Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications

Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+,...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 309; p. 120678
Main Authors Li, Tuo, Wei, Huige, Zhang, Yingying, Wan, Tong, Cui, Dapeng, Zhao, Shixiang, Zhang, Teng, Ji, Yanxiu, Algadi, Hassan, Guo, Zhanhu, Chu, Liqiang, Cheng, Bowen
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+, Cu2+ or Zn2+), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mn+ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mn+/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mn+/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics. [Display omitted]
AbstractList Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-M /LiCl (short for PAM/XG/SA-M /LiCl, where M stands for Fe , Cu or Zn ), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion M to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-M /LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-M /LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics.
Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mⁿ⁺/LiCl (short for PAM/XG/SA-Mⁿ⁺/LiCl, where Mⁿ⁺ stands for Fe³⁺, Cu²⁺ or Zn²⁺), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mⁿ⁺ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mⁿ⁺/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mⁿ⁺/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics.
Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+, Cu2+ or Zn2+), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mn+ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mn+/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mn+/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics. [Display omitted]
Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+, Cu2+ or Zn2+), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mn+ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mn+/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mn+/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics.Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and self-powered wearable device applications. In the designed network of PXS-Mn+/LiCl (short for PAM/XG/SA-Mn+/LiCl, where Mn+ stands for Fe3+, Cu2+ or Zn2+), PAM acts as a flexible hydrophilic skeleton, and XG functions as a ductile second network. The macromolecule SA interacts with metal ion Mn+ to form a unique complex structure, significantly improving the mechanical strength of the hydrogel. The addition of inorganic salt LiCl endows the hydrogel with high electrical conductivity, and meanwhile reduces the freezing point and prevents water loss of the hydrogel. PXS-Mn+/LiCl exhibits excellent mechanical properties and ultra-high ductility (a fracture tensile strength up to 0.65 MPa and a fracture strain up to 1800%), and high stress-sensing performance (a high GF up to 4.56 and pressure sensitivity of 0.122). Moreover, a self-powered device with a dual-power-supply mode, i.e., PXS-Mn+/LiCl-based primary battery and TENG, and a capacitor as the energy storage component was constructed, which shows promising prospects for self-powered wearable electronics.
ArticleNumber 120678
Author Wei, Huige
Ji, Yanxiu
Chu, Liqiang
Cheng, Bowen
Zhang, Teng
Zhao, Shixiang
Algadi, Hassan
Zhang, Yingying
Cui, Dapeng
Wan, Tong
Guo, Zhanhu
Li, Tuo
Author_xml – sequence: 1
  givenname: Tuo
  surname: Li
  fullname: Li, Tuo
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 2
  givenname: Huige
  surname: Wei
  fullname: Wei, Huige
  email: huigewei@tust.edu.cn
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 3
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  organization: Tianjin Chest Hospital, Tianjin 300222, China
– sequence: 4
  givenname: Tong
  surname: Wan
  fullname: Wan, Tong
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 5
  givenname: Dapeng
  surname: Cui
  fullname: Cui, Dapeng
  organization: College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 6
  givenname: Shixiang
  surname: Zhao
  fullname: Zhao, Shixiang
  organization: College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
– sequence: 7
  givenname: Teng
  surname: Zhang
  fullname: Zhang, Teng
  organization: College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
– sequence: 8
  givenname: Yanxiu
  surname: Ji
  fullname: Ji, Yanxiu
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 9
  givenname: Hassan
  surname: Algadi
  fullname: Algadi, Hassan
  organization: Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran 11001, Saudi Arabia
– sequence: 10
  givenname: Zhanhu
  surname: Guo
  fullname: Guo, Zhanhu
  organization: Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
– sequence: 11
  givenname: Liqiang
  surname: Chu
  fullname: Chu, Liqiang
  email: chuliqiang@tust.edu.cn
  organization: Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
– sequence: 12
  givenname: Bowen
  surname: Cheng
  fullname: Cheng, Bowen
  email: bowenc15@tust.edu.cn
  organization: State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36906361$$D View this record in MEDLINE/PubMed
BookMark eNqFkUGPEyEYholZ43ZXf4KGo5fpwjDDTOPBmI2uJpt4UM_kG_imS2VgBGrtD_H_LrXdi5dyAA7P-xC-94pc-OCRkNecLTnj8maz1BCHObhlzWqx5DWTXf-MLHjfrSoumuaCLBhvmqqXvLskVyltWFmSsxfkUsgVk0LyBfn7LRi7nSi4tfWQkUa0fgxRo6FFvgcd9w4ma_DmD_j8AJ6uC27CdnBIPeZdiD-pDd5q-rA3MazRJVoENOWIKdGEPlm_puBNubuxmsMOY7HvECIcJAZ_W40U5tlZDbm40kvyfASX8NXpvCY_Pn38fvu5uv969-X2w32lxarPVY16aNjAeYeDaCWyUQ8tM3wUiAI7aAfZcoE9IBO6LkcnOmnAALCyN424Jm-P3jmGX1tMWU02aXQOPIZtUnUvmrrmXLDzaNdLtuqbuivomxO6HSY0ao52grhXT1MvwLsjoGNIKeKotM3_fp4jWKc4U4eO1UadOlaHjtWx45Ju_0s_PXAu9_6YKw2VkWNUSVv0pWkbUWdlgj1jeAQJWcgz
CitedBy_id crossref_primary_10_1002_app_56231
crossref_primary_10_1007_s42114_024_00847_0
crossref_primary_10_1007_s42114_024_00889_4
crossref_primary_10_1016_j_colsurfa_2023_132445
crossref_primary_10_1016_j_mtphys_2024_101537
crossref_primary_10_1016_j_carbpol_2024_123138
crossref_primary_10_1007_s42114_024_01165_1
crossref_primary_10_1007_s42114_023_00731_3
crossref_primary_10_1007_s10854_024_13310_z
crossref_primary_10_1007_s42114_023_00751_z
crossref_primary_10_1016_j_ijbiomac_2024_138900
crossref_primary_10_1007_s12598_023_02612_6
crossref_primary_10_1007_s42114_023_00716_2
crossref_primary_10_1007_s42114_024_01041_y
crossref_primary_10_1016_j_ijbiomac_2025_141597
crossref_primary_10_1016_j_nanoen_2023_108678
crossref_primary_10_1002_app_55701
crossref_primary_10_1007_s42114_023_00758_6
crossref_primary_10_1021_acsapm_3c00771
crossref_primary_10_1109_JSEN_2023_3338631
crossref_primary_10_1007_s42114_024_00896_5
crossref_primary_10_1007_s42114_024_00938_y
crossref_primary_10_1016_j_ijbiomac_2023_126018
crossref_primary_10_1016_j_ijbiomac_2024_135507
crossref_primary_10_1016_j_carres_2024_109070
crossref_primary_10_1039_D4TC02804J
crossref_primary_10_1007_s42114_024_00859_w
crossref_primary_10_1590_1517_7076_rmat_2023_0162
crossref_primary_10_1007_s42114_023_00827_w
crossref_primary_10_1016_j_aej_2024_11_092
crossref_primary_10_1007_s42114_023_00781_7
crossref_primary_10_1016_j_jallcom_2023_171795
crossref_primary_10_1007_s42114_023_00766_6
crossref_primary_10_1016_j_polymer_2024_127160
crossref_primary_10_1007_s42114_023_00807_0
crossref_primary_10_1007_s42114_024_01146_4
crossref_primary_10_1021_acsnano_3c10663
crossref_primary_10_1016_j_carbpol_2023_121408
crossref_primary_10_1016_j_mtcomm_2024_108465
crossref_primary_10_1007_s42114_023_00822_1
crossref_primary_10_1515_gps_2023_0151
crossref_primary_10_1007_s11783_024_1811_8
crossref_primary_10_1016_j_reactfunctpolym_2023_105746
crossref_primary_10_1680_jemmr_23_00059
crossref_primary_10_1080_10916466_2024_2305337
crossref_primary_10_1007_s10854_024_13657_3
crossref_primary_10_1016_j_isci_2024_109725
crossref_primary_10_1021_acsami_3c11957
crossref_primary_10_1134_S0965545X25600085
crossref_primary_10_1016_j_indcrop_2024_118081
crossref_primary_10_1016_j_ijbiomac_2024_137123
crossref_primary_10_1007_s42114_023_00754_w
crossref_primary_10_1021_acsapm_4c03511
crossref_primary_10_1021_acsaelm_3c00651
crossref_primary_10_1007_s42114_023_00715_3
crossref_primary_10_1007_s40820_024_01326_3
crossref_primary_10_1007_s42114_024_01083_2
crossref_primary_10_1016_j_ijbiomac_2023_126954
crossref_primary_10_1021_acsanm_3c05480
crossref_primary_10_1007_s42114_023_00795_1
crossref_primary_10_1021_acs_langmuir_4c02244
crossref_primary_10_1021_acsami_4c15748
crossref_primary_10_1002_adfm_202310966
crossref_primary_10_1007_s42114_023_00762_w
crossref_primary_10_1002_adem_202301622
crossref_primary_10_1007_s12221_024_00605_5
crossref_primary_10_1007_s42114_023_00821_2
crossref_primary_10_1007_s42114_024_00841_6
crossref_primary_10_1007_s42114_023_00719_z
crossref_primary_10_1002_admt_202401474
crossref_primary_10_1016_j_polymer_2024_126725
crossref_primary_10_1021_acsapm_3c00846
crossref_primary_10_1039_D3NJ01777J
crossref_primary_10_1007_s42114_024_00868_9
crossref_primary_10_1016_j_carbpol_2023_121677
crossref_primary_10_1088_2515_7639_ad05e7
crossref_primary_10_1039_D3TA01076G
crossref_primary_10_1021_acsanm_3c02441
crossref_primary_10_1021_acsapm_4c00536
crossref_primary_10_1007_s42114_023_00817_y
crossref_primary_10_1007_s42114_024_00865_y
crossref_primary_10_1007_s42114_023_00733_1
crossref_primary_10_1016_j_ijbiomac_2025_139999
crossref_primary_10_1364_OPTCON_500786
crossref_primary_10_1021_acsapm_3c01021
crossref_primary_10_1016_j_ijbiomac_2025_140869
crossref_primary_10_3390_su16145993
crossref_primary_10_1007_s40843_023_2581_x
crossref_primary_10_1007_s42235_024_00571_x
crossref_primary_10_1002_pat_6267
crossref_primary_10_1007_s42114_024_01137_5
crossref_primary_10_1016_j_apsusc_2024_161276
crossref_primary_10_1007_s42114_023_00714_4
crossref_primary_10_1016_j_colsurfa_2024_134149
crossref_primary_10_1016_j_sna_2024_115199
crossref_primary_10_1016_j_mtelec_2023_100055
crossref_primary_10_1007_s42114_024_00902_w
crossref_primary_10_1016_j_carpta_2024_100482
crossref_primary_10_1016_j_jmst_2024_07_053
crossref_primary_10_1016_j_apmt_2024_102570
crossref_primary_10_1016_j_ijbiomac_2024_133926
crossref_primary_10_1016_j_ijbiomac_2024_133802
crossref_primary_10_1007_s42114_024_00852_3
crossref_primary_10_1007_s42114_024_00891_w
crossref_primary_10_1016_j_eurpolymj_2024_113641
crossref_primary_10_1109_JSEN_2024_3401715
crossref_primary_10_1002_pat_6264
crossref_primary_10_1016_j_ijbiomac_2024_135701
crossref_primary_10_1080_01694243_2023_2278368
crossref_primary_10_1002_smll_202403303
crossref_primary_10_1021_acsnano_3c13221
crossref_primary_10_1016_j_nanoen_2024_110262
crossref_primary_10_1016_j_carbpol_2024_122633
crossref_primary_10_1016_j_ensm_2024_103483
crossref_primary_10_1016_j_ijbiomac_2024_134065
crossref_primary_10_1007_s42114_023_00787_1
crossref_primary_10_1007_s42114_023_00726_0
crossref_primary_10_1039_D3TC01866K
crossref_primary_10_1016_j_jics_2023_101048
crossref_primary_10_1007_s42114_023_00746_w
crossref_primary_10_1007_s42114_023_00703_7
crossref_primary_10_1007_s42114_024_00863_0
crossref_primary_10_1016_j_clay_2024_107691
crossref_primary_10_1016_j_apmt_2024_102339
crossref_primary_10_1016_j_ijbiomac_2023_127434
crossref_primary_10_1007_s13399_023_04637_4
crossref_primary_10_1021_acsaelm_3c00619
crossref_primary_10_1039_D3CP04319C
crossref_primary_10_1016_j_aej_2024_03_018
crossref_primary_10_1016_j_carbpol_2024_122788
crossref_primary_10_1007_s42114_024_01103_1
crossref_primary_10_1016_j_giant_2023_100203
crossref_primary_10_1021_acs_biomac_3c00442
crossref_primary_10_1002_adfm_202312839
crossref_primary_10_1021_acsaelm_4c00156
crossref_primary_10_3390_gels9070523
crossref_primary_10_1002_ente_202400424
crossref_primary_10_1039_D4QM00784K
crossref_primary_10_1111_jace_19632
crossref_primary_10_1016_j_jcis_2023_11_139
crossref_primary_10_1016_j_eurpolymj_2024_113173
crossref_primary_10_1002_macp_202400207
crossref_primary_10_1021_acs_langmuir_3c02187
crossref_primary_10_1016_j_jmst_2023_11_012
crossref_primary_10_1021_acsami_4c18098
crossref_primary_10_1016_j_jmst_2023_03_049
crossref_primary_10_1016_j_ijbiomac_2024_129803
crossref_primary_10_1016_j_jiec_2023_12_029
crossref_primary_10_1007_s42114_023_00793_3
crossref_primary_10_1007_s42114_024_00856_z
crossref_primary_10_1007_s42114_023_00809_y
crossref_primary_10_1016_j_carbpol_2023_121300
crossref_primary_10_1007_s40820_024_01494_2
crossref_primary_10_1002_smll_202404011
crossref_primary_10_1016_j_ijbiomac_2024_136333
crossref_primary_10_1021_acsami_3c13256
crossref_primary_10_1109_JSEN_2024_3499972
crossref_primary_10_1016_j_colsurfa_2024_136035
crossref_primary_10_1039_D3CP04255C
crossref_primary_10_1002_pat_6312
crossref_primary_10_1016_j_energy_2023_128777
crossref_primary_10_1007_s42114_023_00800_7
crossref_primary_10_1016_j_cej_2024_157823
crossref_primary_10_1021_acsami_3c17057
crossref_primary_10_1007_s42114_024_00915_5
crossref_primary_10_1016_j_ijbiomac_2024_129533
Cites_doi 10.1016/j.carbpol.2020.116743
10.1007/s42114-022-00531-1
10.1016/j.mtbio.2022.100325
10.1016/j.carbpol.2018.09.044
10.1021/acsami.1c03213
10.1021/acsnano.1c11505
10.1007/s42114-020-00201-0
10.1016/j.cej.2021.129478
10.1021/acsami.2c01785
10.1016/j.polymer.2021.124513
10.1016/j.polymer.2022.125270
10.1021/acsami.1c05394
10.1016/j.colsurfa.2019.01.034
10.1126/sciadv.1700015
10.1007/s12274-020-2970-y
10.1680/jemmr.21.00061
10.1002/adma.201801541
10.1007/s42114-022-00472-9
10.1007/s42114-021-00396-w
10.1093/nsr/nwab147
10.1021/acsami.2c00101
10.1016/j.biomaterials.2021.120811
10.1002/smll.202201796
10.1007/s42114-022-00471-w
10.1016/j.cej.2020.127960
10.1002/adma.201900573
10.1016/j.nanoen.2021.106210
10.1016/j.cej.2021.132449
10.1021/acsami.9b06523
10.1016/j.carbpol.2019.115051
10.1021/acs.chemmater.9b04041
10.1021/acs.nanolett.0c02519
10.1016/j.ijbiomac.2022.05.084
10.1021/acsbiomaterials.1c00116
10.1007/s42114-022-00584-2
10.1021/acs.biomac.2c00329
10.1039/C9TB01039D
10.1016/j.bios.2020.112568
10.1021/acsapm.1c00264
10.1016/j.carbpol.2021.117823
10.1021/acsami.2c14120
10.1016/j.carbpol.2022.119428
10.1021/acsami.0c14472
10.1021/acsnano.0c10893
10.1007/s42114-022-00476-5
10.1021/acsnano.2c05069
10.1021/acsami.2c07213
10.1021/ic011306p
10.1007/s42114-022-00497-0
10.1021/acsami.5b04522
10.1021/acsami.9b19721
10.1016/j.carbpol.2020.117010
10.1016/j.carbpol.2021.118533
10.1002/adfm.201806220
10.1007/s42114-022-00465-8
10.1016/j.eurpolymj.2021.110306
10.1016/j.jmst.2022.06.032
10.1007/s42114-022-00467-6
10.1039/D0NR08351H
10.1016/j.sna.2015.01.026
10.1021/acssensors.1c00699
10.1002/advs.202100320
10.1021/acsapm.1c00805
10.1021/acsami.0c13962
10.1007/s40820-022-00835-3
10.1007/s40820-021-00592-9
10.1021/acsami.2c02997
10.1007/s42114-021-00238-9
10.1016/j.cej.2020.126307
10.1021/acs.iecr.1c04997
10.1002/anie.201902578
10.1016/j.matt.2021.03.003
10.1039/D1TC02506F
10.1016/j.polymer.2022.124769
10.1021/acs.iecr.1c03358
10.1002/adfm.202002370
10.1038/s41467-018-05238-w
10.1021/acsami.2c00317
10.1016/j.snb.2022.131806
10.1016/j.carbpol.2021.118207
10.1021/acsmaterialslett.1c00368
10.1007/s42114-022-00508-0
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.carbpol.2023.120678
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
ExternalDocumentID 36906361
10_1016_j_carbpol_2023_120678
S014486172300142X
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
RIG
SCB
SMS
SOC
SSH
WUQ
XPP
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c398t-2ecb40b117eb356e0fcb50d1f3ee3e7a5b6513e8ae03c28ae7376dadaa0dad443
IEDL.DBID .~1
ISSN 0144-8617
1879-1344
IngestDate Wed Jul 02 04:46:43 EDT 2025
Wed Jul 30 10:43:47 EDT 2025
Wed Feb 19 02:24:57 EST 2025
Tue Jul 01 01:24:55 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Fri Feb 23 02:38:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stress-sensing
Self-powered
Wearable electronics
Ionic hydrogel
Macromolecular reinforcing agent
Double network
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-2ecb40b117eb356e0fcb50d1f3ee3e7a5b6513e8ae03c28ae7376dadaa0dad443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36906361
PQID 2786098427
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834221130
proquest_miscellaneous_2786098427
pubmed_primary_36906361
crossref_citationtrail_10_1016_j_carbpol_2023_120678
crossref_primary_10_1016_j_carbpol_2023_120678
elsevier_sciencedirect_doi_10_1016_j_carbpol_2023_120678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
2023-06-00
2023-Jun-01
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sun, Zhu, Jia, Yang, Zheng, Wang (bb0245) 2021; 260
Song, Wang, Zhang, Shen, Yin, Ye (bb0230) 2021; 273
Xue, Sheng, Li, Li, Di, Xu (bb0305) 2022; 9
Zhou, Wan, Yang, Yang, Wang, Dai (bb0355) 2019; 29
Zhang, Zhao, Peng, Yao, Alsaid, Hua (bb0335) 2021; 3
Liu, Ren, Liu, Zhao, Ling, Gu (bb0185) 2021; 13
Ye, Capezza, Xiao, Lendel, Hedenqvist, Kessler (bb0315) 2021; 15
Wang, Liu, Schubert (bb0265) 2021; 13
Zhang, Wang, Zhang, Lei, Chen, Xue (bb0325) 2022; 18
Wang, Chen, Khan, Liu, Chen, Chen (bb0255) 2019; 567
Zhang, Lian, Alhadhrami, Huang, Li, Mersal (bb8000) 2022; 5
Fan, Geng, Wang, Gu (bb0060) 2022; 246
Charlet, Lutz-Bueno, Mezzenga, Amstad (bb0025) 2021; 13
Li, Wan, Wei, Wang, Wang, Cheng (bb0150) 2022; 362
Li, Wang, Zheng, Yang, Jiang (bb0155) 2020; 30
Fang, Zhang, Wang, Zhang, Chen, Zhou (bb0075) 2020; 12
Yang, Han, Fu, Wang, Huang (bb4000) 2022; 5
Li, Li, Chang, Wu, Liu, Wang (bb0160) 2020; 13
Aggas, Abasi, Phipps, Podstawczyk, Guiseppi-Elie (bb0005) 2020; 168
Ding, Zhang, Wang, Zhu, Wang, Wang (bb0045) 2021; 147
Zhang, Ma, Hou, Guo, Yin, Wang (bb0330) 2019; 58
Bakadia, Zhong, Li, Ode Boni, Ahmed, Souho (bb7000) 2022; 5
Wu, Yao, Sun, Liu, Liu, Zhang (bb0280) 2022; 429
Cheng, Ren, Gao, Duan (bb0040) 2019; 223
Onal (bb3000) 2022; 11
Li, Huang, Qiu, Thabet, Alhashmialameer, Huang (bb9200) 2022; 5
Liu, Wu, Jiang, Guo, Wang, Ding, Weng (bb6000) 2022; 5
He, You, Gong, Yang, Bai, Wang (bb0095) 2020; 12
Jason, Shen, Cheng (bb0115) 2015; 7
Wei, Kong, Li, Xue, Wang, Cui (bb0270) 2021; 6
Xia, Tian, Fu, Zhu, Lu, Zhao (bb0290) 2021; 87
Yang, Liu, Li, Hao, Guo, Guo (bb0310) 2022; 14
Fan, Zhao, Ling, Liu, Gu (bb0070) 2022; 256
Li, Dong, Peng, Chen, Yang, Xu (bb0145) 2022; 16
Song, Qin, Gao, Cong, Yu (bb0225) 2018; 9
Wu, Shi, Ding, Zhong, Huang, Zhou (bb0285) 2021; 9
Ling, Liu, Liu, Zhao, Ren, Gu (bb0175) 2022; 14
Morelle, Illeperuma, Tian, Bai, Suo, Vlassak (bb0195) 2018; 30
Zhao, Ke, Ling, Liu, Li, Gu (bb0345) 2021; 3
Teng, An, Chen, Zhang, Zhao (bb0250) 2021; 7
Fan, Zhang, Cui, Liu, Li, Xia (bb0055) 2019; 11
Cai, Wen, Zhao, Tian, Long, Zhang (bb0015) 2022; 14
Zhou, Wang, Zhao, Tong, Jin, Zhang (bb0350) 2021; 403
Chen, Chang, Chen, Zhu (bb0035) 2022; 14
Sui, Guo, Cai, Li, Wen, Zhang (bb0240) 2021; 419
Gao, Wu, Plamthottam, Xie, Liu, Hu (bb0090) 2021; 4
Xia, Pan, Zhang, Zhang, Fan, Xia (bb0295) 2022; 16
Cheng, Zou, Chang, Liu, Shi, Li (bb9000) 2022; 5
Wang, Chi, Wan, Wei, Ping, Zou (bb0260) 2022; 14
Zhao, Li, Liu, Xie, Yu (bb5000) 2023; 6
He, Yang, Wang, Chen, Zhang, Jiang (bb2000) 2022; 5
Chen, Qin, Cong, Yu (bb0030) 2019; 31
Pu, Liu, Chen, Sun, Du (bb0205) 2017; 3
Fan, Zhao, Ling, Gu (bb0065) 2022; 61
Kang, Oderinde, Liu, Huang, Ma, Yao (bb0120) 2019; 203
Sarmah, Karak (bb0220) 2022; 289
Kim, Park (bb0130) 2002; 41
Li, Liu, Shi, Li, Wang, Zhang (bb0140) 2020; 20
Ke, Zhao, Fan, Gu (bb0125) 2023; 135
Fu, Tu, Zhou, Fan, Zhang, Wang (bb0085) 2019; 31
He, Fang, Chang, Zhang, Zhou, Zhou (bb0100) 2022; 14
Liu, Chen, Wu, Wu, Yang, Huang (bb9100) 2022; 5
Nie, Wang, Tang, Zheng, Li, Shen (bb0200) 2020; 12
Hua, Gao, Zhang, Ma, Huang (bb0105) 2020; 247
Liu, Bao, Ling, Fan, Gu (bb0180) 2022; 240
Huo, Ding, Tang, Liang, Xu, Wang (bb0110) 2022; 212
Cao, Shu, Zhang, Ji, Chen, Wei (bb0020) 2022; 23
Lu, Han, Dai, Li, Wang, Zhong (bb0190) 2020; 250
Chen, Hu, Xu, Wang, Wang, Zeng (bb1000) 2021; 4
Kong, El-Bahy, Algadi, Li, El-Bahy, Nassan (bb0135) 2022; 5
Wei, Li, Kong, Li, Cui, Li (bb0275) 2021; 4
Fonseca, De Bon, Pereira, Carvalho, Freitas, Tavakoli (bb0080) 2022; 15
Roy, Manna, Ray, Dhara, Pal (bb0215) 2022; 14
Starr, Bartels, Agrawal, Bailey (bb0235) 2015; 225
Li, Gong, Liu, Xia, Yang, Chen (bb0165) 2021; 267
Ling, Ke, Liu, Ren, Zhao, Gu (bb0170) 2021; 60
Xia, Song, Jia, Gao (bb0300) 2019; 7
Awasthi, Gaur, Pandey, Bobji, Srivastava (bb0010) 2021; 13
Ding, Cai, Zhang, Dong, Du, Nie (bb0050) 2021; 3
Ren, Ke, Ling, Zhao, Gu (bb0210) 2021; 273
Zhang, Liu, Mai, Wang, Liu, Zhong (bb0320) 2021; 8
Zhang, Zhao, Zhai, Zheng, Ji, Dai (bb0340) 2021; 407
Ke (10.1016/j.carbpol.2023.120678_bb0125) 2023; 135
Cheng (10.1016/j.carbpol.2023.120678_bb9000) 2022; 5
Teng (10.1016/j.carbpol.2023.120678_bb0250) 2021; 7
Awasthi (10.1016/j.carbpol.2023.120678_bb0010) 2021; 13
Hua (10.1016/j.carbpol.2023.120678_bb0105) 2020; 247
Ling (10.1016/j.carbpol.2023.120678_bb0175) 2022; 14
Kang (10.1016/j.carbpol.2023.120678_bb0120) 2019; 203
Liu (10.1016/j.carbpol.2023.120678_bb9100) 2022; 5
Zhou (10.1016/j.carbpol.2023.120678_bb0355) 2019; 29
Wang (10.1016/j.carbpol.2023.120678_bb0260) 2022; 14
Chen (10.1016/j.carbpol.2023.120678_bb1000) 2021; 4
Chen (10.1016/j.carbpol.2023.120678_bb0035) 2022; 14
He (10.1016/j.carbpol.2023.120678_bb0095) 2020; 12
Li (10.1016/j.carbpol.2023.120678_bb0150) 2022; 362
Song (10.1016/j.carbpol.2023.120678_bb0225) 2018; 9
Sarmah (10.1016/j.carbpol.2023.120678_bb0220) 2022; 289
He (10.1016/j.carbpol.2023.120678_bb0100) 2022; 14
Wu (10.1016/j.carbpol.2023.120678_bb0280) 2022; 429
Xia (10.1016/j.carbpol.2023.120678_bb0300) 2019; 7
Fan (10.1016/j.carbpol.2023.120678_bb0065) 2022; 61
Ding (10.1016/j.carbpol.2023.120678_bb0045) 2021; 147
Cai (10.1016/j.carbpol.2023.120678_bb0015) 2022; 14
Jason (10.1016/j.carbpol.2023.120678_bb0115) 2015; 7
Cheng (10.1016/j.carbpol.2023.120678_bb0040) 2019; 223
Wang (10.1016/j.carbpol.2023.120678_bb0255) 2019; 567
Zhao (10.1016/j.carbpol.2023.120678_bb0345) 2021; 3
Lu (10.1016/j.carbpol.2023.120678_bb0190) 2020; 250
Xia (10.1016/j.carbpol.2023.120678_bb0290) 2021; 87
Ding (10.1016/j.carbpol.2023.120678_bb0050) 2021; 3
Fan (10.1016/j.carbpol.2023.120678_bb0055) 2019; 11
Wei (10.1016/j.carbpol.2023.120678_bb0270) 2021; 6
Fonseca (10.1016/j.carbpol.2023.120678_bb0080) 2022; 15
Starr (10.1016/j.carbpol.2023.120678_bb0235) 2015; 225
Liu (10.1016/j.carbpol.2023.120678_bb0185) 2021; 13
Sun (10.1016/j.carbpol.2023.120678_bb0245) 2021; 260
Kim (10.1016/j.carbpol.2023.120678_bb0130) 2002; 41
Zhang (10.1016/j.carbpol.2023.120678_bb8000) 2022; 5
Pu (10.1016/j.carbpol.2023.120678_bb0205) 2017; 3
Li (10.1016/j.carbpol.2023.120678_bb0145) 2022; 16
Fu (10.1016/j.carbpol.2023.120678_bb0085) 2019; 31
Wei (10.1016/j.carbpol.2023.120678_bb0275) 2021; 4
Cao (10.1016/j.carbpol.2023.120678_bb0020) 2022; 23
Liu (10.1016/j.carbpol.2023.120678_bb6000) 2022; 5
Zhao (10.1016/j.carbpol.2023.120678_bb5000) 2023; 6
Fan (10.1016/j.carbpol.2023.120678_bb0060) 2022; 246
Gao (10.1016/j.carbpol.2023.120678_bb0090) 2021; 4
Sui (10.1016/j.carbpol.2023.120678_bb0240) 2021; 419
Bakadia (10.1016/j.carbpol.2023.120678_bb7000) 2022; 5
Li (10.1016/j.carbpol.2023.120678_bb0165) 2021; 267
Nie (10.1016/j.carbpol.2023.120678_bb0200) 2020; 12
Kong (10.1016/j.carbpol.2023.120678_bb0135) 2022; 5
Zhang (10.1016/j.carbpol.2023.120678_bb0325) 2022; 18
Aggas (10.1016/j.carbpol.2023.120678_bb0005) 2020; 168
Onal (10.1016/j.carbpol.2023.120678_bb3000) 2022; 11
Fang (10.1016/j.carbpol.2023.120678_bb0075) 2020; 12
Zhang (10.1016/j.carbpol.2023.120678_bb0335) 2021; 3
Morelle (10.1016/j.carbpol.2023.120678_bb0195) 2018; 30
Wu (10.1016/j.carbpol.2023.120678_bb0285) 2021; 9
Li (10.1016/j.carbpol.2023.120678_bb0155) 2020; 30
Charlet (10.1016/j.carbpol.2023.120678_bb0025) 2021; 13
Xia (10.1016/j.carbpol.2023.120678_bb0295) 2022; 16
Yang (10.1016/j.carbpol.2023.120678_bb4000) 2022; 5
Xue (10.1016/j.carbpol.2023.120678_bb0305) 2022; 9
Zhou (10.1016/j.carbpol.2023.120678_bb0350) 2021; 403
Song (10.1016/j.carbpol.2023.120678_bb0230) 2021; 273
Wang (10.1016/j.carbpol.2023.120678_bb0265) 2021; 13
Fan (10.1016/j.carbpol.2023.120678_bb0070) 2022; 256
Li (10.1016/j.carbpol.2023.120678_bb0140) 2020; 20
Huo (10.1016/j.carbpol.2023.120678_bb0110) 2022; 212
Liu (10.1016/j.carbpol.2023.120678_bb0180) 2022; 240
He (10.1016/j.carbpol.2023.120678_bb2000) 2022; 5
Zhang (10.1016/j.carbpol.2023.120678_bb0320) 2021; 8
Yang (10.1016/j.carbpol.2023.120678_bb0310) 2022; 14
Ren (10.1016/j.carbpol.2023.120678_bb0210) 2021; 273
Li (10.1016/j.carbpol.2023.120678_bb0160) 2020; 13
Chen (10.1016/j.carbpol.2023.120678_bb0030) 2019; 31
Li (10.1016/j.carbpol.2023.120678_bb9200) 2022; 5
Ling (10.1016/j.carbpol.2023.120678_bb0170) 2021; 60
Ye (10.1016/j.carbpol.2023.120678_bb0315) 2021; 15
Roy (10.1016/j.carbpol.2023.120678_bb0215) 2022; 14
Zhang (10.1016/j.carbpol.2023.120678_bb0330) 2019; 58
Zhang (10.1016/j.carbpol.2023.120678_bb0340) 2021; 407
References_xml – volume: 5
  start-page: 1976
  year: 2022
  end-page: 1987
  ident: bb0135
  article-title: Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel
  publication-title: Advanced Composites and Hybrid Materials
– volume: 362
  year: 2022
  ident: bb0150
  article-title: Flexible highly-sensitive humidity sensor based on CGO/SMPLAF for wearable human skin humidity detection
  publication-title: Sensors and Actuators B: Chemical
– volume: 8
  year: 2021
  ident: bb0320
  article-title: A smart design strategy for super-elastic hydrogel with long-term moisture, extreme temperature resistance, and non-flammability
  publication-title: Advanced Science
– volume: 41
  start-page: 6211
  year: 2002
  end-page: 6216
  ident: bb0130
  article-title: Analysis of problematic complexing behavior of ferric chloride with N, N-dimethylformamide using combined techniques of FT-IR, XPS, and TGA/DTG
  publication-title: Inorganic Chemistry
– volume: 7
  start-page: 1302
  year: 2021
  end-page: 1337
  ident: bb0250
  article-title: Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses
  publication-title: ACS Biomaterials Science & Engineering
– volume: 5
  start-page: 1876
  year: 2022
  end-page: 1887
  ident: bb4000
  article-title: Double-safety flexible supercapacitor basing on zwitterionic hydrogel: Over-heat alarm and flame-retardant electrolyte
  publication-title: Advanced Composites and Hybrid Materials
– volume: 13
  start-page: 64
  year: 2021
  ident: bb0265
  article-title: Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks
  publication-title: Nano-Micro Letters
– volume: 18
  year: 2022
  ident: bb0325
  article-title: Robust hydrogel adhesion by harnessing bioinspired interfacial mineralization
  publication-title: Small
– volume: 5
  start-page: 2847
  year: 2022
  end-page: 2872
  ident: bb7000
  article-title: Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing
  publication-title: Advanced Composites and Hybrid Materials
– volume: 14
  start-page: 23692
  year: 2022
  end-page: 23700
  ident: bb0015
  article-title: Environment-resistant organohydrogel-based sensor enables highly sensitive strain, temperature, and humidity responses
  publication-title: ACS Applied Materials & Interfaces
– volume: 6
  start-page: 27
  year: 2023
  ident: bb5000
  article-title: A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices
  publication-title: Advanced Composites and Hybrid Materials
– volume: 407
  year: 2021
  ident: bb0340
  article-title: Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun
  publication-title: Chemical Engineering Journal
– volume: 15
  start-page: 5341
  year: 2021
  end-page: 5354
  ident: bb0315
  article-title: Protein nanofibrils and their hydrogel formation with metal ions
  publication-title: ACS Nano
– volume: 12
  start-page: 56393
  year: 2020
  end-page: 56402
  ident: bb0075
  article-title: Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes
  publication-title: ACS Applied Materials & Interfaces
– volume: 246
  year: 2022
  ident: bb0060
  article-title: PVA/gelatin/β-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor
  publication-title: Polymer
– volume: 567
  start-page: 139
  year: 2019
  end-page: 149
  ident: bb0255
  article-title: A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 168
  year: 2020
  ident: bb0005
  article-title: Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics
  publication-title: Biosensors and Bioelectronics
– volume: 13
  start-page: 24505
  year: 2021
  end-page: 24523
  ident: bb0010
  article-title: High-strength, strongly bonded nanocomposite hydrogels for cartilage repair
  publication-title: ACS Applied Materials & Interfaces
– volume: 20
  start-page: 6176
  year: 2020
  end-page: 6184
  ident: bb0140
  article-title: Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability
  publication-title: Nano Letters
– volume: 267
  year: 2021
  ident: bb0165
  article-title: Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors
  publication-title: Carbohydrate Polymers
– volume: 225
  start-page: 8
  year: 2015
  end-page: 19
  ident: bb0235
  article-title: Evolution of micromachined pressure transducers for cardiovascular applications
  publication-title: Sensors and Actuators A: Physical
– volume: 3
  start-page: 5494
  year: 2021
  end-page: 5508
  ident: bb0345
  article-title: Multifunctional ionic conductive double-network hydrogel as a long-term flexible strain sensor
  publication-title: ACS Applied Polymer Materials
– volume: 212
  start-page: 1
  year: 2022
  end-page: 10
  ident: bb0110
  article-title: Conductive silk fibroin hydrogel with semi-interpenetrating network with high toughness and fast self-recovery for strain sensors
  publication-title: International Journal of Biological Macromolecules
– volume: 11
  start-page: 24289
  year: 2019
  end-page: 24297
  ident: bb0055
  article-title: Direct current-powered high-performance ionic hydrogel strain sensor based on electrochemical redox reaction
  publication-title: ACS Applied Materials & Interfaces
– volume: 30
  year: 2020
  ident: bb0155
  article-title: Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body
  publication-title: Advanced Functional Materials
– volume: 14
  start-page: 17065
  year: 2022
  end-page: 17080
  ident: bb0215
  article-title: β-Cyclodextrin-based ultrahigh stretchable, flexible, electro- and pressure-responsive, adhesive, transparent hydrogel as motion sensor
  publication-title: ACS Applied Materials & Interfaces
– volume: 14
  start-page: 43833
  year: 2022
  end-page: 43843
  ident: bb0035
  article-title: Ultrastretchable, antifreezing, and high-performance strain sensor based on a muscle-inspired anisotropic conductive hydrogel for human motion monitoring and wireless transmission
  publication-title: ACS Applied Materials & Interfaces
– volume: 87
  year: 2021
  ident: bb0290
  article-title: Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems
  publication-title: Nano Energy
– volume: 203
  start-page: 139
  year: 2019
  end-page: 147
  ident: bb0120
  article-title: Characterization of xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion
  publication-title: Carbohydrate Polymers
– volume: 5
  start-page: 1712
  year: 2022
  end-page: 1729
  ident: bb6000
  article-title: A highly stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca
  publication-title: Advanced Composites and Hybrid Materials
– volume: 14
  start-page: 24741
  year: 2022
  end-page: 24754
  ident: bb0175
  article-title: Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection
  publication-title: ACS Applied Materials & Interfaces
– volume: 3
  start-page: 1477
  year: 2021
  end-page: 1483
  ident: bb0335
  article-title: Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity
  publication-title: ACS Materials Letters
– volume: 13
  start-page: 14612
  year: 2021
  end-page: 14622
  ident: bb0185
  article-title: Multifunctional self-healing dual network hydrogels constructed via host-guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions
  publication-title: ACS Applied Materials & Interfaces
– volume: 30
  year: 2018
  ident: bb0195
  article-title: Highly stretchable and tough hydrogels below water freezing temperature
  publication-title: Advanced Materials
– volume: 14
  start-page: 93
  year: 2022
  ident: bb0100
  article-title: Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction
  publication-title: Nano-Micro Letters
– volume: 419
  year: 2021
  ident: bb0240
  article-title: Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities
  publication-title: Chemical Engineering Journal
– volume: 23
  start-page: 2603
  year: 2022
  end-page: 2613
  ident: bb0020
  article-title: Highly elastic, sensitive, stretchable, and skin-inspired conductive sodium alginate/polyacrylamide/gallium composite hydrogel with toughness as a flexible strain sensor
  publication-title: Biomacromolecules
– volume: 240
  year: 2022
  ident: bb0180
  article-title: Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications
  publication-title: Polymer
– volume: 5
  start-page: 1852
  year: 2022
  end-page: 1864
  ident: bb8000
  article-title: Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water
  publication-title: Advanced Composites and Hybrid Materials
– volume: 13
  start-page: 3048
  year: 2020
  end-page: 3056
  ident: bb0160
  article-title: Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation
  publication-title: Nano Research
– volume: 247
  year: 2020
  ident: bb0105
  article-title: A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances
  publication-title: Carbohydrate Polymers
– volume: 15
  year: 2022
  ident: bb0080
  article-title: Photo-degradable, tough and highly stretchable hydrogels
  publication-title: Materials Today Bio
– volume: 4
  start-page: 1261
  year: 2021
  end-page: 1269
  ident: bb1000
  article-title: Natural methionine-passivated MAPbI
  publication-title: Advanced Composites and Hybrid Materials
– volume: 147
  year: 2021
  ident: bb0045
  article-title: Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels
  publication-title: European Polymer Journal
– volume: 5
  start-page: 1196
  year: 2022
  end-page: 1205
  ident: bb9100
  article-title: Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection
  publication-title: Advanced Composites and Hybrid Materials
– volume: 16
  start-page: 4714
  year: 2022
  end-page: 4725
  ident: bb0295
  article-title: Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels
  publication-title: ACS Nano
– volume: 256
  year: 2022
  ident: bb0070
  article-title: Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors
  publication-title: Polymer
– volume: 58
  start-page: 7366
  year: 2019
  end-page: 7370
  ident: bb0330
  article-title: Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels
  publication-title: Angewandte Chemie International Edition
– volume: 13
  start-page: 4073
  year: 2021
  end-page: 4084
  ident: bb0025
  article-title: Shape retaining self-healing metal-coordinated hydrogels
  publication-title: Nanoscale
– volume: 223
  year: 2019
  ident: bb0040
  article-title: High strength, anti-freezing and strain sensing carboxymethyl cellulose-based organohydrogel
  publication-title: Carbohydrate Polymers
– volume: 3
  start-page: 2709
  year: 2021
  end-page: 2721
  ident: bb0050
  article-title: Mimicking the mechanical properties of cartilage using ionic- and hydrogen-bond cross-linked hydrogels with a high equilibrium water content above 70%
  publication-title: ACS Applied Polymer Materials
– volume: 9
  year: 2022
  ident: bb0305
  article-title: Stretchable and self-healable hydrogel artificial skin
  publication-title: National Science Review
– volume: 403
  year: 2021
  ident: bb0350
  article-title: Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers
  publication-title: Chemical Engineering Journal
– volume: 5
  start-page: 1888
  year: 2022
  end-page: 1898
  ident: bb9200
  article-title: Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites
  publication-title: Advanced Composites and Hybrid Materials
– volume: 9
  start-page: 13668
  year: 2021
  end-page: 13679
  ident: bb0285
  article-title: Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing
  publication-title: Journal of Materials Chemistry C
– volume: 31
  start-page: 9850
  year: 2019
  end-page: 9860
  ident: bb0085
  article-title: A tough and self-powered hydrogel for artificial skin
  publication-title: Chemistry of Materials
– volume: 135
  start-page: 199
  year: 2023
  end-page: 212
  ident: bb0125
  article-title: Rapid self-healing, self-adhesive, anti-freezing, moisturizing, antibacterial and multi-stimuli-responsive PVA/starch/tea polyphenol-based composite conductive organohydrogel as flexible strain sensor
  publication-title: Journal of Materials Science & Technology
– volume: 250
  year: 2020
  ident: bb0190
  article-title: Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness
  publication-title: Carbohydrate Polymers
– volume: 6
  start-page: 2938
  year: 2021
  end-page: 2951
  ident: bb0270
  article-title: Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors
  publication-title: ACS Sensors
– volume: 5
  start-page: 2834
  year: 2022
  end-page: 2846
  ident: bb9000
  article-title: Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing
  publication-title: Advanced Composites and Hybrid Materials
– volume: 12
  start-page: 43024
  year: 2020
  end-page: 43031
  ident: bb0200
  article-title: Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing
  publication-title: ACS Applied Materials & Interfaces
– volume: 260
  year: 2021
  ident: bb0245
  article-title: Bio-based visual optical pressure-responsive sensor
  publication-title: Carbohydrate Polymers
– volume: 14
  start-page: 21278
  year: 2022
  end-page: 21286
  ident: bb0260
  article-title: Nanocage ferritin reinforced polyacrylamide hydrogel for wearable flexible strain sensors
  publication-title: ACS Applied Materials & Interfaces
– volume: 7
  start-page: 16760
  year: 2015
  end-page: 16766
  ident: bb0115
  article-title: Copper nanowires as conductive ink for low-cost draw-on electronics
  publication-title: ACS Applied Materials & Interfaces
– volume: 16
  start-page: 11346
  year: 2022
  end-page: 11359
  ident: bb0145
  article-title: Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration
  publication-title: ACS Nano
– volume: 9
  start-page: 2786
  year: 2018
  ident: bb0225
  article-title: Self-healing and superstretchable conductors from hierarchical nanowire assemblies
  publication-title: Nature Communications
– volume: 273
  year: 2021
  ident: bb0210
  article-title: Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor
  publication-title: Carbohydrate Polymers
– volume: 31
  year: 2019
  ident: bb0030
  article-title: A highly stretchable and real-time healable supercapacitor
  publication-title: Advanced Materials
– volume: 289
  year: 2022
  ident: bb0220
  article-title: Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel
  publication-title: Carbohydrate Polymers
– volume: 7
  start-page: 4638
  year: 2019
  end-page: 4648
  ident: bb0300
  article-title: A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring
  publication-title: Journal of Materials Chemistry B
– volume: 60
  start-page: 18373
  year: 2021
  end-page: 18383
  ident: bb0170
  article-title: Tough, repeatedly adhesive, cyclic compression-stable, and conductive dual-network hydrogel sensors for human health monitoring
  publication-title: Industrial & Engineering Chemistry Research
– volume: 5
  start-page: 2884
  year: 2022
  end-page: 2895
  ident: bb2000
  article-title: Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La
  publication-title: Advanced Composites and Hybrid Materials
– volume: 14
  start-page: 39299
  year: 2022
  end-page: 39310
  ident: bb0310
  article-title: Tough adhesive, antifreezing, and antidrying natural globulin-based organohydrogels for strain sensors
  publication-title: ACS Applied Materials & Interfaces
– volume: 273
  year: 2021
  ident: bb0230
  article-title: A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair
  publication-title: Biomaterials
– volume: 29
  year: 2019
  ident: bb0355
  article-title: Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics
  publication-title: Advanced Functional Materials
– volume: 4
  start-page: 1962
  year: 2021
  end-page: 1974
  ident: bb0090
  article-title: Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system
  publication-title: Matter
– volume: 429
  year: 2022
  ident: bb0280
  article-title: Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites
  publication-title: Chemical Engineering Journal
– volume: 4
  start-page: 86
  year: 2021
  end-page: 95
  ident: bb0275
  article-title: Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances
  publication-title: Advanced Composites and Hybrid Materials
– volume: 61
  start-page: 3620
  year: 2022
  end-page: 3635
  ident: bb0065
  article-title: Tough, self-adhesive, antibacterial, and recyclable supramolecular double network flexible hydrogel sensor based on PVA/chitosan/cyclodextrin
  publication-title: Industrial & Engineering Chemistry Research
– volume: 12
  start-page: 6442
  year: 2020
  end-page: 6450
  ident: bb0095
  article-title: Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators
  publication-title: ACS Applied Materials & Interfaces
– volume: 3
  year: 2017
  ident: bb0205
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Science Advances
– volume: 11
  start-page: 51
  year: 2022
  end-page: 59
  ident: bb3000
  article-title: Analysis of a new SEPIC AC–DC PFC converter for light emitting diode applications
  publication-title: Emerging Materials Research
– volume: 247
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0105
  article-title: A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2020.116743
– volume: 5
  start-page: 1976
  issue: 3
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0135
  article-title: Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00531-1
– volume: 15
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0080
  article-title: Photo-degradable, tough and highly stretchable hydrogels
  publication-title: Materials Today Bio
  doi: 10.1016/j.mtbio.2022.100325
– volume: 203
  start-page: 139
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0120
  article-title: Characterization of xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.09.044
– volume: 13
  start-page: 14612
  issue: 12
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0185
  article-title: Multifunctional self-healing dual network hydrogels constructed via host-guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c03213
– volume: 16
  start-page: 4714
  issue: 3
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0295
  article-title: Self-powered multifunction ionic skins based on gradient polyelectrolyte hydrogels
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11505
– volume: 4
  start-page: 86
  issue: 1
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0275
  article-title: Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-020-00201-0
– volume: 419
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0240
  article-title: Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.129478
– volume: 14
  start-page: 24741
  issue: 21
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0175
  article-title: Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.2c01785
– volume: 240
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0180
  article-title: Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications
  publication-title: Polymer
  doi: 10.1016/j.polymer.2021.124513
– volume: 256
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0070
  article-title: Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.125270
– volume: 13
  start-page: 24505
  issue: 21
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0010
  article-title: High-strength, strongly bonded nanocomposite hydrogels for cartilage repair
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c05394
– volume: 567
  start-page: 139
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0255
  article-title: A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2019.01.034
– volume: 3
  issue: 5
  year: 2017
  ident: 10.1016/j.carbpol.2023.120678_bb0205
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Science Advances
  doi: 10.1126/sciadv.1700015
– volume: 13
  start-page: 3048
  issue: 11
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0160
  article-title: Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation
  publication-title: Nano Research
  doi: 10.1007/s12274-020-2970-y
– volume: 11
  start-page: 51
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb3000
  article-title: Analysis of a new SEPIC AC–DC PFC converter for light emitting diode applications
  publication-title: Emerging Materials Research
  doi: 10.1680/jemmr.21.00061
– volume: 30
  issue: 35
  year: 2018
  ident: 10.1016/j.carbpol.2023.120678_bb0195
  article-title: Highly stretchable and tough hydrogels below water freezing temperature
  publication-title: Advanced Materials
  doi: 10.1002/adma.201801541
– volume: 5
  start-page: 1196
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb9100
  article-title: Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00472-9
– volume: 5
  start-page: 1712
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb6000
  article-title: A highly stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca2+-SA and glycerol-PVA double physically cross-linked networks
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-021-00396-w
– volume: 9
  issue: 7
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0305
  article-title: Stretchable and self-healable hydrogel artificial skin
  publication-title: National Science Review
  doi: 10.1093/nsr/nwab147
– volume: 14
  start-page: 17065
  issue: 15
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0215
  article-title: β-Cyclodextrin-based ultrahigh stretchable, flexible, electro- and pressure-responsive, adhesive, transparent hydrogel as motion sensor
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.2c00101
– volume: 273
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0230
  article-title: A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120811
– volume: 18
  issue: 31
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0325
  article-title: Robust hydrogel adhesion by harnessing bioinspired interfacial mineralization
  publication-title: Small
  doi: 10.1002/smll.202201796
– volume: 5
  start-page: 2884
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb2000
  article-title: Optimization of segmented thermoelectric devices composed of high-temperature thermoelectric material La2Te3
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00471-w
– volume: 407
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0340
  article-title: Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.127960
– volume: 31
  issue: 19
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0030
  article-title: A highly stretchable and real-time healable supercapacitor
  publication-title: Advanced Materials
  doi: 10.1002/adma.201900573
– volume: 87
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0290
  article-title: Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106210
– volume: 429
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0280
  article-title: Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.132449
– volume: 11
  start-page: 24289
  issue: 27
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0055
  article-title: Direct current-powered high-performance ionic hydrogel strain sensor based on electrochemical redox reaction
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b06523
– volume: 223
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0040
  article-title: High strength, anti-freezing and strain sensing carboxymethyl cellulose-based organohydrogel
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2019.115051
– volume: 31
  start-page: 9850
  issue: 23
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0085
  article-title: A tough and self-powered hydrogel for artificial skin
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.9b04041
– volume: 20
  start-page: 6176
  issue: 8
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0140
  article-title: Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect stimulus discriminability
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.0c02519
– volume: 212
  start-page: 1
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0110
  article-title: Conductive silk fibroin hydrogel with semi-interpenetrating network with high toughness and fast self-recovery for strain sensors
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2022.05.084
– volume: 7
  start-page: 1302
  issue: 4
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0250
  article-title: Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses
  publication-title: ACS Biomaterials Science & Engineering
  doi: 10.1021/acsbiomaterials.1c00116
– volume: 6
  start-page: 27
  year: 2023
  ident: 10.1016/j.carbpol.2023.120678_bb5000
  article-title: A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00584-2
– volume: 23
  start-page: 2603
  issue: 6
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0020
  article-title: Highly elastic, sensitive, stretchable, and skin-inspired conductive sodium alginate/polyacrylamide/gallium composite hydrogel with toughness as a flexible strain sensor
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.2c00329
– volume: 7
  start-page: 4638
  issue: 30
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0300
  article-title: A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring
  publication-title: Journal of Materials Chemistry B
  doi: 10.1039/C9TB01039D
– volume: 168
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0005
  article-title: Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics
  publication-title: Biosensors and Bioelectronics
  doi: 10.1016/j.bios.2020.112568
– volume: 3
  start-page: 2709
  issue: 5
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0050
  article-title: Mimicking the mechanical properties of cartilage using ionic- and hydrogen-bond cross-linked hydrogels with a high equilibrium water content above 70%
  publication-title: ACS Applied Polymer Materials
  doi: 10.1021/acsapm.1c00264
– volume: 260
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0245
  article-title: Bio-based visual optical pressure-responsive sensor
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.117823
– volume: 14
  start-page: 43833
  issue: 38
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0035
  article-title: Ultrastretchable, antifreezing, and high-performance strain sensor based on a muscle-inspired anisotropic conductive hydrogel for human motion monitoring and wireless transmission
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.2c14120
– volume: 289
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0220
  article-title: Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2022.119428
– volume: 12
  start-page: 56393
  issue: 50
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0075
  article-title: Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.0c14472
– volume: 15
  start-page: 5341
  issue: 3
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0315
  article-title: Protein nanofibrils and their hydrogel formation with metal ions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10893
– volume: 5
  start-page: 1852
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb8000
  article-title: Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00476-5
– volume: 16
  start-page: 11346
  issue: 7
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0145
  article-title: Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05069
– volume: 14
  start-page: 39299
  issue: 34
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0310
  article-title: Tough adhesive, antifreezing, and antidrying natural globulin-based organohydrogels for strain sensors
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.2c07213
– volume: 41
  start-page: 6211
  issue: 24
  year: 2002
  ident: 10.1016/j.carbpol.2023.120678_bb0130
  article-title: Analysis of problematic complexing behavior of ferric chloride with N, N-dimethylformamide using combined techniques of FT-IR, XPS, and TGA/DTG
  publication-title: Inorganic Chemistry
  doi: 10.1021/ic011306p
– volume: 5
  start-page: 1876
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb4000
  article-title: Double-safety flexible supercapacitor basing on zwitterionic hydrogel: Over-heat alarm and flame-retardant electrolyte
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00497-0
– volume: 7
  start-page: 16760
  issue: 30
  year: 2015
  ident: 10.1016/j.carbpol.2023.120678_bb0115
  article-title: Copper nanowires as conductive ink for low-cost draw-on electronics
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.5b04522
– volume: 12
  start-page: 6442
  issue: 5
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0095
  article-title: Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b19721
– volume: 250
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0190
  article-title: Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2020.117010
– volume: 273
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0210
  article-title: Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118533
– volume: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0355
  article-title: Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201806220
– volume: 5
  start-page: 2834
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb9000
  article-title: Mechanically robust and conductive poly(acrylamide) nanocomposite hydrogel by the synergistic effect of vinyl hybrid silica nanoparticle and polypyrrole for human motion sensing
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00465-8
– volume: 147
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0045
  article-title: Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2021.110306
– volume: 135
  start-page: 199
  year: 2023
  ident: 10.1016/j.carbpol.2023.120678_bb0125
  article-title: Rapid self-healing, self-adhesive, anti-freezing, moisturizing, antibacterial and multi-stimuli-responsive PVA/starch/tea polyphenol-based composite conductive organohydrogel as flexible strain sensor
  publication-title: Journal of Materials Science & Technology
  doi: 10.1016/j.jmst.2022.06.032
– volume: 5
  start-page: 2847
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb7000
  article-title: Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00467-6
– volume: 13
  start-page: 4073
  issue: 7
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0025
  article-title: Shape retaining self-healing metal-coordinated hydrogels
  publication-title: Nanoscale
  doi: 10.1039/D0NR08351H
– volume: 225
  start-page: 8
  year: 2015
  ident: 10.1016/j.carbpol.2023.120678_bb0235
  article-title: Evolution of micromachined pressure transducers for cardiovascular applications
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2015.01.026
– volume: 6
  start-page: 2938
  issue: 8
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0270
  article-title: Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.1c00699
– volume: 8
  issue: 16
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0320
  article-title: A smart design strategy for super-elastic hydrogel with long-term moisture, extreme temperature resistance, and non-flammability
  publication-title: Advanced Science
  doi: 10.1002/advs.202100320
– volume: 3
  start-page: 5494
  issue: 11
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0345
  article-title: Multifunctional ionic conductive double-network hydrogel as a long-term flexible strain sensor
  publication-title: ACS Applied Polymer Materials
  doi: 10.1021/acsapm.1c00805
– volume: 12
  start-page: 43024
  issue: 38
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0200
  article-title: Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.0c13962
– volume: 14
  start-page: 93
  issue: 1
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0100
  article-title: Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-022-00835-3
– volume: 13
  start-page: 64
  issue: 1
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0265
  article-title: Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks
  publication-title: Nano-Micro Letters
  doi: 10.1007/s40820-021-00592-9
– volume: 14
  start-page: 23692
  issue: 20
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0015
  article-title: Environment-resistant organohydrogel-based sensor enables highly sensitive strain, temperature, and humidity responses
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.2c02997
– volume: 4
  start-page: 1261
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb1000
  article-title: Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-021-00238-9
– volume: 403
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0350
  article-title: Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.126307
– volume: 61
  start-page: 3620
  issue: 10
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0065
  article-title: Tough, self-adhesive, antibacterial, and recyclable supramolecular double network flexible hydrogel sensor based on PVA/chitosan/cyclodextrin
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.1c04997
– volume: 58
  start-page: 7366
  issue: 22
  year: 2019
  ident: 10.1016/j.carbpol.2023.120678_bb0330
  article-title: Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201902578
– volume: 4
  start-page: 1962
  issue: 6
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0090
  article-title: Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system
  publication-title: Matter
  doi: 10.1016/j.matt.2021.03.003
– volume: 9
  start-page: 13668
  issue: 39
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0285
  article-title: Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing
  publication-title: Journal of Materials Chemistry C
  doi: 10.1039/D1TC02506F
– volume: 246
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0060
  article-title: PVA/gelatin/β-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.124769
– volume: 60
  start-page: 18373
  issue: 50
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0170
  article-title: Tough, repeatedly adhesive, cyclic compression-stable, and conductive dual-network hydrogel sensors for human health monitoring
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/acs.iecr.1c03358
– volume: 30
  issue: 31
  year: 2020
  ident: 10.1016/j.carbpol.2023.120678_bb0155
  article-title: Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202002370
– volume: 9
  start-page: 2786
  issue: 1
  year: 2018
  ident: 10.1016/j.carbpol.2023.120678_bb0225
  article-title: Self-healing and superstretchable conductors from hierarchical nanowire assemblies
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-05238-w
– volume: 14
  start-page: 21278
  issue: 18
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0260
  article-title: Nanocage ferritin reinforced polyacrylamide hydrogel for wearable flexible strain sensors
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.2c00317
– volume: 362
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb0150
  article-title: Flexible highly-sensitive humidity sensor based on CGO/SMPLAF for wearable human skin humidity detection
  publication-title: Sensors and Actuators B: Chemical
  doi: 10.1016/j.snb.2022.131806
– volume: 267
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0165
  article-title: Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118207
– volume: 3
  start-page: 1477
  issue: 10
  year: 2021
  ident: 10.1016/j.carbpol.2023.120678_bb0335
  article-title: Ultrastretchable polyaniline-based conductive organogel with high strain sensitivity
  publication-title: ACS Materials Letters
  doi: 10.1021/acsmaterialslett.1c00368
– volume: 5
  start-page: 1888
  year: 2022
  ident: 10.1016/j.carbpol.2023.120678_bb9200
  article-title: Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites
  publication-title: Advanced Composites and Hybrid Materials
  doi: 10.1007/s42114-022-00508-0
SSID ssj0000610
Score 2.6910412
Snippet Strong and ductile sodium alginate (SA) reinforced polyacrylamide (PAM)/xanthan gum (XG) double network ionic hydrogels were constructed for stress sensing and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120678
SubjectTerms batteries
capacitors
Double network
electrical conductivity
electronics
energy
hydrogels
hydrophilicity
Ionic hydrogel
Macromolecular reinforcing agent
mechanical stress
polyacrylamide
Self-powered
sodium alginate
Stress-sensing
tensile strength
Wearable electronics
xanthan gum
Title Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications
URI https://dx.doi.org/10.1016/j.carbpol.2023.120678
https://www.ncbi.nlm.nih.gov/pubmed/36906361
https://www.proquest.com/docview/2786098427
https://www.proquest.com/docview/2834221130
Volume 309
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcFWVA1wQb0JptUhcN_Y-7N0cq4gqgNQLVMrN2pfTVMGO3ESQS_-i_9sZP9pyKJW4-KVZa7wzOw_vPAj5XKo0BDexDHR9YLASOXOgNphSygavgU1sW-3zNJ-dqW_zbL5HpkMuDIZV9rK_k-mttO6fJP1sJuvlMsGwJGVQAUu088UcM9iVRi4fX_F70ritSIDADKHvsniSC3ABG7eucQdCyDHHSubmIf30kP3Z6qGTF-R5b0DS4w7Hl2QvVq_I0-nQt-01uf5Rh-X2F7UrbLmwibSJbXVU-FQKWOysb3bABssQkz8wree2ogsAD_XWrSKturBwir9pPT3fhaZeAHoUXkC7vBJ6iTHv1YLaKsD1qmRr7LQGb_8NqwYzsWiIKH_o_c3xN-Ts5MvP6Yz1zReYlxOzYSJ6p1LHuQZ3O8tjWnqXpYGXMkYZtc1cnnEZjY2p9AJOGkRVsMHaFI5Kybdkv6qr-J5QK6TW3Bvvy6gcdyZmwpk8dxPvHbgsI6KGKS98X5kcG2SsiiEE7aLoKVUgpYqOUiMyvh227kpzPDbADPQs_uKxAtTHY0M_DfQvgJy4qWKrWG8vC6FNnk6MEvofMEYqAZ62TEfkXcc8txhLrBQtc_7h_5E7IM_wrgtg-0j2N802HoKptHFH7Vo4Ik-Ov36fnd4AM2oYMw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigXVJ4Nz0WCoxPvw_bmwAEVqpSWXmil3JZ9OU0V7MhJ1ObCv-CX8AeZ8aOUQ6mE1Itt2bur0Xy78_DOzhDyNpex93ZoItD1PoKVyCILaiOSUhrvMpgmps72eZSOTuTncTLeIL-6szAYVtnK_kam19K6fTNouTmYT6cDDEuSChWwQDufj9vIyoOwPge_bfF-_yOA_I7zvU_Hu6OoLS0QOTFUy4gHZ2VsGcvAmUzSEOfOJrFnuQhBhMwkNk2YCMqEWDgOtwwWojfemBiuUgoY9w65K0FcYNmE_g92RfzXKRCQugjJ-3NsaHAGPmdl5yVueXDRZ5g6XV2nEK8zeGvFt7dN7rcWK_3QMOUB2QjFQ7K12xWKe0R-fi39dPWdmhnWeFgGWoU6HSvwlgIVa-OqNcy7qQ-DC8Dx1BR0As19ubKzQIsmDp3if2FHT9e-KidAHoUBaHOQhS4wyL6YUFN4eJ7l0RxLu8Ho5wAFHv2iPqDAo1d34x-Tk1uB5AnZLMoi7BBquMgy5pRzeZCWWRUSblWa2qFzFnykHpEdy7VrU6FjRY6Z7mLeznSLlEakdINUj_Qvu82bXCA3dVAdnvqvSa1BX93U9U2HvwY4cRfHFKFcLTTPVBoPleTZP9ooITm49iLukafN5LmkWGBqapGyZ_9P3GuyNTr-cqgP948OnpN7-KWJnntBNpfVKrwEO21pX9XrgpJvt70QfwMUwVX9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sodium+alginate+reinforced+polyacrylamide%2Fxanthan+gum+double+network+ionic+hydrogels+for+stress+sensing+and+self-powered+wearable+device+applications&rft.jtitle=Carbohydrate+polymers&rft.au=Li%2C+Tuo&rft.au=Wei%2C+Huige&rft.au=Zhang%2C+Yingying&rft.au=Wan%2C+Tong&rft.date=2023-06-01&rft.issn=1879-1344&rft.eissn=1879-1344&rft.volume=309&rft.spage=120678&rft_id=info:doi/10.1016%2Fj.carbpol.2023.120678&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon