Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC–12%Co coatings on stainless steel

Conventional and nanostructured WC–12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si 3N 4 at room temperature and elevated temperatures up to 400 °C was...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 431; no. 1; pp. 290 - 297
Main Authors Zhao, Xiao-Qin, Zhou, Hui-Di, Chen, Jian-Min
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.09.2006
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional and nanostructured WC–12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si 3N 4 at room temperature and elevated temperatures up to 400 °C was comparatively studied. The microstructures and worn surface morphologies of the coatings were comparatively analyzed as well by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA). It was found that the as-sprayed WC–12%Co coatings were composed of WC as the major phase and W 2C, WC 1− x , and W 3Co 3C as the minor phases. The plasma sprayed nanostructured WC–12%Co coating had much higher hardness and refined microstructures than the conventional WC–12%Co coating. This largely accounted for the better wear resistance of the nanostructured WC–12%Co coating than the conventional coating. Besides, the two types of WC–12%Co coatings showed minor differences in friction coefficients, though the nanostructured WC–12%Co coating roughly had slightly smaller friction coefficient than the conventional coating under the same sliding condition. Moreover, both the conventional and nanostructured WC–12%Co coatings recorded gradually increased wear rate with increasing temperature, and the nanostructured coating was less sensitive to the temperature rise in terms of the wear resistance. The worn surfaces of the conventional WC–12%Co coating at different sliding conditions showed more severe adhesion, microfracture, and peeling as compared to the nanostructured WC–12%Co coating, which well conformed to the corresponding wear resistance of the two types of coatings. The nanostructured WC–12%Co coating with a wear rate as small as 1.01 × 10 −7 mm 3/Nm at 400 °C could be promising candidate coating for the surface-modification of some sliding components subject to harsh working conditions involving elevated temperature and corrosive medium.
AbstractList Conventional and nanostructured WC-12%Co coatings were deposited on lCrl8Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si3N4 at room temperature and elevated temperatures up to 400 deg C was comparatively studied. The microstructures and worn surface morphologies of the coatings were comparatively analyzed as well by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA). It was found that the as-sprayed WC-12%Co coatings were composed of WC as the major phase and W2C, WC(1-x), and W3Co3C as the minor phases. The plasma sprayed nanostructured WC-12%Co coating had much higher hardness and refined microstructures than the conventional WC-12%Co coating. This largely accounted for the better wear resistance of the nanostructured WC-12%Co coating than the conventional coating. Besides, the two types of WC-12%Co coatings showed minor differences in friction coefficients, though the nanostructured WC-12%Co coating roughly had slightly smaller friction coefficient than the conventional coating under the same sliding condition. Moreover, both the conventional and nanostructured WC-12%Co coatings recorded gradually increased wear rate with increasing temperature, and the nanostructured coating was less sensitive to the temperature rise in terms of the wear resistance. The worn surfaces of the conventional WC-12%Co coating at different sliding conditions showed more severe adhesion, microfracture, and peeling as compared to the nanostructured WC-12%Co coating, which well conformed to the corresponding wear resistance of the two types of coatings. The nanostructured WC-12%Co coating with a wear rate as small as 1.01 x 10(-7) mm3/Nm at 400 deg C could be promising candidate coating for the surface-modification of some sliding components subject to harsh working conditions involving elevated temperature and corrosive medium.
Conventional and nanostructured WC–12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si 3N 4 at room temperature and elevated temperatures up to 400 °C was comparatively studied. The microstructures and worn surface morphologies of the coatings were comparatively analyzed as well by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA). It was found that the as-sprayed WC–12%Co coatings were composed of WC as the major phase and W 2C, WC 1− x , and W 3Co 3C as the minor phases. The plasma sprayed nanostructured WC–12%Co coating had much higher hardness and refined microstructures than the conventional WC–12%Co coating. This largely accounted for the better wear resistance of the nanostructured WC–12%Co coating than the conventional coating. Besides, the two types of WC–12%Co coatings showed minor differences in friction coefficients, though the nanostructured WC–12%Co coating roughly had slightly smaller friction coefficient than the conventional coating under the same sliding condition. Moreover, both the conventional and nanostructured WC–12%Co coatings recorded gradually increased wear rate with increasing temperature, and the nanostructured coating was less sensitive to the temperature rise in terms of the wear resistance. The worn surfaces of the conventional WC–12%Co coating at different sliding conditions showed more severe adhesion, microfracture, and peeling as compared to the nanostructured WC–12%Co coating, which well conformed to the corresponding wear resistance of the two types of coatings. The nanostructured WC–12%Co coating with a wear rate as small as 1.01 × 10 −7 mm 3/Nm at 400 °C could be promising candidate coating for the surface-modification of some sliding components subject to harsh working conditions involving elevated temperature and corrosive medium.
Author Zhou, Hui-Di
Chen, Jian-Min
Zhao, Xiao-Qin
Author_xml – sequence: 1
  givenname: Xiao-Qin
  surname: Zhao
  fullname: Zhao, Xiao-Qin
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 2
  givenname: Hui-Di
  surname: Zhou
  fullname: Zhou, Hui-Di
  email: hdzhou@lzb.ac.cn
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 3
  givenname: Jian-Min
  surname: Chen
  fullname: Chen, Jian-Min
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18027224$$DView record in Pascal Francis
BookMark eNp9kc2KFDEUhQsZwZ7RF3CVzbirnvxUVyXgRhp_BgbcKC7DrdSNk6YqKZNUS-98AHe-oU9iyh5cuBg4kEC-c5Lcc1ld-OCxql4yumWUtTeH7ZQQtpzSdruKqifVhslO1I0S7UW1oYqzekeVeFZdpnSglLKG7jbVz32YZoiQ3RFJystwIsGSfI_ERmeyC56AH8h3hEh6vIejC3El5hHSBCTNEU44EBP8Ef2Kw_jX4MGHlONi8hLL-Zf97x-_GL_eh4KWy_zXREp0yuD8iCmVHeL4vHpqYUz44mG9qj6_e_tp_6G--_j-dv_mrjZCyVxzy4AzrpSUu64XbW-khaYTfTv0bfkiN6IZelGExkrT76hlrJPApbJSKSWuqlfn3DmGbwumrCeXDI4jeAxL0lxxwbmQBbx-ACEZGG0Eb1zSc3QTxJNmkvKO86Zw8syZGFKKaLVxGdZx5Ahu1IzqtSZ90GtNeq1Jr6LrW_h_1n_pj5len01YpnR0GHUyDr3BwUU0WQ_BPWb_AyuXsVQ
CitedBy_id crossref_primary_10_1016_j_ijrmhm_2017_10_022
crossref_primary_10_1007_s11665_014_0974_z
crossref_primary_10_1016_j_surfcoat_2011_06_047
crossref_primary_10_1088_2051_672X_ac3a52
crossref_primary_10_1016_j_surfcoat_2008_01_009
crossref_primary_10_1016_S1003_6326_15_64011_0
crossref_primary_10_1016_j_wear_2011_07_012
crossref_primary_10_1007_s40195_015_0210_3
crossref_primary_10_1179_175158409X459958
crossref_primary_10_26634_jme_6_4_8291
crossref_primary_10_1016_j_surfcoat_2012_02_030
crossref_primary_10_1016_j_wear_2015_01_035
crossref_primary_10_1007_s10853_017_1271_7
crossref_primary_10_1080_10402004_2015_1068423
crossref_primary_10_1007_s11665_009_9411_0
crossref_primary_10_1016_j_promfg_2019_02_048
crossref_primary_10_1179_026708410X12506870724352
crossref_primary_10_1179_026708408X329489
crossref_primary_10_1007_s11666_018_0764_5
crossref_primary_10_1007_s00170_015_7824_5
crossref_primary_10_1007_s00339_023_06593_2
crossref_primary_10_1007_s11666_008_9181_5
crossref_primary_10_1016_j_wear_2011_09_011
crossref_primary_10_1115_1_4050735
crossref_primary_10_1016_j_ceramint_2020_04_288
crossref_primary_10_1016_j_jiec_2025_01_031
crossref_primary_10_1016_j_triboint_2016_08_025
crossref_primary_10_4028_www_scientific_net_KEM_373_374_564
crossref_primary_10_1016_j_intermet_2012_03_026
crossref_primary_10_1142_S0218625X08012049
crossref_primary_10_1016_j_apsusc_2011_05_056
crossref_primary_10_1007_s11666_021_01185_z
crossref_primary_10_1016_j_nimb_2008_02_073
crossref_primary_10_1016_j_compstruct_2016_09_018
crossref_primary_10_1016_j_mtcomm_2025_112102
crossref_primary_10_1038_s41598_020_78088_6
crossref_primary_10_1088_1748_6041_7_6_065004
crossref_primary_10_1007_s00170_017_0795_y
crossref_primary_10_1016_j_surfcoat_2013_07_069
crossref_primary_10_1080_02670844_2016_1258769
crossref_primary_10_4028_www_scientific_net_SSP_213_131
crossref_primary_10_3390_coatings8090307
crossref_primary_10_1016_j_surfcoat_2017_02_048
crossref_primary_10_1111_j_1744_7402_2011_02734_x
crossref_primary_10_1007_s11106_023_00348_7
crossref_primary_10_1007_s11666_010_9480_5
crossref_primary_10_3390_coatings13030499
crossref_primary_10_1016_j_mspro_2014_07_128
crossref_primary_10_1016_j_surfcoat_2015_06_017
crossref_primary_10_3934_matersci_2016_2_404
crossref_primary_10_1007_s11666_018_0745_8
crossref_primary_10_1016_j_oceaneng_2019_106449
crossref_primary_10_1007_s11666_010_9572_2
crossref_primary_10_1016_j_surfcoat_2020_126716
crossref_primary_10_1007_s11666_011_9661_x
crossref_primary_10_1016_S1003_6326_11_61000_5
crossref_primary_10_1007_s00170_017_0837_5
crossref_primary_10_1016_j_surfcoat_2007_10_002
crossref_primary_10_1016_j_jallcom_2024_173454
crossref_primary_10_1007_s10033_017_0162_9
crossref_primary_10_1016_S1003_6326_18_64681_3
Cites_doi 10.1016/S0043-1648(96)07423-6
10.1016/S0257-8972(98)00822-6
10.1016/S0043-1648(02)00294-6
10.1016/j.wear.2004.05.001
10.1016/S0043-1648(96)07277-8
10.1016/S0040-6090(01)00805-7
10.1016/j.surfcoat.2004.12.032
10.1016/S0043-1648(99)00032-0
10.1016/0043-1648(93)90290-3
10.1016/S0257-8972(03)00242-1
10.1016/0043-1648(95)06866-X
10.1016/S0272-8842(01)00016-5
10.1016/0025-5416(88)90712-4
10.1016/j.wear.2004.09.044
10.1016/j.msea.2004.09.043
ContentType Journal Article
Copyright 2006 Elsevier B.V.
2006 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier B.V.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2006.06.009
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-4936
EndPage 297
ExternalDocumentID 18027224
10_1016_j_msea_2006_06_009
S0921509306010021
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
WUQ
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
AFXIZ
EFKBS
IQODW
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c398t-2f1a212998857b36bc8fa473b6db60932c34db3db3ecf8cb50f1178a289f89993
IEDL.DBID AIKHN
ISSN 0921-5093
IngestDate Fri Jul 11 08:30:08 EDT 2025
Mon Jul 21 09:15:01 EDT 2025
Thu Apr 24 23:16:08 EDT 2025
Tue Jul 01 03:12:29 EDT 2025
Fri Feb 23 02:25:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Friction and wear behavior
Elevated temperature
Plasma spraying
Microstructure
WC–Co coating
Scanning electron microscopy
Sliding wear
Surface coating
Surface morphology
Nanostructure
Hardness
Dispersive spectrometry
X ray diffraction
WC-Co coating
Friction
Composite coating
Stainless steel
Cemented carbides
Wear resistance
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-2f1a212998857b36bc8fa473b6db60932c34db3db3ecf8cb50f1178a289f89993
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29232238
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_29232238
pascalfrancis_primary_18027224
crossref_citationtrail_10_1016_j_msea_2006_06_009
crossref_primary_10_1016_j_msea_2006_06_009
elsevier_sciencedirect_doi_10_1016_j_msea_2006_06_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-09-15
PublicationDateYYYYMMDD 2006-09-15
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Qiao, Fischer, Dent (bib9) 2003; 172
Stewart, Shipway, McCartney (bib2) 1999; 225
Zhu, Ding, Yukimura, Xiao, Struttd (bib11) 2001; 27
Jia, Fisher (bib14) 1996; 200
Jia, Fisher (bib4) 1997; 203–204
Yang, Senda, Hirose (bib7) 2006; 200
Fervel, Normand, Liao, Coddet, Bêche, Berjoan (bib13) 1999; 111
Roy, Pauschitz, Wernisch, Franek (bib6) 2004; 257
Wang, Xu, Shen, Liu (bib10) 1996; 196
Shi, Shao, Duan, Yuan, Lin (bib1) 2005; 392
Yang, Senda, Ohmori (bib15) 2003; 254
Chen, Xu, Zhou, Hutchings, Shipway, Liu (bib5) 2005; 258
Masuda, Kuroshima, Chujo (bib12) 1993; 169
Zhu, Yukimura, Ding, Zhang (bib3) 2001; 388
Schaller, Ammann (bib8) 1988; 105–106
Fervel (10.1016/j.msea.2006.06.009_bib13) 1999; 111
Chen (10.1016/j.msea.2006.06.009_bib5) 2005; 258
Roy (10.1016/j.msea.2006.06.009_bib6) 2004; 257
Masuda (10.1016/j.msea.2006.06.009_bib12) 1993; 169
Stewart (10.1016/j.msea.2006.06.009_bib2) 1999; 225
Jia (10.1016/j.msea.2006.06.009_bib14) 1996; 200
Wang (10.1016/j.msea.2006.06.009_bib10) 1996; 196
Zhu (10.1016/j.msea.2006.06.009_bib11) 2001; 27
Shi (10.1016/j.msea.2006.06.009_bib1) 2005; 392
Yang (10.1016/j.msea.2006.06.009_bib7) 2006; 200
Jia (10.1016/j.msea.2006.06.009_bib4) 1997; 203–204
Yang (10.1016/j.msea.2006.06.009_bib15) 2003; 254
Schaller (10.1016/j.msea.2006.06.009_bib8) 1988; 105–106
Zhu (10.1016/j.msea.2006.06.009_bib3) 2001; 388
Qiao (10.1016/j.msea.2006.06.009_bib9) 2003; 172
References_xml – volume: 200
  start-page: 4208
  year: 2006
  end-page: 4212
  ident: bib7
  publication-title: Surf. Coat. Technol.
– volume: 257
  start-page: 799
  year: 2004
  end-page: 811
  ident: bib6
  publication-title: Wear
– volume: 196
  start-page: 82
  year: 1996
  end-page: 86
  ident: bib10
  publication-title: Wear
– volume: 105–106
  start-page: 313
  year: 1988
  end-page: 321
  ident: bib8
  publication-title: Mater. Sci. Eng. A
– volume: 200
  start-page: 206
  year: 1996
  end-page: 214
  ident: bib14
  publication-title: Wear
– volume: 111
  start-page: 255
  year: 1999
  end-page: 262
  ident: bib13
  publication-title: Surf. Coat. Technol.
– volume: 392
  start-page: 335
  year: 2005
  end-page: 339
  ident: bib1
  publication-title: Mater. Sci. Eng. A
– volume: 27
  start-page: 669
  year: 2001
  end-page: 674
  ident: bib11
  publication-title: Ceram. Int.
– volume: 225
  start-page: 789
  year: 1999
  end-page: 798
  ident: bib2
  publication-title: Wear
– volume: 388
  start-page: 277
  year: 2001
  end-page: 282
  ident: bib3
  publication-title: Thin Solid Films
– volume: 203–204
  start-page: 310
  year: 1997
  end-page: 318
  ident: bib4
  publication-title: Wear
– volume: 169
  start-page: 135
  year: 1993
  end-page: 140
  ident: bib12
  publication-title: Wear
– volume: 258
  start-page: 333
  year: 2005
  end-page: 338
  ident: bib5
  publication-title: Wear
– volume: 172
  start-page: 24
  year: 2003
  end-page: 41
  ident: bib9
  publication-title: Surf. Coat. Technol.
– volume: 254
  start-page: 23
  year: 2003
  end-page: 34
  ident: bib15
  publication-title: Wear
– volume: 203–204
  start-page: 310
  year: 1997
  ident: 10.1016/j.msea.2006.06.009_bib4
  publication-title: Wear
  doi: 10.1016/S0043-1648(96)07423-6
– volume: 111
  start-page: 255
  year: 1999
  ident: 10.1016/j.msea.2006.06.009_bib13
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(98)00822-6
– volume: 254
  start-page: 23
  year: 2003
  ident: 10.1016/j.msea.2006.06.009_bib15
  publication-title: Wear
  doi: 10.1016/S0043-1648(02)00294-6
– volume: 257
  start-page: 799
  year: 2004
  ident: 10.1016/j.msea.2006.06.009_bib6
  publication-title: Wear
  doi: 10.1016/j.wear.2004.05.001
– volume: 200
  start-page: 206
  year: 1996
  ident: 10.1016/j.msea.2006.06.009_bib14
  publication-title: Wear
  doi: 10.1016/S0043-1648(96)07277-8
– volume: 388
  start-page: 277
  year: 2001
  ident: 10.1016/j.msea.2006.06.009_bib3
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(01)00805-7
– volume: 200
  start-page: 4208
  year: 2006
  ident: 10.1016/j.msea.2006.06.009_bib7
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2004.12.032
– volume: 225
  start-page: 789
  year: 1999
  ident: 10.1016/j.msea.2006.06.009_bib2
  publication-title: Wear
  doi: 10.1016/S0043-1648(99)00032-0
– volume: 169
  start-page: 135
  year: 1993
  ident: 10.1016/j.msea.2006.06.009_bib12
  publication-title: Wear
  doi: 10.1016/0043-1648(93)90290-3
– volume: 172
  start-page: 24
  year: 2003
  ident: 10.1016/j.msea.2006.06.009_bib9
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(03)00242-1
– volume: 196
  start-page: 82
  year: 1996
  ident: 10.1016/j.msea.2006.06.009_bib10
  publication-title: Wear
  doi: 10.1016/0043-1648(95)06866-X
– volume: 27
  start-page: 669
  year: 2001
  ident: 10.1016/j.msea.2006.06.009_bib11
  publication-title: Ceram. Int.
  doi: 10.1016/S0272-8842(01)00016-5
– volume: 105–106
  start-page: 313
  year: 1988
  ident: 10.1016/j.msea.2006.06.009_bib8
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0025-5416(88)90712-4
– volume: 258
  start-page: 333
  year: 2005
  ident: 10.1016/j.msea.2006.06.009_bib5
  publication-title: Wear
  doi: 10.1016/j.wear.2004.09.044
– volume: 392
  start-page: 335
  year: 2005
  ident: 10.1016/j.msea.2006.06.009_bib1
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2004.09.043
SSID ssj0001405
Score 2.138726
Snippet Conventional and nanostructured WC–12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the...
Conventional and nanostructured WC-12%Co coatings were deposited on lCrl8Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 290
SubjectTerms Applied sciences
Contact of materials. Friction. Wear
Elevated temperature
Exact sciences and technology
Friction and wear behavior
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metallic coatings
Metals. Metallurgy
Microstructure
Plasma spraying
Production techniques
Surface treatment
WC–Co coating
Title Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC–12%Co coatings on stainless steel
URI https://dx.doi.org/10.1016/j.msea.2006.06.009
https://www.proquest.com/docview/29232238
Volume 431
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB51uYAqxCpeKa8-wAmZ1yxOnGMVtXoU0QtU9BbZsS0VvSZRX6uqF8QP4MY_5JfwOXG6CNEDUg5RMhNHM5NZ4lmI3ihQXglhuEvjnMNCSa6tyHmuUy3jQkVO-drhT4fZ_Cg9OBbHK1SOtTA-rTLo_kGn99o6XJkFas66k5PZ550C5goBue8o4k3VKq3HSZFBtNd3P3ycH14rZMQQfSYj4LlHCLUzQ5rXKSQq7En4bYniX_Zpo1NLUM0N4y7-0ty9Odp_TI-CH8l2h1d9Qiu2eUoPb3UXfEY_y5vO3qxvI8tax-DwMT8byDOEqcawS8g6G6v1PUQHh_pUsWV3pq6sYbfz0nuERjXt0Hb24gz3v5a_f_yK4rdlC1Dls6iXDI_u67IW0KM4s3bxnI72976Ucx6GL_A6KeQ5j12kYNYQjUmR6yTTtXQqzROdGZ2BiHGdpEYnOGztZK3FjouiXCoEcA4xXJG8oLWmbexLYnFuhEOonTh4XyZ3WlvfLrgWBtrDZWZC0Ujyqg6dyf2AjEU1pqB9qzyb_MjMrOrz8IoJvbvG6Ya-HPdCi5GT1R3pqmA47sWb3mH7zVIS4Ty8nwltj3JQ4bv0my2qse3FsorhOcP1kpv_ufQrejD87Sl4JLZoDWy1r-H_nOsprb7_Hk2DlP8B9qcH2w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgBUIZ5iC7Q-wAmZbR5OnCOKqBZoe6EVvVl2bEtF2yTqtqp6QfyA3voP-SV8zoNthegBaQ_R7jhZzYznEX8zQ_RGg_NaCMt9GuccHkpy40TOc5MaGRc68jrUDu_uZbOD9POhOFyhcqyFCbDKwfb3Nr2z1sM304Gb0_boaPp1q4C7QkIeOooEV3WH7qbYvmF3vv-xxHkgg-hwjKDmgXyonOlBXsfQp-FEIhxKFP_yTmutXoBnvh928Zfd7pzR9iN6OESR7EP_Rx_Tiquf0INrvQWf0mW57OvNuiayrPEM4R4Lk4GCOJiuLTuHprOxVj9QtAinjzVbtCf6wll2HZXeLah13fRNZ89O8Pu38tfPqyh-WzYg1QFDvWC4dVeVNYcVxZVz82d0sP1xv5zxYfQCr5JCnvLYRxpODbmYFLlJMlNJr9M8MZk1GZgYV0lqTYKPq7ysjNjyUZRLjfTNI4Mrkue0Wje1e0Eszq3wSLQTj9jL5t4YF5oFV8LCdvjMTigaWa6qoS95GI8xVyMA7bsKYgoDMzPVofCKCb37s6btu3LcSi1GSaobuqXgNm5dt3FD7MtHSSTziH0mtDnqgcKuDEctunbN2ULFiJsReMn1_3z0Jt2b7e_uqJ1Pe19e0v3-vU_BI_GKViFi9xqR0KnZ6DT9NyUnCJ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+of+the+friction+and+wear+behavior+of+plasma+sprayed+conventional+and+nanostructured+WC%E2%80%9312%25Co+coatings+on+stainless+steel&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Zhao%2C+Xiao-Qin&rft.au=Zhou%2C+Hui-Di&rft.au=Chen%2C+Jian-Min&rft.date=2006-09-15&rft.pub=Elsevier+B.V&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=431&rft.issue=1&rft.spage=290&rft.epage=297&rft_id=info:doi/10.1016%2Fj.msea.2006.06.009&rft.externalDocID=S0921509306010021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon