Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC–12%Co coatings on stainless steel
Conventional and nanostructured WC–12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si 3N 4 at room temperature and elevated temperatures up to 400 °C was...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 431; no. 1; pp. 290 - 297 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.09.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional and nanostructured WC–12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si
3N
4 at room temperature and elevated temperatures up to 400
°C was comparatively studied. The microstructures and worn surface morphologies of the coatings were comparatively analyzed as well by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA). It was found that the as-sprayed WC–12%Co coatings were composed of WC as the major phase and W
2C, WC
1−
x
, and W
3Co
3C as the minor phases. The plasma sprayed nanostructured WC–12%Co coating had much higher hardness and refined microstructures than the conventional WC–12%Co coating. This largely accounted for the better wear resistance of the nanostructured WC–12%Co coating than the conventional coating. Besides, the two types of WC–12%Co coatings showed minor differences in friction coefficients, though the nanostructured WC–12%Co coating roughly had slightly smaller friction coefficient than the conventional coating under the same sliding condition. Moreover, both the conventional and nanostructured WC–12%Co coatings recorded gradually increased wear rate with increasing temperature, and the nanostructured coating was less sensitive to the temperature rise in terms of the wear resistance. The worn surfaces of the conventional WC–12%Co coating at different sliding conditions showed more severe adhesion, microfracture, and peeling as compared to the nanostructured WC–12%Co coating, which well conformed to the corresponding wear resistance of the two types of coatings. The nanostructured WC–12%Co coating with a wear rate as small as 1.01
×
10
−7
mm
3/Nm at 400
°C could be promising candidate coating for the surface-modification of some sliding components subject to harsh working conditions involving elevated temperature and corrosive medium. |
---|---|
AbstractList | Conventional and nanostructured WC-12%Co coatings were deposited on lCrl8Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si3N4 at room temperature and elevated temperatures up to 400 deg C was comparatively studied. The microstructures and worn surface morphologies of the coatings were comparatively analyzed as well by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA). It was found that the as-sprayed WC-12%Co coatings were composed of WC as the major phase and W2C, WC(1-x), and W3Co3C as the minor phases. The plasma sprayed nanostructured WC-12%Co coating had much higher hardness and refined microstructures than the conventional WC-12%Co coating. This largely accounted for the better wear resistance of the nanostructured WC-12%Co coating than the conventional coating. Besides, the two types of WC-12%Co coatings showed minor differences in friction coefficients, though the nanostructured WC-12%Co coating roughly had slightly smaller friction coefficient than the conventional coating under the same sliding condition. Moreover, both the conventional and nanostructured WC-12%Co coatings recorded gradually increased wear rate with increasing temperature, and the nanostructured coating was less sensitive to the temperature rise in terms of the wear resistance. The worn surfaces of the conventional WC-12%Co coating at different sliding conditions showed more severe adhesion, microfracture, and peeling as compared to the nanostructured WC-12%Co coating, which well conformed to the corresponding wear resistance of the two types of coatings. The nanostructured WC-12%Co coating with a wear rate as small as 1.01 x 10(-7) mm3/Nm at 400 deg C could be promising candidate coating for the surface-modification of some sliding components subject to harsh working conditions involving elevated temperature and corrosive medium. Conventional and nanostructured WC–12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the coatings was measured, while their friction and wear behavior sliding against Si 3N 4 at room temperature and elevated temperatures up to 400 °C was comparatively studied. The microstructures and worn surface morphologies of the coatings were comparatively analyzed as well by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA). It was found that the as-sprayed WC–12%Co coatings were composed of WC as the major phase and W 2C, WC 1− x , and W 3Co 3C as the minor phases. The plasma sprayed nanostructured WC–12%Co coating had much higher hardness and refined microstructures than the conventional WC–12%Co coating. This largely accounted for the better wear resistance of the nanostructured WC–12%Co coating than the conventional coating. Besides, the two types of WC–12%Co coatings showed minor differences in friction coefficients, though the nanostructured WC–12%Co coating roughly had slightly smaller friction coefficient than the conventional coating under the same sliding condition. Moreover, both the conventional and nanostructured WC–12%Co coatings recorded gradually increased wear rate with increasing temperature, and the nanostructured coating was less sensitive to the temperature rise in terms of the wear resistance. The worn surfaces of the conventional WC–12%Co coating at different sliding conditions showed more severe adhesion, microfracture, and peeling as compared to the nanostructured WC–12%Co coating, which well conformed to the corresponding wear resistance of the two types of coatings. The nanostructured WC–12%Co coating with a wear rate as small as 1.01 × 10 −7 mm 3/Nm at 400 °C could be promising candidate coating for the surface-modification of some sliding components subject to harsh working conditions involving elevated temperature and corrosive medium. |
Author | Zhou, Hui-Di Chen, Jian-Min Zhao, Xiao-Qin |
Author_xml | – sequence: 1 givenname: Xiao-Qin surname: Zhao fullname: Zhao, Xiao-Qin organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 2 givenname: Hui-Di surname: Zhou fullname: Zhou, Hui-Di email: hdzhou@lzb.ac.cn organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 3 givenname: Jian-Min surname: Chen fullname: Chen, Jian-Min organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18027224$$DView record in Pascal Francis |
BookMark | eNp9kc2KFDEUhQsZwZ7RF3CVzbirnvxUVyXgRhp_BgbcKC7DrdSNk6YqKZNUS-98AHe-oU9iyh5cuBg4kEC-c5Lcc1ld-OCxql4yumWUtTeH7ZQQtpzSdruKqifVhslO1I0S7UW1oYqzekeVeFZdpnSglLKG7jbVz32YZoiQ3RFJystwIsGSfI_ERmeyC56AH8h3hEh6vIejC3El5hHSBCTNEU44EBP8Ef2Kw_jX4MGHlONi8hLL-Zf97x-_GL_eh4KWy_zXREp0yuD8iCmVHeL4vHpqYUz44mG9qj6_e_tp_6G--_j-dv_mrjZCyVxzy4AzrpSUu64XbW-khaYTfTv0bfkiN6IZelGExkrT76hlrJPApbJSKSWuqlfn3DmGbwumrCeXDI4jeAxL0lxxwbmQBbx-ACEZGG0Eb1zSc3QTxJNmkvKO86Zw8syZGFKKaLVxGdZx5Ahu1IzqtSZ90GtNeq1Jr6LrW_h_1n_pj5len01YpnR0GHUyDr3BwUU0WQ_BPWb_AyuXsVQ |
CitedBy_id | crossref_primary_10_1016_j_ijrmhm_2017_10_022 crossref_primary_10_1007_s11665_014_0974_z crossref_primary_10_1016_j_surfcoat_2011_06_047 crossref_primary_10_1088_2051_672X_ac3a52 crossref_primary_10_1016_j_surfcoat_2008_01_009 crossref_primary_10_1016_S1003_6326_15_64011_0 crossref_primary_10_1016_j_wear_2011_07_012 crossref_primary_10_1007_s40195_015_0210_3 crossref_primary_10_1179_175158409X459958 crossref_primary_10_26634_jme_6_4_8291 crossref_primary_10_1016_j_surfcoat_2012_02_030 crossref_primary_10_1016_j_wear_2015_01_035 crossref_primary_10_1007_s10853_017_1271_7 crossref_primary_10_1080_10402004_2015_1068423 crossref_primary_10_1007_s11665_009_9411_0 crossref_primary_10_1016_j_promfg_2019_02_048 crossref_primary_10_1179_026708410X12506870724352 crossref_primary_10_1179_026708408X329489 crossref_primary_10_1007_s11666_018_0764_5 crossref_primary_10_1007_s00170_015_7824_5 crossref_primary_10_1007_s00339_023_06593_2 crossref_primary_10_1007_s11666_008_9181_5 crossref_primary_10_1016_j_wear_2011_09_011 crossref_primary_10_1115_1_4050735 crossref_primary_10_1016_j_ceramint_2020_04_288 crossref_primary_10_1016_j_jiec_2025_01_031 crossref_primary_10_1016_j_triboint_2016_08_025 crossref_primary_10_4028_www_scientific_net_KEM_373_374_564 crossref_primary_10_1016_j_intermet_2012_03_026 crossref_primary_10_1142_S0218625X08012049 crossref_primary_10_1016_j_apsusc_2011_05_056 crossref_primary_10_1007_s11666_021_01185_z crossref_primary_10_1016_j_nimb_2008_02_073 crossref_primary_10_1016_j_compstruct_2016_09_018 crossref_primary_10_1016_j_mtcomm_2025_112102 crossref_primary_10_1038_s41598_020_78088_6 crossref_primary_10_1088_1748_6041_7_6_065004 crossref_primary_10_1007_s00170_017_0795_y crossref_primary_10_1016_j_surfcoat_2013_07_069 crossref_primary_10_1080_02670844_2016_1258769 crossref_primary_10_4028_www_scientific_net_SSP_213_131 crossref_primary_10_3390_coatings8090307 crossref_primary_10_1016_j_surfcoat_2017_02_048 crossref_primary_10_1111_j_1744_7402_2011_02734_x crossref_primary_10_1007_s11106_023_00348_7 crossref_primary_10_1007_s11666_010_9480_5 crossref_primary_10_3390_coatings13030499 crossref_primary_10_1016_j_mspro_2014_07_128 crossref_primary_10_1016_j_surfcoat_2015_06_017 crossref_primary_10_3934_matersci_2016_2_404 crossref_primary_10_1007_s11666_018_0745_8 crossref_primary_10_1016_j_oceaneng_2019_106449 crossref_primary_10_1007_s11666_010_9572_2 crossref_primary_10_1016_j_surfcoat_2020_126716 crossref_primary_10_1007_s11666_011_9661_x crossref_primary_10_1016_S1003_6326_11_61000_5 crossref_primary_10_1007_s00170_017_0837_5 crossref_primary_10_1016_j_surfcoat_2007_10_002 crossref_primary_10_1016_j_jallcom_2024_173454 crossref_primary_10_1007_s10033_017_0162_9 crossref_primary_10_1016_S1003_6326_18_64681_3 |
Cites_doi | 10.1016/S0043-1648(96)07423-6 10.1016/S0257-8972(98)00822-6 10.1016/S0043-1648(02)00294-6 10.1016/j.wear.2004.05.001 10.1016/S0043-1648(96)07277-8 10.1016/S0040-6090(01)00805-7 10.1016/j.surfcoat.2004.12.032 10.1016/S0043-1648(99)00032-0 10.1016/0043-1648(93)90290-3 10.1016/S0257-8972(03)00242-1 10.1016/0043-1648(95)06866-X 10.1016/S0272-8842(01)00016-5 10.1016/0025-5416(88)90712-4 10.1016/j.wear.2004.09.044 10.1016/j.msea.2004.09.043 |
ContentType | Journal Article |
Copyright | 2006 Elsevier B.V. 2006 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier B.V. – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.msea.2006.06.009 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-4936 |
EndPage | 297 |
ExternalDocumentID | 18027224 10_1016_j_msea_2006_06_009 S0921509306010021 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSZ T5K WUQ ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c398t-2f1a212998857b36bc8fa473b6db60932c34db3db3ecf8cb50f1178a289f89993 |
IEDL.DBID | AIKHN |
ISSN | 0921-5093 |
IngestDate | Fri Jul 11 08:30:08 EDT 2025 Mon Jul 21 09:15:01 EDT 2025 Thu Apr 24 23:16:08 EDT 2025 Tue Jul 01 03:12:29 EDT 2025 Fri Feb 23 02:25:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Friction and wear behavior Elevated temperature Plasma spraying Microstructure WC–Co coating Scanning electron microscopy Sliding wear Surface coating Surface morphology Nanostructure Hardness Dispersive spectrometry X ray diffraction WC-Co coating Friction Composite coating Stainless steel Cemented carbides Wear resistance |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-2f1a212998857b36bc8fa473b6db60932c34db3db3ecf8cb50f1178a289f89993 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29232238 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_29232238 pascalfrancis_primary_18027224 crossref_citationtrail_10_1016_j_msea_2006_06_009 crossref_primary_10_1016_j_msea_2006_06_009 elsevier_sciencedirect_doi_10_1016_j_msea_2006_06_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-09-15 |
PublicationDateYYYYMMDD | 2006-09-15 |
PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2006 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Qiao, Fischer, Dent (bib9) 2003; 172 Stewart, Shipway, McCartney (bib2) 1999; 225 Zhu, Ding, Yukimura, Xiao, Struttd (bib11) 2001; 27 Jia, Fisher (bib14) 1996; 200 Jia, Fisher (bib4) 1997; 203–204 Yang, Senda, Hirose (bib7) 2006; 200 Fervel, Normand, Liao, Coddet, Bêche, Berjoan (bib13) 1999; 111 Roy, Pauschitz, Wernisch, Franek (bib6) 2004; 257 Wang, Xu, Shen, Liu (bib10) 1996; 196 Shi, Shao, Duan, Yuan, Lin (bib1) 2005; 392 Yang, Senda, Ohmori (bib15) 2003; 254 Chen, Xu, Zhou, Hutchings, Shipway, Liu (bib5) 2005; 258 Masuda, Kuroshima, Chujo (bib12) 1993; 169 Zhu, Yukimura, Ding, Zhang (bib3) 2001; 388 Schaller, Ammann (bib8) 1988; 105–106 Fervel (10.1016/j.msea.2006.06.009_bib13) 1999; 111 Chen (10.1016/j.msea.2006.06.009_bib5) 2005; 258 Roy (10.1016/j.msea.2006.06.009_bib6) 2004; 257 Masuda (10.1016/j.msea.2006.06.009_bib12) 1993; 169 Stewart (10.1016/j.msea.2006.06.009_bib2) 1999; 225 Jia (10.1016/j.msea.2006.06.009_bib14) 1996; 200 Wang (10.1016/j.msea.2006.06.009_bib10) 1996; 196 Zhu (10.1016/j.msea.2006.06.009_bib11) 2001; 27 Shi (10.1016/j.msea.2006.06.009_bib1) 2005; 392 Yang (10.1016/j.msea.2006.06.009_bib7) 2006; 200 Jia (10.1016/j.msea.2006.06.009_bib4) 1997; 203–204 Yang (10.1016/j.msea.2006.06.009_bib15) 2003; 254 Schaller (10.1016/j.msea.2006.06.009_bib8) 1988; 105–106 Zhu (10.1016/j.msea.2006.06.009_bib3) 2001; 388 Qiao (10.1016/j.msea.2006.06.009_bib9) 2003; 172 |
References_xml | – volume: 200 start-page: 4208 year: 2006 end-page: 4212 ident: bib7 publication-title: Surf. Coat. Technol. – volume: 257 start-page: 799 year: 2004 end-page: 811 ident: bib6 publication-title: Wear – volume: 196 start-page: 82 year: 1996 end-page: 86 ident: bib10 publication-title: Wear – volume: 105–106 start-page: 313 year: 1988 end-page: 321 ident: bib8 publication-title: Mater. Sci. Eng. A – volume: 200 start-page: 206 year: 1996 end-page: 214 ident: bib14 publication-title: Wear – volume: 111 start-page: 255 year: 1999 end-page: 262 ident: bib13 publication-title: Surf. Coat. Technol. – volume: 392 start-page: 335 year: 2005 end-page: 339 ident: bib1 publication-title: Mater. Sci. Eng. A – volume: 27 start-page: 669 year: 2001 end-page: 674 ident: bib11 publication-title: Ceram. Int. – volume: 225 start-page: 789 year: 1999 end-page: 798 ident: bib2 publication-title: Wear – volume: 388 start-page: 277 year: 2001 end-page: 282 ident: bib3 publication-title: Thin Solid Films – volume: 203–204 start-page: 310 year: 1997 end-page: 318 ident: bib4 publication-title: Wear – volume: 169 start-page: 135 year: 1993 end-page: 140 ident: bib12 publication-title: Wear – volume: 258 start-page: 333 year: 2005 end-page: 338 ident: bib5 publication-title: Wear – volume: 172 start-page: 24 year: 2003 end-page: 41 ident: bib9 publication-title: Surf. Coat. Technol. – volume: 254 start-page: 23 year: 2003 end-page: 34 ident: bib15 publication-title: Wear – volume: 203–204 start-page: 310 year: 1997 ident: 10.1016/j.msea.2006.06.009_bib4 publication-title: Wear doi: 10.1016/S0043-1648(96)07423-6 – volume: 111 start-page: 255 year: 1999 ident: 10.1016/j.msea.2006.06.009_bib13 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(98)00822-6 – volume: 254 start-page: 23 year: 2003 ident: 10.1016/j.msea.2006.06.009_bib15 publication-title: Wear doi: 10.1016/S0043-1648(02)00294-6 – volume: 257 start-page: 799 year: 2004 ident: 10.1016/j.msea.2006.06.009_bib6 publication-title: Wear doi: 10.1016/j.wear.2004.05.001 – volume: 200 start-page: 206 year: 1996 ident: 10.1016/j.msea.2006.06.009_bib14 publication-title: Wear doi: 10.1016/S0043-1648(96)07277-8 – volume: 388 start-page: 277 year: 2001 ident: 10.1016/j.msea.2006.06.009_bib3 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)00805-7 – volume: 200 start-page: 4208 year: 2006 ident: 10.1016/j.msea.2006.06.009_bib7 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2004.12.032 – volume: 225 start-page: 789 year: 1999 ident: 10.1016/j.msea.2006.06.009_bib2 publication-title: Wear doi: 10.1016/S0043-1648(99)00032-0 – volume: 169 start-page: 135 year: 1993 ident: 10.1016/j.msea.2006.06.009_bib12 publication-title: Wear doi: 10.1016/0043-1648(93)90290-3 – volume: 172 start-page: 24 year: 2003 ident: 10.1016/j.msea.2006.06.009_bib9 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(03)00242-1 – volume: 196 start-page: 82 year: 1996 ident: 10.1016/j.msea.2006.06.009_bib10 publication-title: Wear doi: 10.1016/0043-1648(95)06866-X – volume: 27 start-page: 669 year: 2001 ident: 10.1016/j.msea.2006.06.009_bib11 publication-title: Ceram. Int. doi: 10.1016/S0272-8842(01)00016-5 – volume: 105–106 start-page: 313 year: 1988 ident: 10.1016/j.msea.2006.06.009_bib8 publication-title: Mater. Sci. Eng. A doi: 10.1016/0025-5416(88)90712-4 – volume: 258 start-page: 333 year: 2005 ident: 10.1016/j.msea.2006.06.009_bib5 publication-title: Wear doi: 10.1016/j.wear.2004.09.044 – volume: 392 start-page: 335 year: 2005 ident: 10.1016/j.msea.2006.06.009_bib1 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.09.043 |
SSID | ssj0001405 |
Score | 2.138726 |
Snippet | Conventional and nanostructured WC–12%Co coatings were deposited on 1Cr18Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the... Conventional and nanostructured WC-12%Co coatings were deposited on lCrl8Ni9Ti stainless steel substrate using air plasma spraying. The hardness of the... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 290 |
SubjectTerms | Applied sciences Contact of materials. Friction. Wear Elevated temperature Exact sciences and technology Friction and wear behavior Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metallic coatings Metals. Metallurgy Microstructure Plasma spraying Production techniques Surface treatment WC–Co coating |
Title | Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC–12%Co coatings on stainless steel |
URI | https://dx.doi.org/10.1016/j.msea.2006.06.009 https://www.proquest.com/docview/29232238 |
Volume | 431 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB51uYAqxCpeKa8-wAmZ1yxOnGMVtXoU0QtU9BbZsS0VvSZRX6uqF8QP4MY_5JfwOXG6CNEDUg5RMhNHM5NZ4lmI3ihQXglhuEvjnMNCSa6tyHmuUy3jQkVO-drhT4fZ_Cg9OBbHK1SOtTA-rTLo_kGn99o6XJkFas66k5PZ550C5goBue8o4k3VKq3HSZFBtNd3P3ycH14rZMQQfSYj4LlHCLUzQ5rXKSQq7En4bYniX_Zpo1NLUM0N4y7-0ty9Odp_TI-CH8l2h1d9Qiu2eUoPb3UXfEY_y5vO3qxvI8tax-DwMT8byDOEqcawS8g6G6v1PUQHh_pUsWV3pq6sYbfz0nuERjXt0Hb24gz3v5a_f_yK4rdlC1Dls6iXDI_u67IW0KM4s3bxnI72976Ucx6GL_A6KeQ5j12kYNYQjUmR6yTTtXQqzROdGZ2BiHGdpEYnOGztZK3FjouiXCoEcA4xXJG8oLWmbexLYnFuhEOonTh4XyZ3WlvfLrgWBtrDZWZC0Ujyqg6dyf2AjEU1pqB9qzyb_MjMrOrz8IoJvbvG6Ya-HPdCi5GT1R3pqmA47sWb3mH7zVIS4Ty8nwltj3JQ4bv0my2qse3FsorhOcP1kpv_ufQrejD87Sl4JLZoDWy1r-H_nOsprb7_Hk2DlP8B9qcH2w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgBUIZ5iC7Q-wAmZbR5OnCOKqBZoe6EVvVl2bEtF2yTqtqp6QfyA3voP-SV8zoNthegBaQ_R7jhZzYznEX8zQ_RGg_NaCMt9GuccHkpy40TOc5MaGRc68jrUDu_uZbOD9POhOFyhcqyFCbDKwfb3Nr2z1sM304Gb0_boaPp1q4C7QkIeOooEV3WH7qbYvmF3vv-xxHkgg-hwjKDmgXyonOlBXsfQp-FEIhxKFP_yTmutXoBnvh928Zfd7pzR9iN6OESR7EP_Rx_Tiquf0INrvQWf0mW57OvNuiayrPEM4R4Lk4GCOJiuLTuHprOxVj9QtAinjzVbtCf6wll2HZXeLah13fRNZ89O8Pu38tfPqyh-WzYg1QFDvWC4dVeVNYcVxZVz82d0sP1xv5zxYfQCr5JCnvLYRxpODbmYFLlJMlNJr9M8MZk1GZgYV0lqTYKPq7ysjNjyUZRLjfTNI4Mrkue0Wje1e0Eszq3wSLQTj9jL5t4YF5oFV8LCdvjMTigaWa6qoS95GI8xVyMA7bsKYgoDMzPVofCKCb37s6btu3LcSi1GSaobuqXgNm5dt3FD7MtHSSTziH0mtDnqgcKuDEctunbN2ULFiJsReMn1_3z0Jt2b7e_uqJ1Pe19e0v3-vU_BI_GKViFi9xqR0KnZ6DT9NyUnCJ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+of+the+friction+and+wear+behavior+of+plasma+sprayed+conventional+and+nanostructured+WC%E2%80%9312%25Co+coatings+on+stainless+steel&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Zhao%2C+Xiao-Qin&rft.au=Zhou%2C+Hui-Di&rft.au=Chen%2C+Jian-Min&rft.date=2006-09-15&rft.pub=Elsevier+B.V&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=431&rft.issue=1&rft.spage=290&rft.epage=297&rft_id=info:doi/10.1016%2Fj.msea.2006.06.009&rft.externalDocID=S0921509306010021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |