nCdb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5Vqai4ICggAgWMBBKXJWt7H_YBoUKTtpRGUUWl3havH2qkalM2qVD_Gr-Omexu2iDBrcf1Q17NjD2fPS-At3lwCIIdefcnLkrSkETa51mUKQRHpAOtomjk43F2cJp8PUvPNuB3FwtDbpXdmbg8qN3M0hv5AHG3ijONGmoQWreIyd7o0-XPiCpIkaW1K6fRiMiRv_6F17f5x8M95PU7IUbD718OorbCQGSlVosI4bkoc61KFUQcNFK15DKkXliuPeda-9TwvNQyNTrwEn_fKplQfIzJgnJUMQKP_82cbkU92Pw8HE9OVi88sUTdnOVNPiEpdTywxMh6jhdAmWrB11XhDb5d9868pe5GD-FBi1PZbiNYj2DDV9twr6lceb0NW8etTf4xlLu3bOBsFtiJcVOKdZ4zU7nmizLBLlumFSPPkmi_Ns6z_YspuSdRK-JQNqwNzZ_Ubd0f1i3yBE7vhK5PoVfNKv8MmLDC2Nxy46xNTCx1WiolPaISmWmZqT586IhY2DatOVXXuCjwekNUL_6ieh_eryZcNhk9_j10p-NK0W7teXEjiH14s-rGTUmWFlP52VUzBnG0TvI-5GvcXC1Jab3Xe6rp-TK9tyKILePn_1_8NWyh_BffDsdHL-C-IE8bziOR7kBvUV_5lwiVFuWrViYZ_LjrbfAHk-wrkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+Radiomics+and+Radiogenomics+in+High-Grade+Gliomas+in+the+Era+of+Precision+Medicine&rft.jtitle=Cancers&rft.au=Fathi+Kazerooni%2C+Anahita&rft.au=Bagley%2C+Stephen+J.&rft.au=Akbari%2C+Hamed&rft.au=Saxena%2C+Sanjay&rft.date=2021-11-25&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=13&rft.issue=23&rft.spage=5921&rft_id=info:doi/10.3390%2Fcancers13235921&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cancers13235921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon