An intuitive Bayesian spatial model for disease mapping that accounts for scaling
In recent years, disease mapping studies have become a routine application within geographical epidemiology and are typically analysed within a Bayesian hierarchical model formulation. A variety of model formulations for the latent level have been proposed but all come with inherent issues. In the c...
Saved in:
Published in | Statistical methods in medical research Vol. 25; no. 4; p. 1145 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.08.2016
|
Subjects | |
Online Access | Get more information |
ISSN | 1477-0334 |
DOI | 10.1177/0962280216660421 |
Cover
Loading…
Abstract | In recent years, disease mapping studies have become a routine application within geographical epidemiology and are typically analysed within a Bayesian hierarchical model formulation. A variety of model formulations for the latent level have been proposed but all come with inherent issues. In the classical BYM (Besag, York and Mollié) model, the spatially structured component cannot be seen independently from the unstructured component. This makes prior definitions for the hyperparameters of the two random effects challenging. There are alternative model formulations that address this confounding; however, the issue on how to choose interpretable hyperpriors is still unsolved. Here, we discuss a recently proposed parameterisation of the BYM model that leads to improved parameter control as the hyperparameters can be seen independently from each other. Furthermore, the need for a scaled spatial component is addressed, which facilitates assignment of interpretable hyperpriors and make these transferable between spatial applications with different graph structures. The hyperparameters themselves are used to define flexible extensions of simple base models. Consequently, penalised complexity priors for these parameters can be derived based on the information-theoretic distance from the flexible model to the base model, giving priors with clear interpretation. We provide implementation details for the new model formulation which preserve sparsity properties, and we investigate systematically the model performance and compare it to existing parameterisations. Through a simulation study, we show that the new model performs well, both showing good learning abilities and good shrinkage behaviour. In terms of model choice criteria, the proposed model performs at least equally well as existing parameterisations, but only the new formulation offers parameters that are interpretable and hyperpriors that have a clear meaning. |
---|---|
AbstractList | In recent years, disease mapping studies have become a routine application within geographical epidemiology and are typically analysed within a Bayesian hierarchical model formulation. A variety of model formulations for the latent level have been proposed but all come with inherent issues. In the classical BYM (Besag, York and Mollié) model, the spatially structured component cannot be seen independently from the unstructured component. This makes prior definitions for the hyperparameters of the two random effects challenging. There are alternative model formulations that address this confounding; however, the issue on how to choose interpretable hyperpriors is still unsolved. Here, we discuss a recently proposed parameterisation of the BYM model that leads to improved parameter control as the hyperparameters can be seen independently from each other. Furthermore, the need for a scaled spatial component is addressed, which facilitates assignment of interpretable hyperpriors and make these transferable between spatial applications with different graph structures. The hyperparameters themselves are used to define flexible extensions of simple base models. Consequently, penalised complexity priors for these parameters can be derived based on the information-theoretic distance from the flexible model to the base model, giving priors with clear interpretation. We provide implementation details for the new model formulation which preserve sparsity properties, and we investigate systematically the model performance and compare it to existing parameterisations. Through a simulation study, we show that the new model performs well, both showing good learning abilities and good shrinkage behaviour. In terms of model choice criteria, the proposed model performs at least equally well as existing parameterisations, but only the new formulation offers parameters that are interpretable and hyperpriors that have a clear meaning. |
Author | Rue, Håvard Riebler, Andrea Simpson, Daniel Sørbye, Sigrunn H |
Author_xml | – sequence: 1 givenname: Andrea surname: Riebler fullname: Riebler, Andrea email: andrea.riebler@math.ntnu.no organization: Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway andrea.riebler@math.ntnu.no – sequence: 2 givenname: Sigrunn H surname: Sørbye fullname: Sørbye, Sigrunn H organization: Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromsø, Norway – sequence: 3 givenname: Daniel surname: Simpson fullname: Simpson, Daniel organization: Department of Mathematical Sciences, University of Bath, Bath, UK – sequence: 4 givenname: Håvard surname: Rue fullname: Rue, Håvard organization: Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27566770$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j0tLxDAURoMozkP3riR_oJpXc5PlOPiCARF0PdxpbjXSpqXJCPPvFR-rb3EOB74FO05DIsYupLiSEuBaeKuUE0paa4VR8ojNpQGohNZmxhY5fwghQBh_ymYKamsBxJw9rxKPqexjiZ_Eb_BAOWLiecQSseP9EKjj7TDxEDNhJt7jOMb0xss7Fo5NM-xTyT9GbrD7JmfspMUu0_nfLtnr3e3L-qHaPN0_rlebqtHelUqDNa6hQF46DxScMxAUhEBaELi2riVSDaLdkScLSA1g0Fq3WltDfqeW7PK3O-53PYXtOMUep8P2_5v6AkwDUcs |
CitedBy_id | crossref_primary_10_1590_0102_311xes163921 crossref_primary_10_1016_j_healthplace_2024_103241 crossref_primary_10_1371_journal_pntd_0011435 crossref_primary_10_1080_02664763_2019_1572722 crossref_primary_10_3390_ijerph18136856 crossref_primary_10_1016_j_spasta_2023_100796 crossref_primary_10_1111_gcb_15739 crossref_primary_10_1016_j_aap_2018_02_014 crossref_primary_10_1016_j_sste_2024_100698 crossref_primary_10_1111_tbed_13253 crossref_primary_10_1002_sim_8854 crossref_primary_10_3390_ijerph19148267 crossref_primary_10_1186_s40249_022_00949_1 crossref_primary_10_1016_j_actatropica_2020_105788 crossref_primary_10_1093_aje_kwac027 crossref_primary_10_1016_j_sciaf_2024_e02498 crossref_primary_10_1214_16_STS576 crossref_primary_10_1016_j_spasta_2021_100540 crossref_primary_10_1016_j_sste_2020_100323 crossref_primary_10_1177_0282423X241244670 crossref_primary_10_1016_j_spasta_2024_100843 crossref_primary_10_1016_j_sste_2019_100319 crossref_primary_10_1016_j_sste_2023_100623 crossref_primary_10_1016_j_vaccine_2021_12_039 crossref_primary_10_1016_j_spasta_2022_100714 crossref_primary_10_1177_09622802241233767 crossref_primary_10_1177_23998083211021419 crossref_primary_10_1080_02664763_2021_1887101 crossref_primary_10_1038_s41467_023_43954_0 crossref_primary_10_1098_rsif_2022_0440 crossref_primary_10_1126_sciadv_adf9742 crossref_primary_10_1038_s41598_022_04993_7 crossref_primary_10_3389_fpubh_2024_1336038 crossref_primary_10_4054_DemRes_2022_47_11 crossref_primary_10_1007_s40615_024_02223_6 crossref_primary_10_1007_s00477_021_02003_2 crossref_primary_10_1080_13658816_2020_1759807 crossref_primary_10_1007_s11222_023_10263_x crossref_primary_10_1029_2021GH000423 crossref_primary_10_1016_j_sste_2024_100679 crossref_primary_10_1214_22_STS854 crossref_primary_10_1016_j_sste_2023_100632 crossref_primary_10_1530_EJE_22_0355 crossref_primary_10_1007_s00125_020_05087_7 crossref_primary_10_1186_s12936_024_04918_x crossref_primary_10_1038_s41467_022_35770_9 crossref_primary_10_1590_1980_549720230008 crossref_primary_10_3390_geographies2030026 crossref_primary_10_1038_s41598_023_31046_4 crossref_primary_10_1186_s12942_021_00265_1 crossref_primary_10_1017_S0950268818002807 crossref_primary_10_1080_17421772_2018_1438648 crossref_primary_10_1590_1980_549720230008_2 crossref_primary_10_1016_j_pmedr_2023_102373 crossref_primary_10_1007_s11606_023_08062_1 crossref_primary_10_1073_pnas_2100664118 crossref_primary_10_1371_journal_pone_0234456 crossref_primary_10_1007_s11356_020_10595_5 crossref_primary_10_1016_j_prevetmed_2018_01_008 crossref_primary_10_1016_j_socscimed_2024_117414 crossref_primary_10_1016_j_sste_2024_100663 crossref_primary_10_1016_j_sste_2024_100662 crossref_primary_10_1177_00491241221140144 crossref_primary_10_1016_j_cmpb_2019_02_014 crossref_primary_10_1016_j_healthplace_2024_103284 crossref_primary_10_1016_j_lanepe_2022_100322 crossref_primary_10_1038_s41598_021_04530_y crossref_primary_10_1093_aje_kwaa157 crossref_primary_10_1093_genetics_iyab002 crossref_primary_10_1038_s41598_024_53527_w crossref_primary_10_3390_v13091811 crossref_primary_10_1093_jrsssc_qlad077 crossref_primary_10_1016_j_envres_2021_112292 crossref_primary_10_1016_j_envint_2021_106427 crossref_primary_10_1097_OLQ_0000000000001122 crossref_primary_10_1111_insr_12572 crossref_primary_10_1038_s41598_018_33381_3 crossref_primary_10_1214_21_AOAS1489 crossref_primary_10_1007_s00477_022_02175_5 crossref_primary_10_1214_24_AOAS1969 crossref_primary_10_1111_rssa_12545 crossref_primary_10_3389_fragi_2024_1479928 crossref_primary_10_3390_ijerph191912314 crossref_primary_10_1186_s12916_020_01731_6 crossref_primary_10_1371_journal_pone_0246253 crossref_primary_10_1017_pan_2023_35 crossref_primary_10_1186_s12889_018_6025_1 crossref_primary_10_1590_s1678_9946202264030 crossref_primary_10_1590_0102_311x00128518 crossref_primary_10_1016_j_spasta_2023_100738 crossref_primary_10_1038_s41467_021_24786_2 crossref_primary_10_1371_journal_pone_0208320 crossref_primary_10_1177_23294965231159317 crossref_primary_10_1214_19_BA1185 crossref_primary_10_4081_gh_2022_1080 crossref_primary_10_3389_fpls_2020_01204 crossref_primary_10_1016_j_envint_2019_04_009 crossref_primary_10_1186_s12887_021_02990_9 crossref_primary_10_1186_s40621_021_00304_2 crossref_primary_10_1093_jrsssa_qnae156 crossref_primary_10_1146_annurev_statistics_060116_054045 crossref_primary_10_1038_s41559_023_02298_0 crossref_primary_10_1016_j_spasta_2022_100691 crossref_primary_10_1002_asmb_2891 crossref_primary_10_1016_j_healthplace_2016_08_008 crossref_primary_10_1016_j_marpol_2023_105777 crossref_primary_10_1093_jrsssc_qlae067 crossref_primary_10_1371_journal_pone_0238504 crossref_primary_10_1093_jrsssa_qnae036 crossref_primary_10_1126_sciadv_adg9204 crossref_primary_10_1590_1413_81232025303_10572023en crossref_primary_10_1007_s10109_024_00454_z crossref_primary_10_1186_s12942_023_00352_5 crossref_primary_10_1016_j_annepidem_2023_01_009 crossref_primary_10_1038_s43856_022_00144_1 crossref_primary_10_1016_j_sste_2021_100472 crossref_primary_10_1002_cjs_11787 crossref_primary_10_1111_tbed_14528 crossref_primary_10_1007_s10109_020_00323_5 crossref_primary_10_1111_zph_12954 crossref_primary_10_1016_j_healthplace_2024_103295 crossref_primary_10_1002_ecs2_2977 crossref_primary_10_1093_jrsssa_qnad077 crossref_primary_10_1177_09622802221129040 crossref_primary_10_1212_WNL_0000000000200944 crossref_primary_10_1111_rssa_12642 crossref_primary_10_1111_insr_12556 crossref_primary_10_1016_j_hal_2020_101973 crossref_primary_10_1038_s41467_024_49201_4 crossref_primary_10_1038_s41598_022_11017_x crossref_primary_10_1016_j_sste_2022_100542 crossref_primary_10_3390_math9192454 crossref_primary_10_1371_journal_pone_0270670 crossref_primary_10_1111_2041_210X_14356 crossref_primary_10_1016_j_jsr_2020_07_004 crossref_primary_10_1111_insr_12400 crossref_primary_10_1214_24_BA1454 crossref_primary_10_1016_j_sste_2023_100577 crossref_primary_10_1016_j_ecolmodel_2022_110043 crossref_primary_10_1002_bimj_201900166 crossref_primary_10_1186_s12889_022_13069_0 crossref_primary_10_3390_ijerph16224460 crossref_primary_10_1177_09622802221099642 crossref_primary_10_1097_EDE_0000000000001822 crossref_primary_10_1093_humrep_deaa378 crossref_primary_10_1111_insr_12534 crossref_primary_10_1590_1413_81232025303_10572023 crossref_primary_10_1371_journal_pcbi_1011580 crossref_primary_10_1177_09622802241293776 crossref_primary_10_1016_j_ssmph_2022_101293 crossref_primary_10_1214_20_BA1223 crossref_primary_10_24072_pcjournal_461 crossref_primary_10_1080_03461238_2021_1951346 crossref_primary_10_1186_s12942_020_00211_7 crossref_primary_10_1002_ecs2_2707 crossref_primary_10_1186_s12889_023_15486_1 crossref_primary_10_14513_actatechjaur_00746 crossref_primary_10_1016_j_cmpb_2023_107403 crossref_primary_10_3390_math9030282 crossref_primary_10_1093_trstmh_trab144 crossref_primary_10_1002_bimj_202000246 crossref_primary_10_1002_bimj_202200017 crossref_primary_10_3389_fpubh_2023_1162535 crossref_primary_10_4178_epih_e2022016 crossref_primary_10_1186_s12889_020_10007_w crossref_primary_10_3389_fams_2023_1126759 crossref_primary_10_3390_ijerph19020824 crossref_primary_10_1007_s11749_019_00633_x crossref_primary_10_1016_j_sste_2024_100708 crossref_primary_10_1038_s41467_022_28157_3 crossref_primary_10_1093_ije_dyaa006 crossref_primary_10_1016_j_sste_2024_100700 crossref_primary_10_1093_jrsssa_qnae003 crossref_primary_10_3389_fonc_2022_833265 crossref_primary_10_1016_S1473_3099_22_00025_1 crossref_primary_10_1016_j_crm_2022_100429 crossref_primary_10_1016_j_sste_2021_100443 crossref_primary_10_1016_j_cresp_2022_100060 crossref_primary_10_1186_s12942_020_00233_1 crossref_primary_10_1016_j_apgeog_2023_103127 crossref_primary_10_1093_eurpub_ckad075 crossref_primary_10_1177_09622802241244613 crossref_primary_10_3390_ijerph19063327 crossref_primary_10_21105_joss_04716 crossref_primary_10_3389_fpubh_2022_876691 crossref_primary_10_1080_01944363_2022_2126382 crossref_primary_10_1080_09603123_2019_1608916 crossref_primary_10_1007_s11111_024_00452_9 crossref_primary_10_1016_j_actatropica_2022_106787 crossref_primary_10_26828_cannabis_2020_02_003 crossref_primary_10_1016_j_socscimed_2023_116513 crossref_primary_10_3389_fvets_2020_00345 crossref_primary_10_1002_bimj_202300096 crossref_primary_10_1016_j_gecco_2023_e02533 crossref_primary_10_1016_j_sste_2024_100651 crossref_primary_10_1098_rsif_2022_0094 crossref_primary_10_1016_j_sste_2022_100495 crossref_primary_10_3390_ijerph16224545 crossref_primary_10_1002_wics_1443 crossref_primary_10_1093_ornithapp_duad062 crossref_primary_10_2903_j_efsa_2017_5068 crossref_primary_10_1590_0102_311xen282621 crossref_primary_10_1002_env_2798 crossref_primary_10_1002_sim_8010 crossref_primary_10_1111_tmi_13409 crossref_primary_10_1093_aje_kwae005 crossref_primary_10_1111_rssc_12321 crossref_primary_10_1016_S2214_109X_22_00007_9 crossref_primary_10_1038_s41598_019_40450_8 crossref_primary_10_1590_0102_311xen212923 crossref_primary_10_36416_1806_3756_e20230004 crossref_primary_10_1097_EDE_0000000000001512 crossref_primary_10_1590_1414_462x202432010192 crossref_primary_10_1016_j_scs_2023_104872 crossref_primary_10_3390_v15020388 crossref_primary_10_1016_j_numecd_2023_07_039 crossref_primary_10_1177_0962280218767985 crossref_primary_10_1186_s12889_019_8043_z crossref_primary_10_3390_v13050934 crossref_primary_10_1016_j_jtte_2023_07_013 crossref_primary_10_1016_j_spasta_2023_100804 crossref_primary_10_1093_jssam_smaa011 crossref_primary_10_1177_0962280218767988 crossref_primary_10_1093_biostatistics_kxae030 crossref_primary_10_1002_env_2457 crossref_primary_10_1007_s10651_024_00630_w crossref_primary_10_1186_s12913_020_05531_9 crossref_primary_10_1016_j_cities_2021_103228 crossref_primary_10_2903_j_efsa_2017_4732 crossref_primary_10_3390_geographies2010003 crossref_primary_10_1080_15378020_2023_2259315 crossref_primary_10_1038_s41467_024_47199_3 crossref_primary_10_1371_journal_pgph_0000725 crossref_primary_10_1371_journal_pone_0301176 crossref_primary_10_1177_0962280218767975 crossref_primary_10_3390_ijerph22030446 crossref_primary_10_1214_23_AOAS1849 crossref_primary_10_1097_QAI_0000000000003588 crossref_primary_10_1016_j_scitotenv_2022_158749 |
ContentType | Journal Article |
Copyright | The Author(s) 2016. |
Copyright_xml | – notice: The Author(s) 2016. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1177/0962280216660421 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
ExternalDocumentID | 27566770 |
Genre | Journal Article |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 3V. 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADTT AADUE AAEWN AAGGD AAJIQ AAJOX AAJPV AAMGE AANSI AAPEO AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSBE ACSIQ ACTQU ACUAV ACUIR ACXKE ACXMB ADBBV ADEIA ADNMO ADNON ADRRZ ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEUIJ AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGWFA AGWNL AHDMH AHHFK AHMBA AIOMO AJEFB AJMMQ AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU CGR COF CORYS CQQTX CS3 CUY CVF DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EAD EAP EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M4V M7S N9A NPM O9- OVD P.B P2P PQQKQ PROAC PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM SV3 TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI |
ID | FETCH-LOGICAL-c398t-37648cede91897ed8847d27dde30e78f551ae570fbe9e67aec7ad333f3364e9b2 |
IngestDate | Wed Feb 19 02:43:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Bayesian hierarchical model integrated nested Laplace approximations penalised complexity prior scaling Disease mapping Leroux model |
Language | English |
License | The Author(s) 2016. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c398t-37648cede91897ed8847d27dde30e78f551ae570fbe9e67aec7ad333f3364e9b2 |
PMID | 27566770 |
ParticipantIDs | pubmed_primary_27566770 |
PublicationCentury | 2000 |
PublicationDate | 2016-Aug |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-Aug |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2016 |
SSID | ssj0007049 |
Score | 2.588857 |
Snippet | In recent years, disease mapping studies have become a routine application within geographical epidemiology and are typically analysed within a Bayesian... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1145 |
SubjectTerms | Bayes Theorem Epidemiological Monitoring Markov Chains Normal Distribution |
Title | An intuitive Bayesian spatial model for disease mapping that accounts for scaling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27566770 |
Volume | 25 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZpC6N7GGu2tV23ooe9BW-xJVvyYzo2QiGFri30rUjKeeQhaWicQftn9C_uSTo7IXRj24sJlm2C7_P90N13x9gnIdEGlC5NTGYhkVBkiSlUlZg-VDZHgLlAChudFcMreXqdX3c6j2tVS8vafnYPz_JK_keqeA7l6lmy_yDZ9qF4An-jfPGIEsbjX8l44MsU62Us_zkx9xAYkQtfJO1JIX7ITSgjpCxMb2rmRI8ydc_EORGhH0NvgaJqjBi5qt4NDV2cA7_Ez5kOpbNTyuxQl6B2N_nHBCyxCkORZKvuL3wu_kTf2fu42z35eYdO84oUcTGhipSG794-cRluGIZcfv6L6P_NFkVatAVyaGGiWpVKJX1B25akdyPhmfAl15Qohmj589o95Jcx6PI9fDKf8ESVk65fivKZT4O0fVv7QsWhJH9e3ei33SxtsS2MPPwoVb__Q7ZdYUC1SnZ_2fwrvrU03b4RpgR35fI1e0VxBh9E0OyxDsy67OWobdK76LIXI6qr6LLdVtiLN-x8MOMtrHgDK06w4gFWHEHDCVacYMU9rHgDq3AFweotu_r-7fLrMKHJG4kTpa691ZHawRjKVJcKxhp9mHGm0BSKPihdoZttIFf9ykIJhTLglBkLISohCgmlzd6x7dntDA4Yz3XqykpZ_OZzabRAf9eVttDe1QSXykO2H9_TzTy2V7lp3uD7364csd0VzD6wnQq_Z_iIzmFtj4O8ngAshGNR |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intuitive+Bayesian+spatial+model+for+disease+mapping+that+accounts+for+scaling&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Riebler%2C+Andrea&rft.au=S%C3%B8rbye%2C+Sigrunn+H&rft.au=Simpson%2C+Daniel&rft.au=Rue%2C+H%C3%A5vard&rft.date=2016-08-01&rft.eissn=1477-0334&rft.volume=25&rft.issue=4&rft.spage=1145&rft_id=info:doi/10.1177%2F0962280216660421&rft_id=info%3Apmid%2F27566770&rft_id=info%3Apmid%2F27566770&rft.externalDocID=27566770 |