Life cycle assessment of prospective sewage sludge treatment paths in Germany

Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental management Vol. 290; p. 112557
Main Authors Mayer, Felix, Bhandari, Ramchandra, Gäth, Stefan A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.07.2021
Subjects
Online AccessGet full text
ISSN0301-4797
1095-8630
1095-8630
DOI10.1016/j.jenvman.2021.112557

Cover

Loading…
Abstract Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected. •Four sewage sludge treatment options were analyzed by means of life cycle assessment.•Sludge spreading was opposed to thermal post-treatment including phosphorous recovery.•Spreading was preferential, if toxicity and eutrophication were not compromised.•Hydrothermal carbonization and direct incineration resulted in similar impacts.•Pyrolysis resulted in equal or higher impacts throughout all impact categories.
AbstractList Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected. •Four sewage sludge treatment options were analyzed by means of life cycle assessment.•Sludge spreading was opposed to thermal post-treatment including phosphorous recovery.•Spreading was preferential, if toxicity and eutrophication were not compromised.•Hydrothermal carbonization and direct incineration resulted in similar impacts.•Pyrolysis resulted in equal or higher impacts throughout all impact categories.
Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected.
Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected.Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected.
Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method.The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories.Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N₂O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected.
ArticleNumber 112557
Author Bhandari, Ramchandra
Gäth, Stefan A.
Mayer, Felix
Author_xml – sequence: 1
  givenname: Felix
  surname: Mayer
  fullname: Mayer, Felix
  email: felix.mayer1@th-koeln.de
  organization: Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln (University of Applied Sciences), Germany
– sequence: 2
  givenname: Ramchandra
  surname: Bhandari
  fullname: Bhandari, Ramchandra
  organization: Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln (University of Applied Sciences), Germany
– sequence: 3
  givenname: Stefan A.
  surname: Gäth
  fullname: Gäth, Stefan A.
  organization: Department of Agricultural Sciences, Nutritional Sciences and Environmental Management, Justus‐Liebig‐University, Heinrich‐Buff‐Ring 26-32, 35392, Giessen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33865154$$D View this record in MEDLINE/PubMed
BookMark eNqNkT9v2zAQxYnARWIn-QgtNHaRe_wnSuhQFEHiFHDQJZkJmjolNCTKJWkX_vZlYmfp4kw38PeO796bkYkfPRLymcKcAq2-redr9LvB-DkDRueUMinVGZlSaGRZVxwmZAocaClUoy7ILMY1AHBG1Tm54LyuJJViSh6WrsPC7m2PhYkRYxzQp2Lsik0Y4wZtcjssIv41z3n02zaPFNCkN2xj0kssnC8WGLKV_RX51Jk-4vVxXpKnu9vHm_ty-Xvx6-bnsrS8qVPJ0QglGkmB1Qpqlg_CCoGyleHQKcRWWArViiuRTSrgqpJgbZufWC2M5Zfk62FvNvlnizHpwUWLfW88jtuocxYsH9tUzQdQKmTTSMEy-uWIblcDtnoT3GDCXr-nlYHvB8DmbGLATluXTHKjT8G4XlPQr93otT52o1-70Yduslr-p37_4JTux0GHOdGdw6Cjdegtti7kfnQ7uhMb_gHzv6n2
CitedBy_id crossref_primary_10_3390_ijerph191912983
crossref_primary_10_3390_pr9091648
crossref_primary_10_1016_j_wroa_2024_100255
crossref_primary_10_1038_s41598_024_54060_6
crossref_primary_10_3390_recycling9020031
crossref_primary_10_1016_j_scitotenv_2023_165123
crossref_primary_10_3390_agronomy14020243
crossref_primary_10_1177_0734242X221138497
crossref_primary_10_1016_j_jclepro_2022_132057
crossref_primary_10_1016_j_resconrec_2024_107496
crossref_primary_10_1016_j_jclepro_2022_134794
crossref_primary_10_1016_j_scitotenv_2021_150353
crossref_primary_10_1016_j_jclepro_2024_143948
crossref_primary_10_1016_j_jclepro_2024_144558
crossref_primary_10_1016_j_jece_2023_111255
crossref_primary_10_1002_tqem_22007
crossref_primary_10_1007_s10098_023_02679_w
crossref_primary_10_1016_j_jece_2023_111657
crossref_primary_10_1016_j_jwpe_2023_104103
crossref_primary_10_1016_j_wasman_2023_08_006
crossref_primary_10_1016_j_jclepro_2024_142375
crossref_primary_10_1016_j_cesys_2024_100254
crossref_primary_10_1016_j_indcrop_2025_120609
crossref_primary_10_3390_app14209583
crossref_primary_10_1016_j_jclepro_2024_143391
crossref_primary_10_1002_ces2_10173
crossref_primary_10_1016_j_resconrec_2022_106452
crossref_primary_10_1016_j_cej_2023_141284
crossref_primary_10_1016_j_jenvman_2022_115392
crossref_primary_10_1007_s13399_023_05019_6
crossref_primary_10_1016_j_jenvman_2024_121315
crossref_primary_10_1016_j_watres_2023_120109
crossref_primary_10_3390_w15061195
crossref_primary_10_1016_j_jhazmat_2024_134242
crossref_primary_10_1016_j_spc_2024_03_016
crossref_primary_10_1051_e3sconf_202339303001
crossref_primary_10_1016_j_energy_2022_126294
crossref_primary_10_1016_j_marpolbul_2023_115727
crossref_primary_10_1051_bioconf_202410703007
crossref_primary_10_1016_j_resconrec_2021_106104
crossref_primary_10_1016_j_spc_2024_02_002
crossref_primary_10_1016_j_jenvman_2023_119269
crossref_primary_10_1016_j_jece_2023_111593
crossref_primary_10_1016_j_spc_2024_07_007
crossref_primary_10_1016_j_rser_2024_114856
crossref_primary_10_1039_D3SU00052D
crossref_primary_10_1016_j_wasman_2023_04_010
crossref_primary_10_3390_ma16206653
crossref_primary_10_1016_j_jclepro_2022_134668
crossref_primary_10_1016_j_fuel_2022_124946
crossref_primary_10_1016_j_enconman_2022_115691
crossref_primary_10_35627_2219_5238_2022_30_5_15_22
Cites_doi 10.1016/j.scitotenv.2016.07.019
10.1007/s10163-015-0366-y
10.1177/0734242X05054324
10.1016/j.eja.2015.06.001
10.1016/j.rser.2013.07.043
10.1016/j.jclepro.2020.125762
10.1016/j.jclepro.2016.11.116
10.1016/j.wasman.2010.02.025
10.1016/j.biortech.2016.02.052
10.1016/j.scitotenv.2020.137731
10.1021/ef500875c
10.1007/s12649-017-9914-0
10.1016/j.biombioe.2016.11.003
10.1007/s11367-016-1246-y
10.1021/acs.energyfuels.5b01918
10.1065/lca2005.05.210
10.3390/su11123435
10.1016/j.trac.2009.09.003
10.1002/cite.201100126
10.1016/j.biortech.2012.09.135
10.1016/j.resconrec.2017.11.002
10.1016/j.resconrec.2004.06.006
10.1016/j.jclepro.2016.11.121
10.1016/j.jenvman.2016.03.022
10.1016/j.resconrec.2003.10.006
10.1016/j.biortech.2015.06.032
10.1016/j.chemosphere.2011.02.032
10.1021/ef700287p
10.2166/wst.2011.540
10.1177/0734242X06063053
10.1177/0734242X0302100103
10.1016/j.wasman.2008.11.004
10.1016/j.biortech.2013.05.098
10.1016/j.jenvman.2010.09.008
10.1016/j.jaap.2013.10.002
10.1016/j.jaap.2013.03.004
10.1016/j.enconman.2014.05.043
10.1007/s11367-016-1087-8
10.1016/j.jhazmat.2016.08.050
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2021.112557
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 33865154
10_1016_j_jenvman_2021_112557
S0301479721006198
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c398t-3ea4749510287082101e6e012ba30f7eed4c106b3741547037650ccdf7e284ac3
IEDL.DBID .~1
ISSN 0301-4797
1095-8630
IngestDate Fri Sep 05 12:35:26 EDT 2025
Fri Sep 05 12:29:35 EDT 2025
Thu Apr 03 07:00:11 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Tue Jul 01 02:32:10 EDT 2025
Fri Feb 23 02:41:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Life cycle assessment
Pyrolysis
Hydrothermal carbonization
Incineration
Sewage sludge
Phosphorous recovery
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-3ea4749510287082101e6e012ba30f7eed4c106b3741547037650ccdf7e284ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33865154
PQID 2514599542
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2552003969
proquest_miscellaneous_2514599542
pubmed_primary_33865154
crossref_citationtrail_10_1016_j_jenvman_2021_112557
crossref_primary_10_1016_j_jenvman_2021_112557
elsevier_sciencedirect_doi_10_1016_j_jenvman_2021_112557
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (bib6) 2017
Rokosch, Heidecke (bib53) 2018
Gao, Li, Qi, Li, Duan, Wang (bib23) 2014; 105
Bert, Allemon, Sajet, Dieu, Papin, Collet, Gaucher, Chalot, Michiels, Raventos (bib4) 2017; 96
Bohndick (bib7) 2014
Smith (bib56) 2009; 367
GreenDelta (bib25) 2019
van Wesenbeeck, Prins, Ronsse, Antal (bib66) 2014; 28
Poulsen, Hansen (bib52) 2003; 21
Kühni, Wanner, Baier, Krebs (bib41) 2015
Hossain, Strezov, Chan, Ziolkowski, Nelson (bib31) 2011; 92
Huijbregts, Steinmann, Elshout, Stam, Verones, Vieira, Zijp, Hollander, van Zelm (bib32) 2017; 22
(bib50) 2011
Neuwahl, Cusano, Gómez Benavides, Holbrook, Roudier (bib47) 2019
Eriksson, Bisaillon, Haraldsson, Sundberg (bib19) 2016; 175
Heindl (bib28) 2016
Kolisch, Osthoff, Hobus, Hansen (bib38) 2010; 57
Hemlin, Lalangas (bib29) 2018
Amann, Zoboli, Krampe, Rechberger, Zessner, Egle (bib2) 2018; 130
Wittmaier, Langer, Sawilla (bib67) 2009; 29
Buttmann (bib9) 2011; 83
Kraus, Zamzow, Conzelmann, Remy, Kleyböcker, Seis, Miehe, Hermann, Hermann, Kabbe (bib40) 2019
(bib64) 2018
Lundin, Olofsson, Pettersson, Zetterlund (bib45) 2004; 41
Tonini, Hamelin, Alvarado-Morales, Astrup (bib63) 2016; 208
Blöhse (bib5) 2017
Egle, Rechberger, Krampe, Zessner (bib18) 2016; 571
Cordell, Rosemarin, Schröder, Smit (bib12) 2011; 84
Dwa (bib16) 2014
Shaddel, Bakhtiary-Davijany, Kabbe, Dadgar, Østerhus (bib54) 2019; 11
Svanström, Fröling, Olofsson, Lundin (bib61) 2005; 23
Hospido, Moreira, Martín, Rigola, Feijoo (bib30) 2005; 10
Kambo, Minaret, Dutta (bib36) 2018; 9
Stemann, Putschew, Ziegler (bib58) 2013; 143
Cao, Pawłowski (bib10) 2013; 127
Pinnekamp, Schröder, Bolle, Gramlich, Gredigk-Hoffmann, Koenen, Loderhose, Miethig, Ooms, Riße, Seibert-Erling, Schmitz, Wöffen (bib51) 2017
Stöcklein, Tebert, Töfge (bib60) 2018
Hasler, Bröring, Omta, Olfs (bib27) 2015; 69
Mayer, Bhandari, Gäth, Himanshu, Stobernack (bib46) 2020; 721
Cieślik, Konieczka (bib11) 2017; 142
(bib34) 2001
Jin, Li, Zhang, Wu, Cao, Liang, Zhang, Wong, Wang, Shan, Christie (bib35) 2016; 320
Kraus, Seis (bib39) 2015
Bennamoun, Arlabosse, Léonard (bib3) 2013; 28
Stobernack, Mayer, Malek, Bhandari (bib59) 2020
Ecn (bib17) 2020
Palme, Lundin, Tillman, Molander (bib48) 2005; 43
Abuşoğlu, Özahi, İhsan Kutlar, Al-jaf (bib1) 2017; 142
Bundesamt (bib8) 2018
Shao, Yan, Chen, Wang, Lee, Liang (bib55) 2008; 22
Klages, Schultheiß, Frei, Becker, Döhler, Schneider, Haberkern (bib37) 2009
Lu, Zhang, Wang, Zhuang, Yang, Qiu (bib43) 2013; 102
Díaz-Cruz, García-Galán, Guerra, Jelic, Postigo, Eljarrat, Farré, López de Alda, Petrovic, Barceló (bib13) 2009; 28
Petzet, Cornel (bib49) 2011; 64
Stark, Maas (bib57) 2012
(bib62) 2014
Imhoff, Imhoff (bib33) 2007; vol. 508
Lu, Yuan, Wang, Huang, Chen (bib44) 2016; 18
Fahimi, Federici, Depero, Valentim, Vassura, Ceruti, Cutaia, Bontempi (bib20) 2021; 289
Golder Associates (bib24) 2014
Zielińska, Oleszczuk (bib68) 2015; 192
Wernet, Bauer, Steubing, Reinhard, Moreno-Ruiz, Weidema (bib65) 2016; 21
Fettig, Liebe, Austermann-Haun, Meier (bib22) 2013
Lederer, Rechberger (bib42) 2010; 30
Doka (bib14) 2017
Dong, Chi, Tang, Ni, Nzihou, Weiss-Hortala, Huang (bib15) 2015; 29
Hansen, Bhander, Christensen, Bruun, Jensen (bib26) 2006; 24
Fan, Zhou, Wang (bib21) 2014; 88
Fettig (10.1016/j.jenvman.2021.112557_bib22) 2013
Lu (10.1016/j.jenvman.2021.112557_bib43) 2013; 102
Mayer (10.1016/j.jenvman.2021.112557_bib46) 2020; 721
Poulsen (10.1016/j.jenvman.2021.112557_bib52) 2003; 21
Fan (10.1016/j.jenvman.2021.112557_bib21) 2014; 88
(10.1016/j.jenvman.2021.112557_bib64) 2018
Kraus (10.1016/j.jenvman.2021.112557_bib40) 2019
Kühni (10.1016/j.jenvman.2021.112557_bib41) 2015
Amann (10.1016/j.jenvman.2021.112557_bib2) 2018; 130
Doka (10.1016/j.jenvman.2021.112557_bib14) 2017
Pinnekamp (10.1016/j.jenvman.2021.112557_bib51) 2017
Díaz-Cruz (10.1016/j.jenvman.2021.112557_bib13) 2009; 28
Cieślik (10.1016/j.jenvman.2021.112557_bib11) 2017; 142
Bert (10.1016/j.jenvman.2021.112557_bib4) 2017; 96
GreenDelta (10.1016/j.jenvman.2021.112557_bib25) 2019
Imhoff (10.1016/j.jenvman.2021.112557_bib33) 2007; vol. 508
Heindl (10.1016/j.jenvman.2021.112557_bib28) 2016
Jin (10.1016/j.jenvman.2021.112557_bib35) 2016; 320
Stobernack (10.1016/j.jenvman.2021.112557_bib59) 2020
Golder Associates (10.1016/j.jenvman.2021.112557_bib24) 2014
Palme (10.1016/j.jenvman.2021.112557_bib48) 2005; 43
Dong (10.1016/j.jenvman.2021.112557_bib15) 2015; 29
Shaddel (10.1016/j.jenvman.2021.112557_bib54) 2019; 11
Buttmann (10.1016/j.jenvman.2021.112557_bib9) 2011; 83
Stöcklein (10.1016/j.jenvman.2021.112557_bib60) 2018
Fahimi (10.1016/j.jenvman.2021.112557_bib20) 2021; 289
Hossain (10.1016/j.jenvman.2021.112557_bib31) 2011; 92
Zielińska (10.1016/j.jenvman.2021.112557_bib68) 2015; 192
Bennamoun (10.1016/j.jenvman.2021.112557_bib3) 2013; 28
Hospido (10.1016/j.jenvman.2021.112557_bib30) 2005; 10
Dwa (10.1016/j.jenvman.2021.112557_bib16) 2014
(10.1016/j.jenvman.2021.112557_bib34) 2001
Cordell (10.1016/j.jenvman.2021.112557_bib12) 2011; 84
Lundin (10.1016/j.jenvman.2021.112557_bib45) 2004; 41
Smith (10.1016/j.jenvman.2021.112557_bib56) 2009; 367
(10.1016/j.jenvman.2021.112557_bib50) 2011
Rokosch (10.1016/j.jenvman.2021.112557_bib53) 2018
Kraus (10.1016/j.jenvman.2021.112557_bib39) 2015
Kolisch (10.1016/j.jenvman.2021.112557_bib38) 2010; 57
Neuwahl (10.1016/j.jenvman.2021.112557_bib47) 2019
(10.1016/j.jenvman.2021.112557_bib62) 2014
Bohndick (10.1016/j.jenvman.2021.112557_bib7) 2014
Shao (10.1016/j.jenvman.2021.112557_bib55) 2008; 22
Ecn (10.1016/j.jenvman.2021.112557_bib17) 2020
van Wesenbeeck (10.1016/j.jenvman.2021.112557_bib66) 2014; 28
Eriksson (10.1016/j.jenvman.2021.112557_bib19) 2016; 175
Petzet (10.1016/j.jenvman.2021.112557_bib49) 2011; 64
Huijbregts (10.1016/j.jenvman.2021.112557_bib32) 2017; 22
Lederer (10.1016/j.jenvman.2021.112557_bib42) 2010; 30
Wittmaier (10.1016/j.jenvman.2021.112557_bib67) 2009; 29
Klages (10.1016/j.jenvman.2021.112557_bib37) 2009
Blöhse (10.1016/j.jenvman.2021.112557_bib5) 2017
Bundesamt (10.1016/j.jenvman.2021.112557_bib8) 2018
Wernet (10.1016/j.jenvman.2021.112557_bib65) 2016; 21
Stemann (10.1016/j.jenvman.2021.112557_bib58) 2013; 143
(10.1016/j.jenvman.2021.112557_bib6) 2017
Abuşoğlu (10.1016/j.jenvman.2021.112557_bib1) 2017; 142
Hasler (10.1016/j.jenvman.2021.112557_bib27) 2015; 69
Cao (10.1016/j.jenvman.2021.112557_bib10) 2013; 127
Svanström (10.1016/j.jenvman.2021.112557_bib61) 2005; 23
Kambo (10.1016/j.jenvman.2021.112557_bib36) 2018; 9
Lu (10.1016/j.jenvman.2021.112557_bib44) 2016; 18
Hemlin (10.1016/j.jenvman.2021.112557_bib29) 2018
Gao (10.1016/j.jenvman.2021.112557_bib23) 2014; 105
Stark (10.1016/j.jenvman.2021.112557_bib57) 2012
Tonini (10.1016/j.jenvman.2021.112557_bib63) 2016; 208
Egle (10.1016/j.jenvman.2021.112557_bib18) 2016; 571
Hansen (10.1016/j.jenvman.2021.112557_bib26) 2006; 24
References_xml – year: 2018
  ident: bib60
  article-title: Evaluation und Minderung klimarelevanter Gase aus Abfallverbrennungsanlagen. 102/2018
– volume: 88
  start-page: 1151
  year: 2014
  end-page: 1158
  ident: bib21
  article-title: Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed-bed reactor
  publication-title: Energy Convers. Manag.
– volume: 83
  start-page: 1890
  year: 2011
  end-page: 1896
  ident: bib9
  article-title: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse
  publication-title: Chem. Ing. Tech.
– volume: 142
  start-page: 1728
  year: 2017
  end-page: 1740
  ident: bib11
  article-title: A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods
  publication-title: J. Clean. Prod.
– year: 2019
  ident: bib25
– year: 2020
  ident: bib17
  article-title: Phyllis2 Database: Database for Biomass and Waste
– volume: 96
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib4
  article-title: Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options
  publication-title: Biomass Bioenergy
– volume: 10
  start-page: 336
  year: 2005
  end-page: 345
  ident: bib30
  article-title: Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes (10 pp)
  publication-title: Int. J. Life Cycle Assess.
– volume: 367
  start-page: 4005
  year: 2009
  end-page: 4041
  ident: bib56
  article-title: Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling
  publication-title: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
– year: 2017
  ident: bib5
  article-title: Hydrothermale Karbonisierung: Nutzen dieser Konversionstechnik für die optimierte Entsorgung feuchter Massenreststoffe
– volume: 208
  start-page: 123
  year: 2016
  end-page: 133
  ident: bib63
  article-title: GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment
  publication-title: Bioresour. Technol.
– year: 2014
  ident: bib16
  article-title: M 387E: thermal treatment of sewage sludge: Co-incineration in power plants : advisory leaflet
  publication-title: 1 Optični Disk (CD-ROM)
– year: 2012
  ident: bib57
  article-title: Method and Apparatus for the Treatment of Process Water from an Organic Material Conversion Process
– volume: 130
  start-page: 127
  year: 2018
  end-page: 139
  ident: bib2
  article-title: Environmental impacts of phosphorus recovery from municipal wastewater
  publication-title: Resour. Conserv. Recycl.
– volume: 41
  start-page: 255
  year: 2004
  end-page: 278
  ident: bib45
  article-title: Environmental and economic assessment of sewage sludge handling options
  publication-title: Resour. Conserv. Recycl.
– volume: 92
  start-page: 223
  year: 2011
  end-page: 228
  ident: bib31
  article-title: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar
  publication-title: J. Environ. Manag.
– year: 2013
  ident: bib22
  article-title: Verwertung des Prozesswassers aus der hydrothermalen Carbonisierung von organischen Abfällen: Abschlussbericht über ein Entwicklungsprojekt, gefördert unter dem Az: 27760 von der Deutschen Bundesstiftung Umwelt
– start-page: 699
  year: 2016
  ident: bib28
  article-title: Praxisbuch Bandtrocknung: Grundlagen, Anwendung, Berechnung
– volume: 143
  start-page: 139
  year: 2013
  end-page: 146
  ident: bib58
  article-title: Hydrothermal carbonization: process water characterization and effects of water recirculation
  publication-title: Bioresour. Technol.
– year: 2017
  ident: bib51
  article-title: Energie und Abwasser Handbuch NRW. Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein Westfalen
– year: 2014
  ident: bib7
  article-title: RecoPhos
– year: 2018
  ident: bib53
  article-title: Klärschlammentsorgung in der Bundesrepublik Deutschland
– volume: 23
  start-page: 356
  year: 2005
  end-page: 366
  ident: bib61
  article-title: Environmental assessment of supercritical water oxidation and other sewage sludge handling options
  publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
– volume: 105
  start-page: 43
  year: 2014
  end-page: 48
  ident: bib23
  article-title: Thermal analysis and products distribution of dried sewage sludge pyrolysis
  publication-title: J. Anal. Appl. Pyrol.
– volume: 69
  start-page: 41
  year: 2015
  end-page: 51
  ident: bib27
  article-title: Life cycle assessment (LCA) of different fertilizer product types
  publication-title: Eur. J. Agron.
– volume: 9
  start-page: 1181
  year: 2018
  end-page: 1189
  ident: bib36
  article-title: Process water from the hydrothermal carbonization of biomass: a waste or a valuable product?
  publication-title: Waste Biomass Valor
– year: 2011
  ident: bib50
  publication-title: Förderinitiative "Kreislaufwirtschaft für Pflanzennährstoffe, insbesondere Phosphor": Schlusspräsentation der durch das Bundesministerium für Bildung und Forschung geförderten Vorhaben ; am 14. September 2011
– volume: 28
  start-page: 5318
  year: 2014
  end-page: 5326
  ident: bib66
  article-title: Sewage sludge carbonization for biochar applications. Fate of heavy metals
  publication-title: Energy Fuels
– volume: 21
  start-page: 1218
  year: 2016
  end-page: 1230
  ident: bib65
  article-title: The ecoinvent database version 3 (part I): overview and methodology
  publication-title: Int. J. Life Cycle Assess.
– start-page: 977
  year: 2014
  ident: bib62
  publication-title: Energie aus Abfall
– volume: 30
  start-page: 1043
  year: 2010
  end-page: 1056
  ident: bib42
  article-title: Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options
  publication-title: Waste Manag.
– volume: 18
  start-page: 725
  year: 2016
  end-page: 733
  ident: bib44
  article-title: Characteristic of heavy metals in biochar derived from sewage sludge
  publication-title: J. Mater. Cycles Waste Manag.
– volume: 43
  start-page: 293
  year: 2005
  end-page: 311
  ident: bib48
  article-title: Sustainable development indicators for wastewater systems – researchers and indicator users in a co-operative case study
  publication-title: Resour. Conserv. Recycl.
– volume: 22
  start-page: 138
  year: 2017
  end-page: 147
  ident: bib32
  article-title: ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level
  publication-title: Int. J. Life Cycle Assess.
– year: 2001
  ident: bib34
  publication-title: Guidelines for National Greenhouse Gas Inventories
– volume: 571
  start-page: 522
  year: 2016
  end-page: 542
  ident: bib18
  article-title: Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies
  publication-title: Sci. Total Environ.
– volume: 127
  start-page: 81
  year: 2013
  end-page: 91
  ident: bib10
  article-title: Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications
  publication-title: Bioresour. Technol.
– year: 2020
  ident: bib59
  article-title: Evaluation of the Energetic and Environmental Potential of the Hydrothermal Carbonization of Biowaste: Modeling of the Entire Process Chain
– volume: 28
  start-page: 1263
  year: 2009
  end-page: 1275
  ident: bib13
  article-title: Analysis of selected emerging contaminants in sewage sludge
  publication-title: Trac. Trends Anal. Chem.
– volume: 28
  start-page: 29
  year: 2013
  end-page: 43
  ident: bib3
  article-title: Review on fundamental aspect of application of drying process to wastewater sludge
  publication-title: Renew. Sustain. Energy Rev.
– volume: 84
  start-page: 747
  year: 2011
  end-page: 758
  ident: bib12
  article-title: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options
  publication-title: Chemosphere
– volume: 57
  start-page: 1028
  year: 2010
  ident: bib38
  article-title: Steigerung der Energieeffizienz auf kommunalen Kläranlagen Eine Ergebnisbetrachtung zu durchgeführten Energieanalysen
  publication-title: KA Abwasser Abfall
– year: 2018
  ident: bib8
  article-title: Abwasserbehandlung - Klärschlamm Tabellenband: 2015/2016 5322101169005
– volume: 11
  start-page: 3435
  year: 2019
  ident: bib54
  article-title: Sustainable sewage sludge management: from current practices to emerging nutrient recovery technologies
  publication-title: Sustainability
– volume: 289
  start-page: 125762
  year: 2021
  ident: bib20
  article-title: Evaluation of the sustainability of technologies to recover phosphorus from sewage sludge ash based on embodied energy and CO2 footprint
  publication-title: J. Clean. Prod.
– volume: 175
  start-page: 33
  year: 2016
  end-page: 39
  ident: bib19
  article-title: Enhancement of biogas production from food waste and sewage sludge - environmental and economic life cycle performance
  publication-title: J. Environ. Manag.
– volume: 721
  start-page: 137731
  year: 2020
  ident: bib46
  article-title: Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany?
  publication-title: Sci. Total Environ.
– year: 2009
  ident: bib37
  article-title: Anforderungen an die Novellierung der Klärschlammverordnung unter besonderer Berücksichtigung von Hygieneparametern. F. I 2
– year: 2017
  ident: bib6
  article-title: BGBl. Jahrgang 2017 Teil I Nr. 65: Verordnung zur Neuordnung der Klärschlammverwertung
– start-page: 1
  year: 2019
  ident: bib47
  article-title: Best Available Techniques (BAT) Reference Document for Waste Incineration: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)
– volume: 24
  start-page: 153
  year: 2006
  end-page: 166
  ident: bib26
  article-title: Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE)
  publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
– year: 2015
  ident: bib41
  article-title: Behandlung des Prozesswassers aus hydrothermal karbonisiertem Klärschlamm vor der Einleitung in eine Abwasserreinigungsanlage: Treatment of Process Water of hydrothermal carbonised Sewage Sludge before discharging in a Waste Water Treatment Plant
– volume: 21
  start-page: 19
  year: 2003
  end-page: 28
  ident: bib52
  article-title: Strategic environmental assessment of alternative sewage sludge management scenarios
  publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
– year: 2017
  ident: bib14
  article-title: LCI Calculation Tools for Regionalised Waste Treatment: 5 Excel Workbooks
– year: 2014
  ident: bib24
  article-title: WRATE
– volume: 29
  start-page: 7516
  year: 2015
  end-page: 7525
  ident: bib15
  article-title: Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration
  publication-title: Energy Fuels
– volume: 29
  start-page: 1732
  year: 2009
  end-page: 1738
  ident: bib67
  article-title: Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - applied examples for a region in Northern Germany
  publication-title: Waste Manag.
– volume: vol. 508
  year: 2007
  ident: bib33
  publication-title: Taschenbuch der Stadtentwässerung: Mit 59 Tabellen
– volume: 142
  start-page: 1684
  year: 2017
  end-page: 1692
  ident: bib1
  article-title: Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production
  publication-title: J. Clean. Prod.
– year: 2018
  ident: bib29
  article-title: Production of Biochar through Slow Pyrolysis of Biomass: Peat, Straw, Horse Manure and Sewage Sludge
– year: 2015
  ident: bib39
  article-title: P-REX Sustainable Sewage Sludge Management Fostering Phosphorus Recovery and Energy Efficiency: WP: Comparative Life Cycle Assessment of Treatment-Recovery Paths
– volume: 22
  start-page: 38
  year: 2008
  end-page: 45
  ident: bib55
  article-title: Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis †
  publication-title: Energy Fuels
– volume: 192
  start-page: 618
  year: 2015
  end-page: 626
  ident: bib68
  article-title: Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene
  publication-title: Bioresour. Technol.
– year: 2019
  ident: bib40
  article-title: Ökobilanzieller Vergleich der P-Rückgewinnung aus dem Abwasserstrom mit der Düngemittelproduktion aus Rohphosphaten unter Einbeziehung von Umweltfolgeschäden und deren Vermeidung
– year: 2018
  ident: bib64
  article-title: Energieerzeugung aus Abfällen: Stand und Potenziale in Deutschland bis 2030. 51/2018. Umweltbundesamt, Dessau-Roßlau
– volume: 64
  start-page: 29
  year: 2011
  end-page: 35
  ident: bib49
  article-title: Towards a complete recycling of phosphorus in wastewater treatment--options in Germany
  publication-title: Water Sci. Technol. : a journal of the International Association on Water Pollution Research
– volume: 320
  start-page: 417
  year: 2016
  end-page: 426
  ident: bib35
  article-title: Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge
  publication-title: J. Hazard Mater.
– volume: 102
  start-page: 137
  year: 2013
  end-page: 143
  ident: bib43
  article-title: Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures
  publication-title: J. Anal. Appl. Pyrol.
– year: 2018
  ident: 10.1016/j.jenvman.2021.112557_bib64
– volume: 571
  start-page: 522
  year: 2016
  ident: 10.1016/j.jenvman.2021.112557_bib18
  article-title: Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.019
– volume: 18
  start-page: 725
  issue: 4
  year: 2016
  ident: 10.1016/j.jenvman.2021.112557_bib44
  article-title: Characteristic of heavy metals in biochar derived from sewage sludge
  publication-title: J. Mater. Cycles Waste Manag.
  doi: 10.1007/s10163-015-0366-y
– volume: 23
  start-page: 356
  issue: 4
  year: 2005
  ident: 10.1016/j.jenvman.2021.112557_bib61
  article-title: Environmental assessment of supercritical water oxidation and other sewage sludge handling options
  publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
  doi: 10.1177/0734242X05054324
– volume: 69
  start-page: 41
  year: 2015
  ident: 10.1016/j.jenvman.2021.112557_bib27
  article-title: Life cycle assessment (LCA) of different fertilizer product types
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2015.06.001
– volume: 28
  start-page: 29
  year: 2013
  ident: 10.1016/j.jenvman.2021.112557_bib3
  article-title: Review on fundamental aspect of application of drying process to wastewater sludge
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.07.043
– volume: 289
  start-page: 125762
  year: 2021
  ident: 10.1016/j.jenvman.2021.112557_bib20
  article-title: Evaluation of the sustainability of technologies to recover phosphorus from sewage sludge ash based on embodied energy and CO2 footprint
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125762
– volume: 142
  start-page: 1728
  year: 2017
  ident: 10.1016/j.jenvman.2021.112557_bib11
  article-title: A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.11.116
– year: 2017
  ident: 10.1016/j.jenvman.2021.112557_bib14
– volume: 30
  start-page: 1043
  issue: 6
  year: 2010
  ident: 10.1016/j.jenvman.2021.112557_bib42
  article-title: Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2010.02.025
– volume: 208
  start-page: 123
  year: 2016
  ident: 10.1016/j.jenvman.2021.112557_bib63
  article-title: GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.02.052
– year: 2018
  ident: 10.1016/j.jenvman.2021.112557_bib8
– year: 2009
  ident: 10.1016/j.jenvman.2021.112557_bib37
– volume: 721
  start-page: 137731
  year: 2020
  ident: 10.1016/j.jenvman.2021.112557_bib46
  article-title: Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137731
– year: 2011
  ident: 10.1016/j.jenvman.2021.112557_bib50
– year: 2014
  ident: 10.1016/j.jenvman.2021.112557_bib16
  article-title: M 387E: thermal treatment of sewage sludge: Co-incineration in power plants : advisory leaflet
– year: 2017
  ident: 10.1016/j.jenvman.2021.112557_bib5
– start-page: 977
  year: 2014
  ident: 10.1016/j.jenvman.2021.112557_bib62
– volume: 28
  start-page: 5318
  issue: 8
  year: 2014
  ident: 10.1016/j.jenvman.2021.112557_bib66
  article-title: Sewage sludge carbonization for biochar applications. Fate of heavy metals
  publication-title: Energy Fuels
  doi: 10.1021/ef500875c
– volume: 9
  start-page: 1181
  issue: 7
  year: 2018
  ident: 10.1016/j.jenvman.2021.112557_bib36
  article-title: Process water from the hydrothermal carbonization of biomass: a waste or a valuable product?
  publication-title: Waste Biomass Valor
  doi: 10.1007/s12649-017-9914-0
– volume: 96
  start-page: 1
  year: 2017
  ident: 10.1016/j.jenvman.2021.112557_bib4
  article-title: Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2016.11.003
– volume: 22
  start-page: 138
  issue: 2
  year: 2017
  ident: 10.1016/j.jenvman.2021.112557_bib32
  article-title: ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-016-1246-y
– volume: 29
  start-page: 7516
  issue: 11
  year: 2015
  ident: 10.1016/j.jenvman.2021.112557_bib15
  article-title: Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b01918
– year: 2018
  ident: 10.1016/j.jenvman.2021.112557_bib29
– volume: vol. 508
  year: 2007
  ident: 10.1016/j.jenvman.2021.112557_bib33
– year: 2020
  ident: 10.1016/j.jenvman.2021.112557_bib17
– volume: 10
  start-page: 336
  issue: 5
  year: 2005
  ident: 10.1016/j.jenvman.2021.112557_bib30
  article-title: Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes (10 pp)
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1065/lca2005.05.210
– volume: 367
  start-page: 4005
  issue: 1904
  year: 2009
  ident: 10.1016/j.jenvman.2021.112557_bib56
  article-title: Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling
  publication-title: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
– volume: 11
  start-page: 3435
  issue: 12
  year: 2019
  ident: 10.1016/j.jenvman.2021.112557_bib54
  article-title: Sustainable sewage sludge management: from current practices to emerging nutrient recovery technologies
  publication-title: Sustainability
  doi: 10.3390/su11123435
– volume: 28
  start-page: 1263
  issue: 11
  year: 2009
  ident: 10.1016/j.jenvman.2021.112557_bib13
  article-title: Analysis of selected emerging contaminants in sewage sludge
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.09.003
– volume: 83
  start-page: 1890
  issue: 11
  year: 2011
  ident: 10.1016/j.jenvman.2021.112557_bib9
  article-title: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.201100126
– year: 2020
  ident: 10.1016/j.jenvman.2021.112557_bib59
– volume: 127
  start-page: 81
  year: 2013
  ident: 10.1016/j.jenvman.2021.112557_bib10
  article-title: Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.09.135
– start-page: 1
  year: 2019
  ident: 10.1016/j.jenvman.2021.112557_bib47
– volume: 57
  start-page: 1028
  issue: 10
  year: 2010
  ident: 10.1016/j.jenvman.2021.112557_bib38
  article-title: Steigerung der Energieeffizienz auf kommunalen Kläranlagen Eine Ergebnisbetrachtung zu durchgeführten Energieanalysen
  publication-title: KA Abwasser Abfall
– volume: 130
  start-page: 127
  year: 2018
  ident: 10.1016/j.jenvman.2021.112557_bib2
  article-title: Environmental impacts of phosphorus recovery from municipal wastewater
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2017.11.002
– volume: 43
  start-page: 293
  issue: 3
  year: 2005
  ident: 10.1016/j.jenvman.2021.112557_bib48
  article-title: Sustainable development indicators for wastewater systems – researchers and indicator users in a co-operative case study
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2004.06.006
– volume: 142
  start-page: 1684
  year: 2017
  ident: 10.1016/j.jenvman.2021.112557_bib1
  article-title: Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.11.121
– volume: 175
  start-page: 33
  year: 2016
  ident: 10.1016/j.jenvman.2021.112557_bib19
  article-title: Enhancement of biogas production from food waste and sewage sludge - environmental and economic life cycle performance
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.03.022
– volume: 41
  start-page: 255
  issue: 4
  year: 2004
  ident: 10.1016/j.jenvman.2021.112557_bib45
  article-title: Environmental and economic assessment of sewage sludge handling options
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2003.10.006
– volume: 192
  start-page: 618
  year: 2015
  ident: 10.1016/j.jenvman.2021.112557_bib68
  article-title: Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.06.032
– year: 2013
  ident: 10.1016/j.jenvman.2021.112557_bib22
– start-page: 699
  year: 2016
  ident: 10.1016/j.jenvman.2021.112557_bib28
– volume: 84
  start-page: 747
  issue: 6
  year: 2011
  ident: 10.1016/j.jenvman.2021.112557_bib12
  article-title: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.02.032
– year: 2015
  ident: 10.1016/j.jenvman.2021.112557_bib41
– volume: 22
  start-page: 38
  issue: 1
  year: 2008
  ident: 10.1016/j.jenvman.2021.112557_bib55
  article-title: Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis †
  publication-title: Energy Fuels
  doi: 10.1021/ef700287p
– year: 2018
  ident: 10.1016/j.jenvman.2021.112557_bib60
– year: 2019
  ident: 10.1016/j.jenvman.2021.112557_bib40
– volume: 64
  start-page: 29
  issue: 1
  year: 2011
  ident: 10.1016/j.jenvman.2021.112557_bib49
  article-title: Towards a complete recycling of phosphorus in wastewater treatment--options in Germany
  publication-title: Water Sci. Technol. : a journal of the International Association on Water Pollution Research
  doi: 10.2166/wst.2011.540
– year: 2014
  ident: 10.1016/j.jenvman.2021.112557_bib24
– volume: 24
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.jenvman.2021.112557_bib26
  article-title: Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE)
  publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
  doi: 10.1177/0734242X06063053
– year: 2012
  ident: 10.1016/j.jenvman.2021.112557_bib57
– year: 2014
  ident: 10.1016/j.jenvman.2021.112557_bib7
– volume: 21
  start-page: 19
  issue: 1
  year: 2003
  ident: 10.1016/j.jenvman.2021.112557_bib52
  article-title: Strategic environmental assessment of alternative sewage sludge management scenarios
  publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
  doi: 10.1177/0734242X0302100103
– volume: 29
  start-page: 1732
  issue: 5
  year: 2009
  ident: 10.1016/j.jenvman.2021.112557_bib67
  article-title: Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - applied examples for a region in Northern Germany
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2008.11.004
– volume: 143
  start-page: 139
  year: 2013
  ident: 10.1016/j.jenvman.2021.112557_bib58
  article-title: Hydrothermal carbonization: process water characterization and effects of water recirculation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.05.098
– year: 2018
  ident: 10.1016/j.jenvman.2021.112557_bib53
– volume: 92
  start-page: 223
  issue: 1
  year: 2011
  ident: 10.1016/j.jenvman.2021.112557_bib31
  article-title: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2010.09.008
– volume: 105
  start-page: 43
  year: 2014
  ident: 10.1016/j.jenvman.2021.112557_bib23
  article-title: Thermal analysis and products distribution of dried sewage sludge pyrolysis
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2013.10.002
– volume: 102
  start-page: 137
  year: 2013
  ident: 10.1016/j.jenvman.2021.112557_bib43
  article-title: Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2013.03.004
– year: 2015
  ident: 10.1016/j.jenvman.2021.112557_bib39
– year: 2017
  ident: 10.1016/j.jenvman.2021.112557_bib6
– year: 2017
  ident: 10.1016/j.jenvman.2021.112557_bib51
– volume: 88
  start-page: 1151
  year: 2014
  ident: 10.1016/j.jenvman.2021.112557_bib21
  article-title: Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed-bed reactor
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.05.043
– volume: 21
  start-page: 1218
  issue: 9
  year: 2016
  ident: 10.1016/j.jenvman.2021.112557_bib65
  article-title: The ecoinvent database version 3 (part I): overview and methodology
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-016-1087-8
– year: 2019
  ident: 10.1016/j.jenvman.2021.112557_bib25
– volume: 320
  start-page: 417
  year: 2016
  ident: 10.1016/j.jenvman.2021.112557_bib35
  article-title: Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.08.050
– year: 2001
  ident: 10.1016/j.jenvman.2021.112557_bib34
SSID ssj0003217
Score 2.5554729
Snippet Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112557
SubjectTerms energy
eutrophication
Germany
Hydrothermal carbonization
Incineration
Life cycle assessment
Phosphorous recovery
phosphorus
Pyrolysis
Sewage sludge
toxicity
wastewater treatment
Title Life cycle assessment of prospective sewage sludge treatment paths in Germany
URI https://dx.doi.org/10.1016/j.jenvman.2021.112557
https://www.ncbi.nlm.nih.gov/pubmed/33865154
https://www.proquest.com/docview/2514599542
https://www.proquest.com/docview/2552003969
Volume 290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYmOMAFwWAwXgoS1250TZv2OE0b47FdYNJuUZqm0iboEN1AXPjt2H1sQgImcaraxmrkpPaXxP4McBm7NKpCWa5RocVjIyzlh5FFvIRRFCBCiCjBeTD0-iN-O3bHFeiUuTAUVlnY_tymZ9a6eNIstNl8mUyaD9lqQBD7DPnhgBJ-ORfEn9_4XIV5OK2s6i41pl0kscriaU4bU5O8PSuiQW3ZlEzjkpf62T_9hj8zP9TbhZ0CQLJ23sc9qJikCltlfnFahVp3lbuGDYufN92Hwf0kNkx_oBhTS0JONosZfrTMuGSpeUcTw9KnRYSXZRw6o9LFKZsk7JpsefJxAKNe97HTt4pqCpZ2An9uOUahdghQ0dmmj1qzjWfQP4XKuYoF-kqucX0YOoQxOBoCgeBN6whfoQtT2qnBRjJLzBEwn5tQxNwWIcIxpbWvw0DYtlBeK9CIH-rASx1KXVCNU8WLJ1nGlE1loXpJqpe56uvQWIq95Fwb6wT8coDkt0kj0R-sE70oB1TiD0WnJCoxs0UqEfBxYmHjrb_aEFuVE3hBHQ7z2bDssUNVVFGDx__v3Als0x1tIdvuKWzMXxfmDLHPPDzPJvc5bLZv7vrDL8uMAtc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-me9AX0fk1PyP4WmfXdGkfRaZTt704wbeQpilszG7YTfG_925NK4I68KnQ5Gi4XO5-TXK_AzhPfJpVoRzfqMjhiRGOCqLYIV7COA4RIcSU4NzrtzpP_P7Zf67AdZELQ9cqre_PffrCW9s3DavNxnQ4bDwu_gYEsc9QHA6DFagSOxUae_Xq7qHTLx2y11wU3qX-tJEkvhJ5GqOLkUnfXhQxoTZdyqfxKVD9HKJ-g6CLUHSzCRsWQ7KrfJhbUDFpDdaKFOOsBrvtr_Q17GjXb7YNve4wMUx_oBhTJScnmyQMP1okXbLMvKOXYdl4HuOjvIrOqHpxxoYpuyV3nn7swNNNe3DdcWxBBUd7YTBzPKO44ISp6HgzQMW5pmUwREXKu0wEhkuu8Rcx8ghmcPQFAvGb1jE2YRRT2tuF1XSSmn1gATeRSLgrIkRkSutAR6FwXaFazVAjhKgDL3QotWUbp6IXY1lcKxtJq3pJqpe56utwUYpNc7qNZQJBMUHym91IDAnLRM-KCZW4puigRKVmMs8kYj5ORGy8-VcfIqzywlZYh73cGsoRe1RIFTV48P_BncJaZ9Dryu5d_-EQ1qmFdpRd_whWZ69zc4xQaBadWFP_BKYYBYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+cycle+assessment+of+prospective+sewage+sludge+treatment+paths+in+Germany&rft.jtitle=Journal+of+environmental+management&rft.au=Mayer%2C+Felix&rft.au=Bhandari%2C+Ramchandra&rft.au=G%C3%A4th%2C+Stefan+A.&rft.date=2021-07-15&rft.pub=Elsevier+Ltd&rft.issn=0301-4797&rft.eissn=1095-8630&rft.volume=290&rft_id=info:doi/10.1016%2Fj.jenvman.2021.112557&rft.externalDocID=S0301479721006198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon