Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications
Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+,...
Saved in:
Published in | Carbohydrate polymers Vol. 309; p. 120678 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+, Cu2+ or Zn2+), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mn+ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mn+/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mn+/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics.
[Display omitted] |
---|---|
AbstractList | Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-M
/LiCl (short for PAM/XG/SA-M
/LiCl, where M
stands for Fe
, Cu
or Zn
), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion M
to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-M
/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-M
/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics. Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mⁿ⁺/LiCl (short for PAM/XG/SA-Mⁿ⁺/LiCl, where Mⁿ⁺ stands for Fe³⁺, Cu²⁺ or Zn²⁺), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mⁿ⁺ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mⁿ⁺/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mⁿ⁺/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics. Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+, Cu2+ or Zn2+), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mn+ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mn+/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mn+/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics. [Display omitted] Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+, Cu2+ or Zn2+), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mn+ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mn+/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mn+/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics.Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+, Cu2+ or Zn2+), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mn+ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mn+/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mn+/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics. |
ArticleNumber | 120678 |
Author | Wei, Huige Ji, Yanxiu Chu, Liqiang Cheng, Bowen Zhang, Teng Zhao, Shixiang Algadi, Hassan Zhang, Yingying Cui, Dapeng Wan, Tong Guo, Zhanhu Li, Tuo |
Author_xml | – sequence: 1 givenname: Tuo surname: Li fullname: Li, Tuo organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 2 givenname: Huige surname: Wei fullname: Wei, Huige email: huigewei@tust.edu.cn organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 3 givenname: Yingying surname: Zhang fullname: Zhang, Yingying organization: Tianjin Chest Hospital, Tianjin 300222, China – sequence: 4 givenname: Tong surname: Wan fullname: Wan, Tong organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 5 givenname: Dapeng surname: Cui fullname: Cui, Dapeng organization: College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 6 givenname: Shixiang surname: Zhao fullname: Zhao, Shixiang organization: College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China – sequence: 7 givenname: Teng surname: Zhang fullname: Zhang, Teng organization: College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China – sequence: 8 givenname: Yanxiu surname: Ji fullname: Ji, Yanxiu organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 9 givenname: Hassan surname: Algadi fullname: Algadi, Hassan organization: Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia – sequence: 10 givenname: Zhanhu surname: Guo fullname: Guo, Zhanhu organization: Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK – sequence: 11 givenname: Liqiang surname: Chu fullname: Chu, Liqiang email: chuliqiang@tust.edu.cn organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China – sequence: 12 givenname: Bowen surname: Cheng fullname: Cheng, Bowen email: bowenc15@tust.edu.cn organization: State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36906361$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUGPEyEYholZ43ZXf4KGo5fpwjDDTOPBmI2uJpt4UM_kG_imS2VgBGrtD_H_LrXdi5dyAA7P-xC-94pc-OCRkNecLTnj8maz1BCHObhlzWqx5DWTXf-MLHjfrSoumuaCLBhvmqqXvLskVyltWFmSsxfkUsgVk0LyBfn7LRi7nSi4tfWQkUa0fgxRo6FFvgcd9w4ma_DmD_j8AJ6uC27CdnBIPeZdiD-pDd5q-rA3MazRJVoENOWIKdGEPlm_puBNubuxmsMOY7HvECIcJAZ_W40U5tlZDbm40kvyfASX8NXpvCY_Pn38fvu5uv969-X2w32lxarPVY16aNjAeYeDaCWyUQ8tM3wUiAI7aAfZcoE9IBO6LkcnOmnAALCyN424Jm-P3jmGX1tMWU02aXQOPIZtUnUvmrrmXLDzaNdLtuqbuivomxO6HSY0ao52grhXT1MvwLsjoGNIKeKotM3_fp4jWKc4U4eO1UadOlaHjtWx45Ju_0s_PXAu9_6YKw2VkWNUSVv0pWkbUWdlgj1jeAQJWcgz |
CitedBy_id | crossref_primary_10_1002_app_56231 crossref_primary_10_1007_s42114_024_00847_0 crossref_primary_10_1007_s42114_024_00889_4 crossref_primary_10_1016_j_colsurfa_2023_132445 crossref_primary_10_1016_j_mtphys_2024_101537 crossref_primary_10_1016_j_carbpol_2024_123138 crossref_primary_10_1007_s42114_024_01165_1 crossref_primary_10_1007_s42114_023_00731_3 crossref_primary_10_1007_s10854_024_13310_z crossref_primary_10_1007_s42114_023_00751_z crossref_primary_10_1016_j_ijbiomac_2024_138900 crossref_primary_10_1007_s12598_023_02612_6 crossref_primary_10_1007_s42114_023_00716_2 crossref_primary_10_1007_s42114_024_01041_y crossref_primary_10_1016_j_ijbiomac_2025_141597 crossref_primary_10_1016_j_nanoen_2023_108678 crossref_primary_10_1002_app_55701 crossref_primary_10_1007_s42114_023_00758_6 crossref_primary_10_1021_acsapm_3c00771 crossref_primary_10_1109_JSEN_2023_3338631 crossref_primary_10_1007_s42114_024_00896_5 crossref_primary_10_1007_s42114_024_00938_y crossref_primary_10_1016_j_ijbiomac_2023_126018 crossref_primary_10_1016_j_ijbiomac_2024_135507 crossref_primary_10_1016_j_carres_2024_109070 crossref_primary_10_1039_D4TC02804J crossref_primary_10_1007_s42114_024_00859_w crossref_primary_10_1590_1517_7076_rmat_2023_0162 crossref_primary_10_1007_s42114_023_00827_w crossref_primary_10_1016_j_aej_2024_11_092 crossref_primary_10_1007_s42114_023_00781_7 crossref_primary_10_1016_j_jallcom_2023_171795 crossref_primary_10_1007_s42114_023_00766_6 crossref_primary_10_1016_j_polymer_2024_127160 crossref_primary_10_1007_s42114_023_00807_0 crossref_primary_10_1007_s42114_024_01146_4 crossref_primary_10_1021_acsnano_3c10663 crossref_primary_10_1016_j_carbpol_2023_121408 crossref_primary_10_1016_j_mtcomm_2024_108465 crossref_primary_10_1007_s42114_023_00822_1 crossref_primary_10_1515_gps_2023_0151 crossref_primary_10_1007_s11783_024_1811_8 crossref_primary_10_1016_j_reactfunctpolym_2023_105746 crossref_primary_10_1680_jemmr_23_00059 crossref_primary_10_1080_10916466_2024_2305337 crossref_primary_10_1007_s10854_024_13657_3 crossref_primary_10_1016_j_isci_2024_109725 crossref_primary_10_1021_acsami_3c11957 crossref_primary_10_1134_S0965545X25600085 crossref_primary_10_1016_j_indcrop_2024_118081 crossref_primary_10_1016_j_ijbiomac_2024_137123 crossref_primary_10_1007_s42114_023_00754_w crossref_primary_10_1021_acsapm_4c03511 crossref_primary_10_1021_acsaelm_3c00651 crossref_primary_10_1007_s42114_023_00715_3 crossref_primary_10_1007_s40820_024_01326_3 crossref_primary_10_1007_s42114_024_01083_2 crossref_primary_10_1016_j_ijbiomac_2023_126954 crossref_primary_10_1021_acsanm_3c05480 crossref_primary_10_1007_s42114_023_00795_1 crossref_primary_10_1021_acs_langmuir_4c02244 crossref_primary_10_1021_acsami_4c15748 crossref_primary_10_1002_adfm_202310966 crossref_primary_10_1007_s42114_023_00762_w crossref_primary_10_1002_adem_202301622 crossref_primary_10_1007_s12221_024_00605_5 crossref_primary_10_1007_s42114_023_00821_2 crossref_primary_10_1007_s42114_024_00841_6 crossref_primary_10_1007_s42114_023_00719_z crossref_primary_10_1002_admt_202401474 crossref_primary_10_1016_j_polymer_2024_126725 crossref_primary_10_1021_acsapm_3c00846 crossref_primary_10_1039_D3NJ01777J crossref_primary_10_1007_s42114_024_00868_9 crossref_primary_10_1016_j_carbpol_2023_121677 crossref_primary_10_1088_2515_7639_ad05e7 crossref_primary_10_1039_D3TA01076G crossref_primary_10_1021_acsanm_3c02441 crossref_primary_10_1021_acsapm_4c00536 crossref_primary_10_1007_s42114_023_00817_y crossref_primary_10_1007_s42114_024_00865_y crossref_primary_10_1007_s42114_023_00733_1 crossref_primary_10_1016_j_ijbiomac_2025_139999 crossref_primary_10_1364_OPTCON_500786 crossref_primary_10_1021_acsapm_3c01021 crossref_primary_10_1016_j_ijbiomac_2025_140869 crossref_primary_10_3390_su16145993 crossref_primary_10_1007_s40843_023_2581_x crossref_primary_10_1007_s42235_024_00571_x crossref_primary_10_1002_pat_6267 crossref_primary_10_1007_s42114_024_01137_5 crossref_primary_10_1016_j_apsusc_2024_161276 crossref_primary_10_1007_s42114_023_00714_4 crossref_primary_10_1016_j_colsurfa_2024_134149 crossref_primary_10_1016_j_sna_2024_115199 crossref_primary_10_1016_j_mtelec_2023_100055 crossref_primary_10_1007_s42114_024_00902_w crossref_primary_10_1016_j_carpta_2024_100482 crossref_primary_10_1016_j_jmst_2024_07_053 crossref_primary_10_1016_j_apmt_2024_102570 crossref_primary_10_1016_j_ijbiomac_2024_133926 crossref_primary_10_1016_j_ijbiomac_2024_133802 crossref_primary_10_1007_s42114_024_00852_3 crossref_primary_10_1007_s42114_024_00891_w crossref_primary_10_1016_j_eurpolymj_2024_113641 crossref_primary_10_1109_JSEN_2024_3401715 crossref_primary_10_1002_pat_6264 crossref_primary_10_1016_j_ijbiomac_2024_135701 crossref_primary_10_1080_01694243_2023_2278368 crossref_primary_10_1002_smll_202403303 crossref_primary_10_1021_acsnano_3c13221 crossref_primary_10_1016_j_nanoen_2024_110262 crossref_primary_10_1016_j_carbpol_2024_122633 crossref_primary_10_1016_j_ensm_2024_103483 crossref_primary_10_1016_j_ijbiomac_2024_134065 crossref_primary_10_1007_s42114_023_00787_1 crossref_primary_10_1007_s42114_023_00726_0 crossref_primary_10_1039_D3TC01866K crossref_primary_10_1016_j_jics_2023_101048 crossref_primary_10_1007_s42114_023_00746_w crossref_primary_10_1007_s42114_023_00703_7 crossref_primary_10_1007_s42114_024_00863_0 crossref_primary_10_1016_j_clay_2024_107691 crossref_primary_10_1016_j_apmt_2024_102339 crossref_primary_10_1016_j_ijbiomac_2023_127434 crossref_primary_10_1007_s13399_023_04637_4 crossref_primary_10_1021_acsaelm_3c00619 crossref_primary_10_1039_D3CP04319C crossref_primary_10_1016_j_aej_2024_03_018 crossref_primary_10_1016_j_carbpol_2024_122788 crossref_primary_10_1007_s42114_024_01103_1 crossref_primary_10_1016_j_giant_2023_100203 crossref_primary_10_1021_acs_biomac_3c00442 crossref_primary_10_1002_adfm_202312839 crossref_primary_10_1021_acsaelm_4c00156 crossref_primary_10_3390_gels9070523 crossref_primary_10_1002_ente_202400424 crossref_primary_10_1039_D4QM00784K crossref_primary_10_1111_jace_19632 crossref_primary_10_1016_j_jcis_2023_11_139 crossref_primary_10_1016_j_eurpolymj_2024_113173 crossref_primary_10_1002_macp_202400207 crossref_primary_10_1021_acs_langmuir_3c02187 crossref_primary_10_1016_j_jmst_2023_11_012 crossref_primary_10_1021_acsami_4c18098 crossref_primary_10_1016_j_jmst_2023_03_049 crossref_primary_10_1016_j_ijbiomac_2024_129803 crossref_primary_10_1016_j_jiec_2023_12_029 crossref_primary_10_1007_s42114_023_00793_3 crossref_primary_10_1007_s42114_024_00856_z crossref_primary_10_1007_s42114_023_00809_y crossref_primary_10_1016_j_carbpol_2023_121300 crossref_primary_10_1007_s40820_024_01494_2 crossref_primary_10_1002_smll_202404011 crossref_primary_10_1016_j_ijbiomac_2024_136333 crossref_primary_10_1021_acsami_3c13256 crossref_primary_10_1109_JSEN_2024_3499972 crossref_primary_10_1016_j_colsurfa_2024_136035 crossref_primary_10_1039_D3CP04255C crossref_primary_10_1002_pat_6312 crossref_primary_10_1016_j_energy_2023_128777 crossref_primary_10_1007_s42114_023_00800_7 crossref_primary_10_1016_j_cej_2024_157823 crossref_primary_10_1021_acsami_3c17057 crossref_primary_10_1007_s42114_024_00915_5 crossref_primary_10_1016_j_ijbiomac_2024_129533 |
Cites_doi | 10.1016/j.carbpol.2020.116743 10.1007/s42114-022-00531-1 10.1016/j.mtbio.2022.100325 10.1016/j.carbpol.2018.09.044 10.1021/acsami.1c03213 10.1021/acsnano.1c11505 10.1007/s42114-020-00201-0 10.1016/j.cej.2021.129478 10.1021/acsami.2c01785 10.1016/j.polymer.2021.124513 10.1016/j.polymer.2022.125270 10.1021/acsami.1c05394 10.1016/j.colsurfa.2019.01.034 10.1126/sciadv.1700015 10.1007/s12274-020-2970-y 10.1680/jemmr.21.00061 10.1002/adma.201801541 10.1007/s42114-022-00472-9 10.1007/s42114-021-00396-w 10.1093/nsr/nwab147 10.1021/acsami.2c00101 10.1016/j.biomaterials.2021.120811 10.1002/smll.202201796 10.1007/s42114-022-00471-w 10.1016/j.cej.2020.127960 10.1002/adma.201900573 10.1016/j.nanoen.2021.106210 10.1016/j.cej.2021.132449 10.1021/acsami.9b06523 10.1016/j.carbpol.2019.115051 10.1021/acs.chemmater.9b04041 10.1021/acs.nanolett.0c02519 10.1016/j.ijbiomac.2022.05.084 10.1021/acsbiomaterials.1c00116 10.1007/s42114-022-00584-2 10.1021/acs.biomac.2c00329 10.1039/C9TB01039D 10.1016/j.bios.2020.112568 10.1021/acsapm.1c00264 10.1016/j.carbpol.2021.117823 10.1021/acsami.2c14120 10.1016/j.carbpol.2022.119428 10.1021/acsami.0c14472 10.1021/acsnano.0c10893 10.1007/s42114-022-00476-5 10.1021/acsnano.2c05069 10.1021/acsami.2c07213 10.1021/ic011306p 10.1007/s42114-022-00497-0 10.1021/acsami.5b04522 10.1021/acsami.9b19721 10.1016/j.carbpol.2020.117010 10.1016/j.carbpol.2021.118533 10.1002/adfm.201806220 10.1007/s42114-022-00465-8 10.1016/j.eurpolymj.2021.110306 10.1016/j.jmst.2022.06.032 10.1007/s42114-022-00467-6 10.1039/D0NR08351H 10.1016/j.sna.2015.01.026 10.1021/acssensors.1c00699 10.1002/advs.202100320 10.1021/acsapm.1c00805 10.1021/acsami.0c13962 10.1007/s40820-022-00835-3 10.1007/s40820-021-00592-9 10.1021/acsami.2c02997 10.1007/s42114-021-00238-9 10.1016/j.cej.2020.126307 10.1021/acs.iecr.1c04997 10.1002/anie.201902578 10.1016/j.matt.2021.03.003 10.1039/D1TC02506F 10.1016/j.polymer.2022.124769 10.1021/acs.iecr.1c03358 10.1002/adfm.202002370 10.1038/s41467-018-05238-w 10.1021/acsami.2c00317 10.1016/j.snb.2022.131806 10.1016/j.carbpol.2021.118207 10.1021/acsmaterialslett.1c00368 10.1007/s42114-022-00508-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2023.120678 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
ExternalDocumentID | 36906361 10_1016_j_carbpol_2023_120678 S014486172300142X |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SDF SDG SDP SES SEW SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- RIG SCB SMS SOC SSH WUQ XPP NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-2ecb40b117eb356e0fcb50d1f3ee3e7a5b6513e8ae03c28ae7376dadaa0dad443 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Wed Jul 02 04:46:43 EDT 2025 Wed Jul 30 10:43:47 EDT 2025 Wed Feb 19 02:24:57 EST 2025 Tue Jul 01 01:24:55 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Fri Feb 23 02:38:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stress-sensing Self-powered Wearable electronics Ionic hydrogel Macromolecular reinforcing agent Double network |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-2ecb40b117eb356e0fcb50d1f3ee3e7a5b6513e8ae03c28ae7376dadaa0dad443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36906361 |
PQID | 2786098427 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2834221130 proquest_miscellaneous_2786098427 pubmed_primary_36906361 crossref_citationtrail_10_1016_j_carbpol_2023_120678 crossref_primary_10_1016_j_carbpol_2023_120678 elsevier_sciencedirect_doi_10_1016_j_carbpol_2023_120678 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 2023-06-00 2023-Jun-01 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sun, Zhu, Jia, Yang, Zheng, Wang (bb0245) 2021; 260 Song, Wang, Zhang, Shen, Yin, Ye (bb0230) 2021; 273 Xue, Sheng, Li, Li, Di, Xu (bb0305) 2022; 9 Zhou, Wan, Yang, Yang, Wang, Dai (bb0355) 2019; 29 Zhang, Zhao, Peng, Yao, Alsaid, Hua (bb0335) 2021; 3 Liu, Ren, Liu, Zhao, Ling, Gu (bb0185) 2021; 13 Ye, Capezza, Xiao, Lendel, Hedenqvist, Kessler (bb0315) 2021; 15 Wang, Liu, Schubert (bb0265) 2021; 13 Zhang, Wang, Zhang, Lei, Chen, Xue (bb0325) 2022; 18 Wang, Chen, Khan, Liu, Chen, Chen (bb0255) 2019; 567 Zhang, Lian, Alhadhrami, Huang, Li, Mersal (bb8000) 2022; 5 Fan, Geng, Wang, Gu (bb0060) 2022; 246 Charlet, Lutz-Bueno, Mezzenga, Amstad (bb0025) 2021; 13 Li, Wan, Wei, Wang, Wang, Cheng (bb0150) 2022; 362 Li, Wang, Zheng, Yang, Jiang (bb0155) 2020; 30 Fang, Zhang, Wang, Zhang, Chen, Zhou (bb0075) 2020; 12 Yang, Han, Fu, Wang, Huang (bb4000) 2022; 5 Li, Li, Chang, Wu, Liu, Wang (bb0160) 2020; 13 Aggas, Abasi, Phipps, Podstawczyk, Guiseppi-Elie (bb0005) 2020; 168 Ding, Zhang, Wang, Zhu, Wang, Wang (bb0045) 2021; 147 Zhang, Ma, Hou, Guo, Yin, Wang (bb0330) 2019; 58 Bakadia, Zhong, Li, Ode Boni, Ahmed, Souho (bb7000) 2022; 5 Wu, Yao, Sun, Liu, Liu, Zhang (bb0280) 2022; 429 Cheng, Ren, Gao, Duan (bb0040) 2019; 223 Onal (bb3000) 2022; 11 Li, Huang, Qiu, Thabet, Alhashmialameer, Huang (bb9200) 2022; 5 Liu, Wu, Jiang, Guo, Wang, Ding, Weng (bb6000) 2022; 5 He, You, Gong, Yang, Bai, Wang (bb0095) 2020; 12 Jason, Shen, Cheng (bb0115) 2015; 7 Wei, Kong, Li, Xue, Wang, Cui (bb0270) 2021; 6 Xia, Tian, Fu, Zhu, Lu, Zhao (bb0290) 2021; 87 Yang, Liu, Li, Hao, Guo, Guo (bb0310) 2022; 14 Fan, Zhao, Ling, Liu, Gu (bb0070) 2022; 256 Li, Dong, Peng, Chen, Yang, Xu (bb0145) 2022; 16 Song, Qin, Gao, Cong, Yu (bb0225) 2018; 9 Wu, Shi, Ding, Zhong, Huang, Zhou (bb0285) 2021; 9 Ling, Liu, Liu, Zhao, Ren, Gu (bb0175) 2022; 14 Morelle, Illeperuma, Tian, Bai, Suo, Vlassak (bb0195) 2018; 30 Zhao, Ke, Ling, Liu, Li, Gu (bb0345) 2021; 3 Teng, An, Chen, Zhang, Zhao (bb0250) 2021; 7 Fan, Zhang, Cui, Liu, Li, Xia (bb0055) 2019; 11 Cai, Wen, Zhao, Tian, Long, Zhang (bb0015) 2022; 14 Zhou, Wang, Zhao, Tong, Jin, Zhang (bb0350) 2021; 403 Chen, Chang, Chen, Zhu (bb0035) 2022; 14 Sui, Guo, Cai, Li, Wen, Zhang (bb0240) 2021; 419 Gao, Wu, Plamthottam, Xie, Liu, Hu (bb0090) 2021; 4 Xia, Pan, Zhang, Zhang, Fan, Xia (bb0295) 2022; 16 Cheng, Zou, Chang, Liu, Shi, Li (bb9000) 2022; 5 Wang, Chi, Wan, Wei, Ping, Zou (bb0260) 2022; 14 Zhao, Li, Liu, Xie, Yu (bb5000) 2023; 6 He, Yang, Wang, Chen, Zhang, Jiang (bb2000) 2022; 5 Chen, Qin, Cong, Yu (bb0030) 2019; 31 Pu, Liu, Chen, Sun, Du (bb0205) 2017; 3 Fan, Zhao, Ling, Gu (bb0065) 2022; 61 Kang, Oderinde, Liu, Huang, Ma, Yao (bb0120) 2019; 203 Sarmah, Karak (bb0220) 2022; 289 Kim, Park (bb0130) 2002; 41 Li, Liu, Shi, Li, Wang, Zhang (bb0140) 2020; 20 Ke, Zhao, Fan, Gu (bb0125) 2023; 135 Fu, Tu, Zhou, Fan, Zhang, Wang (bb0085) 2019; 31 He, Fang, Chang, Zhang, Zhou, Zhou (bb0100) 2022; 14 Liu, Chen, Wu, Wu, Yang, Huang (bb9100) 2022; 5 Nie, Wang, Tang, Zheng, Li, Shen (bb0200) 2020; 12 Hua, Gao, Zhang, Ma, Huang (bb0105) 2020; 247 Liu, Bao, Ling, Fan, Gu (bb0180) 2022; 240 Huo, Ding, Tang, Liang, Xu, Wang (bb0110) 2022; 212 Cao, Shu, Zhang, Ji, Chen, Wei (bb0020) 2022; 23 Lu, Han, Dai, Li, Wang, Zhong (bb0190) 2020; 250 Chen, Hu, Xu, Wang, Wang, Zeng (bb1000) 2021; 4 Kong, El-Bahy, Algadi, Li, El-Bahy, Nassan (bb0135) 2022; 5 Wei, Li, Kong, Li, Cui, Li (bb0275) 2021; 4 Fonseca, De Bon, Pereira, Carvalho, Freitas, Tavakoli (bb0080) 2022; 15 Roy, Manna, Ray, Dhara, Pal (bb0215) 2022; 14 Starr, Bartels, Agrawal, Bailey (bb0235) 2015; 225 Li, Gong, Liu, Xia, Yang, Chen (bb0165) 2021; 267 Ling, Ke, Liu, Ren, Zhao, Gu (bb0170) 2021; 60 Xia, Song, Jia, Gao (bb0300) 2019; 7 Awasthi, Gaur, Pandey, Bobji, Srivastava (bb0010) 2021; 13 Ding, Cai, Zhang, Dong, Du, Nie (bb0050) 2021; 3 Ren, Ke, Ling, Zhao, Gu (bb0210) 2021; 273 Zhang, Liu, Mai, Wang, Liu, Zhong (bb0320) 2021; 8 Zhang, Zhao, Zhai, Zheng, Ji, Dai (bb0340) 2021; 407 Ke (10.1016/j.carbpol.2023.120678_bb0125) 2023; 135 Cheng (10.1016/j.carbpol.2023.120678_bb9000) 2022; 5 Teng (10.1016/j.carbpol.2023.120678_bb0250) 2021; 7 Awasthi (10.1016/j.carbpol.2023.120678_bb0010) 2021; 13 Hua (10.1016/j.carbpol.2023.120678_bb0105) 2020; 247 Ling (10.1016/j.carbpol.2023.120678_bb0175) 2022; 14 Kang (10.1016/j.carbpol.2023.120678_bb0120) 2019; 203 Liu (10.1016/j.carbpol.2023.120678_bb9100) 2022; 5 Zhou (10.1016/j.carbpol.2023.120678_bb0355) 2019; 29 Wang (10.1016/j.carbpol.2023.120678_bb0260) 2022; 14 Chen (10.1016/j.carbpol.2023.120678_bb1000) 2021; 4 Chen (10.1016/j.carbpol.2023.120678_bb0035) 2022; 14 He (10.1016/j.carbpol.2023.120678_bb0095) 2020; 12 Li (10.1016/j.carbpol.2023.120678_bb0150) 2022; 362 Song (10.1016/j.carbpol.2023.120678_bb0225) 2018; 9 Sarmah (10.1016/j.carbpol.2023.120678_bb0220) 2022; 289 He (10.1016/j.carbpol.2023.120678_bb0100) 2022; 14 Wu (10.1016/j.carbpol.2023.120678_bb0280) 2022; 429 Xia (10.1016/j.carbpol.2023.120678_bb0300) 2019; 7 Fan (10.1016/j.carbpol.2023.120678_bb0065) 2022; 61 Ding (10.1016/j.carbpol.2023.120678_bb0045) 2021; 147 Cai (10.1016/j.carbpol.2023.120678_bb0015) 2022; 14 Jason (10.1016/j.carbpol.2023.120678_bb0115) 2015; 7 Cheng (10.1016/j.carbpol.2023.120678_bb0040) 2019; 223 Wang (10.1016/j.carbpol.2023.120678_bb0255) 2019; 567 Zhao (10.1016/j.carbpol.2023.120678_bb0345) 2021; 3 Lu (10.1016/j.carbpol.2023.120678_bb0190) 2020; 250 Xia (10.1016/j.carbpol.2023.120678_bb0290) 2021; 87 Ding (10.1016/j.carbpol.2023.120678_bb0050) 2021; 3 Fan (10.1016/j.carbpol.2023.120678_bb0055) 2019; 11 Wei (10.1016/j.carbpol.2023.120678_bb0270) 2021; 6 Fonseca (10.1016/j.carbpol.2023.120678_bb0080) 2022; 15 Starr (10.1016/j.carbpol.2023.120678_bb0235) 2015; 225 Liu (10.1016/j.carbpol.2023.120678_bb0185) 2021; 13 Sun (10.1016/j.carbpol.2023.120678_bb0245) 2021; 260 Kim (10.1016/j.carbpol.2023.120678_bb0130) 2002; 41 Zhang (10.1016/j.carbpol.2023.120678_bb8000) 2022; 5 Pu (10.1016/j.carbpol.2023.120678_bb0205) 2017; 3 Li (10.1016/j.carbpol.2023.120678_bb0145) 2022; 16 Fu (10.1016/j.carbpol.2023.120678_bb0085) 2019; 31 Wei (10.1016/j.carbpol.2023.120678_bb0275) 2021; 4 Cao (10.1016/j.carbpol.2023.120678_bb0020) 2022; 23 Liu (10.1016/j.carbpol.2023.120678_bb6000) 2022; 5 Zhao (10.1016/j.carbpol.2023.120678_bb5000) 2023; 6 Fan (10.1016/j.carbpol.2023.120678_bb0060) 2022; 246 Gao (10.1016/j.carbpol.2023.120678_bb0090) 2021; 4 Sui (10.1016/j.carbpol.2023.120678_bb0240) 2021; 419 Bakadia (10.1016/j.carbpol.2023.120678_bb7000) 2022; 5 Li (10.1016/j.carbpol.2023.120678_bb0165) 2021; 267 Nie (10.1016/j.carbpol.2023.120678_bb0200) 2020; 12 Kong (10.1016/j.carbpol.2023.120678_bb0135) 2022; 5 Zhang (10.1016/j.carbpol.2023.120678_bb0325) 2022; 18 Aggas (10.1016/j.carbpol.2023.120678_bb0005) 2020; 168 Onal (10.1016/j.carbpol.2023.120678_bb3000) 2022; 11 Fang (10.1016/j.carbpol.2023.120678_bb0075) 2020; 12 Zhang (10.1016/j.carbpol.2023.120678_bb0335) 2021; 3 Morelle (10.1016/j.carbpol.2023.120678_bb0195) 2018; 30 Wu (10.1016/j.carbpol.2023.120678_bb0285) 2021; 9 Li (10.1016/j.carbpol.2023.120678_bb0155) 2020; 30 Charlet (10.1016/j.carbpol.2023.120678_bb0025) 2021; 13 Xia (10.1016/j.carbpol.2023.120678_bb0295) 2022; 16 Yang (10.1016/j.carbpol.2023.120678_bb4000) 2022; 5 Xue (10.1016/j.carbpol.2023.120678_bb0305) 2022; 9 Zhou (10.1016/j.carbpol.2023.120678_bb0350) 2021; 403 Song (10.1016/j.carbpol.2023.120678_bb0230) 2021; 273 Wang (10.1016/j.carbpol.2023.120678_bb0265) 2021; 13 Fan (10.1016/j.carbpol.2023.120678_bb0070) 2022; 256 Li (10.1016/j.carbpol.2023.120678_bb0140) 2020; 20 Huo (10.1016/j.carbpol.2023.120678_bb0110) 2022; 212 Liu (10.1016/j.carbpol.2023.120678_bb0180) 2022; 240 He (10.1016/j.carbpol.2023.120678_bb2000) 2022; 5 Zhang (10.1016/j.carbpol.2023.120678_bb0320) 2021; 8 Yang (10.1016/j.carbpol.2023.120678_bb0310) 2022; 14 Ren (10.1016/j.carbpol.2023.120678_bb0210) 2021; 273 Li (10.1016/j.carbpol.2023.120678_bb0160) 2020; 13 Chen (10.1016/j.carbpol.2023.120678_bb0030) 2019; 31 Li (10.1016/j.carbpol.2023.120678_bb9200) 2022; 5 Ling (10.1016/j.carbpol.2023.120678_bb0170) 2021; 60 Ye (10.1016/j.carbpol.2023.120678_bb0315) 2021; 15 Roy (10.1016/j.carbpol.2023.120678_bb0215) 2022; 14 Zhang (10.1016/j.carbpol.2023.120678_bb0330) 2019; 58 Zhang (10.1016/j.carbpol.2023.120678_bb0340) 2021; 407 |
References_xml | – volume: 5 start-page: 1976 year: 2022 end-page: 1987 ident: bb0135 article-title: Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel publication-title: Advanced Composites and Hybrid Materials – volume: 362 year: 2022 ident: bb0150 article-title: Flexible highly-sensitive humidity sensor based on CGO/SMPLAF for wearable human skin humidity detection publication-title: Sensors and Actuators B: Chemical – volume: 8 year: 2021 ident: bb0320 article-title: A smart design strategy for super-elastic hydrogel with long-term moisture, extreme temperature resistance, and non-flammability publication-title: Advanced Science – volume: 41 start-page: 6211 year: 2002 end-page: 6216 ident: bb0130 article-title: Analysis of problematic complexing behavior of ferric chloride with N, N-dimethylformamide using combined techniques of FT-IR, XPS, and TGA/DTG publication-title: Inorganic Chemistry – volume: 7 start-page: 1302 year: 2021 end-page: 1337 ident: bb0250 article-title: Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses publication-title: ACS Biomaterials Science & Engineering – volume: 5 start-page: 1876 year: 2022 end-page: 1887 ident: bb4000 article-title: Double-safety flexible supercapacitor basing on zwitterionic hydrogel: Over-heat alarm and flame-retardant electrolyte publication-title: Advanced Composites and Hybrid Materials – volume: 13 start-page: 64 year: 2021 ident: bb0265 article-title: Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks publication-title: Nano-Micro Letters – volume: 18 year: 2022 ident: bb0325 article-title: Robust hydrogel adhesion by harnessing bioinspired interfacial mineralization publication-title: Small – volume: 5 start-page: 2847 year: 2022 end-page: 2872 ident: bb7000 article-title: Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing publication-title: Advanced Composites and Hybrid Materials – volume: 14 start-page: 23692 year: 2022 end-page: 23700 ident: bb0015 article-title: Environment-resistant organohydrogel-based sensor enables highly sensitive strain, temperature, and humidity responses publication-title: ACS Applied Materials & Interfaces – volume: 6 start-page: 27 year: 2023 ident: bb5000 article-title: A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices publication-title: Advanced Composites and Hybrid Materials – volume: 407 year: 2021 ident: bb0340 article-title: Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun publication-title: Chemical Engineering Journal – volume: 15 start-page: 5341 year: 2021 end-page: 5354 ident: bb0315 article-title: Protein nanofibrils and their hydrogel formation with metal ions publication-title: ACS Nano – volume: 12 start-page: 56393 year: 2020 end-page: 56402 ident: bb0075 article-title: Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes publication-title: ACS Applied Materials & Interfaces – volume: 246 year: 2022 ident: bb0060 article-title: PVA/gelatin/β-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor publication-title: Polymer – volume: 567 start-page: 139 year: 2019 end-page: 149 ident: bb0255 article-title: A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 168 year: 2020 ident: bb0005 article-title: Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics publication-title: Biosensors and Bioelectronics – volume: 13 start-page: 24505 year: 2021 end-page: 24523 ident: bb0010 article-title: High-strength, strongly bonded nanocomposite hydrogels for cartilage repair publication-title: ACS Applied Materials & Interfaces – volume: 20 start-page: 6176 year: 2020 end-page: 6184 ident: bb0140 article-title: Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability publication-title: Nano Letters – volume: 267 year: 2021 ident: bb0165 article-title: Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors publication-title: Carbohydrate Polymers – volume: 225 start-page: 8 year: 2015 end-page: 19 ident: bb0235 article-title: Evolution of micromachined pressure transducers for cardiovascular applications publication-title: Sensors and Actuators A: Physical – volume: 3 start-page: 5494 year: 2021 end-page: 5508 ident: bb0345 article-title: Multifunctional ionic conductive double-network hydrogel as a long-term flexible strain sensor publication-title: ACS Applied Polymer Materials – volume: 212 start-page: 1 year: 2022 end-page: 10 ident: bb0110 article-title: Conductive silk fibroin hydrogel with semi-interpenetrating network with high toughness and fast self-recovery for strain sensors publication-title: International Journal of Biological Macromolecules – volume: 11 start-page: 24289 year: 2019 end-page: 24297 ident: bb0055 article-title: Direct current-powered high-performance ionic hydrogel strain sensor based on electrochemical redox reaction publication-title: ACS Applied Materials & Interfaces – volume: 30 year: 2020 ident: bb0155 article-title: Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body publication-title: Advanced Functional Materials – volume: 14 start-page: 17065 year: 2022 end-page: 17080 ident: bb0215 article-title: β-Cyclodextrin-based ultrahigh stretchable, flexible, electro- and pressure-responsive, adhesive, transparent hydrogel as motion sensor publication-title: ACS Applied Materials & Interfaces – volume: 14 start-page: 43833 year: 2022 end-page: 43843 ident: bb0035 article-title: Ultrastretchable, antifreezing, and high-performance strain sensor based on a muscle-inspired anisotropic conductive hydrogel for human motion monitoring and wireless transmission publication-title: ACS Applied Materials & Interfaces – volume: 87 year: 2021 ident: bb0290 article-title: Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems publication-title: Nano Energy – volume: 203 start-page: 139 year: 2019 end-page: 147 ident: bb0120 article-title: Characterization of xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion publication-title: Carbohydrate Polymers – volume: 5 start-page: 1712 year: 2022 end-page: 1729 ident: bb6000 article-title: A highly stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca publication-title: Advanced Composites and Hybrid Materials – volume: 14 start-page: 24741 year: 2022 end-page: 24754 ident: bb0175 article-title: Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection publication-title: ACS Applied Materials & Interfaces – volume: 3 start-page: 1477 year: 2021 end-page: 1483 ident: bb0335 article-title: Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity publication-title: ACS Materials Letters – volume: 13 start-page: 14612 year: 2021 end-page: 14622 ident: bb0185 article-title: Multifunctional self-healing dual network hydrogels constructed via host-guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions publication-title: ACS Applied Materials & Interfaces – volume: 30 year: 2018 ident: bb0195 article-title: Highly stretchable and tough hydrogels below water freezing temperature publication-title: Advanced Materials – volume: 14 start-page: 93 year: 2022 ident: bb0100 article-title: Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction publication-title: Nano-Micro Letters – volume: 419 year: 2021 ident: bb0240 article-title: Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities publication-title: Chemical Engineering Journal – volume: 23 start-page: 2603 year: 2022 end-page: 2613 ident: bb0020 article-title: Highly elastic, sensitive, stretchable, and skin-inspired conductive sodium alginate/polyacrylamide/gallium composite hydrogel with toughness as a flexible strain sensor publication-title: Biomacromolecules – volume: 240 year: 2022 ident: bb0180 article-title: Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications publication-title: Polymer – volume: 5 start-page: 1852 year: 2022 end-page: 1864 ident: bb8000 article-title: Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water publication-title: Advanced Composites and Hybrid Materials – volume: 13 start-page: 3048 year: 2020 end-page: 3056 ident: bb0160 article-title: Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation publication-title: Nano Research – volume: 247 year: 2020 ident: bb0105 article-title: A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances publication-title: Carbohydrate Polymers – volume: 15 year: 2022 ident: bb0080 article-title: Photo-degradable, tough and highly stretchable hydrogels publication-title: Materials Today Bio – volume: 4 start-page: 1261 year: 2021 end-page: 1269 ident: bb1000 article-title: Natural methionine-passivated MAPbI publication-title: Advanced Composites and Hybrid Materials – volume: 147 year: 2021 ident: bb0045 article-title: Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels publication-title: European Polymer Journal – volume: 5 start-page: 1196 year: 2022 end-page: 1205 ident: bb9100 article-title: Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection publication-title: Advanced Composites and Hybrid Materials – volume: 16 start-page: 4714 year: 2022 end-page: 4725 ident: bb0295 article-title: Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels publication-title: ACS Nano – volume: 256 year: 2022 ident: bb0070 article-title: Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors publication-title: Polymer – volume: 58 start-page: 7366 year: 2019 end-page: 7370 ident: bb0330 article-title: Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels publication-title: Angewandte Chemie International Edition – volume: 13 start-page: 4073 year: 2021 end-page: 4084 ident: bb0025 article-title: Shape retaining self-healing metal-coordinated hydrogels publication-title: Nanoscale – volume: 223 year: 2019 ident: bb0040 article-title: High strength, anti-freezing and strain sensing carboxymethyl cellulose-based organohydrogel publication-title: Carbohydrate Polymers – volume: 3 start-page: 2709 year: 2021 end-page: 2721 ident: bb0050 article-title: Mimicking the mechanical properties of cartilage using ionic- and hydrogen-bond cross-linked hydrogels with a high equilibrium water content above 70% publication-title: ACS Applied Polymer Materials – volume: 9 year: 2022 ident: bb0305 article-title: Stretchable and self-healable hydrogel artificial skin publication-title: National Science Review – volume: 403 year: 2021 ident: bb0350 article-title: Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers publication-title: Chemical Engineering Journal – volume: 5 start-page: 1888 year: 2022 end-page: 1898 ident: bb9200 article-title: Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites publication-title: Advanced Composites and Hybrid Materials – volume: 9 start-page: 13668 year: 2021 end-page: 13679 ident: bb0285 article-title: Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing publication-title: Journal of Materials Chemistry C – volume: 31 start-page: 9850 year: 2019 end-page: 9860 ident: bb0085 article-title: A tough and self-powered hydrogel for artificial skin publication-title: Chemistry of Materials – volume: 135 start-page: 199 year: 2023 end-page: 212 ident: bb0125 article-title: Rapid self-healing, self-adhesive, anti-freezing, moisturizing, antibacterial and multi-stimuli-responsive PVA/starch/tea polyphenol-based composite conductive organohydrogel as flexible strain sensor publication-title: Journal of Materials Science & Technology – volume: 250 year: 2020 ident: bb0190 article-title: Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness publication-title: Carbohydrate Polymers – volume: 6 start-page: 2938 year: 2021 end-page: 2951 ident: bb0270 article-title: Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors publication-title: ACS Sensors – volume: 5 start-page: 2834 year: 2022 end-page: 2846 ident: bb9000 article-title: Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing publication-title: Advanced Composites and Hybrid Materials – volume: 12 start-page: 43024 year: 2020 end-page: 43031 ident: bb0200 article-title: Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing publication-title: ACS Applied Materials & Interfaces – volume: 260 year: 2021 ident: bb0245 article-title: Bio-based visual optical pressure-responsive sensor publication-title: Carbohydrate Polymers – volume: 14 start-page: 21278 year: 2022 end-page: 21286 ident: bb0260 article-title: Nanocage ferritin reinforced polyacrylamide hydrogel for wearable flexible strain sensors publication-title: ACS Applied Materials & Interfaces – volume: 7 start-page: 16760 year: 2015 end-page: 16766 ident: bb0115 article-title: Copper nanowires as conductive ink for low-cost draw-on electronics publication-title: ACS Applied Materials & Interfaces – volume: 16 start-page: 11346 year: 2022 end-page: 11359 ident: bb0145 article-title: Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration publication-title: ACS Nano – volume: 9 start-page: 2786 year: 2018 ident: bb0225 article-title: Self-healing and superstretchable conductors from hierarchical nanowire assemblies publication-title: Nature Communications – volume: 273 year: 2021 ident: bb0210 article-title: Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor publication-title: Carbohydrate Polymers – volume: 31 year: 2019 ident: bb0030 article-title: A highly stretchable and real-time healable supercapacitor publication-title: Advanced Materials – volume: 289 year: 2022 ident: bb0220 article-title: Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel publication-title: Carbohydrate Polymers – volume: 7 start-page: 4638 year: 2019 end-page: 4648 ident: bb0300 article-title: A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring publication-title: Journal of Materials Chemistry B – volume: 60 start-page: 18373 year: 2021 end-page: 18383 ident: bb0170 article-title: Tough, repeatedly adhesive, cyclic compression-stable, and conductive dual-network hydrogel sensors for human health monitoring publication-title: Industrial & Engineering Chemistry Research – volume: 5 start-page: 2884 year: 2022 end-page: 2895 ident: bb2000 article-title: Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La publication-title: Advanced Composites and Hybrid Materials – volume: 14 start-page: 39299 year: 2022 end-page: 39310 ident: bb0310 article-title: Tough adhesive, antifreezing, and antidrying natural globulin-based organohydrogels for strain sensors publication-title: ACS Applied Materials & Interfaces – volume: 273 year: 2021 ident: bb0230 article-title: A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair publication-title: Biomaterials – volume: 29 year: 2019 ident: bb0355 article-title: Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics publication-title: Advanced Functional Materials – volume: 4 start-page: 1962 year: 2021 end-page: 1974 ident: bb0090 article-title: Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system publication-title: Matter – volume: 429 year: 2022 ident: bb0280 article-title: Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites publication-title: Chemical Engineering Journal – volume: 4 start-page: 86 year: 2021 end-page: 95 ident: bb0275 article-title: Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances publication-title: Advanced Composites and Hybrid Materials – volume: 61 start-page: 3620 year: 2022 end-page: 3635 ident: bb0065 article-title: Tough, self-adhesive, antibacterial, and recyclable supramolecular double network flexible hydrogel sensor based on PVA/chitosan/cyclodextrin publication-title: Industrial & Engineering Chemistry Research – volume: 12 start-page: 6442 year: 2020 end-page: 6450 ident: bb0095 article-title: Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators publication-title: ACS Applied Materials & Interfaces – volume: 3 year: 2017 ident: bb0205 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Science Advances – volume: 11 start-page: 51 year: 2022 end-page: 59 ident: bb3000 article-title: Analysis of a new SEPIC AC–DC PFC converter for light emitting diode applications publication-title: Emerging Materials Research – volume: 247 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0105 article-title: A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2020.116743 – volume: 5 start-page: 1976 issue: 3 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0135 article-title: Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00531-1 – volume: 15 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0080 article-title: Photo-degradable, tough and highly stretchable hydrogels publication-title: Materials Today Bio doi: 10.1016/j.mtbio.2022.100325 – volume: 203 start-page: 139 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0120 article-title: Characterization of xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.09.044 – volume: 13 start-page: 14612 issue: 12 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0185 article-title: Multifunctional self-healing dual network hydrogels constructed via host-guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c03213 – volume: 16 start-page: 4714 issue: 3 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0295 article-title: Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels publication-title: ACS Nano doi: 10.1021/acsnano.1c11505 – volume: 4 start-page: 86 issue: 1 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0275 article-title: Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-020-00201-0 – volume: 419 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0240 article-title: Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.129478 – volume: 14 start-page: 24741 issue: 21 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0175 article-title: Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.2c01785 – volume: 240 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0180 article-title: Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications publication-title: Polymer doi: 10.1016/j.polymer.2021.124513 – volume: 256 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0070 article-title: Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors publication-title: Polymer doi: 10.1016/j.polymer.2022.125270 – volume: 13 start-page: 24505 issue: 21 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0010 article-title: High-strength, strongly bonded nanocomposite hydrogels for cartilage repair publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c05394 – volume: 567 start-page: 139 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0255 article-title: A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2019.01.034 – volume: 3 issue: 5 year: 2017 ident: 10.1016/j.carbpol.2023.120678_bb0205 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Science Advances doi: 10.1126/sciadv.1700015 – volume: 13 start-page: 3048 issue: 11 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0160 article-title: Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation publication-title: Nano Research doi: 10.1007/s12274-020-2970-y – volume: 11 start-page: 51 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb3000 article-title: Analysis of a new SEPIC AC–DC PFC converter for light emitting diode applications publication-title: Emerging Materials Research doi: 10.1680/jemmr.21.00061 – volume: 30 issue: 35 year: 2018 ident: 10.1016/j.carbpol.2023.120678_bb0195 article-title: Highly stretchable and tough hydrogels below water freezing temperature publication-title: Advanced Materials doi: 10.1002/adma.201801541 – volume: 5 start-page: 1196 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb9100 article-title: Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00472-9 – volume: 5 start-page: 1712 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb6000 article-title: A highly stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca2+-SA and glycerol-PVA double physically cross-linked networks publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-021-00396-w – volume: 9 issue: 7 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0305 article-title: Stretchable and self-healable hydrogel artificial skin publication-title: National Science Review doi: 10.1093/nsr/nwab147 – volume: 14 start-page: 17065 issue: 15 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0215 article-title: β-Cyclodextrin-based ultrahigh stretchable, flexible, electro- and pressure-responsive, adhesive, transparent hydrogel as motion sensor publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.2c00101 – volume: 273 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0230 article-title: A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120811 – volume: 18 issue: 31 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0325 article-title: Robust hydrogel adhesion by harnessing bioinspired interfacial mineralization publication-title: Small doi: 10.1002/smll.202201796 – volume: 5 start-page: 2884 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb2000 article-title: Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3 publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00471-w – volume: 407 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0340 article-title: Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.127960 – volume: 31 issue: 19 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0030 article-title: A highly stretchable and real-time healable supercapacitor publication-title: Advanced Materials doi: 10.1002/adma.201900573 – volume: 87 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0290 article-title: Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106210 – volume: 429 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0280 article-title: Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.132449 – volume: 11 start-page: 24289 issue: 27 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0055 article-title: Direct current-powered high-performance ionic hydrogel strain sensor based on electrochemical redox reaction publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b06523 – volume: 223 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0040 article-title: High strength, anti-freezing and strain sensing carboxymethyl cellulose-based organohydrogel publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.115051 – volume: 31 start-page: 9850 issue: 23 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0085 article-title: A tough and self-powered hydrogel for artificial skin publication-title: Chemistry of Materials doi: 10.1021/acs.chemmater.9b04041 – volume: 20 start-page: 6176 issue: 8 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0140 article-title: Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability publication-title: Nano Letters doi: 10.1021/acs.nanolett.0c02519 – volume: 212 start-page: 1 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0110 article-title: Conductive silk fibroin hydrogel with semi-interpenetrating network with high toughness and fast self-recovery for strain sensors publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2022.05.084 – volume: 7 start-page: 1302 issue: 4 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0250 article-title: Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses publication-title: ACS Biomaterials Science & Engineering doi: 10.1021/acsbiomaterials.1c00116 – volume: 6 start-page: 27 year: 2023 ident: 10.1016/j.carbpol.2023.120678_bb5000 article-title: A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00584-2 – volume: 23 start-page: 2603 issue: 6 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0020 article-title: Highly elastic, sensitive, stretchable, and skin-inspired conductive sodium alginate/polyacrylamide/gallium composite hydrogel with toughness as a flexible strain sensor publication-title: Biomacromolecules doi: 10.1021/acs.biomac.2c00329 – volume: 7 start-page: 4638 issue: 30 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0300 article-title: A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring publication-title: Journal of Materials Chemistry B doi: 10.1039/C9TB01039D – volume: 168 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0005 article-title: Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics publication-title: Biosensors and Bioelectronics doi: 10.1016/j.bios.2020.112568 – volume: 3 start-page: 2709 issue: 5 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0050 article-title: Mimicking the mechanical properties of cartilage using ionic- and hydrogen-bond cross-linked hydrogels with a high equilibrium water content above 70% publication-title: ACS Applied Polymer Materials doi: 10.1021/acsapm.1c00264 – volume: 260 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0245 article-title: Bio-based visual optical pressure-responsive sensor publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.117823 – volume: 14 start-page: 43833 issue: 38 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0035 article-title: Ultrastretchable, antifreezing, and high-performance strain sensor based on a muscle-inspired anisotropic conductive hydrogel for human motion monitoring and wireless transmission publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.2c14120 – volume: 289 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0220 article-title: Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2022.119428 – volume: 12 start-page: 56393 issue: 50 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0075 article-title: Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c14472 – volume: 15 start-page: 5341 issue: 3 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0315 article-title: Protein nanofibrils and their hydrogel formation with metal ions publication-title: ACS Nano doi: 10.1021/acsnano.0c10893 – volume: 5 start-page: 1852 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb8000 article-title: Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00476-5 – volume: 16 start-page: 11346 issue: 7 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0145 article-title: Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration publication-title: ACS Nano doi: 10.1021/acsnano.2c05069 – volume: 14 start-page: 39299 issue: 34 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0310 article-title: Tough adhesive, antifreezing, and antidrying natural globulin-based organohydrogels for strain sensors publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.2c07213 – volume: 41 start-page: 6211 issue: 24 year: 2002 ident: 10.1016/j.carbpol.2023.120678_bb0130 article-title: Analysis of problematic complexing behavior of ferric chloride with N, N-dimethylformamide using combined techniques of FT-IR, XPS, and TGA/DTG publication-title: Inorganic Chemistry doi: 10.1021/ic011306p – volume: 5 start-page: 1876 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb4000 article-title: Double-safety flexible supercapacitor basing on zwitterionic hydrogel: Over-heat alarm and flame-retardant electrolyte publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00497-0 – volume: 7 start-page: 16760 issue: 30 year: 2015 ident: 10.1016/j.carbpol.2023.120678_bb0115 article-title: Copper nanowires as conductive ink for low-cost draw-on electronics publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.5b04522 – volume: 12 start-page: 6442 issue: 5 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0095 article-title: Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b19721 – volume: 250 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0190 article-title: Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2020.117010 – volume: 273 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0210 article-title: Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.118533 – volume: 29 issue: 1 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0355 article-title: Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics publication-title: Advanced Functional Materials doi: 10.1002/adfm.201806220 – volume: 5 start-page: 2834 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb9000 article-title: Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00465-8 – volume: 147 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0045 article-title: Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2021.110306 – volume: 135 start-page: 199 year: 2023 ident: 10.1016/j.carbpol.2023.120678_bb0125 article-title: Rapid self-healing, self-adhesive, anti-freezing, moisturizing, antibacterial and multi-stimuli-responsive PVA/starch/tea polyphenol-based composite conductive organohydrogel as flexible strain sensor publication-title: Journal of Materials Science & Technology doi: 10.1016/j.jmst.2022.06.032 – volume: 5 start-page: 2847 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb7000 article-title: Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00467-6 – volume: 13 start-page: 4073 issue: 7 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0025 article-title: Shape retaining self-healing metal-coordinated hydrogels publication-title: Nanoscale doi: 10.1039/D0NR08351H – volume: 225 start-page: 8 year: 2015 ident: 10.1016/j.carbpol.2023.120678_bb0235 article-title: Evolution of micromachined pressure transducers for cardiovascular applications publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2015.01.026 – volume: 6 start-page: 2938 issue: 8 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0270 article-title: Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors publication-title: ACS Sensors doi: 10.1021/acssensors.1c00699 – volume: 8 issue: 16 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0320 article-title: A smart design strategy for super-elastic hydrogel with long-term moisture, extreme temperature resistance, and non-flammability publication-title: Advanced Science doi: 10.1002/advs.202100320 – volume: 3 start-page: 5494 issue: 11 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0345 article-title: Multifunctional ionic conductive double-network hydrogel as a long-term flexible strain sensor publication-title: ACS Applied Polymer Materials doi: 10.1021/acsapm.1c00805 – volume: 12 start-page: 43024 issue: 38 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0200 article-title: Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.0c13962 – volume: 14 start-page: 93 issue: 1 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0100 article-title: Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction publication-title: Nano-Micro Letters doi: 10.1007/s40820-022-00835-3 – volume: 13 start-page: 64 issue: 1 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0265 article-title: Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks publication-title: Nano-Micro Letters doi: 10.1007/s40820-021-00592-9 – volume: 14 start-page: 23692 issue: 20 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0015 article-title: Environment-resistant organohydrogel-based sensor enables highly sensitive strain, temperature, and humidity responses publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.2c02997 – volume: 4 start-page: 1261 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb1000 article-title: Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-021-00238-9 – volume: 403 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0350 article-title: Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.126307 – volume: 61 start-page: 3620 issue: 10 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0065 article-title: Tough, self-adhesive, antibacterial, and recyclable supramolecular double network flexible hydrogel sensor based on PVA/chitosan/cyclodextrin publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.1c04997 – volume: 58 start-page: 7366 issue: 22 year: 2019 ident: 10.1016/j.carbpol.2023.120678_bb0330 article-title: Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201902578 – volume: 4 start-page: 1962 issue: 6 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0090 article-title: Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system publication-title: Matter doi: 10.1016/j.matt.2021.03.003 – volume: 9 start-page: 13668 issue: 39 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0285 article-title: Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing publication-title: Journal of Materials Chemistry C doi: 10.1039/D1TC02506F – volume: 246 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0060 article-title: PVA/gelatin/β-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor publication-title: Polymer doi: 10.1016/j.polymer.2022.124769 – volume: 60 start-page: 18373 issue: 50 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0170 article-title: Tough, repeatedly adhesive, cyclic compression-stable, and conductive dual-network hydrogel sensors for human health monitoring publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/acs.iecr.1c03358 – volume: 30 issue: 31 year: 2020 ident: 10.1016/j.carbpol.2023.120678_bb0155 article-title: Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body publication-title: Advanced Functional Materials doi: 10.1002/adfm.202002370 – volume: 9 start-page: 2786 issue: 1 year: 2018 ident: 10.1016/j.carbpol.2023.120678_bb0225 article-title: Self-healing and superstretchable conductors from hierarchical nanowire assemblies publication-title: Nature Communications doi: 10.1038/s41467-018-05238-w – volume: 14 start-page: 21278 issue: 18 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0260 article-title: Nanocage ferritin reinforced polyacrylamide hydrogel for wearable flexible strain sensors publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.2c00317 – volume: 362 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb0150 article-title: Flexible highly-sensitive humidity sensor based on CGO/SMPLAF for wearable human skin humidity detection publication-title: Sensors and Actuators B: Chemical doi: 10.1016/j.snb.2022.131806 – volume: 267 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0165 article-title: Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.118207 – volume: 3 start-page: 1477 issue: 10 year: 2021 ident: 10.1016/j.carbpol.2023.120678_bb0335 article-title: Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity publication-title: ACS Materials Letters doi: 10.1021/acsmaterialslett.1c00368 – volume: 5 start-page: 1888 year: 2022 ident: 10.1016/j.carbpol.2023.120678_bb9200 article-title: Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-022-00508-0 |
SSID | ssj0000610 |
Score | 2.6910412 |
Snippet | Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 120678 |
SubjectTerms | batteries capacitors Double network electrical conductivity electronics energy hydrogels hydrophilicity Ionic hydrogel Macromolecular reinforcing agent mechanical stress polyacrylamide Self-powered sodium alginate Stress-sensing tensile strength Wearable electronics xanthan gum |
Title | Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications |
URI | https://dx.doi.org/10.1016/j.carbpol.2023.120678 https://www.ncbi.nlm.nih.gov/pubmed/36906361 https://www.proquest.com/docview/2786098427 https://www.proquest.com/docview/2834221130 |
Volume | 309 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcFWVA1wQb0JptUhcN_Y-7N0cq4gqgNQLVMrN2pfTVMGO3ESQS_-i_9sZP9pyKJW4-KVZa7wzOw_vPAj5XKo0BDexDHR9YLASOXOgNphSygavgU1sW-3zNJ-dqW_zbL5HpkMuDIZV9rK_k-mttO6fJP1sJuvlMsGwJGVQAUu088UcM9iVRi4fX_F70ritSIDADKHvsniSC3ABG7eucQdCyDHHSubmIf30kP3Z6qGTF-R5b0DS4w7Hl2QvVq_I0-nQt-01uf5Rh-X2F7UrbLmwibSJbXVU-FQKWOysb3bABssQkz8wree2ogsAD_XWrSKturBwir9pPT3fhaZeAHoUXkC7vBJ6iTHv1YLaKsD1qmRr7LQGb_8NqwYzsWiIKH_o_c3xN-Ts5MvP6Yz1zReYlxOzYSJ6p1LHuQZ3O8tjWnqXpYGXMkYZtc1cnnEZjY2p9AJOGkRVsMHaFI5Kybdkv6qr-J5QK6TW3Bvvy6gcdyZmwpk8dxPvHbgsI6KGKS98X5kcG2SsiiEE7aLoKVUgpYqOUiMyvh227kpzPDbADPQs_uKxAtTHY0M_DfQvgJy4qWKrWG8vC6FNnk6MEvofMEYqAZ62TEfkXcc8txhLrBQtc_7h_5E7IM_wrgtg-0j2N802HoKptHFH7Vo4Ik-Ov36fnd4AM2oYMw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXVJ4Nz0WCoxPvw_bmwAEVqpSWXmil3JZ9OU0V7MhJ1ObCv-CX8AeZ8aOUQ6mE1Itt2bur0Xy78_DOzhDyNpex93ZoItD1PoKVyCILaiOSUhrvMpgmps72eZSOTuTncTLeIL-6szAYVtnK_kam19K6fTNouTmYT6cDDEuSChWwQDufj9vIyoOwPge_bfF-_yOA_I7zvU_Hu6OoLS0QOTFUy4gHZ2VsGcvAmUzSEOfOJrFnuQhBhMwkNk2YCMqEWDgOtwwWojfemBiuUgoY9w65K0FcYNmE_g92RfzXKRCQugjJ-3NsaHAGPmdl5yVueXDRZ5g6XV2nEK8zeGvFt7dN7rcWK_3QMOUB2QjFQ7K12xWKe0R-fi39dPWdmhnWeFgGWoU6HSvwlgIVa-OqNcy7qQ-DC8Dx1BR0As19ubKzQIsmDp3if2FHT9e-KidAHoUBaHOQhS4wyL6YUFN4eJ7l0RxLu8Ho5wAFHv2iPqDAo1d34x-Tk1uB5AnZLMoi7BBquMgy5pRzeZCWWRUSblWa2qFzFnykHpEdy7VrU6FjRY6Z7mLeznSLlEakdINUj_Qvu82bXCA3dVAdnvqvSa1BX93U9U2HvwY4cRfHFKFcLTTPVBoPleTZP9ooITm49iLukafN5LmkWGBqapGyZ_9P3GuyNTr-cqgP948OnpN7-KWJnntBNpfVKrwEO21pX9XrgpJvt70QfwMUwVX9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sodium+alginate+reinforced+polyacrylamide%2Fxanthan+gum+double+network+ionic+hydrogels+for+stress+sensing+and+self-powered+wearable+device+applications&rft.jtitle=Carbohydrate+polymers&rft.au=Li%2C+Tuo&rft.au=Wei%2C+Huige&rft.au=Zhang%2C+Yingying&rft.au=Wan%2C+Tong&rft.date=2023-06-01&rft.issn=1879-1344&rft.eissn=1879-1344&rft.volume=309&rft.spage=120678&rft_id=info:doi/10.1016%2Fj.carbpol.2023.120678&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |