An intuitive Bayesian spatial model for disease mapping that accounts for scaling

In recent years, disease mapping studies have become a routine application within geographical epidemiology and are typically analysed within a Bayesian hierarchical model formulation. A variety of model formulations for the latent level have been proposed but all come with inherent issues. In the c...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 25; no. 4; p. 1145
Main Authors Riebler, Andrea, Sørbye, Sigrunn H, Simpson, Daniel, Rue, Håvard
Format Journal Article
LanguageEnglish
Published England 01.08.2016
Subjects
Online AccessGet more information
ISSN1477-0334
DOI10.1177/0962280216660421

Cover

Loading…
Abstract In recent years, disease mapping studies have become a routine application within geographical epidemiology and are typically analysed within a Bayesian hierarchical model formulation. A variety of model formulations for the latent level have been proposed but all come with inherent issues. In the classical BYM (Besag, York and Mollié) model, the spatially structured component cannot be seen independently from the unstructured component. This makes prior definitions for the hyperparameters of the two random effects challenging. There are alternative model formulations that address this confounding; however, the issue on how to choose interpretable hyperpriors is still unsolved. Here, we discuss a recently proposed parameterisation of the BYM model that leads to improved parameter control as the hyperparameters can be seen independently from each other. Furthermore, the need for a scaled spatial component is addressed, which facilitates assignment of interpretable hyperpriors and make these transferable between spatial applications with different graph structures. The hyperparameters themselves are used to define flexible extensions of simple base models. Consequently, penalised complexity priors for these parameters can be derived based on the information-theoretic distance from the flexible model to the base model, giving priors with clear interpretation. We provide implementation details for the new model formulation which preserve sparsity properties, and we investigate systematically the model performance and compare it to existing parameterisations. Through a simulation study, we show that the new model performs well, both showing good learning abilities and good shrinkage behaviour. In terms of model choice criteria, the proposed model performs at least equally well as existing parameterisations, but only the new formulation offers parameters that are interpretable and hyperpriors that have a clear meaning.
AbstractList In recent years, disease mapping studies have become a routine application within geographical epidemiology and are typically analysed within a Bayesian hierarchical model formulation. A variety of model formulations for the latent level have been proposed but all come with inherent issues. In the classical BYM (Besag, York and Mollié) model, the spatially structured component cannot be seen independently from the unstructured component. This makes prior definitions for the hyperparameters of the two random effects challenging. There are alternative model formulations that address this confounding; however, the issue on how to choose interpretable hyperpriors is still unsolved. Here, we discuss a recently proposed parameterisation of the BYM model that leads to improved parameter control as the hyperparameters can be seen independently from each other. Furthermore, the need for a scaled spatial component is addressed, which facilitates assignment of interpretable hyperpriors and make these transferable between spatial applications with different graph structures. The hyperparameters themselves are used to define flexible extensions of simple base models. Consequently, penalised complexity priors for these parameters can be derived based on the information-theoretic distance from the flexible model to the base model, giving priors with clear interpretation. We provide implementation details for the new model formulation which preserve sparsity properties, and we investigate systematically the model performance and compare it to existing parameterisations. Through a simulation study, we show that the new model performs well, both showing good learning abilities and good shrinkage behaviour. In terms of model choice criteria, the proposed model performs at least equally well as existing parameterisations, but only the new formulation offers parameters that are interpretable and hyperpriors that have a clear meaning.
Author Rue, Håvard
Riebler, Andrea
Simpson, Daniel
Sørbye, Sigrunn H
Author_xml – sequence: 1
  givenname: Andrea
  surname: Riebler
  fullname: Riebler, Andrea
  email: andrea.riebler@math.ntnu.no
  organization: Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway andrea.riebler@math.ntnu.no
– sequence: 2
  givenname: Sigrunn H
  surname: Sørbye
  fullname: Sørbye, Sigrunn H
  organization: Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromsø, Norway
– sequence: 3
  givenname: Daniel
  surname: Simpson
  fullname: Simpson, Daniel
  organization: Department of Mathematical Sciences, University of Bath, Bath, UK
– sequence: 4
  givenname: Håvard
  surname: Rue
  fullname: Rue, Håvard
  organization: Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27566770$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLxDAURoMozkP3riR_oJpXc5PlOPiCARF0PdxpbjXSpqXJCPPvFR-rb3EOB74FO05DIsYupLiSEuBaeKuUE0paa4VR8ojNpQGohNZmxhY5fwghQBh_ymYKamsBxJw9rxKPqexjiZ_Eb_BAOWLiecQSseP9EKjj7TDxEDNhJt7jOMb0xss7Fo5NM-xTyT9GbrD7JmfspMUu0_nfLtnr3e3L-qHaPN0_rlebqtHelUqDNa6hQF46DxScMxAUhEBaELi2riVSDaLdkScLSA1g0Fq3WltDfqeW7PK3O-53PYXtOMUep8P2_5v6AkwDUcs
CitedBy_id crossref_primary_10_1590_0102_311xes163921
crossref_primary_10_1016_j_healthplace_2024_103241
crossref_primary_10_1371_journal_pntd_0011435
crossref_primary_10_1080_02664763_2019_1572722
crossref_primary_10_3390_ijerph18136856
crossref_primary_10_1016_j_spasta_2023_100796
crossref_primary_10_1111_gcb_15739
crossref_primary_10_1016_j_aap_2018_02_014
crossref_primary_10_1016_j_sste_2024_100698
crossref_primary_10_1111_tbed_13253
crossref_primary_10_1002_sim_8854
crossref_primary_10_3390_ijerph19148267
crossref_primary_10_1186_s40249_022_00949_1
crossref_primary_10_1016_j_actatropica_2020_105788
crossref_primary_10_1093_aje_kwac027
crossref_primary_10_1016_j_sciaf_2024_e02498
crossref_primary_10_1214_16_STS576
crossref_primary_10_1016_j_spasta_2021_100540
crossref_primary_10_1016_j_sste_2020_100323
crossref_primary_10_1177_0282423X241244670
crossref_primary_10_1016_j_spasta_2024_100843
crossref_primary_10_1016_j_sste_2019_100319
crossref_primary_10_1016_j_sste_2023_100623
crossref_primary_10_1016_j_vaccine_2021_12_039
crossref_primary_10_1016_j_spasta_2022_100714
crossref_primary_10_1177_09622802241233767
crossref_primary_10_1177_23998083211021419
crossref_primary_10_1080_02664763_2021_1887101
crossref_primary_10_1038_s41467_023_43954_0
crossref_primary_10_1098_rsif_2022_0440
crossref_primary_10_1126_sciadv_adf9742
crossref_primary_10_1038_s41598_022_04993_7
crossref_primary_10_3389_fpubh_2024_1336038
crossref_primary_10_4054_DemRes_2022_47_11
crossref_primary_10_1007_s40615_024_02223_6
crossref_primary_10_1007_s00477_021_02003_2
crossref_primary_10_1080_13658816_2020_1759807
crossref_primary_10_1007_s11222_023_10263_x
crossref_primary_10_1029_2021GH000423
crossref_primary_10_1016_j_sste_2024_100679
crossref_primary_10_1214_22_STS854
crossref_primary_10_1016_j_sste_2023_100632
crossref_primary_10_1530_EJE_22_0355
crossref_primary_10_1007_s00125_020_05087_7
crossref_primary_10_1186_s12936_024_04918_x
crossref_primary_10_1038_s41467_022_35770_9
crossref_primary_10_1590_1980_549720230008
crossref_primary_10_3390_geographies2030026
crossref_primary_10_1038_s41598_023_31046_4
crossref_primary_10_1186_s12942_021_00265_1
crossref_primary_10_1017_S0950268818002807
crossref_primary_10_1080_17421772_2018_1438648
crossref_primary_10_1590_1980_549720230008_2
crossref_primary_10_1016_j_pmedr_2023_102373
crossref_primary_10_1007_s11606_023_08062_1
crossref_primary_10_1073_pnas_2100664118
crossref_primary_10_1371_journal_pone_0234456
crossref_primary_10_1007_s11356_020_10595_5
crossref_primary_10_1016_j_prevetmed_2018_01_008
crossref_primary_10_1016_j_socscimed_2024_117414
crossref_primary_10_1016_j_sste_2024_100663
crossref_primary_10_1016_j_sste_2024_100662
crossref_primary_10_1177_00491241221140144
crossref_primary_10_1016_j_cmpb_2019_02_014
crossref_primary_10_1016_j_healthplace_2024_103284
crossref_primary_10_1016_j_lanepe_2022_100322
crossref_primary_10_1038_s41598_021_04530_y
crossref_primary_10_1093_aje_kwaa157
crossref_primary_10_1093_genetics_iyab002
crossref_primary_10_1038_s41598_024_53527_w
crossref_primary_10_3390_v13091811
crossref_primary_10_1093_jrsssc_qlad077
crossref_primary_10_1016_j_envres_2021_112292
crossref_primary_10_1016_j_envint_2021_106427
crossref_primary_10_1097_OLQ_0000000000001122
crossref_primary_10_1111_insr_12572
crossref_primary_10_1038_s41598_018_33381_3
crossref_primary_10_1214_21_AOAS1489
crossref_primary_10_1007_s00477_022_02175_5
crossref_primary_10_1214_24_AOAS1969
crossref_primary_10_1111_rssa_12545
crossref_primary_10_3389_fragi_2024_1479928
crossref_primary_10_3390_ijerph191912314
crossref_primary_10_1186_s12916_020_01731_6
crossref_primary_10_1371_journal_pone_0246253
crossref_primary_10_1017_pan_2023_35
crossref_primary_10_1186_s12889_018_6025_1
crossref_primary_10_1590_s1678_9946202264030
crossref_primary_10_1590_0102_311x00128518
crossref_primary_10_1016_j_spasta_2023_100738
crossref_primary_10_1038_s41467_021_24786_2
crossref_primary_10_1371_journal_pone_0208320
crossref_primary_10_1177_23294965231159317
crossref_primary_10_1214_19_BA1185
crossref_primary_10_4081_gh_2022_1080
crossref_primary_10_3389_fpls_2020_01204
crossref_primary_10_1016_j_envint_2019_04_009
crossref_primary_10_1186_s12887_021_02990_9
crossref_primary_10_1186_s40621_021_00304_2
crossref_primary_10_1093_jrsssa_qnae156
crossref_primary_10_1146_annurev_statistics_060116_054045
crossref_primary_10_1038_s41559_023_02298_0
crossref_primary_10_1016_j_spasta_2022_100691
crossref_primary_10_1002_asmb_2891
crossref_primary_10_1016_j_healthplace_2016_08_008
crossref_primary_10_1016_j_marpol_2023_105777
crossref_primary_10_1093_jrsssc_qlae067
crossref_primary_10_1371_journal_pone_0238504
crossref_primary_10_1093_jrsssa_qnae036
crossref_primary_10_1126_sciadv_adg9204
crossref_primary_10_1590_1413_81232025303_10572023en
crossref_primary_10_1007_s10109_024_00454_z
crossref_primary_10_1186_s12942_023_00352_5
crossref_primary_10_1016_j_annepidem_2023_01_009
crossref_primary_10_1038_s43856_022_00144_1
crossref_primary_10_1016_j_sste_2021_100472
crossref_primary_10_1002_cjs_11787
crossref_primary_10_1111_tbed_14528
crossref_primary_10_1007_s10109_020_00323_5
crossref_primary_10_1111_zph_12954
crossref_primary_10_1016_j_healthplace_2024_103295
crossref_primary_10_1002_ecs2_2977
crossref_primary_10_1093_jrsssa_qnad077
crossref_primary_10_1177_09622802221129040
crossref_primary_10_1212_WNL_0000000000200944
crossref_primary_10_1111_rssa_12642
crossref_primary_10_1111_insr_12556
crossref_primary_10_1016_j_hal_2020_101973
crossref_primary_10_1038_s41467_024_49201_4
crossref_primary_10_1038_s41598_022_11017_x
crossref_primary_10_1016_j_sste_2022_100542
crossref_primary_10_3390_math9192454
crossref_primary_10_1371_journal_pone_0270670
crossref_primary_10_1111_2041_210X_14356
crossref_primary_10_1016_j_jsr_2020_07_004
crossref_primary_10_1111_insr_12400
crossref_primary_10_1214_24_BA1454
crossref_primary_10_1016_j_sste_2023_100577
crossref_primary_10_1016_j_ecolmodel_2022_110043
crossref_primary_10_1002_bimj_201900166
crossref_primary_10_1186_s12889_022_13069_0
crossref_primary_10_3390_ijerph16224460
crossref_primary_10_1177_09622802221099642
crossref_primary_10_1097_EDE_0000000000001822
crossref_primary_10_1093_humrep_deaa378
crossref_primary_10_1111_insr_12534
crossref_primary_10_1590_1413_81232025303_10572023
crossref_primary_10_1371_journal_pcbi_1011580
crossref_primary_10_1177_09622802241293776
crossref_primary_10_1016_j_ssmph_2022_101293
crossref_primary_10_1214_20_BA1223
crossref_primary_10_24072_pcjournal_461
crossref_primary_10_1080_03461238_2021_1951346
crossref_primary_10_1186_s12942_020_00211_7
crossref_primary_10_1002_ecs2_2707
crossref_primary_10_1186_s12889_023_15486_1
crossref_primary_10_14513_actatechjaur_00746
crossref_primary_10_1016_j_cmpb_2023_107403
crossref_primary_10_3390_math9030282
crossref_primary_10_1093_trstmh_trab144
crossref_primary_10_1002_bimj_202000246
crossref_primary_10_1002_bimj_202200017
crossref_primary_10_3389_fpubh_2023_1162535
crossref_primary_10_4178_epih_e2022016
crossref_primary_10_1186_s12889_020_10007_w
crossref_primary_10_3389_fams_2023_1126759
crossref_primary_10_3390_ijerph19020824
crossref_primary_10_1007_s11749_019_00633_x
crossref_primary_10_1016_j_sste_2024_100708
crossref_primary_10_1038_s41467_022_28157_3
crossref_primary_10_1093_ije_dyaa006
crossref_primary_10_1016_j_sste_2024_100700
crossref_primary_10_1093_jrsssa_qnae003
crossref_primary_10_3389_fonc_2022_833265
crossref_primary_10_1016_S1473_3099_22_00025_1
crossref_primary_10_1016_j_crm_2022_100429
crossref_primary_10_1016_j_sste_2021_100443
crossref_primary_10_1016_j_cresp_2022_100060
crossref_primary_10_1186_s12942_020_00233_1
crossref_primary_10_1016_j_apgeog_2023_103127
crossref_primary_10_1093_eurpub_ckad075
crossref_primary_10_1177_09622802241244613
crossref_primary_10_3390_ijerph19063327
crossref_primary_10_21105_joss_04716
crossref_primary_10_3389_fpubh_2022_876691
crossref_primary_10_1080_01944363_2022_2126382
crossref_primary_10_1080_09603123_2019_1608916
crossref_primary_10_1007_s11111_024_00452_9
crossref_primary_10_1016_j_actatropica_2022_106787
crossref_primary_10_26828_cannabis_2020_02_003
crossref_primary_10_1016_j_socscimed_2023_116513
crossref_primary_10_3389_fvets_2020_00345
crossref_primary_10_1002_bimj_202300096
crossref_primary_10_1016_j_gecco_2023_e02533
crossref_primary_10_1016_j_sste_2024_100651
crossref_primary_10_1098_rsif_2022_0094
crossref_primary_10_1016_j_sste_2022_100495
crossref_primary_10_3390_ijerph16224545
crossref_primary_10_1002_wics_1443
crossref_primary_10_1093_ornithapp_duad062
crossref_primary_10_2903_j_efsa_2017_5068
crossref_primary_10_1590_0102_311xen282621
crossref_primary_10_1002_env_2798
crossref_primary_10_1002_sim_8010
crossref_primary_10_1111_tmi_13409
crossref_primary_10_1093_aje_kwae005
crossref_primary_10_1111_rssc_12321
crossref_primary_10_1016_S2214_109X_22_00007_9
crossref_primary_10_1038_s41598_019_40450_8
crossref_primary_10_1590_0102_311xen212923
crossref_primary_10_36416_1806_3756_e20230004
crossref_primary_10_1097_EDE_0000000000001512
crossref_primary_10_1590_1414_462x202432010192
crossref_primary_10_1016_j_scs_2023_104872
crossref_primary_10_3390_v15020388
crossref_primary_10_1016_j_numecd_2023_07_039
crossref_primary_10_1177_0962280218767985
crossref_primary_10_1186_s12889_019_8043_z
crossref_primary_10_3390_v13050934
crossref_primary_10_1016_j_jtte_2023_07_013
crossref_primary_10_1016_j_spasta_2023_100804
crossref_primary_10_1093_jssam_smaa011
crossref_primary_10_1177_0962280218767988
crossref_primary_10_1093_biostatistics_kxae030
crossref_primary_10_1002_env_2457
crossref_primary_10_1007_s10651_024_00630_w
crossref_primary_10_1186_s12913_020_05531_9
crossref_primary_10_1016_j_cities_2021_103228
crossref_primary_10_2903_j_efsa_2017_4732
crossref_primary_10_3390_geographies2010003
crossref_primary_10_1080_15378020_2023_2259315
crossref_primary_10_1038_s41467_024_47199_3
crossref_primary_10_1371_journal_pgph_0000725
crossref_primary_10_1371_journal_pone_0301176
crossref_primary_10_1177_0962280218767975
crossref_primary_10_3390_ijerph22030446
crossref_primary_10_1214_23_AOAS1849
crossref_primary_10_1097_QAI_0000000000003588
crossref_primary_10_1016_j_scitotenv_2022_158749
ContentType Journal Article
Copyright The Author(s) 2016.
Copyright_xml – notice: The Author(s) 2016.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/0962280216660421
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
ExternalDocumentID 27566770
Genre Journal Article
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
3V.
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADTT
AADUE
AAEWN
AAGGD
AAJIQ
AAJOX
AAJPV
AAMGE
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSBE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEIA
ADNMO
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AIOMO
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
CGR
COF
CORYS
CQQTX
CS3
CUY
CVF
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EAD
EAP
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M4V
M7S
N9A
NPM
O9-
OVD
P.B
P2P
PQQKQ
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
SV3
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
ID FETCH-LOGICAL-c398t-37648cede91897ed8847d27dde30e78f551ae570fbe9e67aec7ad333f3364e9b2
IngestDate Wed Feb 19 02:43:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bayesian hierarchical model
integrated nested Laplace approximations
penalised complexity prior
scaling
Disease mapping
Leroux model
Language English
License The Author(s) 2016.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-37648cede91897ed8847d27dde30e78f551ae570fbe9e67aec7ad333f3364e9b2
PMID 27566770
ParticipantIDs pubmed_primary_27566770
PublicationCentury 2000
PublicationDate 2016-Aug
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2016
SSID ssj0007049
Score 2.588857
Snippet In recent years, disease mapping studies have become a routine application within geographical epidemiology and are typically analysed within a Bayesian...
SourceID pubmed
SourceType Index Database
StartPage 1145
SubjectTerms Bayes Theorem
Epidemiological Monitoring
Markov Chains
Normal Distribution
Title An intuitive Bayesian spatial model for disease mapping that accounts for scaling
URI https://www.ncbi.nlm.nih.gov/pubmed/27566770
Volume 25
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZpC6N7GGu2tV23ooe9BW-xJVvyYzo2QiGFri30rUjKeeQhaWicQftn9C_uSTo7IXRj24sJlm2C7_P90N13x9gnIdEGlC5NTGYhkVBkiSlUlZg-VDZHgLlAChudFcMreXqdX3c6j2tVS8vafnYPz_JK_keqeA7l6lmy_yDZ9qF4An-jfPGIEsbjX8l44MsU62Us_zkx9xAYkQtfJO1JIX7ITSgjpCxMb2rmRI8ydc_EORGhH0NvgaJqjBi5qt4NDV2cA7_Ez5kOpbNTyuxQl6B2N_nHBCyxCkORZKvuL3wu_kTf2fu42z35eYdO84oUcTGhipSG794-cRluGIZcfv6L6P_NFkVatAVyaGGiWpVKJX1B25akdyPhmfAl15Qohmj589o95Jcx6PI9fDKf8ESVk65fivKZT4O0fVv7QsWhJH9e3ei33SxtsS2MPPwoVb__Q7ZdYUC1SnZ_2fwrvrU03b4RpgR35fI1e0VxBh9E0OyxDsy67OWobdK76LIXI6qr6LLdVtiLN-x8MOMtrHgDK06w4gFWHEHDCVacYMU9rHgDq3AFweotu_r-7fLrMKHJG4kTpa691ZHawRjKVJcKxhp9mHGm0BSKPihdoZttIFf9ykIJhTLglBkLISohCgmlzd6x7dntDA4Yz3XqykpZ_OZzabRAf9eVttDe1QSXykO2H9_TzTy2V7lp3uD7364csd0VzD6wnQq_Z_iIzmFtj4O8ngAshGNR
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intuitive+Bayesian+spatial+model+for+disease+mapping+that+accounts+for+scaling&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Riebler%2C+Andrea&rft.au=S%C3%B8rbye%2C+Sigrunn+H&rft.au=Simpson%2C+Daniel&rft.au=Rue%2C+H%C3%A5vard&rft.date=2016-08-01&rft.eissn=1477-0334&rft.volume=25&rft.issue=4&rft.spage=1145&rft_id=info:doi/10.1177%2F0962280216660421&rft_id=info%3Apmid%2F27566770&rft_id=info%3Apmid%2F27566770&rft.externalDocID=27566770