Life cycle assessment of prospective sewage sludge treatment paths in Germany
Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle...
Saved in:
Published in | Journal of environmental management Vol. 290; p. 112557 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0301-4797 1095-8630 1095-8630 |
DOI | 10.1016/j.jenvman.2021.112557 |
Cover
Loading…
Abstract | Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method.
The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories.
Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected.
•Four sewage sludge treatment options were analyzed by means of life cycle assessment.•Sludge spreading was opposed to thermal post-treatment including phosphorous recovery.•Spreading was preferential, if toxicity and eutrophication were not compromised.•Hydrothermal carbonization and direct incineration resulted in similar impacts.•Pyrolysis resulted in equal or higher impacts throughout all impact categories. |
---|---|
AbstractList | Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method.
The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories.
Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected.
•Four sewage sludge treatment options were analyzed by means of life cycle assessment.•Sludge spreading was opposed to thermal post-treatment including phosphorous recovery.•Spreading was preferential, if toxicity and eutrophication were not compromised.•Hydrothermal carbonization and direct incineration resulted in similar impacts.•Pyrolysis resulted in equal or higher impacts throughout all impact categories. Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected. Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected.Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method. The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories. Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N2O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected. Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for large-scale wastewater treatment plants in Germany. This study analyzed four prospective treatment paths for sewage sludge by means of life cycle assessment. In the realm of a gate-to-cradle approach, environmental impacts were quantified for all compartments of the ReCiPe Midpoint (H) 2016 method.The spreading of digested sludge on agricultural soils was considered as the base case (system: AD + spreading). It was compared to the centralized incineration of sludge (system: AD + I), a decentralized hydrothermal carbonization followed by centralized incineration (system: AD + HTC + I) and a decentralized pyrolysis of sludge followed by centralized incineration (system: AD + P + I). For all cases, phosphorous recovery from the ash was included. A comparative evaluation showed that AD + spreading resulted in least environmental impacts in most categories but was subject to a high local immission potential due to sewage sludge spreading. It was found to be only justifiable, if toxicity and eutrophication were not compromised. Alternatively, a thermal post-treatment step is required. Hereby, AD + I and AD + HTC + I showed the overall least environmental impacts, while AD + P + I was characterized by similar or higher environmental impacts throughout all impact categories.Alongside the comparative analysis, a hotspot analysis was carried out and mitigation potentials were identified. For all thermochemical post-treatment paths, it was derived that (i) the share of fossil external energy must be kept to a minimum, (ii) primary or secondary measures to control N₂O emissions during the incineration and pyrolysis should be implemented and (iii) the technological approach to recover phosphorous must be carefully selected. |
ArticleNumber | 112557 |
Author | Bhandari, Ramchandra Gäth, Stefan A. Mayer, Felix |
Author_xml | – sequence: 1 givenname: Felix surname: Mayer fullname: Mayer, Felix email: felix.mayer1@th-koeln.de organization: Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln (University of Applied Sciences), Germany – sequence: 2 givenname: Ramchandra surname: Bhandari fullname: Bhandari, Ramchandra organization: Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln (University of Applied Sciences), Germany – sequence: 3 givenname: Stefan A. surname: Gäth fullname: Gäth, Stefan A. organization: Department of Agricultural Sciences, Nutritional Sciences and Environmental Management, Justus‐Liebig‐University, Heinrich‐Buff‐Ring 26-32, 35392, Giessen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33865154$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkT9v2zAQxYnARWIn-QgtNHaRe_wnSuhQFEHiFHDQJZkJmjolNCTKJWkX_vZlYmfp4kw38PeO796bkYkfPRLymcKcAq2-redr9LvB-DkDRueUMinVGZlSaGRZVxwmZAocaClUoy7ILMY1AHBG1Tm54LyuJJViSh6WrsPC7m2PhYkRYxzQp2Lsik0Y4wZtcjssIv41z3n02zaPFNCkN2xj0kssnC8WGLKV_RX51Jk-4vVxXpKnu9vHm_ty-Xvx6-bnsrS8qVPJ0QglGkmB1Qpqlg_CCoGyleHQKcRWWArViiuRTSrgqpJgbZufWC2M5Zfk62FvNvlnizHpwUWLfW88jtuocxYsH9tUzQdQKmTTSMEy-uWIblcDtnoT3GDCXr-nlYHvB8DmbGLATluXTHKjT8G4XlPQr93otT52o1-70Yduslr-p37_4JTux0GHOdGdw6Cjdegtti7kfnQ7uhMb_gHzv6n2 |
CitedBy_id | crossref_primary_10_3390_ijerph191912983 crossref_primary_10_3390_pr9091648 crossref_primary_10_1016_j_wroa_2024_100255 crossref_primary_10_1038_s41598_024_54060_6 crossref_primary_10_3390_recycling9020031 crossref_primary_10_1016_j_scitotenv_2023_165123 crossref_primary_10_3390_agronomy14020243 crossref_primary_10_1177_0734242X221138497 crossref_primary_10_1016_j_jclepro_2022_132057 crossref_primary_10_1016_j_resconrec_2024_107496 crossref_primary_10_1016_j_jclepro_2022_134794 crossref_primary_10_1016_j_scitotenv_2021_150353 crossref_primary_10_1016_j_jclepro_2024_143948 crossref_primary_10_1016_j_jclepro_2024_144558 crossref_primary_10_1016_j_jece_2023_111255 crossref_primary_10_1002_tqem_22007 crossref_primary_10_1007_s10098_023_02679_w crossref_primary_10_1016_j_jece_2023_111657 crossref_primary_10_1016_j_jwpe_2023_104103 crossref_primary_10_1016_j_wasman_2023_08_006 crossref_primary_10_1016_j_jclepro_2024_142375 crossref_primary_10_1016_j_cesys_2024_100254 crossref_primary_10_1016_j_indcrop_2025_120609 crossref_primary_10_3390_app14209583 crossref_primary_10_1016_j_jclepro_2024_143391 crossref_primary_10_1002_ces2_10173 crossref_primary_10_1016_j_resconrec_2022_106452 crossref_primary_10_1016_j_cej_2023_141284 crossref_primary_10_1016_j_jenvman_2022_115392 crossref_primary_10_1007_s13399_023_05019_6 crossref_primary_10_1016_j_jenvman_2024_121315 crossref_primary_10_1016_j_watres_2023_120109 crossref_primary_10_3390_w15061195 crossref_primary_10_1016_j_jhazmat_2024_134242 crossref_primary_10_1016_j_spc_2024_03_016 crossref_primary_10_1051_e3sconf_202339303001 crossref_primary_10_1016_j_energy_2022_126294 crossref_primary_10_1016_j_marpolbul_2023_115727 crossref_primary_10_1051_bioconf_202410703007 crossref_primary_10_1016_j_resconrec_2021_106104 crossref_primary_10_1016_j_spc_2024_02_002 crossref_primary_10_1016_j_jenvman_2023_119269 crossref_primary_10_1016_j_jece_2023_111593 crossref_primary_10_1016_j_spc_2024_07_007 crossref_primary_10_1016_j_rser_2024_114856 crossref_primary_10_1039_D3SU00052D crossref_primary_10_1016_j_wasman_2023_04_010 crossref_primary_10_3390_ma16206653 crossref_primary_10_1016_j_jclepro_2022_134668 crossref_primary_10_1016_j_fuel_2022_124946 crossref_primary_10_1016_j_enconman_2022_115691 crossref_primary_10_35627_2219_5238_2022_30_5_15_22 |
Cites_doi | 10.1016/j.scitotenv.2016.07.019 10.1007/s10163-015-0366-y 10.1177/0734242X05054324 10.1016/j.eja.2015.06.001 10.1016/j.rser.2013.07.043 10.1016/j.jclepro.2020.125762 10.1016/j.jclepro.2016.11.116 10.1016/j.wasman.2010.02.025 10.1016/j.biortech.2016.02.052 10.1016/j.scitotenv.2020.137731 10.1021/ef500875c 10.1007/s12649-017-9914-0 10.1016/j.biombioe.2016.11.003 10.1007/s11367-016-1246-y 10.1021/acs.energyfuels.5b01918 10.1065/lca2005.05.210 10.3390/su11123435 10.1016/j.trac.2009.09.003 10.1002/cite.201100126 10.1016/j.biortech.2012.09.135 10.1016/j.resconrec.2017.11.002 10.1016/j.resconrec.2004.06.006 10.1016/j.jclepro.2016.11.121 10.1016/j.jenvman.2016.03.022 10.1016/j.resconrec.2003.10.006 10.1016/j.biortech.2015.06.032 10.1016/j.chemosphere.2011.02.032 10.1021/ef700287p 10.2166/wst.2011.540 10.1177/0734242X06063053 10.1177/0734242X0302100103 10.1016/j.wasman.2008.11.004 10.1016/j.biortech.2013.05.098 10.1016/j.jenvman.2010.09.008 10.1016/j.jaap.2013.10.002 10.1016/j.jaap.2013.03.004 10.1016/j.enconman.2014.05.043 10.1007/s11367-016-1087-8 10.1016/j.jhazmat.2016.08.050 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jenvman.2021.112557 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1095-8630 |
ExternalDocumentID | 33865154 10_1016_j_jenvman_2021_112557 S0301479721006198 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 ROL RPZ RXW SCC SDF SDG SDP SES SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIDBO AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEN SEW SSH UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-3ea4749510287082101e6e012ba30f7eed4c106b3741547037650ccdf7e284ac3 |
IEDL.DBID | .~1 |
ISSN | 0301-4797 1095-8630 |
IngestDate | Fri Sep 05 12:35:26 EDT 2025 Fri Sep 05 12:29:35 EDT 2025 Thu Apr 03 07:00:11 EDT 2025 Thu Apr 24 22:57:28 EDT 2025 Tue Jul 01 02:32:10 EDT 2025 Fri Feb 23 02:41:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Life cycle assessment Pyrolysis Hydrothermal carbonization Incineration Sewage sludge Phosphorous recovery |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-3ea4749510287082101e6e012ba30f7eed4c106b3741547037650ccdf7e284ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33865154 |
PQID | 2514599542 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2552003969 proquest_miscellaneous_2514599542 pubmed_primary_33865154 crossref_citationtrail_10_1016_j_jenvman_2021_112557 crossref_primary_10_1016_j_jenvman_2021_112557 elsevier_sciencedirect_doi_10_1016_j_jenvman_2021_112557 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-15 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of environmental management |
PublicationTitleAlternate | J Environ Manage |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (bib6) 2017 Rokosch, Heidecke (bib53) 2018 Gao, Li, Qi, Li, Duan, Wang (bib23) 2014; 105 Bert, Allemon, Sajet, Dieu, Papin, Collet, Gaucher, Chalot, Michiels, Raventos (bib4) 2017; 96 Bohndick (bib7) 2014 Smith (bib56) 2009; 367 GreenDelta (bib25) 2019 van Wesenbeeck, Prins, Ronsse, Antal (bib66) 2014; 28 Poulsen, Hansen (bib52) 2003; 21 Kühni, Wanner, Baier, Krebs (bib41) 2015 Hossain, Strezov, Chan, Ziolkowski, Nelson (bib31) 2011; 92 Huijbregts, Steinmann, Elshout, Stam, Verones, Vieira, Zijp, Hollander, van Zelm (bib32) 2017; 22 (bib50) 2011 Neuwahl, Cusano, Gómez Benavides, Holbrook, Roudier (bib47) 2019 Eriksson, Bisaillon, Haraldsson, Sundberg (bib19) 2016; 175 Heindl (bib28) 2016 Kolisch, Osthoff, Hobus, Hansen (bib38) 2010; 57 Hemlin, Lalangas (bib29) 2018 Amann, Zoboli, Krampe, Rechberger, Zessner, Egle (bib2) 2018; 130 Wittmaier, Langer, Sawilla (bib67) 2009; 29 Buttmann (bib9) 2011; 83 Kraus, Zamzow, Conzelmann, Remy, Kleyböcker, Seis, Miehe, Hermann, Hermann, Kabbe (bib40) 2019 (bib64) 2018 Lundin, Olofsson, Pettersson, Zetterlund (bib45) 2004; 41 Tonini, Hamelin, Alvarado-Morales, Astrup (bib63) 2016; 208 Blöhse (bib5) 2017 Egle, Rechberger, Krampe, Zessner (bib18) 2016; 571 Cordell, Rosemarin, Schröder, Smit (bib12) 2011; 84 Dwa (bib16) 2014 Shaddel, Bakhtiary-Davijany, Kabbe, Dadgar, Østerhus (bib54) 2019; 11 Svanström, Fröling, Olofsson, Lundin (bib61) 2005; 23 Hospido, Moreira, Martín, Rigola, Feijoo (bib30) 2005; 10 Kambo, Minaret, Dutta (bib36) 2018; 9 Stemann, Putschew, Ziegler (bib58) 2013; 143 Cao, Pawłowski (bib10) 2013; 127 Pinnekamp, Schröder, Bolle, Gramlich, Gredigk-Hoffmann, Koenen, Loderhose, Miethig, Ooms, Riße, Seibert-Erling, Schmitz, Wöffen (bib51) 2017 Stöcklein, Tebert, Töfge (bib60) 2018 Hasler, Bröring, Omta, Olfs (bib27) 2015; 69 Mayer, Bhandari, Gäth, Himanshu, Stobernack (bib46) 2020; 721 Cieślik, Konieczka (bib11) 2017; 142 (bib34) 2001 Jin, Li, Zhang, Wu, Cao, Liang, Zhang, Wong, Wang, Shan, Christie (bib35) 2016; 320 Kraus, Seis (bib39) 2015 Bennamoun, Arlabosse, Léonard (bib3) 2013; 28 Stobernack, Mayer, Malek, Bhandari (bib59) 2020 Ecn (bib17) 2020 Palme, Lundin, Tillman, Molander (bib48) 2005; 43 Abuşoğlu, Özahi, İhsan Kutlar, Al-jaf (bib1) 2017; 142 Bundesamt (bib8) 2018 Shao, Yan, Chen, Wang, Lee, Liang (bib55) 2008; 22 Klages, Schultheiß, Frei, Becker, Döhler, Schneider, Haberkern (bib37) 2009 Lu, Zhang, Wang, Zhuang, Yang, Qiu (bib43) 2013; 102 Díaz-Cruz, García-Galán, Guerra, Jelic, Postigo, Eljarrat, Farré, López de Alda, Petrovic, Barceló (bib13) 2009; 28 Petzet, Cornel (bib49) 2011; 64 Stark, Maas (bib57) 2012 (bib62) 2014 Imhoff, Imhoff (bib33) 2007; vol. 508 Lu, Yuan, Wang, Huang, Chen (bib44) 2016; 18 Fahimi, Federici, Depero, Valentim, Vassura, Ceruti, Cutaia, Bontempi (bib20) 2021; 289 Golder Associates (bib24) 2014 Zielińska, Oleszczuk (bib68) 2015; 192 Wernet, Bauer, Steubing, Reinhard, Moreno-Ruiz, Weidema (bib65) 2016; 21 Fettig, Liebe, Austermann-Haun, Meier (bib22) 2013 Lederer, Rechberger (bib42) 2010; 30 Doka (bib14) 2017 Dong, Chi, Tang, Ni, Nzihou, Weiss-Hortala, Huang (bib15) 2015; 29 Hansen, Bhander, Christensen, Bruun, Jensen (bib26) 2006; 24 Fan, Zhou, Wang (bib21) 2014; 88 Fettig (10.1016/j.jenvman.2021.112557_bib22) 2013 Lu (10.1016/j.jenvman.2021.112557_bib43) 2013; 102 Mayer (10.1016/j.jenvman.2021.112557_bib46) 2020; 721 Poulsen (10.1016/j.jenvman.2021.112557_bib52) 2003; 21 Fan (10.1016/j.jenvman.2021.112557_bib21) 2014; 88 (10.1016/j.jenvman.2021.112557_bib64) 2018 Kraus (10.1016/j.jenvman.2021.112557_bib40) 2019 Kühni (10.1016/j.jenvman.2021.112557_bib41) 2015 Amann (10.1016/j.jenvman.2021.112557_bib2) 2018; 130 Doka (10.1016/j.jenvman.2021.112557_bib14) 2017 Pinnekamp (10.1016/j.jenvman.2021.112557_bib51) 2017 Díaz-Cruz (10.1016/j.jenvman.2021.112557_bib13) 2009; 28 Cieślik (10.1016/j.jenvman.2021.112557_bib11) 2017; 142 Bert (10.1016/j.jenvman.2021.112557_bib4) 2017; 96 GreenDelta (10.1016/j.jenvman.2021.112557_bib25) 2019 Imhoff (10.1016/j.jenvman.2021.112557_bib33) 2007; vol. 508 Heindl (10.1016/j.jenvman.2021.112557_bib28) 2016 Jin (10.1016/j.jenvman.2021.112557_bib35) 2016; 320 Stobernack (10.1016/j.jenvman.2021.112557_bib59) 2020 Golder Associates (10.1016/j.jenvman.2021.112557_bib24) 2014 Palme (10.1016/j.jenvman.2021.112557_bib48) 2005; 43 Dong (10.1016/j.jenvman.2021.112557_bib15) 2015; 29 Shaddel (10.1016/j.jenvman.2021.112557_bib54) 2019; 11 Buttmann (10.1016/j.jenvman.2021.112557_bib9) 2011; 83 Stöcklein (10.1016/j.jenvman.2021.112557_bib60) 2018 Fahimi (10.1016/j.jenvman.2021.112557_bib20) 2021; 289 Hossain (10.1016/j.jenvman.2021.112557_bib31) 2011; 92 Zielińska (10.1016/j.jenvman.2021.112557_bib68) 2015; 192 Bennamoun (10.1016/j.jenvman.2021.112557_bib3) 2013; 28 Hospido (10.1016/j.jenvman.2021.112557_bib30) 2005; 10 Dwa (10.1016/j.jenvman.2021.112557_bib16) 2014 (10.1016/j.jenvman.2021.112557_bib34) 2001 Cordell (10.1016/j.jenvman.2021.112557_bib12) 2011; 84 Lundin (10.1016/j.jenvman.2021.112557_bib45) 2004; 41 Smith (10.1016/j.jenvman.2021.112557_bib56) 2009; 367 (10.1016/j.jenvman.2021.112557_bib50) 2011 Rokosch (10.1016/j.jenvman.2021.112557_bib53) 2018 Kraus (10.1016/j.jenvman.2021.112557_bib39) 2015 Kolisch (10.1016/j.jenvman.2021.112557_bib38) 2010; 57 Neuwahl (10.1016/j.jenvman.2021.112557_bib47) 2019 (10.1016/j.jenvman.2021.112557_bib62) 2014 Bohndick (10.1016/j.jenvman.2021.112557_bib7) 2014 Shao (10.1016/j.jenvman.2021.112557_bib55) 2008; 22 Ecn (10.1016/j.jenvman.2021.112557_bib17) 2020 van Wesenbeeck (10.1016/j.jenvman.2021.112557_bib66) 2014; 28 Eriksson (10.1016/j.jenvman.2021.112557_bib19) 2016; 175 Petzet (10.1016/j.jenvman.2021.112557_bib49) 2011; 64 Huijbregts (10.1016/j.jenvman.2021.112557_bib32) 2017; 22 Lederer (10.1016/j.jenvman.2021.112557_bib42) 2010; 30 Wittmaier (10.1016/j.jenvman.2021.112557_bib67) 2009; 29 Klages (10.1016/j.jenvman.2021.112557_bib37) 2009 Blöhse (10.1016/j.jenvman.2021.112557_bib5) 2017 Bundesamt (10.1016/j.jenvman.2021.112557_bib8) 2018 Wernet (10.1016/j.jenvman.2021.112557_bib65) 2016; 21 Stemann (10.1016/j.jenvman.2021.112557_bib58) 2013; 143 (10.1016/j.jenvman.2021.112557_bib6) 2017 Abuşoğlu (10.1016/j.jenvman.2021.112557_bib1) 2017; 142 Hasler (10.1016/j.jenvman.2021.112557_bib27) 2015; 69 Cao (10.1016/j.jenvman.2021.112557_bib10) 2013; 127 Svanström (10.1016/j.jenvman.2021.112557_bib61) 2005; 23 Kambo (10.1016/j.jenvman.2021.112557_bib36) 2018; 9 Lu (10.1016/j.jenvman.2021.112557_bib44) 2016; 18 Hemlin (10.1016/j.jenvman.2021.112557_bib29) 2018 Gao (10.1016/j.jenvman.2021.112557_bib23) 2014; 105 Stark (10.1016/j.jenvman.2021.112557_bib57) 2012 Tonini (10.1016/j.jenvman.2021.112557_bib63) 2016; 208 Egle (10.1016/j.jenvman.2021.112557_bib18) 2016; 571 Hansen (10.1016/j.jenvman.2021.112557_bib26) 2006; 24 |
References_xml | – year: 2018 ident: bib60 article-title: Evaluation und Minderung klimarelevanter Gase aus Abfallverbrennungsanlagen. 102/2018 – volume: 88 start-page: 1151 year: 2014 end-page: 1158 ident: bib21 article-title: Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed-bed reactor publication-title: Energy Convers. Manag. – volume: 83 start-page: 1890 year: 2011 end-page: 1896 ident: bib9 article-title: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse publication-title: Chem. Ing. Tech. – volume: 142 start-page: 1728 year: 2017 end-page: 1740 ident: bib11 article-title: A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods publication-title: J. Clean. Prod. – year: 2019 ident: bib25 – year: 2020 ident: bib17 article-title: Phyllis2 Database: Database for Biomass and Waste – volume: 96 start-page: 1 year: 2017 end-page: 11 ident: bib4 article-title: Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options publication-title: Biomass Bioenergy – volume: 10 start-page: 336 year: 2005 end-page: 345 ident: bib30 article-title: Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes (10 pp) publication-title: Int. J. Life Cycle Assess. – volume: 367 start-page: 4005 year: 2009 end-page: 4041 ident: bib56 article-title: Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling publication-title: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences – year: 2017 ident: bib5 article-title: Hydrothermale Karbonisierung: Nutzen dieser Konversionstechnik für die optimierte Entsorgung feuchter Massenreststoffe – volume: 208 start-page: 123 year: 2016 end-page: 133 ident: bib63 article-title: GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment publication-title: Bioresour. Technol. – year: 2014 ident: bib16 article-title: M 387E: thermal treatment of sewage sludge: Co-incineration in power plants : advisory leaflet publication-title: 1 Optični Disk (CD-ROM) – year: 2012 ident: bib57 article-title: Method and Apparatus for the Treatment of Process Water from an Organic Material Conversion Process – volume: 130 start-page: 127 year: 2018 end-page: 139 ident: bib2 article-title: Environmental impacts of phosphorus recovery from municipal wastewater publication-title: Resour. Conserv. Recycl. – volume: 41 start-page: 255 year: 2004 end-page: 278 ident: bib45 article-title: Environmental and economic assessment of sewage sludge handling options publication-title: Resour. Conserv. Recycl. – volume: 92 start-page: 223 year: 2011 end-page: 228 ident: bib31 article-title: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar publication-title: J. Environ. Manag. – year: 2013 ident: bib22 article-title: Verwertung des Prozesswassers aus der hydrothermalen Carbonisierung von organischen Abfällen: Abschlussbericht über ein Entwicklungsprojekt, gefördert unter dem Az: 27760 von der Deutschen Bundesstiftung Umwelt – start-page: 699 year: 2016 ident: bib28 article-title: Praxisbuch Bandtrocknung: Grundlagen, Anwendung, Berechnung – volume: 143 start-page: 139 year: 2013 end-page: 146 ident: bib58 article-title: Hydrothermal carbonization: process water characterization and effects of water recirculation publication-title: Bioresour. Technol. – year: 2017 ident: bib51 article-title: Energie und Abwasser Handbuch NRW. Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein Westfalen – year: 2014 ident: bib7 article-title: RecoPhos – year: 2018 ident: bib53 article-title: Klärschlammentsorgung in der Bundesrepublik Deutschland – volume: 23 start-page: 356 year: 2005 end-page: 366 ident: bib61 article-title: Environmental assessment of supercritical water oxidation and other sewage sludge handling options publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA – volume: 105 start-page: 43 year: 2014 end-page: 48 ident: bib23 article-title: Thermal analysis and products distribution of dried sewage sludge pyrolysis publication-title: J. Anal. Appl. Pyrol. – volume: 69 start-page: 41 year: 2015 end-page: 51 ident: bib27 article-title: Life cycle assessment (LCA) of different fertilizer product types publication-title: Eur. J. Agron. – volume: 9 start-page: 1181 year: 2018 end-page: 1189 ident: bib36 article-title: Process water from the hydrothermal carbonization of biomass: a waste or a valuable product? publication-title: Waste Biomass Valor – year: 2011 ident: bib50 publication-title: Förderinitiative "Kreislaufwirtschaft für Pflanzennährstoffe, insbesondere Phosphor": Schlusspräsentation der durch das Bundesministerium für Bildung und Forschung geförderten Vorhaben ; am 14. September 2011 – volume: 28 start-page: 5318 year: 2014 end-page: 5326 ident: bib66 article-title: Sewage sludge carbonization for biochar applications. Fate of heavy metals publication-title: Energy Fuels – volume: 21 start-page: 1218 year: 2016 end-page: 1230 ident: bib65 article-title: The ecoinvent database version 3 (part I): overview and methodology publication-title: Int. J. Life Cycle Assess. – start-page: 977 year: 2014 ident: bib62 publication-title: Energie aus Abfall – volume: 30 start-page: 1043 year: 2010 end-page: 1056 ident: bib42 article-title: Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options publication-title: Waste Manag. – volume: 18 start-page: 725 year: 2016 end-page: 733 ident: bib44 article-title: Characteristic of heavy metals in biochar derived from sewage sludge publication-title: J. Mater. Cycles Waste Manag. – volume: 43 start-page: 293 year: 2005 end-page: 311 ident: bib48 article-title: Sustainable development indicators for wastewater systems – researchers and indicator users in a co-operative case study publication-title: Resour. Conserv. Recycl. – volume: 22 start-page: 138 year: 2017 end-page: 147 ident: bib32 article-title: ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level publication-title: Int. J. Life Cycle Assess. – year: 2001 ident: bib34 publication-title: Guidelines for National Greenhouse Gas Inventories – volume: 571 start-page: 522 year: 2016 end-page: 542 ident: bib18 article-title: Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies publication-title: Sci. Total Environ. – volume: 127 start-page: 81 year: 2013 end-page: 91 ident: bib10 article-title: Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications publication-title: Bioresour. Technol. – year: 2020 ident: bib59 article-title: Evaluation of the Energetic and Environmental Potential of the Hydrothermal Carbonization of Biowaste: Modeling of the Entire Process Chain – volume: 28 start-page: 1263 year: 2009 end-page: 1275 ident: bib13 article-title: Analysis of selected emerging contaminants in sewage sludge publication-title: Trac. Trends Anal. Chem. – volume: 28 start-page: 29 year: 2013 end-page: 43 ident: bib3 article-title: Review on fundamental aspect of application of drying process to wastewater sludge publication-title: Renew. Sustain. Energy Rev. – volume: 84 start-page: 747 year: 2011 end-page: 758 ident: bib12 article-title: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options publication-title: Chemosphere – volume: 57 start-page: 1028 year: 2010 ident: bib38 article-title: Steigerung der Energieeffizienz auf kommunalen Kläranlagen Eine Ergebnisbetrachtung zu durchgeführten Energieanalysen publication-title: KA Abwasser Abfall – year: 2018 ident: bib8 article-title: Abwasserbehandlung - Klärschlamm Tabellenband: 2015/2016 5322101169005 – volume: 11 start-page: 3435 year: 2019 ident: bib54 article-title: Sustainable sewage sludge management: from current practices to emerging nutrient recovery technologies publication-title: Sustainability – volume: 289 start-page: 125762 year: 2021 ident: bib20 article-title: Evaluation of the sustainability of technologies to recover phosphorus from sewage sludge ash based on embodied energy and CO2 footprint publication-title: J. Clean. Prod. – volume: 175 start-page: 33 year: 2016 end-page: 39 ident: bib19 article-title: Enhancement of biogas production from food waste and sewage sludge - environmental and economic life cycle performance publication-title: J. Environ. Manag. – volume: 721 start-page: 137731 year: 2020 ident: bib46 article-title: Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? publication-title: Sci. Total Environ. – year: 2009 ident: bib37 article-title: Anforderungen an die Novellierung der Klärschlammverordnung unter besonderer Berücksichtigung von Hygieneparametern. F. I 2 – year: 2017 ident: bib6 article-title: BGBl. Jahrgang 2017 Teil I Nr. 65: Verordnung zur Neuordnung der Klärschlammverwertung – start-page: 1 year: 2019 ident: bib47 article-title: Best Available Techniques (BAT) Reference Document for Waste Incineration: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control) – volume: 24 start-page: 153 year: 2006 end-page: 166 ident: bib26 article-title: Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE) publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA – year: 2015 ident: bib41 article-title: Behandlung des Prozesswassers aus hydrothermal karbonisiertem Klärschlamm vor der Einleitung in eine Abwasserreinigungsanlage: Treatment of Process Water of hydrothermal carbonised Sewage Sludge before discharging in a Waste Water Treatment Plant – volume: 21 start-page: 19 year: 2003 end-page: 28 ident: bib52 article-title: Strategic environmental assessment of alternative sewage sludge management scenarios publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA – year: 2017 ident: bib14 article-title: LCI Calculation Tools for Regionalised Waste Treatment: 5 Excel Workbooks – year: 2014 ident: bib24 article-title: WRATE – volume: 29 start-page: 7516 year: 2015 end-page: 7525 ident: bib15 article-title: Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration publication-title: Energy Fuels – volume: 29 start-page: 1732 year: 2009 end-page: 1738 ident: bib67 article-title: Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - applied examples for a region in Northern Germany publication-title: Waste Manag. – volume: vol. 508 year: 2007 ident: bib33 publication-title: Taschenbuch der Stadtentwässerung: Mit 59 Tabellen – volume: 142 start-page: 1684 year: 2017 end-page: 1692 ident: bib1 article-title: Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production publication-title: J. Clean. Prod. – year: 2018 ident: bib29 article-title: Production of Biochar through Slow Pyrolysis of Biomass: Peat, Straw, Horse Manure and Sewage Sludge – year: 2015 ident: bib39 article-title: P-REX Sustainable Sewage Sludge Management Fostering Phosphorus Recovery and Energy Efficiency: WP: Comparative Life Cycle Assessment of Treatment-Recovery Paths – volume: 22 start-page: 38 year: 2008 end-page: 45 ident: bib55 article-title: Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis † publication-title: Energy Fuels – volume: 192 start-page: 618 year: 2015 end-page: 626 ident: bib68 article-title: Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene publication-title: Bioresour. Technol. – year: 2019 ident: bib40 article-title: Ökobilanzieller Vergleich der P-Rückgewinnung aus dem Abwasserstrom mit der Düngemittelproduktion aus Rohphosphaten unter Einbeziehung von Umweltfolgeschäden und deren Vermeidung – year: 2018 ident: bib64 article-title: Energieerzeugung aus Abfällen: Stand und Potenziale in Deutschland bis 2030. 51/2018. Umweltbundesamt, Dessau-Roßlau – volume: 64 start-page: 29 year: 2011 end-page: 35 ident: bib49 article-title: Towards a complete recycling of phosphorus in wastewater treatment--options in Germany publication-title: Water Sci. Technol. : a journal of the International Association on Water Pollution Research – volume: 320 start-page: 417 year: 2016 end-page: 426 ident: bib35 article-title: Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge publication-title: J. Hazard Mater. – volume: 102 start-page: 137 year: 2013 end-page: 143 ident: bib43 article-title: Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures publication-title: J. Anal. Appl. Pyrol. – year: 2018 ident: 10.1016/j.jenvman.2021.112557_bib64 – volume: 571 start-page: 522 year: 2016 ident: 10.1016/j.jenvman.2021.112557_bib18 article-title: Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.019 – volume: 18 start-page: 725 issue: 4 year: 2016 ident: 10.1016/j.jenvman.2021.112557_bib44 article-title: Characteristic of heavy metals in biochar derived from sewage sludge publication-title: J. Mater. Cycles Waste Manag. doi: 10.1007/s10163-015-0366-y – volume: 23 start-page: 356 issue: 4 year: 2005 ident: 10.1016/j.jenvman.2021.112557_bib61 article-title: Environmental assessment of supercritical water oxidation and other sewage sludge handling options publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA doi: 10.1177/0734242X05054324 – volume: 69 start-page: 41 year: 2015 ident: 10.1016/j.jenvman.2021.112557_bib27 article-title: Life cycle assessment (LCA) of different fertilizer product types publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2015.06.001 – volume: 28 start-page: 29 year: 2013 ident: 10.1016/j.jenvman.2021.112557_bib3 article-title: Review on fundamental aspect of application of drying process to wastewater sludge publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.07.043 – volume: 289 start-page: 125762 year: 2021 ident: 10.1016/j.jenvman.2021.112557_bib20 article-title: Evaluation of the sustainability of technologies to recover phosphorus from sewage sludge ash based on embodied energy and CO2 footprint publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.125762 – volume: 142 start-page: 1728 year: 2017 ident: 10.1016/j.jenvman.2021.112557_bib11 article-title: A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.116 – year: 2017 ident: 10.1016/j.jenvman.2021.112557_bib14 – volume: 30 start-page: 1043 issue: 6 year: 2010 ident: 10.1016/j.jenvman.2021.112557_bib42 article-title: Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options publication-title: Waste Manag. doi: 10.1016/j.wasman.2010.02.025 – volume: 208 start-page: 123 year: 2016 ident: 10.1016/j.jenvman.2021.112557_bib63 article-title: GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.02.052 – year: 2018 ident: 10.1016/j.jenvman.2021.112557_bib8 – year: 2009 ident: 10.1016/j.jenvman.2021.112557_bib37 – volume: 721 start-page: 137731 year: 2020 ident: 10.1016/j.jenvman.2021.112557_bib46 article-title: Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137731 – year: 2011 ident: 10.1016/j.jenvman.2021.112557_bib50 – year: 2014 ident: 10.1016/j.jenvman.2021.112557_bib16 article-title: M 387E: thermal treatment of sewage sludge: Co-incineration in power plants : advisory leaflet – year: 2017 ident: 10.1016/j.jenvman.2021.112557_bib5 – start-page: 977 year: 2014 ident: 10.1016/j.jenvman.2021.112557_bib62 – volume: 28 start-page: 5318 issue: 8 year: 2014 ident: 10.1016/j.jenvman.2021.112557_bib66 article-title: Sewage sludge carbonization for biochar applications. Fate of heavy metals publication-title: Energy Fuels doi: 10.1021/ef500875c – volume: 9 start-page: 1181 issue: 7 year: 2018 ident: 10.1016/j.jenvman.2021.112557_bib36 article-title: Process water from the hydrothermal carbonization of biomass: a waste or a valuable product? publication-title: Waste Biomass Valor doi: 10.1007/s12649-017-9914-0 – volume: 96 start-page: 1 year: 2017 ident: 10.1016/j.jenvman.2021.112557_bib4 article-title: Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2016.11.003 – volume: 22 start-page: 138 issue: 2 year: 2017 ident: 10.1016/j.jenvman.2021.112557_bib32 article-title: ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-016-1246-y – volume: 29 start-page: 7516 issue: 11 year: 2015 ident: 10.1016/j.jenvman.2021.112557_bib15 article-title: Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b01918 – year: 2018 ident: 10.1016/j.jenvman.2021.112557_bib29 – volume: vol. 508 year: 2007 ident: 10.1016/j.jenvman.2021.112557_bib33 – year: 2020 ident: 10.1016/j.jenvman.2021.112557_bib17 – volume: 10 start-page: 336 issue: 5 year: 2005 ident: 10.1016/j.jenvman.2021.112557_bib30 article-title: Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes (10 pp) publication-title: Int. J. Life Cycle Assess. doi: 10.1065/lca2005.05.210 – volume: 367 start-page: 4005 issue: 1904 year: 2009 ident: 10.1016/j.jenvman.2021.112557_bib56 article-title: Organic contaminants in sewage sludge (biosolids) and their significance for agricultural recycling publication-title: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences – volume: 11 start-page: 3435 issue: 12 year: 2019 ident: 10.1016/j.jenvman.2021.112557_bib54 article-title: Sustainable sewage sludge management: from current practices to emerging nutrient recovery technologies publication-title: Sustainability doi: 10.3390/su11123435 – volume: 28 start-page: 1263 issue: 11 year: 2009 ident: 10.1016/j.jenvman.2021.112557_bib13 article-title: Analysis of selected emerging contaminants in sewage sludge publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2009.09.003 – volume: 83 start-page: 1890 issue: 11 year: 2011 ident: 10.1016/j.jenvman.2021.112557_bib9 article-title: Klimafreundliche Kohle durch Hydrothermale Karbonisierung von Biomasse publication-title: Chem. Ing. Tech. doi: 10.1002/cite.201100126 – year: 2020 ident: 10.1016/j.jenvman.2021.112557_bib59 – volume: 127 start-page: 81 year: 2013 ident: 10.1016/j.jenvman.2021.112557_bib10 article-title: Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.135 – start-page: 1 year: 2019 ident: 10.1016/j.jenvman.2021.112557_bib47 – volume: 57 start-page: 1028 issue: 10 year: 2010 ident: 10.1016/j.jenvman.2021.112557_bib38 article-title: Steigerung der Energieeffizienz auf kommunalen Kläranlagen Eine Ergebnisbetrachtung zu durchgeführten Energieanalysen publication-title: KA Abwasser Abfall – volume: 130 start-page: 127 year: 2018 ident: 10.1016/j.jenvman.2021.112557_bib2 article-title: Environmental impacts of phosphorus recovery from municipal wastewater publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2017.11.002 – volume: 43 start-page: 293 issue: 3 year: 2005 ident: 10.1016/j.jenvman.2021.112557_bib48 article-title: Sustainable development indicators for wastewater systems – researchers and indicator users in a co-operative case study publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2004.06.006 – volume: 142 start-page: 1684 year: 2017 ident: 10.1016/j.jenvman.2021.112557_bib1 article-title: Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.121 – volume: 175 start-page: 33 year: 2016 ident: 10.1016/j.jenvman.2021.112557_bib19 article-title: Enhancement of biogas production from food waste and sewage sludge - environmental and economic life cycle performance publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.03.022 – volume: 41 start-page: 255 issue: 4 year: 2004 ident: 10.1016/j.jenvman.2021.112557_bib45 article-title: Environmental and economic assessment of sewage sludge handling options publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2003.10.006 – volume: 192 start-page: 618 year: 2015 ident: 10.1016/j.jenvman.2021.112557_bib68 article-title: Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.06.032 – year: 2013 ident: 10.1016/j.jenvman.2021.112557_bib22 – start-page: 699 year: 2016 ident: 10.1016/j.jenvman.2021.112557_bib28 – volume: 84 start-page: 747 issue: 6 year: 2011 ident: 10.1016/j.jenvman.2021.112557_bib12 article-title: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.02.032 – year: 2015 ident: 10.1016/j.jenvman.2021.112557_bib41 – volume: 22 start-page: 38 issue: 1 year: 2008 ident: 10.1016/j.jenvman.2021.112557_bib55 article-title: Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis † publication-title: Energy Fuels doi: 10.1021/ef700287p – year: 2018 ident: 10.1016/j.jenvman.2021.112557_bib60 – year: 2019 ident: 10.1016/j.jenvman.2021.112557_bib40 – volume: 64 start-page: 29 issue: 1 year: 2011 ident: 10.1016/j.jenvman.2021.112557_bib49 article-title: Towards a complete recycling of phosphorus in wastewater treatment--options in Germany publication-title: Water Sci. Technol. : a journal of the International Association on Water Pollution Research doi: 10.2166/wst.2011.540 – year: 2014 ident: 10.1016/j.jenvman.2021.112557_bib24 – volume: 24 start-page: 153 issue: 2 year: 2006 ident: 10.1016/j.jenvman.2021.112557_bib26 article-title: Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE) publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA doi: 10.1177/0734242X06063053 – year: 2012 ident: 10.1016/j.jenvman.2021.112557_bib57 – year: 2014 ident: 10.1016/j.jenvman.2021.112557_bib7 – volume: 21 start-page: 19 issue: 1 year: 2003 ident: 10.1016/j.jenvman.2021.112557_bib52 article-title: Strategic environmental assessment of alternative sewage sludge management scenarios publication-title: Waste Manag. Res. : the journal of the International Solid Wastes and Public Cleansing Association, ISWA doi: 10.1177/0734242X0302100103 – volume: 29 start-page: 1732 issue: 5 year: 2009 ident: 10.1016/j.jenvman.2021.112557_bib67 article-title: Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - applied examples for a region in Northern Germany publication-title: Waste Manag. doi: 10.1016/j.wasman.2008.11.004 – volume: 143 start-page: 139 year: 2013 ident: 10.1016/j.jenvman.2021.112557_bib58 article-title: Hydrothermal carbonization: process water characterization and effects of water recirculation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.05.098 – year: 2018 ident: 10.1016/j.jenvman.2021.112557_bib53 – volume: 92 start-page: 223 issue: 1 year: 2011 ident: 10.1016/j.jenvman.2021.112557_bib31 article-title: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2010.09.008 – volume: 105 start-page: 43 year: 2014 ident: 10.1016/j.jenvman.2021.112557_bib23 article-title: Thermal analysis and products distribution of dried sewage sludge pyrolysis publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2013.10.002 – volume: 102 start-page: 137 year: 2013 ident: 10.1016/j.jenvman.2021.112557_bib43 article-title: Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2013.03.004 – year: 2015 ident: 10.1016/j.jenvman.2021.112557_bib39 – year: 2017 ident: 10.1016/j.jenvman.2021.112557_bib6 – year: 2017 ident: 10.1016/j.jenvman.2021.112557_bib51 – volume: 88 start-page: 1151 year: 2014 ident: 10.1016/j.jenvman.2021.112557_bib21 article-title: Pyrolysis of municipal sewage sludges in a slowly heating and gas sweeping fixed-bed reactor publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.05.043 – volume: 21 start-page: 1218 issue: 9 year: 2016 ident: 10.1016/j.jenvman.2021.112557_bib65 article-title: The ecoinvent database version 3 (part I): overview and methodology publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-016-1087-8 – year: 2019 ident: 10.1016/j.jenvman.2021.112557_bib25 – volume: 320 start-page: 417 year: 2016 ident: 10.1016/j.jenvman.2021.112557_bib35 article-title: Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.08.050 – year: 2001 ident: 10.1016/j.jenvman.2021.112557_bib34 |
SSID | ssj0003217 |
Score | 2.5554729 |
Snippet | Due to the amendment of the sewage sludge ordinance, both a thermal post-treatment and a phosphorous recovery from sewage sludge will become mandatory for... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112557 |
SubjectTerms | energy eutrophication Germany Hydrothermal carbonization Incineration Life cycle assessment Phosphorous recovery phosphorus Pyrolysis Sewage sludge toxicity wastewater treatment |
Title | Life cycle assessment of prospective sewage sludge treatment paths in Germany |
URI | https://dx.doi.org/10.1016/j.jenvman.2021.112557 https://www.ncbi.nlm.nih.gov/pubmed/33865154 https://www.proquest.com/docview/2514599542 https://www.proquest.com/docview/2552003969 |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYmOMAFwWAwXgoS1250TZv2OE0b47FdYNJuUZqm0iboEN1AXPjt2H1sQgImcaraxmrkpPaXxP4McBm7NKpCWa5RocVjIyzlh5FFvIRRFCBCiCjBeTD0-iN-O3bHFeiUuTAUVlnY_tymZ9a6eNIstNl8mUyaD9lqQBD7DPnhgBJ-ORfEn9_4XIV5OK2s6i41pl0kscriaU4bU5O8PSuiQW3ZlEzjkpf62T_9hj8zP9TbhZ0CQLJ23sc9qJikCltlfnFahVp3lbuGDYufN92Hwf0kNkx_oBhTS0JONosZfrTMuGSpeUcTw9KnRYSXZRw6o9LFKZsk7JpsefJxAKNe97HTt4pqCpZ2An9uOUahdghQ0dmmj1qzjWfQP4XKuYoF-kqucX0YOoQxOBoCgeBN6whfoQtT2qnBRjJLzBEwn5tQxNwWIcIxpbWvw0DYtlBeK9CIH-rASx1KXVCNU8WLJ1nGlE1loXpJqpe56uvQWIq95Fwb6wT8coDkt0kj0R-sE70oB1TiD0WnJCoxs0UqEfBxYmHjrb_aEFuVE3hBHQ7z2bDssUNVVFGDx__v3Als0x1tIdvuKWzMXxfmDLHPPDzPJvc5bLZv7vrDL8uMAtc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-me9AX0fk1PyP4WmfXdGkfRaZTt704wbeQpilszG7YTfG_925NK4I68KnQ5Gi4XO5-TXK_AzhPfJpVoRzfqMjhiRGOCqLYIV7COA4RIcSU4NzrtzpP_P7Zf67AdZELQ9cqre_PffrCW9s3DavNxnQ4bDwu_gYEsc9QHA6DFagSOxUae_Xq7qHTLx2y11wU3qX-tJEkvhJ5GqOLkUnfXhQxoTZdyqfxKVD9HKJ-g6CLUHSzCRsWQ7KrfJhbUDFpDdaKFOOsBrvtr_Q17GjXb7YNve4wMUx_oBhTJScnmyQMP1okXbLMvKOXYdl4HuOjvIrOqHpxxoYpuyV3nn7swNNNe3DdcWxBBUd7YTBzPKO44ISp6HgzQMW5pmUwREXKu0wEhkuu8Rcx8ghmcPQFAvGb1jE2YRRT2tuF1XSSmn1gATeRSLgrIkRkSutAR6FwXaFazVAjhKgDL3QotWUbp6IXY1lcKxtJq3pJqpe56utwUYpNc7qNZQJBMUHym91IDAnLRM-KCZW4puigRKVmMs8kYj5ORGy8-VcfIqzywlZYh73cGsoRe1RIFTV48P_BncJaZ9Dryu5d_-EQ1qmFdpRd_whWZ69zc4xQaBadWFP_BKYYBYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+cycle+assessment+of+prospective+sewage+sludge+treatment+paths+in+Germany&rft.jtitle=Journal+of+environmental+management&rft.au=Mayer%2C+Felix&rft.au=Bhandari%2C+Ramchandra&rft.au=G%C3%A4th%2C+Stefan+A.&rft.date=2021-07-15&rft.pub=Elsevier+Ltd&rft.issn=0301-4797&rft.eissn=1095-8630&rft.volume=290&rft_id=info:doi/10.1016%2Fj.jenvman.2021.112557&rft.externalDocID=S0301479721006198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |