One-step strategy for efficient Cr(VI) removal via phytate modified zero-valent iron: Accelerated electron transfer and enhanced coordination effect
The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strat...
Saved in:
Published in | Journal of hazardous materials Vol. 466; p. 133636 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strategy for simultaneous Cr(VI) reduction and total Cr capture by a novel phytate modified zero-valent iron (PA-ZVI). The reaction kinetics of Cr(VI) removal by PA-ZVI (0.2225 min−1) was 53 times higher compared to ZVI (0.0042 min−1). The Fe(0) content on the surface of PA-ZVI increased from 2.2% to 15.6% compared to ZVI. Meanwhile, Cr(VI) was liable to adsorb on the surface of PA-ZVI due to its lower adsorption energy compared with the original ZVI (−2.09 eV vs −0.85 eV). The incorporation of the phytate ligand promoted electron transfer from iron core to Cr(VI), leading to the rapid in-situ reduction of Cr(VI) adsorbed on the surface of PA-ZVI to Cr(III). PA-ZVI exhibited a satisfactory performance for Cr(VI) removal at a broad pH range (3−11) and in the presence of coexisting ions and humic acid. Moreover, the reactor with the addition of PA-ZVI achieved more than 90% Cr(VI) removal within 72 h in continuous flow experiments. The feasibility of PA-ZVI for the removal of Cr(VI) is also validated in authentic wastewater. This work provides novel ZVI materials that can effectively address decontamination challenges from Cr(VI) pollution.
[Display omitted]
•Apparent rate constants k (min−1) of Cr (VI) removal by PA-ZVI was 53 times that of ZVI.•The increased surface Fe (0) content on PA-ZVI facilitated Cr (VI) removal.•Phytates favored the coordination effect and accelerated the electron transfer of ZVI.•PA-ZVI showed satisfactory performance toward Cr(VI) in authentic water matrices. |
---|---|
AbstractList | The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strategy for simultaneous Cr(VI) reduction and total Cr capture by a novel phytate modified zero-valent iron (PA-ZVI). The reaction kinetics of Cr(VI) removal by PA-ZVI (0.2225 min⁻¹) was 53 times higher compared to ZVI (0.0042 min⁻¹). The Fe(0) content on the surface of PA-ZVI increased from 2.2% to 15.6% compared to ZVI. Meanwhile, Cr(VI) was liable to adsorb on the surface of PA-ZVI due to its lower adsorption energy compared with the original ZVI (−2.09 eV vs −0.85 eV). The incorporation of the phytate ligand promoted electron transfer from iron core to Cr(VI), leading to the rapid in-situ reduction of Cr(VI) adsorbed on the surface of PA-ZVI to Cr(III). PA-ZVI exhibited a satisfactory performance for Cr(VI) removal at a broad pH range (3−11) and in the presence of coexisting ions and humic acid. Moreover, the reactor with the addition of PA-ZVI achieved more than 90% Cr(VI) removal within 72 h in continuous flow experiments. The feasibility of PA-ZVI for the removal of Cr(VI) is also validated in authentic wastewater. This work provides novel ZVI materials that can effectively address decontamination challenges from Cr(VI) pollution. The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strategy for simultaneous Cr(VI) reduction and total Cr capture by a novel phytate modified zero-valent iron (PA-ZVI). The reaction kinetics of Cr(VI) removal by PA-ZVI (0.2225 min ) was 53 times higher compared to ZVI (0.0042 min ). The Fe(0) content on the surface of PA-ZVI increased from 2.2% to 15.6% compared to ZVI. Meanwhile, Cr(VI) was liable to adsorb on the surface of PA-ZVI due to its lower adsorption energy compared with the original ZVI (-2.09 eV vs -0.85 eV). The incorporation of the phytate ligand promoted electron transfer from iron core to Cr(VI), leading to the rapid in-situ reduction of Cr(VI) adsorbed on the surface of PA-ZVI to Cr(III). PA-ZVI exhibited a satisfactory performance for Cr(VI) removal at a broad pH range (3-11) and in the presence of coexisting ions and humic acid. Moreover, the reactor with the addition of PA-ZVI achieved more than 90% Cr(VI) removal within 72 h in continuous flow experiments. The feasibility of PA-ZVI for the removal of Cr(VI) is also validated in authentic wastewater. This work provides novel ZVI materials that can effectively address decontamination challenges from Cr(VI) pollution. The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strategy for simultaneous Cr(VI) reduction and total Cr capture by a novel phytate modified zero-valent iron (PA-ZVI). The reaction kinetics of Cr(VI) removal by PA-ZVI (0.2225 min−1) was 53 times higher compared to ZVI (0.0042 min−1). The Fe(0) content on the surface of PA-ZVI increased from 2.2% to 15.6% compared to ZVI. Meanwhile, Cr(VI) was liable to adsorb on the surface of PA-ZVI due to its lower adsorption energy compared with the original ZVI (−2.09 eV vs −0.85 eV). The incorporation of the phytate ligand promoted electron transfer from iron core to Cr(VI), leading to the rapid in-situ reduction of Cr(VI) adsorbed on the surface of PA-ZVI to Cr(III). PA-ZVI exhibited a satisfactory performance for Cr(VI) removal at a broad pH range (3−11) and in the presence of coexisting ions and humic acid. Moreover, the reactor with the addition of PA-ZVI achieved more than 90% Cr(VI) removal within 72 h in continuous flow experiments. The feasibility of PA-ZVI for the removal of Cr(VI) is also validated in authentic wastewater. This work provides novel ZVI materials that can effectively address decontamination challenges from Cr(VI) pollution. [Display omitted] •Apparent rate constants k (min−1) of Cr (VI) removal by PA-ZVI was 53 times that of ZVI.•The increased surface Fe (0) content on PA-ZVI facilitated Cr (VI) removal.•Phytates favored the coordination effect and accelerated the electron transfer of ZVI.•PA-ZVI showed satisfactory performance toward Cr(VI) in authentic water matrices. The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strategy for simultaneous Cr(VI) reduction and total Cr capture by a novel phytate modified zero-valent iron (PA-ZVI). The reaction kinetics of Cr(VI) removal by PA-ZVI (0.2225 min-1) was 53 times higher compared to ZVI (0.0042 min-1). The Fe(0) content on the surface of PA-ZVI increased from 2.2% to 15.6% compared to ZVI. Meanwhile, Cr(VI) was liable to adsorb on the surface of PA-ZVI due to its lower adsorption energy compared with the original ZVI (-2.09 eV vs -0.85 eV). The incorporation of the phytate ligand promoted electron transfer from iron core to Cr(VI), leading to the rapid in-situ reduction of Cr(VI) adsorbed on the surface of PA-ZVI to Cr(III). PA-ZVI exhibited a satisfactory performance for Cr(VI) removal at a broad pH range (3-11) and in the presence of coexisting ions and humic acid. Moreover, the reactor with the addition of PA-ZVI achieved more than 90% Cr(VI) removal within 72 h in continuous flow experiments. The feasibility of PA-ZVI for the removal of Cr(VI) is also validated in authentic wastewater. This work provides novel ZVI materials that can effectively address decontamination challenges from Cr(VI) pollution.The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strategy for simultaneous Cr(VI) reduction and total Cr capture by a novel phytate modified zero-valent iron (PA-ZVI). The reaction kinetics of Cr(VI) removal by PA-ZVI (0.2225 min-1) was 53 times higher compared to ZVI (0.0042 min-1). The Fe(0) content on the surface of PA-ZVI increased from 2.2% to 15.6% compared to ZVI. Meanwhile, Cr(VI) was liable to adsorb on the surface of PA-ZVI due to its lower adsorption energy compared with the original ZVI (-2.09 eV vs -0.85 eV). The incorporation of the phytate ligand promoted electron transfer from iron core to Cr(VI), leading to the rapid in-situ reduction of Cr(VI) adsorbed on the surface of PA-ZVI to Cr(III). PA-ZVI exhibited a satisfactory performance for Cr(VI) removal at a broad pH range (3-11) and in the presence of coexisting ions and humic acid. Moreover, the reactor with the addition of PA-ZVI achieved more than 90% Cr(VI) removal within 72 h in continuous flow experiments. The feasibility of PA-ZVI for the removal of Cr(VI) is also validated in authentic wastewater. This work provides novel ZVI materials that can effectively address decontamination challenges from Cr(VI) pollution. |
ArticleNumber | 133636 |
Author | Zhang, Qiuyue Li, Qiang Pan, Fei Deng, Yuwei Liu, Yingjie Wan, Jun Pei, Xuanyuan Ye, Yuxuan Li, Haochen Gan, Rui Zhan, Ziyi |
Author_xml | – sequence: 1 givenname: Rui surname: Gan fullname: Gan, Rui organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 2 givenname: Yuxuan surname: Ye fullname: Ye, Yuxuan email: yxye@wtu.edu.cn organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 3 givenname: Ziyi surname: Zhan fullname: Zhan, Ziyi organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 4 givenname: Qiuyue surname: Zhang fullname: Zhang, Qiuyue organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 5 givenname: Yuwei surname: Deng fullname: Deng, Yuwei organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 6 givenname: Yingjie surname: Liu fullname: Liu, Yingjie organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 7 givenname: Haochen surname: Li fullname: Li, Haochen organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 8 givenname: Jun surname: Wan fullname: Wan, Jun organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 9 givenname: Xuanyuan surname: Pei fullname: Pei, Xuanyuan organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 10 givenname: Qiang surname: Li fullname: Li, Qiang organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China – sequence: 11 givenname: Fei surname: Pan fullname: Pan, Fei email: fpan@wtu.edu.cn organization: School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38309166$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCI4C8LIsJ_pnxjGFRVRE_lSp1A2wtj-eaOJqxg-1ESp-DB8ZDAgs2Wdm-97vnWudcoQsfPCD0mpIlJVS82yw3a_006bxkhNVLyrng4hla0K7lFS-vC7QgnNQV72R9ia5S2hBCaNvUL9Al7ziRVIgF-vXooUoZtjjlqDP8OGAbIgZrnXHgM17Fm-_3b3GEKez1iPdO4-36kAuKpzA462DATxBDVboz72Lw7_GdMTDCLDjgcjG5VHFZ4JOFiLUvVb_W3pS2CSEOzuvsClL2Fvglem71mODV6bxG3z59_Lr6Uj08fr5f3T1UhssuVw0jpu0Zl4zzhnMtGmOksJZpXQthWtoZoUnPmey6Flivrei5JII1gwbZDvwa3Rx1tzH83EHKanKpfHzUHsIuKU6bmokiL8-iTDJB2lowWtA3J3TXTzCobXSTjgf11_QCNEfAxJBSBPsPoUTN4aqNOoWr5nDVMdwy9-G_OePyH9-Ks248O317nIbi6N5BVGlOuETgYvFcDcGdUfgNt0fExQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2025_160050 crossref_primary_10_1016_j_envpol_2024_125057 crossref_primary_10_1016_j_mssp_2024_108446 crossref_primary_10_1016_j_jhazmat_2024_135274 crossref_primary_10_1016_j_matchemphys_2024_129918 crossref_primary_10_3390_molecules29102350 crossref_primary_10_1016_j_scitotenv_2025_179096 crossref_primary_10_1016_j_jhazmat_2024_136183 crossref_primary_10_1016_j_jhazmat_2024_136670 crossref_primary_10_1016_j_jwpe_2024_105466 crossref_primary_10_1016_j_cej_2025_160828 crossref_primary_10_1016_j_ces_2025_121518 crossref_primary_10_1016_j_seppur_2024_130289 crossref_primary_10_1016_j_seppur_2024_131043 crossref_primary_10_1016_j_seppur_2025_131839 crossref_primary_10_1016_j_seppur_2024_128920 |
Cites_doi | 10.1016/j.cej.2018.11.104 10.1021/ic00250a002 10.1021/es071572n 10.1016/j.watres.2015.02.058 10.1016/j.jhazmat.2014.07.052 10.1016/j.memsci.2021.119591 10.1021/acs.est.5b03742 10.1016/j.scitotenv.2017.03.282 10.1016/j.cej.2022.140318 10.1016/j.apsusc.2020.146593 10.1016/j.apsusc.2022.156231 10.1039/c3ta00186e 10.1021/acs.est.0c02465 10.1016/j.jhazmat.2009.10.116 10.1021/ie061655x 10.1021/es300660r 10.1021/acs.est.5b05111 10.1016/j.matchemphys.2012.01.008 10.2147/IJN.S126245 10.1016/j.cej.2020.124414 10.1016/0043-1354(94)00319-3 10.1016/j.cej.2019.122633 10.1016/0043-1354(91)90160-R 10.1016/j.jhazmat.2015.04.013 10.1016/j.foodchem.2009.11.052 10.1016/j.nanoen.2022.107220 10.1021/acs.est.6b04832 10.1007/s11783-022-1586-8 10.1021/acs.est.0c01855 10.1021/es061721m 10.1007/BF02920471 10.1021/acs.est.7b03604 10.1016/j.envpol.2020.114021 10.1016/j.scitotenv.2022.154599 10.1016/j.jhazmat.2013.01.048 10.1021/ie8003946 10.1021/acs.est.7b06502 10.1021/acs.est.9b01999 10.1039/C4CC05285D 10.1021/acs.est.3c02768 10.1016/j.apcatb.2019.118364 10.1021/es0711967 10.1021/es800962m 10.1016/j.watres.2016.06.009 10.1016/j.jhazmat.2011.11.090 10.1002/adfm.201901127 10.1038/s41565-022-01075-7 10.1016/j.seppur.2020.117967 10.1016/j.cej.2022.135120 10.1016/j.seppur.2010.11.002 10.1023/A:1015887414411 10.1016/j.apsusc.2020.146206 10.1016/j.scitotenv.2022.159397 10.1039/C4RA08754B |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2024.133636 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 38309166 10_1016_j_jhazmat_2024_133636 S0304389424002152 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SSH T9H TAE VH1 WUQ EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-520c7b239233533a65cc96ff2aa466c718c6a0b329887e2baf6b390625dae97d3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Wed Jul 02 03:14:48 EDT 2025 Fri Jul 11 02:51:35 EDT 2025 Mon Jul 21 05:57:01 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Tue Jul 01 01:06:15 EDT 2025 Sat Dec 28 15:52:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electron transfer Cr (VI) removal Coordination effect Phytate modification Zero-valent iron |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-520c7b239233533a65cc96ff2aa466c718c6a0b329887e2baf6b390625dae97d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 38309166 |
PQID | 2926074621 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3154269239 proquest_miscellaneous_2926074621 pubmed_primary_38309166 crossref_primary_10_1016_j_jhazmat_2024_133636 crossref_citationtrail_10_1016_j_jhazmat_2024_133636 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2024_133636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-15 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shen, Zhang, Xiao, Zhang, Li, Jiang (bib37) 2020; 525 EPA (bib3) 1991; 56 Dai, Hu, Jiang, Zou, Tian, Fu (bib10) 2016; 309 Qin, Li, Yang, Pan, Zhang, Guan (bib26) 2017; 51 Zhang, Lu, Hao, Yang, Tang (bib44) 2014; 50 Chen, Li, Shang, Arai (bib33) 2020; 54 Huang, Chen, Ma, Carroll, Zhao, Huo (bib23) 2022; 16 Li, Zhan, Yu, Zhang (bib51) 2016; 7 Liu, Chen, Chang, Chen, Liu, He (bib16) 2012; 133 Liu, Phenrat, Lowry (bib25) 2007; 41 Tanboonchuy, Grisdanurak, Liao (bib57) 2012; 205-206 Liu, Li, Zheng, Song, Shi, Lin (bib6) 2020; 54 Wang, Wu, Qu, Liu, Pi, Shen (bib24) 2019; 359 Cheng, Dong, Hao (bib58) 2021; 257 Du, Bao, Lu, Werner (bib55) 2016; 102 Rice, Bridgewater, Association (bib34) 2012 Han, Li, Rykov, Im, Yu, Jeon (bib39) 2022; 17 Wang, Hu, Wang, Liang, Cui, Zhao (bib36) 2020; 389 Tsao, Zheng, Lu, Gong (bib31) 1997; 63 Kumar, Surendar, Baruah, Shanker (bib45) 2013; 1 Liao, Wang, Cao, Li, Peng, Zhang (bib19) 2021; 1 Zhong, Cheng, Zhang, Li, Liu, Liao (bib46) 2022; 98 Rai, Sass, Moore (bib47) 1987; 26 Kumar, Sinha, Makkar, Becker (bib28) 2010; 120 Hu, Peng, Ai, Jia, Zhang (bib17) 2019; 53 Fang, Wen, Zhang, Wang, Hu (bib20) 2020; 260 Shen, Zhang, Xiao, Zhang, Li, Jiang (bib43) 2020; 525 Liang, Fan, Guo, Fan, Wang, Yang (bib15) 2008; 47 Gong, Gai, Tang, Fu, Wang, Zeng (bib5) 2017; 595 Hu, Zhan, Peng, Liu, Ai, Jia (bib38) 2020; 389 Zhang, Duan, Jin, Han, Xu (bib12) 2023; 57 Gao, He, Han, Guo, Wang, Deng (bib52) 2023; 614 Ai, Cheng, Zhang, Qiu (bib59) 2008; 42 Golder, Chanda, Samanta, Ray (bib8) 2011; 76 Gu, Wang, He, Bradley, Tratnyek (bib14) 2017; 51 Fiúza, Silva, Carvalho, de la Fuente, Delerue-Matos (bib54) 2010; 175 Li, Liu, Yang (bib30) 2014; 280 Sun, Li, Jin, Khan, Eltohamy, He (bib53) 2022; 829 Johnston, Chrysochoou (bib50) 2012; 46 Manning, Kiser, Kwon, Kanel (bib9) 2007; 41 He, Wang, Liu, Cao, Yang, He (bib35) 2023; 857 Ben Ali, Wang, Boukherroub, Xia (bib29) 2020; 518 Barahuie, Dorniani, Saifullah, Gothai, Hussein, Pandurangan (bib27) 2017 Li, Zhang, Liu, Pan, Zhang, Shi (bib11) 2018; 52 Richard, Bourg (bib1) 1991; 25 Huang, Hou, Song, Zhao, Zhang (bib49) 2016; 50 Li, Mu, Shang, Mao, Cao, Ai (bib18) 2020; 263 Li, Cao, Zhang (bib21) 2008; 47 Zhou, Li, Chen, Liu, Wang, Na (bib60) 2014; 4 Rai, Hess, Rao, Zhang, Felmy, Moore (bib48) 2002; 31 Liu, Lou, Xia, Hu (bib22) 2023; 454 He, Deng, Zhang, He, Xiao, Peng (bib40) 2020; 1 Pan, Guan, Zhao, Luo, Zhang, Davison (bib4) 2015; 49 Lai, Lo (bib13) 2008; 42 Zouboulis, Kydros, Matis (bib7) 1995; 29 Dhal, Thatoi, Das, Pandey (bib2) 2013; 250 Zhang, Zhu, Yang, Ma, Chen (bib32) 2021; 636 Tian, Tang, Zeng, Luo, Zhang, Tang (bib42) 2022; 435 Dong, Zhang, Du, Hong, Zhao, Chen (bib41) 2019; 29 Kantar, Ari, Keskin (bib56) 2015; 76 Gao (10.1016/j.jhazmat.2024.133636_bib52) 2023; 614 Liu (10.1016/j.jhazmat.2024.133636_bib22) 2023; 454 Li (10.1016/j.jhazmat.2024.133636_bib51) 2016; 7 Liao (10.1016/j.jhazmat.2024.133636_bib19) 2021; 1 Ai (10.1016/j.jhazmat.2024.133636_bib59) 2008; 42 He (10.1016/j.jhazmat.2024.133636_bib35) 2023; 857 Fang (10.1016/j.jhazmat.2024.133636_bib20) 2020; 260 Liu (10.1016/j.jhazmat.2024.133636_bib16) 2012; 133 Pan (10.1016/j.jhazmat.2024.133636_bib4) 2015; 49 Liu (10.1016/j.jhazmat.2024.133636_bib25) 2007; 41 Zhang (10.1016/j.jhazmat.2024.133636_bib32) 2021; 636 Huang (10.1016/j.jhazmat.2024.133636_bib49) 2016; 50 Zhang (10.1016/j.jhazmat.2024.133636_bib12) 2023; 57 Zhou (10.1016/j.jhazmat.2024.133636_bib60) 2014; 4 Lai (10.1016/j.jhazmat.2024.133636_bib13) 2008; 42 Golder (10.1016/j.jhazmat.2024.133636_bib8) 2011; 76 Dong (10.1016/j.jhazmat.2024.133636_bib41) 2019; 29 Shen (10.1016/j.jhazmat.2024.133636_bib43) 2020; 525 Wang (10.1016/j.jhazmat.2024.133636_bib36) 2020; 389 Johnston (10.1016/j.jhazmat.2024.133636_bib50) 2012; 46 Fiúza (10.1016/j.jhazmat.2024.133636_bib54) 2010; 175 Rice (10.1016/j.jhazmat.2024.133636_bib34) 2012 Hu (10.1016/j.jhazmat.2024.133636_bib17) 2019; 53 Qin (10.1016/j.jhazmat.2024.133636_bib26) 2017; 51 Kumar (10.1016/j.jhazmat.2024.133636_bib28) 2010; 120 Rai (10.1016/j.jhazmat.2024.133636_bib47) 1987; 26 Kumar (10.1016/j.jhazmat.2024.133636_bib45) 2013; 1 Cheng (10.1016/j.jhazmat.2024.133636_bib58) 2021; 257 Tsao (10.1016/j.jhazmat.2024.133636_bib31) 1997; 63 Dai (10.1016/j.jhazmat.2024.133636_bib10) 2016; 309 Chen (10.1016/j.jhazmat.2024.133636_bib33) 2020; 54 Zouboulis (10.1016/j.jhazmat.2024.133636_bib7) 1995; 29 Huang (10.1016/j.jhazmat.2024.133636_bib23) 2022; 16 Han (10.1016/j.jhazmat.2024.133636_bib39) 2022; 17 Dhal (10.1016/j.jhazmat.2024.133636_bib2) 2013; 250 Gong (10.1016/j.jhazmat.2024.133636_bib5) 2017; 595 Liu (10.1016/j.jhazmat.2024.133636_bib6) 2020; 54 Kantar (10.1016/j.jhazmat.2024.133636_bib56) 2015; 76 Hu (10.1016/j.jhazmat.2024.133636_bib38) 2020; 389 Ben Ali (10.1016/j.jhazmat.2024.133636_bib29) 2020; 518 Li (10.1016/j.jhazmat.2024.133636_bib30) 2014; 280 Li (10.1016/j.jhazmat.2024.133636_bib21) 2008; 47 Gu (10.1016/j.jhazmat.2024.133636_bib14) 2017; 51 Manning (10.1016/j.jhazmat.2024.133636_bib9) 2007; 41 Liang (10.1016/j.jhazmat.2024.133636_bib15) 2008; 47 Sun (10.1016/j.jhazmat.2024.133636_bib53) 2022; 829 Wang (10.1016/j.jhazmat.2024.133636_bib24) 2019; 359 Tian (10.1016/j.jhazmat.2024.133636_bib42) 2022; 435 Rai (10.1016/j.jhazmat.2024.133636_bib48) 2002; 31 Du (10.1016/j.jhazmat.2024.133636_bib55) 2016; 102 He (10.1016/j.jhazmat.2024.133636_bib40) 2020; 1 Li (10.1016/j.jhazmat.2024.133636_bib18) 2020; 263 Zhong (10.1016/j.jhazmat.2024.133636_bib46) 2022; 98 Tanboonchuy (10.1016/j.jhazmat.2024.133636_bib57) 2012; 205-206 Barahuie (10.1016/j.jhazmat.2024.133636_bib27) 2017 Li (10.1016/j.jhazmat.2024.133636_bib11) 2018; 52 Shen (10.1016/j.jhazmat.2024.133636_bib37) 2020; 525 Richard (10.1016/j.jhazmat.2024.133636_bib1) 1991; 25 Zhang (10.1016/j.jhazmat.2024.133636_bib44) 2014; 50 EPA (10.1016/j.jhazmat.2024.133636_bib3) 1991; 56 |
References_xml | – volume: 50 start-page: 11554 year: 2014 end-page: 11557 ident: bib44 article-title: FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction publication-title: Chem Commun – volume: 857 year: 2023 ident: bib35 article-title: Enhanced removal of hexavalent chromium by lignosulfonate modified zero valent iron: Reaction kinetic, performance and mechanism publication-title: Sci Total Environ – volume: 102 start-page: 73 year: 2016 end-page: 81 ident: bib55 article-title: Reductive sequestration of chromate by hierarchical FeS@Fe publication-title: Water Res – volume: 263 year: 2020 ident: bib18 article-title: Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal publication-title: Appl Catal B-Environ – volume: 49 start-page: 14267 year: 2015 end-page: 14273 ident: bib4 article-title: Novel speciation method based on diffusive gradients in Thin-Films for in situ measurement of Cr(VI) in aquatic systems publication-title: Environ Sci Technol – volume: 51 start-page: 12653 year: 2017 end-page: 12662 ident: bib14 article-title: Mechanochemically sulfidated microscale zero valent iron: pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination publication-title: Environ Sci Technol – volume: 29 start-page: 1755 year: 1995 end-page: 1760 ident: bib7 article-title: Removal of hexavalent chromium anions from solutions by pyrite fines publication-title: Water Res – volume: 260 year: 2020 ident: bib20 article-title: Enhancing Cr(VI) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids publication-title: Environ Pollut – volume: 250 start-page: 272 year: 2013 end-page: 291 ident: bib2 article-title: Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review publication-title: J Hazard Mater – volume: 42 start-page: 6955 year: 2008 end-page: 6960 ident: bib59 article-title: Efficient removal of Cr(VI) from aqueous solution with Fe@Fe publication-title: Environ Sci Technol – volume: 595 start-page: 743 year: 2017 end-page: 751 ident: bib5 article-title: Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles publication-title: Sci Total Environ – volume: 17 start-page: 403 year: 2022 end-page: 407 ident: bib39 article-title: Abrading bulk metal into single atoms publication-title: Nat Nanotechnol – volume: 309 start-page: 249 year: 2016 end-page: 258 ident: bib10 article-title: Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction publication-title: J Hazard Mater – volume: 614 year: 2023 ident: bib52 article-title: A highly efficient metal ferrocyanide adsorbent based on zinc phytate for cesium removal publication-title: Appl Surf Sci – volume: 41 start-page: 7881 year: 2007 end-page: 7887 ident: bib25 article-title: Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H publication-title: Environ Sci Technol – volume: 98 year: 2022 ident: bib46 article-title: Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery publication-title: Nano Energy – volume: 525 year: 2020 ident: bib37 article-title: Ethylenediaminetetraacetic acid induces surface erosion of zero-valent iron for enhanced hexavalent chromium removal publication-title: Appl Surf Sci – volume: 120 start-page: 945 year: 2010 end-page: 959 ident: bib28 article-title: Dietary roles of phytate and phytase in human nutrition: A review publication-title: Food Chem – volume: 41 start-page: 586 year: 2007 end-page: 592 ident: bib9 article-title: Spectroscopic investigation of Cr(III)-and Cr(VI)-treated nanoscale zerovalent iron publication-title: Environ Sci Technol – volume: 31 start-page: 343 year: 2002 end-page: 367 ident: bib48 article-title: Thermodynamic model for the solubility of Cr(OH) publication-title: J Solut Chem – volume: 42 start-page: 1238 year: 2008 end-page: 1244 ident: bib13 article-title: Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions publication-title: Environ Sci Technol – volume: 133 start-page: 205 year: 2012 end-page: 211 ident: bib16 article-title: Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite publication-title: Mater Chem Phys – volume: 47 start-page: 8550 year: 2008 end-page: 8554 ident: bib15 article-title: Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles publication-title: Ind Eng Chem Res – volume: 56 start-page: 3536 year: 1991 end-page: 3537 ident: bib3 article-title: National Primary Drinking Water Regulations; Final Rule publication-title: Fed Regist – start-page: 2361 year: 2017 end-page: 2372 ident: bib27 article-title: Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system publication-title: Int J Nanomed – volume: 51 start-page: 5090 year: 2017 end-page: 5097 ident: bib26 article-title: Coupled effect of ferrous ion and oxygen on the electron selectivity of zerovalent iron for selenate sequestration publication-title: Environ Sci Technol – volume: 46 start-page: 5851 year: 2012 end-page: 5858 ident: bib50 article-title: Investigation of chromate coordination on ferrihydrite by in situ ATR-FTIR spectroscopy and theoretical frequency calculations publication-title: Environ Sci Technol – volume: 29 year: 2019 ident: bib41 article-title: Boosting the electrical double‐layer capacitance of graphene by self‐doped defects through ball‐milling publication-title: Adv Funct Mater – volume: 47 start-page: 2131 year: 2008 end-page: 2139 ident: bib21 article-title: Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A Study with high-resolution X-Ray photoelectron spectroscopy (HR-XPS) publication-title: Ind Eng Chem Res – volume: 63 start-page: 731 year: 1997 end-page: 741 ident: bib31 article-title: Adsorption of heavy metal ions by immobilized phytic acid publication-title: Appl Biochem Biotech – volume: 53 start-page: 8333 year: 2019 end-page: 8341 ident: bib17 article-title: Liquid Nitrogen Activation of zero-valent iron and its enhanced Cr(VI) removal performance publication-title: Environ Sci Technol – volume: 359 start-page: 874 year: 2019 end-page: 881 ident: bib24 article-title: Enhanced Cr(VI) removal in the synergy between the hydroxyl-functionalized ball-milled ZVI/Fe publication-title: Chem Eng J – volume: 454 year: 2023 ident: bib22 article-title: Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and Cr(VI) by adsorption-reduction synergistic effect publication-title: Chem Eng J – volume: 16 start-page: 151 year: 2022 ident: bib23 article-title: Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution publication-title: Front Environ Sci Eng – year: 2012 ident: bib34 article-title: Standard methods for the examination of water and wastewater publication-title: Am Public Health Assoc Wash, DC – volume: 26 start-page: 345 year: 1987 end-page: 349 ident: bib47 article-title: Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide publication-title: Inorg Chem – volume: 389 year: 2020 ident: bib36 article-title: Cr(VI) removal by micron-scale iron-carbon composite induced by ball milling: The role of activated carbon publication-title: Chem Eng J – volume: 175 start-page: 1042 year: 2010 end-page: 1047 ident: bib54 article-title: Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron publication-title: J Hazard Mater – volume: 52 start-page: 2988 year: 2018 end-page: 2997 ident: bib11 article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions publication-title: Environ Sci Technol – volume: 76 start-page: 66 year: 2015 end-page: 75 ident: bib56 article-title: Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure publication-title: Water Res – volume: 636 year: 2021 ident: bib32 article-title: Enhanced removal efficiency of heavy metal ions by assembling phytic acid on polyamide nanofiltration membrane publication-title: J Membr Sci – volume: 1 start-page: 2109 year: 2021 end-page: 2118 ident: bib19 article-title: Oxalate modification dramatically promoted Cr(VI) removal with zero-valent iron, ACS ES&T publication-title: Water – volume: 435 year: 2022 ident: bib42 article-title: Degradation of atrazine by Ni-doped sulfidated microscale zero-valent iron: Mechanistic insights for enhanced reactivity and selectivity publication-title: Chem Eng J – volume: 518 year: 2020 ident: bib29 article-title: High performance of phytic acid-functionalized spherical poly-phenylglycine particles for removal of heavy metal ions publication-title: Appl Surf Sci – volume: 829 year: 2022 ident: bib53 article-title: Qualitative and quantitative investigation on adsorption mechanisms of Cd(II) on modified biochar derived from co-pyrolysis of straw and sodium phytate publication-title: Sci Total Environ – volume: 257 year: 2021 ident: bib58 article-title: CaCO publication-title: Sep Purif Technol – volume: 1 start-page: 5333 year: 2013 end-page: 5340 ident: bib45 article-title: Synthesis of a novel and stable g-C publication-title: J Mater Chem A – volume: 7 year: 2016 ident: bib51 article-title: Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering publication-title: Nat Commun – volume: 50 start-page: 1964 year: 2016 end-page: 1972 ident: bib49 article-title: Facet-dependent Cr(VI) adsorption of hematite nanocrystals publication-title: Environ Sci Technol – volume: 25 start-page: 807 year: 1991 end-page: 816 ident: bib1 article-title: Aqueous geochemistry of chromium: a review publication-title: Water Res – volume: 54 start-page: 8837 year: 2020 end-page: 8847 ident: bib33 article-title: Ferrihydrite transformation impacted by coprecipitation of phytic acid publication-title: Environ Sci Technol – volume: 525 year: 2020 ident: bib43 article-title: Ethylenediaminetetraacetic acid induces surface erosion of zero-valent iron for enhanced hexavalent chromium removal publication-title: Appl Surf Sci – volume: 57 start-page: 11336 year: 2023 end-page: 11344 ident: bib12 article-title: Chemical bond bridging across two domains: Generation of Fe(II) and in situ formation of FeSx on zerovalent iron publication-title: Environ Sci Technol – volume: 205-206 start-page: 40 year: 2012 end-page: 46 ident: bib57 article-title: Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design publication-title: J Hazard Mater – volume: 76 start-page: 345 year: 2011 end-page: 350 ident: bib8 article-title: Removal of hexavalent chromium by electrochemical reduction-precipitation: Investigation of process performance and reaction stoichiometry publication-title: Sep Purif Technol – volume: 280 start-page: 20 year: 2014 end-page: 30 ident: bib30 article-title: Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite membrane publication-title: J Hazard Mater – volume: 54 start-page: 11971 year: 2020 end-page: 11979 ident: bib6 article-title: Different pathways for Cr(III) oxidation: Implications for Cr(VI) reoccurrence in reduced chromite ore processing residue publication-title: Environ Sci Technol – volume: 389 year: 2020 ident: bib38 article-title: Enhanced Cr(VI) removal of zero-valent iron with high proton conductive FeC publication-title: Chem Eng J – volume: 1 year: 2020 ident: bib40 article-title: Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts publication-title: Cell Rep Phys Sci – volume: 4 start-page: 50699 year: 2014 end-page: 50707 ident: bib60 article-title: Enhanced Cr(VI) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: characterization, kinetics and mechanism publication-title: RSC Adv – volume: 359 start-page: 874 year: 2019 ident: 10.1016/j.jhazmat.2024.133636_bib24 article-title: Enhanced Cr(VI) removal in the synergy between the hydroxyl-functionalized ball-milled ZVI/Fe3O4 composite and Na2EDTA complexation publication-title: Chem Eng J doi: 10.1016/j.cej.2018.11.104 – volume: 26 start-page: 345 issue: 3 year: 1987 ident: 10.1016/j.jhazmat.2024.133636_bib47 article-title: Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide publication-title: Inorg Chem doi: 10.1021/ic00250a002 – volume: 42 start-page: 1238 issue: 4 year: 2008 ident: 10.1016/j.jhazmat.2024.133636_bib13 article-title: Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions publication-title: Environ Sci Technol doi: 10.1021/es071572n – volume: 76 start-page: 66 year: 2015 ident: 10.1016/j.jhazmat.2024.133636_bib56 article-title: Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure publication-title: Water Res doi: 10.1016/j.watres.2015.02.058 – volume: 280 start-page: 20 year: 2014 ident: 10.1016/j.jhazmat.2024.133636_bib30 article-title: Removal of aqueous Hg(II) and Cr(VI) using phytic acid doped polyaniline/cellulose acetate composite membrane publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2014.07.052 – volume: 636 year: 2021 ident: 10.1016/j.jhazmat.2024.133636_bib32 article-title: Enhanced removal efficiency of heavy metal ions by assembling phytic acid on polyamide nanofiltration membrane publication-title: J Membr Sci doi: 10.1016/j.memsci.2021.119591 – volume: 49 start-page: 14267 issue: 24 year: 2015 ident: 10.1016/j.jhazmat.2024.133636_bib4 article-title: Novel speciation method based on diffusive gradients in Thin-Films for in situ measurement of Cr(VI) in aquatic systems publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b03742 – volume: 595 start-page: 743 year: 2017 ident: 10.1016/j.jhazmat.2024.133636_bib5 article-title: Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.03.282 – volume: 454 year: 2023 ident: 10.1016/j.jhazmat.2024.133636_bib22 article-title: Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and Cr(VI) by adsorption-reduction synergistic effect publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140318 – volume: 525 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib37 article-title: Ethylenediaminetetraacetic acid induces surface erosion of zero-valent iron for enhanced hexavalent chromium removal publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.146593 – volume: 7 issue: 1 year: 2016 ident: 10.1016/j.jhazmat.2024.133636_bib51 article-title: Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering publication-title: Nat Commun – volume: 614 year: 2023 ident: 10.1016/j.jhazmat.2024.133636_bib52 article-title: A highly efficient metal ferrocyanide adsorbent based on zinc phytate for cesium removal publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2022.156231 – volume: 1 start-page: 5333 issue: 17 year: 2013 ident: 10.1016/j.jhazmat.2024.133636_bib45 article-title: Synthesis of a novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation publication-title: J Mater Chem A doi: 10.1039/c3ta00186e – volume: 54 start-page: 8837 issue: 14 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib33 article-title: Ferrihydrite transformation impacted by coprecipitation of phytic acid publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c02465 – volume: 175 start-page: 1042 issue: 1 year: 2010 ident: 10.1016/j.jhazmat.2024.133636_bib54 article-title: Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2009.10.116 – volume: 47 start-page: 2131 issue: 7 year: 2008 ident: 10.1016/j.jhazmat.2024.133636_bib21 article-title: Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A Study with high-resolution X-Ray photoelectron spectroscopy (HR-XPS) publication-title: Ind Eng Chem Res doi: 10.1021/ie061655x – volume: 46 start-page: 5851 issue: 11 year: 2012 ident: 10.1016/j.jhazmat.2024.133636_bib50 article-title: Investigation of chromate coordination on ferrihydrite by in situ ATR-FTIR spectroscopy and theoretical frequency calculations publication-title: Environ Sci Technol doi: 10.1021/es300660r – volume: 50 start-page: 1964 issue: 4 year: 2016 ident: 10.1016/j.jhazmat.2024.133636_bib49 article-title: Facet-dependent Cr(VI) adsorption of hematite nanocrystals publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b05111 – volume: 133 start-page: 205 issue: 1 year: 2012 ident: 10.1016/j.jhazmat.2024.133636_bib16 article-title: Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2012.01.008 – start-page: 2361 year: 2017 ident: 10.1016/j.jhazmat.2024.133636_bib27 article-title: Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system publication-title: Int J Nanomed doi: 10.2147/IJN.S126245 – volume: 389 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib38 article-title: Enhanced Cr(VI) removal of zero-valent iron with high proton conductive FeC2O4·2H2O shell publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124414 – volume: 1 issue: 1 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib40 article-title: Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts publication-title: Cell Rep Phys Sci – volume: 29 start-page: 1755 issue: 7 year: 1995 ident: 10.1016/j.jhazmat.2024.133636_bib7 article-title: Removal of hexavalent chromium anions from solutions by pyrite fines publication-title: Water Res doi: 10.1016/0043-1354(94)00319-3 – volume: 389 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib36 article-title: Cr(VI) removal by micron-scale iron-carbon composite induced by ball milling: The role of activated carbon publication-title: Chem Eng J doi: 10.1016/j.cej.2019.122633 – volume: 25 start-page: 807 issue: 7 year: 1991 ident: 10.1016/j.jhazmat.2024.133636_bib1 article-title: Aqueous geochemistry of chromium: a review publication-title: Water Res doi: 10.1016/0043-1354(91)90160-R – volume: 309 start-page: 249 year: 2016 ident: 10.1016/j.jhazmat.2024.133636_bib10 article-title: Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.04.013 – volume: 120 start-page: 945 issue: 4 year: 2010 ident: 10.1016/j.jhazmat.2024.133636_bib28 article-title: Dietary roles of phytate and phytase in human nutrition: A review publication-title: Food Chem doi: 10.1016/j.foodchem.2009.11.052 – volume: 56 start-page: 3536 year: 1991 ident: 10.1016/j.jhazmat.2024.133636_bib3 article-title: National Primary Drinking Water Regulations; Final Rule publication-title: Fed Regist – volume: 98 year: 2022 ident: 10.1016/j.jhazmat.2024.133636_bib46 article-title: Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107220 – volume: 51 start-page: 5090 issue: 9 year: 2017 ident: 10.1016/j.jhazmat.2024.133636_bib26 article-title: Coupled effect of ferrous ion and oxygen on the electron selectivity of zerovalent iron for selenate sequestration publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b04832 – volume: 16 start-page: 151 issue: 12 year: 2022 ident: 10.1016/j.jhazmat.2024.133636_bib23 article-title: Cadmium removal mechanistic comparison of three Fe-based nanomaterials: Water-chemistry and roles of Fe dissolution publication-title: Front Environ Sci Eng doi: 10.1007/s11783-022-1586-8 – volume: 54 start-page: 11971 issue: 19 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib6 article-title: Different pathways for Cr(III) oxidation: Implications for Cr(VI) reoccurrence in reduced chromite ore processing residue publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c01855 – volume: 41 start-page: 586 issue: 2 year: 2007 ident: 10.1016/j.jhazmat.2024.133636_bib9 article-title: Spectroscopic investigation of Cr(III)-and Cr(VI)-treated nanoscale zerovalent iron publication-title: Environ Sci Technol doi: 10.1021/es061721m – volume: 63 start-page: 731 issue: 1 year: 1997 ident: 10.1016/j.jhazmat.2024.133636_bib31 article-title: Adsorption of heavy metal ions by immobilized phytic acid publication-title: Appl Biochem Biotech doi: 10.1007/BF02920471 – volume: 51 start-page: 12653 issue: 21 year: 2017 ident: 10.1016/j.jhazmat.2024.133636_bib14 article-title: Mechanochemically sulfidated microscale zero valent iron: pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b03604 – volume: 260 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib20 article-title: Enhancing Cr(VI) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.114021 – volume: 829 year: 2022 ident: 10.1016/j.jhazmat.2024.133636_bib53 article-title: Qualitative and quantitative investigation on adsorption mechanisms of Cd(II) on modified biochar derived from co-pyrolysis of straw and sodium phytate publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.154599 – volume: 250 start-page: 272 year: 2013 ident: 10.1016/j.jhazmat.2024.133636_bib2 article-title: Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2013.01.048 – volume: 47 start-page: 8550 issue: 22 year: 2008 ident: 10.1016/j.jhazmat.2024.133636_bib15 article-title: Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles publication-title: Ind Eng Chem Res doi: 10.1021/ie8003946 – volume: 52 start-page: 2988 issue: 5 year: 2018 ident: 10.1016/j.jhazmat.2024.133636_bib11 article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b06502 – volume: 53 start-page: 8333 issue: 14 year: 2019 ident: 10.1016/j.jhazmat.2024.133636_bib17 article-title: Liquid Nitrogen Activation of zero-valent iron and its enhanced Cr(VI) removal performance publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b01999 – volume: 50 start-page: 11554 issue: 78 year: 2014 ident: 10.1016/j.jhazmat.2024.133636_bib44 article-title: FeP nanoparticles grown on graphene sheets as highly active non-precious-metal electrocatalysts for hydrogen evolution reaction publication-title: Chem Commun doi: 10.1039/C4CC05285D – volume: 57 start-page: 11336 issue: 30 year: 2023 ident: 10.1016/j.jhazmat.2024.133636_bib12 article-title: Chemical bond bridging across two domains: Generation of Fe(II) and in situ formation of FeSx on zerovalent iron publication-title: Environ Sci Technol doi: 10.1021/acs.est.3c02768 – volume: 263 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib18 article-title: Phosphate modification enables high efficiency and electron selectivity of nZVI toward Cr(VI) removal publication-title: Appl Catal B-Environ doi: 10.1016/j.apcatb.2019.118364 – volume: 41 start-page: 7881 issue: 22 year: 2007 ident: 10.1016/j.jhazmat.2024.133636_bib25 article-title: Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution publication-title: Environ Sci Technol doi: 10.1021/es0711967 – year: 2012 ident: 10.1016/j.jhazmat.2024.133636_bib34 article-title: Standard methods for the examination of water and wastewater publication-title: Am Public Health Assoc Wash, DC – volume: 42 start-page: 6955 issue: 18 year: 2008 ident: 10.1016/j.jhazmat.2024.133636_bib59 article-title: Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires publication-title: Environ Sci Technol doi: 10.1021/es800962m – volume: 102 start-page: 73 year: 2016 ident: 10.1016/j.jhazmat.2024.133636_bib55 article-title: Reductive sequestration of chromate by hierarchical FeS@Fe0 particles publication-title: Water Res doi: 10.1016/j.watres.2016.06.009 – volume: 205-206 start-page: 40 year: 2012 ident: 10.1016/j.jhazmat.2024.133636_bib57 article-title: Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2011.11.090 – volume: 29 issue: 24 year: 2019 ident: 10.1016/j.jhazmat.2024.133636_bib41 article-title: Boosting the electrical double‐layer capacitance of graphene by self‐doped defects through ball‐milling publication-title: Adv Funct Mater doi: 10.1002/adfm.201901127 – volume: 1 start-page: 2109 issue: 9 year: 2021 ident: 10.1016/j.jhazmat.2024.133636_bib19 article-title: Oxalate modification dramatically promoted Cr(VI) removal with zero-valent iron, ACS ES&T publication-title: Water – volume: 525 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib43 article-title: Ethylenediaminetetraacetic acid induces surface erosion of zero-valent iron for enhanced hexavalent chromium removal publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.146593 – volume: 17 start-page: 403 issue: 4 year: 2022 ident: 10.1016/j.jhazmat.2024.133636_bib39 article-title: Abrading bulk metal into single atoms publication-title: Nat Nanotechnol doi: 10.1038/s41565-022-01075-7 – volume: 257 year: 2021 ident: 10.1016/j.jhazmat.2024.133636_bib58 article-title: CaCO3 coated nanoscale zero-valent iron (nZVI) for the removal of chromium(VI) in aqueous solution publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2020.117967 – volume: 435 year: 2022 ident: 10.1016/j.jhazmat.2024.133636_bib42 article-title: Degradation of atrazine by Ni-doped sulfidated microscale zero-valent iron: Mechanistic insights for enhanced reactivity and selectivity publication-title: Chem Eng J doi: 10.1016/j.cej.2022.135120 – volume: 76 start-page: 345 issue: 3 year: 2011 ident: 10.1016/j.jhazmat.2024.133636_bib8 article-title: Removal of hexavalent chromium by electrochemical reduction-precipitation: Investigation of process performance and reaction stoichiometry publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2010.11.002 – volume: 31 start-page: 343 year: 2002 ident: 10.1016/j.jhazmat.2024.133636_bib48 article-title: Thermodynamic model for the solubility of Cr(OH)3 (am) in concentrated NaOH and NaOH-NaNO3 solutions publication-title: J Solut Chem doi: 10.1023/A:1015887414411 – volume: 518 year: 2020 ident: 10.1016/j.jhazmat.2024.133636_bib29 article-title: High performance of phytic acid-functionalized spherical poly-phenylglycine particles for removal of heavy metal ions publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.146206 – volume: 857 year: 2023 ident: 10.1016/j.jhazmat.2024.133636_bib35 article-title: Enhanced removal of hexavalent chromium by lignosulfonate modified zero valent iron: Reaction kinetic, performance and mechanism publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.159397 – volume: 4 start-page: 50699 issue: 92 year: 2014 ident: 10.1016/j.jhazmat.2024.133636_bib60 article-title: Enhanced Cr(VI) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: characterization, kinetics and mechanism publication-title: RSC Adv doi: 10.1039/C4RA08754B |
SSID | ssj0001754 |
Score | 2.54305 |
Snippet | The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 133636 |
SubjectTerms | adsorption Coordination effect Cr (VI) removal decontamination Electron transfer energy humans humic acids industrial wastewater iron ligands Phytate modification phytic acid pollution reaction kinetics toxicity Zero-valent iron |
Title | One-step strategy for efficient Cr(VI) removal via phytate modified zero-valent iron: Accelerated electron transfer and enhanced coordination effect |
URI | https://dx.doi.org/10.1016/j.jhazmat.2024.133636 https://www.ncbi.nlm.nih.gov/pubmed/38309166 https://www.proquest.com/docview/2926074621 https://www.proquest.com/docview/3154269239 |
Volume | 466 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYovbQHROmDhYJcqYf2kF2wvU7c22pVtPRBDy0VN8vxQ2QFySosIDjwK_jBzMQJD6kIqbfEsS3LM_Z8E898JuSjCKnzGbOw0hxPhPchMSZz8JQGJCxyocmQ-7knJ_vi28HwYIGMu1wYDKts9_64pze7dVsyaGdzMCuKwW881ANzKzAKEm9nxQx2kaKW96_uwjzAPEYKKTwBgNp3WTyDaX96aC4BGIKbyEQfvDXZMDX_0z49hj8bO7SzTJZaAElHcYyvyIIvV8jLe7SCK-TZD3P-mlz_Kn0CMpzRk8hAe0EBoFLfcEaAqaHj-tPf3c-09scVqBs9KwyFOUfwSY8rVwQAp_TS11UCX7E-JsR9oSNrwVJhh452d-jQeQN_fU1NCaXlYRNWQG0Fnm0RfzfSGDjyhuzvfP0zniTtHQyJ5Sqbg5-6ZdOcAYriHJChkUNrlQyBGSOktGDZrDRbOWcKdivPchNkzpH7eOiMVyD_t2SxrEq_SqgwQRkAMDwLVqgMNAK6cQYQnHLMpaZHRDfz2rYE5XhPxpHuItGmuhWYRoHpKLAe6d82m0WGjqcaZJ1Y9QNV02BFnmr6oVMDDcsQz1ZM6avTE80UOIapkGz78Toc4CqTMJOqR95FHbodMc84IDcp1_5_cOvkBb5hgNz28D1ZnNenfgMQ0zzfbJbEJnk-2v0-2bsB0xUXpQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wNwQFBey9NIHOCQ3dZ2nITbatVql26XAy3qzXL8ULOiySrdgujv6A_uOE6WIlFV4hb5JcsznvkmHn8G-MBdYmxKNe40wyJurYuUSg1-Jc4TFhnX3JA7nIvJMf9yEp9swLi7C-PTKlvbH2x6Y63bkmG7msNlUQy_-UM9dLfcZ0H611k3YcuzU8U92BpNDybztUFGDxlYpPwhAHb4c5FnuBgsTtUlYkOMFCkfYMAmGrLmf7qo2yBo44r2H8HDFkOSUZjmY9iw5TY8uMEsuA2bM_XrCVx9LW2EYlyS80BC-5sgRiW2oY1Ab0PG9cfv00-ktmcVahz5WSiCy-7xJzmrTOEQn5JLW1cR1vr2_k7cZzLSGp2VH9CQ7hkdsmoQsK2JKrG0PG0yC4iuMLgtwh9HEnJHnsLx_t7ReBK1zzBEmmXpCkPVHZ3kFIEUYwgOlYi1zoRzVCkuhEbnpoXayRnN0GBZmisncubpj2OjbIYq8Ax6ZVXaF0C4cplCDMNSp3mWolLgMEYhiMsMNYnqA-9WXuqWo9w_lfFDdsloC9kKTHqBySCwPgzW3ZaBpOOuDmknVvmXtkl0JHd1fd-pgcSd6I9XVGmri3NJM4wNEy7o7u1tGCJWKnAlsz48Dzq0njFLGYI3IV7-_-Tewb3J0eFMzqbzg1dw39f4fLnd-DX0VvWFfYMAapW_bTfINVS1GlY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-step+strategy+for+efficient+Cr%28VI%29+removal+via+phytate+modified+zero-valent+iron%3A+Accelerated+electron+transfer+and+enhanced+coordination+effect&rft.jtitle=Journal+of+hazardous+materials&rft.au=Gan%2C+Rui&rft.au=Ye%2C+Yuxuan&rft.au=Zhan%2C+Ziyi&rft.au=Zhang%2C+Qiuyue&rft.date=2024-03-15&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.volume=466&rft_id=info:doi/10.1016%2Fj.jhazmat.2024.133636&rft.externalDocID=S0304389424002152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |