Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine
Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence,...
Saved in:
Published in | Cancers Vol. 13; no. 23; p. 5921 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions. |
---|---|
AbstractList | Simple SummaryRadiomics and radiogenomics offer new insight into high-grade glioma biology, as well as into glioma behavior in response to standard therapies. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the role of radiomics in providing more accurate diagnoses, prognostication, and surveillance of patients with high-grade glioma, and on the potential application of radiomics in clinical practice, with the overarching goal of advancing precision medicine for optimal patient care.AbstractMachine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions. Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions. Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions. |
Author | Davatzikos, Christos Fathi Kazerooni, Anahita Nabavizadeh, Ali Akbari, Hamed Saxena, Sanjay Bakas, Spyridon Chawla, Sanjeev Guo, Jun Mohan, Suyash Bagheri, Sina Nasrallah, MacLean P. Bagley, Stephen J. |
AuthorAffiliation | 1 Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; Anahita.Kazerooni@pennmedicine.upenn.edu (A.F.K.); Hamed.Akbari@pennmedicine.upenn.edu (H.A.); Sanjay.Saxena@Pennmedicine.upenn.edu (S.S.); Jun.Guo@Pennmedicine.upenn.edu (J.G.); Ali.Nabavizadeh@pennmedicine.upenn.edu (A.N.); Suyash.Mohan@pennmedicine.upenn.edu (S.M.); Spyridon.Bakas@pennmedicine.upenn.edu (S.B.); Christos.Davatzikos@pennmedicine.upenn.edu (C.D.) 4 Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; sbagley@pennmedicine.upenn.edu 2 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Sina.Bagheri@Pennmedicine.upenn.edu (S.B.); Sanjeev.Chawla@pennmedicine.upenn.edu (S.C.) 5 Department of Pathology & Laboratory Med |
AuthorAffiliation_xml | – name: 1 Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; Anahita.Kazerooni@pennmedicine.upenn.edu (A.F.K.); Hamed.Akbari@pennmedicine.upenn.edu (H.A.); Sanjay.Saxena@Pennmedicine.upenn.edu (S.S.); Jun.Guo@Pennmedicine.upenn.edu (J.G.); Ali.Nabavizadeh@pennmedicine.upenn.edu (A.N.); Suyash.Mohan@pennmedicine.upenn.edu (S.M.); Spyridon.Bakas@pennmedicine.upenn.edu (S.B.); Christos.Davatzikos@pennmedicine.upenn.edu (C.D.) – name: 4 Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA – name: 2 Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Sina.Bagheri@Pennmedicine.upenn.edu (S.B.); Sanjeev.Chawla@pennmedicine.upenn.edu (S.C.) – name: 3 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; sbagley@pennmedicine.upenn.edu – name: 5 Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA |
Author_xml | – sequence: 1 givenname: Anahita surname: Fathi Kazerooni fullname: Fathi Kazerooni, Anahita – sequence: 2 givenname: Stephen J. surname: Bagley fullname: Bagley, Stephen J. – sequence: 3 givenname: Hamed orcidid: 0000-0001-9786-3707 surname: Akbari fullname: Akbari, Hamed – sequence: 4 givenname: Sanjay surname: Saxena fullname: Saxena, Sanjay – sequence: 5 givenname: Sina surname: Bagheri fullname: Bagheri, Sina – sequence: 6 givenname: Jun orcidid: 0000-0003-0930-3238 surname: Guo fullname: Guo, Jun – sequence: 7 givenname: Sanjeev orcidid: 0000-0001-6978-7284 surname: Chawla fullname: Chawla, Sanjeev – sequence: 8 givenname: Ali surname: Nabavizadeh fullname: Nabavizadeh, Ali – sequence: 9 givenname: Suyash surname: Mohan fullname: Mohan, Suyash – sequence: 10 givenname: Spyridon surname: Bakas fullname: Bakas, Spyridon – sequence: 11 givenname: Christos surname: Davatzikos fullname: Davatzikos, Christos – sequence: 12 givenname: MacLean P. orcidid: 0000-0003-4861-0898 surname: Nasrallah fullname: Nasrallah, MacLean P. |
BookMark | eNp1UU1LAzEQDaL42bPXBS9eVpNNk00ugkitQkURPYdsdtJGtklNtoL_3rRV0IJzyczkvZfMvCO064MHhE4JvqBU4kujvYGYCK0okxXZQYcVrquScznc_ZUfoEFKbzgHpaTm9T46oEMhGKbkEDXXi0XnjO5d8KkItnjWrQtzZ1KhfbuppuA3HeeLOzedleOoWyjGXQbqdbefQTGKesV_imBcymrFA7TOOA8naM_qLsHg-zxGr7ejl5u7cvI4vr-5npSGStGXjOGqqaVohK2wlaDbhlDLoDJEAiFSAtOkbiRlWlrSCNIaQYcNt0ZzK1pGj9HVRnexbObQGvB91J1aRDfX8VMF7dTfG-9maho-lOCMc4qzwPm3QAzvS0i9mrtkoOu0h7BMquJYsLz5YZ2hZ1vQt7CMPo-3RmGe_Vj9iG1QJoaUIlhlXL9edX7fdYpgtTJSbRmZeZdbvJ8h_mN8Ab8Xoww |
CitedBy_id | crossref_primary_10_1186_s12967_023_04222_3 crossref_primary_10_3390_cancers15061767 crossref_primary_10_3390_cancers14164052 crossref_primary_10_1007_s10278_023_00905_x crossref_primary_10_1038_s41698_023_00413_9 crossref_primary_10_1097_RCT_0000000000001454 crossref_primary_10_1093_neuonc_noae260 crossref_primary_10_3390_diagnostics15010038 crossref_primary_10_1016_j_neo_2023_100886 crossref_primary_10_1016_S1470_2045_24_00316_4 crossref_primary_10_1016_j_neo_2022_100869 crossref_primary_10_1007_s44196_023_00230_9 crossref_primary_10_3390_cancers15184636 crossref_primary_10_1038_s41598_022_12699_z crossref_primary_10_1038_s41598_024_55072_y crossref_primary_10_1080_14789450_2024_2337004 crossref_primary_10_1093_noajnl_vdac083 crossref_primary_10_3390_ijms24076375 crossref_primary_10_3390_cancers14143401 crossref_primary_10_3390_cancers15061837 crossref_primary_10_1038_s41416_023_02317_8 crossref_primary_10_3389_fonc_2023_1191470 crossref_primary_10_1177_15330338241262483 crossref_primary_10_3390_diagnostics13152544 crossref_primary_10_1158_1078_0432_CCR_23_0009 crossref_primary_10_3390_cancers14122860 crossref_primary_10_3389_fonc_2023_1083080 crossref_primary_10_3390_cancers14164025 crossref_primary_10_1002_jmri_28377 crossref_primary_10_1007_s00521_023_08405_3 crossref_primary_10_3390_brainsci15020146 crossref_primary_10_1186_s40644_024_00682_y crossref_primary_10_1016_j_urolonc_2024_02_008 |
Cites_doi | 10.1148/radiol.2020191145 10.1093/neuonc/nox158 10.1615/CritRevOncog.2014011777 10.1148/radiol.14131691 10.1093/neuonc/noaa045 10.1200/JCO.2009.26.3541 10.1148/radiol.2021202553 10.1002/jmri.26907 10.1093/neuonc/noy027 10.1016/j.ccell.2018.06.006 10.1093/neuonc/nov127 10.1002/cncr.32790 10.1016/j.neuroimage.2018.10.003 10.1002/jmri.25963 10.1016/j.neuroimage.2010.09.074 10.1007/s10278-013-9622-7 10.1093/neuonc/noz199 10.1093/nop/npz039 10.1038/sdata.2017.117 10.1007/s00234-015-1576-7 10.1007/s00401-016-1545-1 10.1109/TBME.2010.2053540 10.1200/CCI.19.00121 10.1038/s41568-018-0016-5 10.1016/j.ccr.2009.12.020 10.1117/1.JMI.7.3.031505 10.1002/jmri.27105 10.1371/journal.pone.0025451 10.1016/j.rcl.2021.02.002 10.1016/j.cell.2013.09.034 10.1016/j.nic.2020.09.010 10.1007/s00262-020-02836-w 10.1158/1078-0432.CCR-20-0736 10.1148/radiol.2019190913 10.1016/j.phro.2021.09.007 10.1158/1078-0432.CCR-19-2556 10.1007/978-3-030-59713-9_30 10.1371/journal.pone.0035236 10.1093/neuonc/noaa215.679 10.1016/j.ymeth.2020.06.003 10.1117/1.JMI.8.3.031902 10.1158/1078-0432.CCR-16-1871 10.1109/TMI.2014.2377694 10.3174/ajnr.A5421 10.1148/radiol.2018180200 10.1038/s41467-019-11007-0 10.1038/s41467-020-17139-y 10.1093/neuonc/noz233 10.1093/neuonc/nop020 10.1038/s41416-021-01387-w 10.1093/neuonc/noaa141 10.1093/neuonc/noy033 10.1016/j.neuroimage.2020.117127 10.3390/pr9010045 10.1158/1055-9965.EPI-20-0075 10.1007/s11910-014-0506-0 10.1007/s00401-016-1646-x 10.1007/s12094-016-1497-x 10.1126/science.1254257 10.1038/s41598-021-94560-3 10.3174/ajnr.A4474 10.1007/s00432-020-03153-6 10.1016/j.ajpath.2012.01.040 10.1016/j.neuroimage.2017.11.024 10.1038/s41598-020-68857-8 10.1093/neuonc/noy133 10.1002/jmri.25497 10.1007/s11060-017-2375-2 10.1093/neuonc/noaa290 10.1007/s11060-019-03132-z 10.1016/j.mri.2019.05.041 10.3174/ajnr.A5391 10.15586/codon.glioblastoma.2017.ch1 10.1155/2011/732413 10.1093/neuonc/noab106 10.1109/MIS.2015.60 10.2214/AJR.17.18754 10.1148/radiol.2016161382 10.1148/radiol.13122697 10.1093/neuros/nyab307 10.1148/radiol.2015151169 10.1056/NEJMoa043331 10.1148/radiol.14131731 10.1016/j.mri.2019.04.012 10.1227/NEU.0000000000001202 10.1093/neuonc/noy132 10.1111/bpa.12171 10.1186/s40478-020-0889-x 10.1093/noajnl/vdaa128 10.1148/radiol.13120118 10.1016/j.nicl.2016.03.007 10.3322/caac.21552 10.1038/s41598-018-22739-2 10.1093/neuonc/noaa177 10.1126/scitranslmed.aaa7582 10.1148/radiol.2491072000 10.1016/j.media.2016.06.037 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7T5 7TO 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH H94 HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/cancers13235921 |
DatabaseName | CrossRef ProQuest Central (Corporate) Immunology Abstracts Oncogenes and Growth Factors Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 2072-6694 |
ExternalDocumentID | PMC8656630 10_3390_cancers13235921 |
GroupedDBID | --- 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO E3Z EBD ESX GNUQQ GUQSH GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS 3V. 7T5 7TO 7XB 8FK H94 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c398t-5502b798b8f20f9eadb13f5e2c19e1199e5a17b935a9f1b81dc834b6fca6f8d53 |
IEDL.DBID | M48 |
ISSN | 2072-6694 |
IngestDate | Thu Aug 21 18:17:27 EDT 2025 Fri Jul 11 10:24:37 EDT 2025 Fri Jul 25 11:46:46 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Tue Jul 01 01:28:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-5502b798b8f20f9eadb13f5e2c19e1199e5a17b935a9f1b81dc834b6fca6f8d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Equally contributing co-authors. |
ORCID | 0000-0003-0930-3238 0000-0003-4861-0898 0000-0001-6978-7284 0000-0001-9786-3707 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers13235921 |
PMID | 34885031 |
PQID | 2608069215 |
PQPubID | 2032421 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8656630 proquest_miscellaneous_2608533947 proquest_journals_2608069215 crossref_citationtrail_10_3390_cancers13235921 crossref_primary_10_3390_cancers13235921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211125 |
PublicationDateYYYYMMDD | 2021-11-25 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211125 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Cancers |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_92 Tomaszewski (ref_9) 2021; 298 ref_91 ref_90 Cooper (ref_77) 2012; 180 Bilello (ref_51) 2016; 12 ref_98 Coates (ref_48) 2021; 8 Kristensen (ref_22) 2020; 7 Modanwal (ref_97) 2020; 11314 ref_15 Akbari (ref_37) 2018; 20 Filipovych (ref_63) 2011; 54 Louis (ref_6) 2021; 23 Hegi (ref_20) 2005; 352 Davatzikos (ref_16) 2020; 22 Kickingereder (ref_57) 2016; 281 Haider (ref_25) 2020; 22 Beig (ref_54) 2020; 26 Elshafeey (ref_43) 2019; 10 Fortin (ref_94) 2018; 167 Menze (ref_89) 2014; 34 Rivera (ref_103) 2010; 12 Ellingson (ref_52) 2015; 15 Lin (ref_79) 2020; 146 Gutman (ref_42) 2013; 267 Jackson (ref_76) 2011; 2011 Madabhushi (ref_75) 2016; 33 Singh (ref_49) 2021; 125 Zhou (ref_27) 2018; 39 Lohmann (ref_7) 2021; 188 Davatzikos (ref_93) 2020; 22 Bakas (ref_85) 2017; 4 Vanderbeek (ref_19) 2018; 20 Davatzikos (ref_64) 2019; 197 Shah (ref_102) 2020; 22 Khanna (ref_10) 2021; 89 Ellingson (ref_23) 2017; 134 Gevaert (ref_47) 2014; 273 (ref_66) 2014; 19 Chawla (ref_28) 2020; 52 Macyszyn (ref_33) 2016; 18 Kim (ref_45) 2019; 21 ref_86 Gillies (ref_13) 2020; 29 Saria (ref_65) 2015; 30 ref_84 Zhovannik (ref_88) 2021; 20 Scarpazza (ref_95) 2020; 220 Akbari (ref_38) 2020; 126 Zhou (ref_69) 2017; 46 Akbari (ref_40) 2021; 11 Rathore (ref_61) 2018; 8 Park (ref_55) 2020; 294 Bakas (ref_11) 2020; 52 Wen (ref_29) 2010; 28 ref_50 Mansouri (ref_21) 2019; 21 Hosny (ref_31) 2018; 18 Wang (ref_44) 2016; 37 Zwanenburg (ref_73) 2020; 295 Georgescu (ref_1) 2020; 8 Itakura (ref_62) 2015; 7 Akbari (ref_39) 2016; 78 Gillies (ref_12) 2016; 278 Gatenby (ref_8) 2013; 269 Oh (ref_18) 2020; 11 Pope (ref_53) 2008; 249 Boxerman (ref_82) 2020; 22 Strauss (ref_24) 2021; 31 ref_60 Jain (ref_46) 2021; 23 Gutman (ref_58) 2015; 57 Calabrese (ref_70) 2020; 10 Dewey (ref_96) 2019; 64 Ye (ref_80) 2020; 26 Jain (ref_87) 2014; 272 Bi (ref_30) 2019; 69 Louis (ref_99) 2017; 133 Yao (ref_72) 2019; 21 ref_34 Badve (ref_56) 2021; 59 Bae (ref_104) 2018; 289 Ellingson (ref_81) 2015; 17 Louis (ref_106) 2014; 24 Bakas (ref_36) 2017; 23 (ref_32) 2016; 18 Choi (ref_101) 2021; 23 Verhaak (ref_17) 2010; 17 Chow (ref_68) 2018; 210 Park (ref_100) 2018; 39 Ostrom (ref_3) 2017; 19 Doyle (ref_74) 2010; 59 Patel (ref_26) 2014; 344 Yao (ref_71) 2019; 142 Brennan (ref_4) 2013; 155 ref_41 Louis (ref_5) 2016; 131 ref_2 Kazerooni (ref_67) 2018; 48 Bakas (ref_35) 2020; 7 Binder (ref_59) 2018; 34 Davatzikos (ref_14) 2019; 64 Clark (ref_83) 2013; 26 Kim (ref_78) 2021; 70 Rathore (ref_105) 2020; 2 |
References_xml | – volume: 295 start-page: 328 year: 2020 ident: ref_73 article-title: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping publication-title: Radiology doi: 10.1148/radiol.2020191145 – volume: 19 start-page: v1 year: 2017 ident: ref_3 article-title: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014 publication-title: Neuro-oncology doi: 10.1093/neuonc/nox158 – volume: 19 start-page: 327 year: 2014 ident: ref_66 article-title: Glioblastoma heterogeneity and cancer cell plasticity publication-title: Crit. Rev. Oncog. doi: 10.1615/CritRevOncog.2014011777 – volume: 272 start-page: 484 year: 2014 ident: ref_87 article-title: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: Focus on the nonenhancing component of the tumor publication-title: Radiology doi: 10.1148/radiol.14131691 – volume: 22 start-page: 886 year: 2020 ident: ref_16 article-title: AI-based prognostic imaging biomarkers for precision neuro-oncology: The ReSPOND consortium publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa045 – volume: 28 start-page: 1963 year: 2010 ident: ref_29 article-title: Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2009.26.3541 – volume: 298 start-page: 505 year: 2021 ident: ref_9 article-title: The biological meaning of radiomic features publication-title: Radiology doi: 10.1148/radiol.2021202553 – volume: 52 start-page: 54 year: 2020 ident: ref_11 article-title: Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26907 – volume: 20 start-page: 1034 year: 2018 ident: ref_19 article-title: The clinical trials landscape for glioblastoma: Is it adequate to develop new treatments? publication-title: Neuro-oncology doi: 10.1093/neuonc/noy027 – volume: 34 start-page: 163 year: 2018 ident: ref_59 article-title: Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.06.006 – volume: 18 start-page: 417 year: 2016 ident: ref_33 article-title: Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques publication-title: Neuro-oncology doi: 10.1093/neuonc/nov127 – volume: 126 start-page: 2625 year: 2020 ident: ref_38 article-title: Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma publication-title: Cancer doi: 10.1002/cncr.32790 – volume: 197 start-page: 652 year: 2019 ident: ref_64 article-title: Machine learning in neuroimaging: Progress and challenges publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.003 – volume: 48 start-page: 938 year: 2018 ident: ref_67 article-title: Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25963 – volume: 54 start-page: 2185 year: 2011 ident: ref_63 article-title: Semi-supervised cluster analysis of imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.074 – volume: 26 start-page: 1045 year: 2013 ident: ref_83 article-title: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – volume: 22 start-page: 402 year: 2020 ident: ref_102 article-title: A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas publication-title: Neuro-oncology doi: 10.1093/neuonc/noz199 – volume: 7 start-page: 68 year: 2020 ident: ref_22 article-title: Do we really know who has an MGMT methylated glioma? Results of an international survey regarding use of MGMT analyses for glioma publication-title: Neuro-Oncol. Pract. doi: 10.1093/nop/npz039 – volume: 4 start-page: 170117 year: 2017 ident: ref_85 article-title: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – volume: 57 start-page: 1227 year: 2015 ident: ref_58 article-title: Somatic mutations associated with MRI-derived volumetric features in glioblastoma publication-title: Neuroradiology doi: 10.1007/s00234-015-1576-7 – volume: 131 start-page: 803 year: 2016 ident: ref_5 article-title: The 2016 World Health Organization classification of tumors of the central nervous system: A summary publication-title: Acta Neuropathol. doi: 10.1007/s00401-016-1545-1 – volume: 59 start-page: 1205 year: 2010 ident: ref_74 article-title: A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2053540 – ident: ref_34 doi: 10.1200/CCI.19.00121 – volume: 18 start-page: 500 year: 2018 ident: ref_31 article-title: Artificial intelligence in radiology publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0016-5 – volume: 17 start-page: 98 year: 2010 ident: ref_17 article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 – volume: 7 start-page: 031505 year: 2020 ident: ref_35 article-title: Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): Advanced radiomic features may compensate for lack of advanced MRI modalities publication-title: J. Med. Imaging doi: 10.1117/1.JMI.7.3.031505 – volume: 11314 start-page: 1131413 year: 2020 ident: ref_97 article-title: MRI image harmonization using cycle-consistent generative adversarial network publication-title: Med. Imaging 2020 Comput.-Aided Diagn. – volume: 52 start-page: 978 year: 2020 ident: ref_28 article-title: Emerging MRI Techniques to Redefine Treatment Response in Patients with Glioblastoma publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27105 – ident: ref_50 doi: 10.1371/journal.pone.0025451 – volume: 59 start-page: 441 year: 2021 ident: ref_56 article-title: Radiogenomics of Gliomas publication-title: Radiol. Clin. N. Am. doi: 10.1016/j.rcl.2021.02.002 – ident: ref_86 – volume: 155 start-page: 462 year: 2013 ident: ref_4 article-title: The somatic genomic landscape of glioblastoma publication-title: Cell doi: 10.1016/j.cell.2013.09.034 – volume: 31 start-page: 103 year: 2021 ident: ref_24 article-title: Imaging glioblastoma posttreatment: Progression, pseudoprogression, pseudoresponse, radiation necrosis publication-title: Neuroimaging Clin. doi: 10.1016/j.nic.2020.09.010 – volume: 70 start-page: 1995 year: 2021 ident: ref_78 article-title: Absolute quantification of tumor-infiltrating immune cells in high-grade glioma identifies prognostic and radiomics values publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-020-02836-w – ident: ref_92 – volume: 26 start-page: 5388 year: 2020 ident: ref_80 article-title: Diffusion Histology Imaging Combining Diffusion Basis Spectrum Imaging (DBSI) and Machine Learning Improves Detection and Classification of Glioblastoma Pathology publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-0736 – volume: 294 start-page: 388 year: 2020 ident: ref_55 article-title: Prediction of core signaling pathway by using diffusionand perfusion-based mri radiomics and next-generation sequencing in isocitrate dehydrogenase wild-type glioblastoma publication-title: Radiology doi: 10.1148/radiol.2019190913 – volume: 20 start-page: 30 year: 2021 ident: ref_88 article-title: Radiomics integration into a picture archiving and communication system publication-title: Phys. Imaging Radiat. Oncol. doi: 10.1016/j.phro.2021.09.007 – volume: 26 start-page: 1866 year: 2020 ident: ref_54 article-title: Radiogenomic-Based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in glioblastoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-19-2556 – ident: ref_15 doi: 10.1007/978-3-030-59713-9_30 – volume: 17 start-page: 1188 year: 2015 ident: ref_81 article-title: Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials publication-title: Neuro-oncology – ident: ref_60 doi: 10.1371/journal.pone.0035236 – volume: 22 start-page: ii162 year: 2020 ident: ref_93 article-title: NIMG-66. Ai-Based Prognostic Imaging Biomarkers for Precision Neurooncology and the Respond Consortium publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa215.679 – volume: 188 start-page: 112 year: 2021 ident: ref_7 article-title: Radiomics in neuro-oncology: Basics, workflow, and applications publication-title: Methods doi: 10.1016/j.ymeth.2020.06.003 – volume: 8 start-page: 031902 year: 2021 ident: ref_48 article-title: Radiomic and radiogenomic modeling for radiotherapy: Strategies, pitfalls, and challenges publication-title: J. Med. Imaging doi: 10.1117/1.JMI.8.3.031902 – volume: 23 start-page: 4724 year: 2017 ident: ref_36 article-title: In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: The φ-index publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-1871 – volume: 34 start-page: 1993 year: 2014 ident: ref_89 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 39 start-page: 37 year: 2018 ident: ref_100 article-title: Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A5421 – volume: 289 start-page: 797 year: 2018 ident: ref_104 article-title: Radiomic MRI phenotyping of glioblastoma: Improving survival prediction publication-title: Radiology doi: 10.1148/radiol.2018180200 – volume: 10 start-page: 3170 year: 2019 ident: ref_43 article-title: Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma publication-title: Nat. Commun. doi: 10.1038/s41467-019-11007-0 – volume: 11 start-page: 3288 year: 2020 ident: ref_18 article-title: Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities publication-title: Nat. Commun. doi: 10.1038/s41467-020-17139-y – volume: 22 start-page: 450 year: 2020 ident: ref_25 article-title: Toward a standard pathological and molecular characterization of recurrent glioma in adults: A Response Assessment in Neuro-Oncology effort publication-title: Neuro-oncology doi: 10.1093/neuonc/noz233 – volume: 12 start-page: 116 year: 2010 ident: ref_103 article-title: MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma publication-title: Neuro-oncology doi: 10.1093/neuonc/nop020 – volume: 125 start-page: 641 year: 2021 ident: ref_49 article-title: Radiomics and radiogenomics in gliomas: A contemporary update publication-title: Br. J. Cancer doi: 10.1038/s41416-021-01387-w – volume: 21 start-page: 1184 year: 2019 ident: ref_72 article-title: Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH-and oxygen-sensitive molecular MRI publication-title: Neuro-oncology – volume: 22 start-page: 1262 year: 2020 ident: ref_82 article-title: Consensus Recommendations for a Dynamic Susceptibility Contrast MRI Protocol for Use in High-Grade Gliomas publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa141 – volume: 20 start-page: 1068 year: 2018 ident: ref_37 article-title: In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature publication-title: Neuro-oncology doi: 10.1093/neuonc/noy033 – volume: 220 start-page: 117127 year: 2020 ident: ref_95 article-title: Neuroharmony: A new tool for harmonizing volumetric MRI data from unseen scanners publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117127 – ident: ref_41 doi: 10.3390/pr9010045 – volume: 29 start-page: 2556 year: 2020 ident: ref_13 article-title: Radiomics improves cancer screening and early detection publication-title: Cancer Epidemiol. Prev. Biomark. doi: 10.1158/1055-9965.EPI-20-0075 – ident: ref_84 – volume: 15 start-page: 506 year: 2015 ident: ref_52 article-title: Radiogenomics and imaging phenotypes in glioblastoma: Novel observations and correlation with molecular characteristics publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-014-0506-0 – volume: 133 start-page: 1 year: 2017 ident: ref_99 article-title: Announcing cIMPACT-NOW: The consortium to inform molecular and practical approaches to CNS tumor taxonomy publication-title: Acta Neuropathol. doi: 10.1007/s00401-016-1646-x – volume: 18 start-page: 1062 year: 2016 ident: ref_32 article-title: Survival in glioblastoma: A review on the impact of treatment modalities publication-title: Clin. Transl. Oncol. doi: 10.1007/s12094-016-1497-x – ident: ref_90 – volume: 344 start-page: 1396 year: 2014 ident: ref_26 article-title: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science doi: 10.1126/science.1254257 – volume: 11 start-page: 15011 year: 2021 ident: ref_40 article-title: Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging publication-title: Sci. Rep. doi: 10.1038/s41598-021-94560-3 – volume: 37 start-page: 28 year: 2016 ident: ref_44 article-title: Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A4474 – ident: ref_98 – volume: 146 start-page: 1253 year: 2020 ident: ref_79 article-title: Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-020-03153-6 – volume: 180 start-page: 2108 year: 2012 ident: ref_77 article-title: The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.01.040 – volume: 167 start-page: 104 year: 2018 ident: ref_94 article-title: Harmonization of cortical thickness measurements across scanners and sites publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.11.024 – volume: 10 start-page: 11852 year: 2020 ident: ref_70 article-title: A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas publication-title: Sci. Rep. doi: 10.1038/s41598-020-68857-8 – volume: 21 start-page: 404 year: 2019 ident: ref_45 article-title: Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients publication-title: Neuro-oncology doi: 10.1093/neuonc/noy133 – volume: 46 start-page: 115 year: 2017 ident: ref_69 article-title: Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25497 – volume: 134 start-page: 495 year: 2017 ident: ref_23 article-title: Pseudoprogression, radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape publication-title: J. Neurooncol. doi: 10.1007/s11060-017-2375-2 – volume: 23 start-page: 177 year: 2021 ident: ref_46 article-title: Radiogenomics identifying important biological pathways in gliomas publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa290 – volume: 142 start-page: 587 year: 2019 ident: ref_71 article-title: pH-weighted amine chemical exchange saturation transfer echoplanar imaging (CEST-EPI) as a potential early biomarker for bevacizumab failure in recurrent glioblastoma publication-title: J. Neurooncol. doi: 10.1007/s11060-019-03132-z – volume: 64 start-page: 160 year: 2019 ident: ref_96 article-title: DeepHarmony: A deep learning approach to contrast harmonization across scanner changes publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.05.041 – volume: 39 start-page: 208 year: 2018 ident: ref_27 article-title: Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A5391 – ident: ref_2 doi: 10.15586/codon.glioblastoma.2017.ch1 – volume: 2011 start-page: 732413 year: 2011 ident: ref_76 article-title: Challenges in Immunotherapy Presented by the Glioblastoma Multiforme Microenvironment publication-title: Clin. Dev. Immunol. doi: 10.1155/2011/732413 – volume: 23 start-page: 1231 year: 2021 ident: ref_6 article-title: The 2021 WHO classification of tumors of the central nervous system: A summary publication-title: Neuro-oncology doi: 10.1093/neuonc/noab106 – volume: 30 start-page: 70 year: 2015 ident: ref_65 article-title: Subtyping: What it is and its role in precision medicine publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2015.60 – volume: 210 start-page: 30 year: 2018 ident: ref_68 article-title: Imaging genetic heterogeneity in glioblastoma and other glial tumors: Review of current methods and future directions publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.17.18754 – volume: 281 start-page: 907 year: 2016 ident: ref_57 article-title: Radiogenomics of glioblastoma: Machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features publication-title: Radiology doi: 10.1148/radiol.2016161382 – volume: 269 start-page: 8 year: 2013 ident: ref_8 article-title: Quantitative imaging in cancer evolution and ecology publication-title: Radiology doi: 10.1148/radiol.13122697 – volume: 89 start-page: 928 year: 2021 ident: ref_10 article-title: Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas publication-title: Neurosurgery doi: 10.1093/neuros/nyab307 – volume: 278 start-page: 563 year: 2016 ident: ref_12 article-title: Radiomics: Images are more than pictures, they are data publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 352 start-page: 997 year: 2005 ident: ref_20 article-title: MGMT gene silencing and benefit from temozolomide in glioblastoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa043331 – volume: 273 start-page: 168 year: 2014 ident: ref_47 article-title: Glioblastoma multiforme: Exploratory radiogenomic analysis by using quantitative image features publication-title: Radiology doi: 10.1148/radiol.14131731 – volume: 64 start-page: 49 year: 2019 ident: ref_14 article-title: Precision diagnostics based on machine learning-derived imaging publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.04.012 – volume: 78 start-page: 572 year: 2016 ident: ref_39 article-title: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma publication-title: Neurosurgery doi: 10.1227/NEU.0000000000001202 – volume: 21 start-page: 167 year: 2019 ident: ref_21 article-title: MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges publication-title: Neuro-oncology doi: 10.1093/neuonc/noy132 – volume: 24 start-page: 429 year: 2014 ident: ref_106 article-title: I nternational S ociety of N europathology-H aarlem C onsensus G uidelines for N ervous S ystem T umor C lassification and G rading publication-title: Brain Pathol. doi: 10.1111/bpa.12171 – volume: 8 start-page: 10 year: 2020 ident: ref_1 article-title: Genetic and histologic spatiotemporal evolution of recurrent, multifocal, multicentric and metastatic glioblastoma publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-020-0889-x – volume: 2 start-page: iv22 year: 2020 ident: ref_105 article-title: Multi-institutional noninvasive in vivo characterization of IDH, 1p/19q, and EGFRvIII in glioma using neuro-Cancer Imaging Phenomics Toolkit (neuro-CaPTk) publication-title: Neuro-Oncol. Adv. doi: 10.1093/noajnl/vdaa128 – volume: 267 start-page: 560 year: 2013 ident: ref_42 article-title: MR imaging predictors of molecular profile and survival: Multi-institutional study of the TCGA glioblastoma data set publication-title: Radiology doi: 10.1148/radiol.13120118 – volume: 12 start-page: 34 year: 2016 ident: ref_51 article-title: Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2016.03.007 – volume: 69 start-page: 127 year: 2019 ident: ref_30 article-title: Artificial intelligence in cancer imaging: Clinical challenges and applications. CA publication-title: Cancer J. Clin. doi: 10.3322/caac.21552 – volume: 8 start-page: 5087 year: 2018 ident: ref_61 article-title: Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-22739-2 – ident: ref_91 – volume: 23 start-page: 304 year: 2021 ident: ref_101 article-title: Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics publication-title: Neuro-oncology doi: 10.1093/neuonc/noaa177 – volume: 7 start-page: 303ra138 year: 2015 ident: ref_62 article-title: Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa7582 – volume: 249 start-page: 268 year: 2008 ident: ref_53 article-title: Relationship between gene expression and enhancement in glioblastoma multiforme: Exploratory DNA microarray analysis publication-title: Radiology doi: 10.1148/radiol.2491072000 – volume: 33 start-page: 170 year: 2016 ident: ref_75 article-title: Image analysis and machine learning in digital pathology: Challenges and opportunities publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.06.037 |
SSID | ssj0000331767 |
Score | 2.4910624 |
Snippet | Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and... Simple SummaryRadiomics and radiogenomics offer new insight into high-grade glioma biology, as well as into glioma behavior in response to standard therapies.... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5921 |
SubjectTerms | Biology Biomarkers Brain cancer Brain tumors Clinical decision making Clinical outcomes Clinical trials Genomics Glioma Learning algorithms Machine learning Magnetic resonance imaging Medical imaging Medical prognosis Metastases Oncology Pathophysiology Patients Precision medicine Predictions Radiomics Surgery Tumors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_akxZfirVKz15LBB98iW42m93kqVzLqRQUEQXflmySxYNjz-6dD_73ztzmTk_Qx3wRmEkyv8l8ARwUtUcQ7Mm7P_M8U3XGTShynmsERyQDnaZo5POL_Owm-3erbuOH2yy6VS7fxMVD7aeO_siPEXfrJDcooX7f_-dUNYqsq7GExkfYwCdY6x5s_BldXF6tflkSifIxL7qcPhL1-2NHxGxnqIRJZVKxLo6eMea6h-QLkXOyBV8iVmTDjrlf4UNotuFTVz3ycRs-n0e7-Deohi_s0GxasyvrxxRvPGO28V2LsrEuesYNI-8OftpaH9jpZEwuQtSLWJCNWkvrL9tYe4ctN9mBm5PR9d8zHqsncCeNnnNUPdKqMLrSdZrUBk9MJWStQuqECUIYE5QVRWWksqYWFbLGaZlR7I_Na-2V3IVeM23Cd2CpS60rnLDeucwm0qhKaxkQGcjcyFz34WhJxNLF1OJU4WJSoopBVC9fUb0Ph6sF911WjbenDpZcKeP1mpXPh6EP-6thvBhk7bBNmD50cxDLmqzoQ7HGzdWWlFp7faQZ3y1SbGuCuTLZe3_zH7CZkouLEDxVA-jN24fwEzHKvPoVD-ITvunptw priority: 102 providerName: ProQuest |
Title | Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine |
URI | https://www.proquest.com/docview/2608069215 https://www.proquest.com/docview/2608533947 https://pubmed.ncbi.nlm.nih.gov/PMC8656630 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdC2Mvpbux9BI02MNe1FmSdXsopRtpSiGllAXyZmRZZoHgbE4K7b_vObaTNqOFPloXy5wj-XwfOhdCvpmyABBcoHd_WrBUlSlz0WimLYAjtIHBYjTy6EpfjNPLiZo8lgPqBLh4ltphPalxPTu--3d_Cgf-BBknUPYfAeVTL4BXSeUwqHwHzJLBcgajDus3v2UJprKpKCsSI5jWLm1T_Tz3jk0r9Qg9Nx0nn1ii8z2y20FIetbq_D3ZitUH8nbUXZJ_JPnZk0tpOi_pjS-mGHy8oL4q2idMzdq0TCuKrh5sWPsi0uFsiv5C2ArAkA5qj_Ov664QD10t8omMzwe_f12wrpQCC9LZJQMeInLjbG5LkZQOtk_OZamiCNxFzp2LynOTO6m8K3kOegpWphgI5HVpCyU_k-1qXsUvhIogfDCB-yKE1CfSqdxaGQEmSO2ktj1yvBJdFro841juYpYB30BZZ__Juke-ryf8bVNsvDz0cKWLbLVVMmBkNtHQq3rk67obTgleffgqzm_bMQBsXWp6xGzocL0k5tne7Kmmf5p82xYxr0z2X_-dB-SdQN8XzplQh2R7Wd_GIwAvy7xPdn4Orq5v-uTNcML7zRZ9AGXR8Y8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqXhcEBQQKQWMBBIX07W9D_uAUIG0KW2iqmql3hav7RWRqk27SYX6p_iNzGR30wYJbj2uH_JqZuz57HkBvMtKjyDYk3d_7HmclDE3IUt5qhEckQ50mqKRR-N0eBp_P0vO1uB3FwtDbpXdmbg4qP3U0Rv5NuJuHaUGNdTni0tOVaPIutqV0GjE4iBc_8Ir2-zT_jfk73spdwcnX4e8rSrAnTJ6zhGSyyIzutCljEqDlCyEKpMgnTBBCGNCYkVWGJVYU4oCf9lpFVNMjE1L7alKBB7567FKI9mD9S-D8dHx8lUnUqiP06zJIaSUibYdMa-e4aVPJUaKVfV3g2lXPTJvqbjdx_CoxaZspxGmJ7AWqg2411SrvN6A-6PWDv8Uip1bdm82Ldmx9ROKb54xW_nmi7K_LlomFSNvEr5XWx_Y3vmEXJKoFbEnG9SW5h_Vba0f1i3yDE7vhK7PoVdNq_ACmHTSuswJ652LbaRMUmitAiIRlRqV6j587IiYuzaVOVXUOM_xSkNUz_-ieh8-LCdcNFk8_j10q-NK3m7nWX4jfH14u-zGjUjWFVuF6VUzBrGzibM-ZCvcXC5JqbxXe6rJz0VKb02wWkWb_1_8DTwYnowO88P98cFLeCjJvUYILpMt6M3rq_AK8dG8eN0KJYMfd70P_gA5nCdb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5Vqai4ICggAgWMBBKXJWt7H_YBoUKTtpRGUUWl3havH2qkalM2qVD_Gr-Omexu2iDBrcf1Q17NjD2fPS-At3lwCIIdefcnLkrSkETa51mUKQRHpAOtomjk43F2cJp8PUvPNuB3FwtDbpXdmbg8qN3M0hv5AHG3ijONGmoQWreIyd7o0-XPiCpIkaW1K6fRiMiRv_6F17f5x8M95PU7IUbD718OorbCQGSlVosI4bkoc61KFUQcNFK15DKkXliuPeda-9TwvNQyNTrwEn_fKplQfIzJgnJUMQKP_82cbkU92Pw8HE9OVi88sUTdnOVNPiEpdTywxMh6jhdAmWrB11XhDb5d9868pe5GD-FBi1PZbiNYj2DDV9twr6lceb0NW8etTf4xlLu3bOBsFtiJcVOKdZ4zU7nmizLBLlumFSPPkmi_Ns6z_YspuSdRK-JQNqwNzZ_Ubd0f1i3yBE7vhK5PoVfNKv8MmLDC2Nxy46xNTCx1WiolPaISmWmZqT586IhY2DatOVXXuCjwekNUL_6ieh_eryZcNhk9_j10p-NK0W7teXEjiH14s-rGTUmWFlP52VUzBnG0TvI-5GvcXC1Jab3Xe6rp-TK9tyKILePn_1_8NWyh_BffDsdHL-C-IE8bziOR7kBvUV_5lwiVFuWrViYZ_LjrbfAHk-wrkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+Radiomics+and+Radiogenomics+in+High-Grade+Gliomas+in+the+Era+of+Precision+Medicine&rft.jtitle=Cancers&rft.au=Fathi+Kazerooni%2C+Anahita&rft.au=Bagley%2C+Stephen+J.&rft.au=Akbari%2C+Hamed&rft.au=Saxena%2C+Sanjay&rft.date=2021-11-25&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=13&rft.issue=23&rft.spage=5921&rft_id=info:doi/10.3390%2Fcancers13235921&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cancers13235921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon |