Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin
•A green flame retardant (HM–SiO2@CS@PCL) was successfully synthesized through layer-by-layer assembly.•The integrated effect of HM–SiO2@CS@PCL endows epoxy resin with excellent flame retardancy.•The incorporation of HM–SiO2@CS@PCL can recycle epoxy resin into high value-added hollow carbon spheres....
Saved in:
Published in | Journal of hazardous materials Vol. 342; pp. 689 - 697 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A green flame retardant (HM–SiO2@CS@PCL) was successfully synthesized through layer-by-layer assembly.•The integrated effect of HM–SiO2@CS@PCL endows epoxy resin with excellent flame retardancy.•The incorporation of HM–SiO2@CS@PCL can recycle epoxy resin into high value-added hollow carbon spheres.
Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO2@CS@PCL) as a green flame retardant through layer-by-layer assembly using hollow mesoporous silica (HM-SiO2), chitosan (CS) and phosphorylated cellulose (PCL). The electrostatic interactions deposited the CS/PCL coating on the surface of HM-SiO2. Subsequently, this multifunctional flame retardant was used to enhance thermal properties and flame retardancy of epoxy resin. The addition of HM-SiO2@CS@PCL to the epoxy resin thermally destabilized the epoxy resin composite, but generated a higher char yield. Furthermore, HM-SiO2 played a critical role and generated synergies with CS and PCL to improve fire safety of the epoxy resin due to the multiple flame retardancy elements (P, N and Si). This multi-element, synergistic, flame-retardant system resulted in a remarkable reduction (51%) of peak heat release rate and a considerable removal of flammable decomposed products. Additionally, the incorporation of HM-SiO2@CS@PCL can sustainably recycle the epoxy resin into high value-added hollow carbon spheres during combustion. Therefore, the HM-SiO2@CS@PCL system provides a practical possibility for preparing recyclable polymer materials with multi-functions and high performances. |
---|---|
AbstractList | •A green flame retardant (HM–SiO2@CS@PCL) was successfully synthesized through layer-by-layer assembly.•The integrated effect of HM–SiO2@CS@PCL endows epoxy resin with excellent flame retardancy.•The incorporation of HM–SiO2@CS@PCL can recycle epoxy resin into high value-added hollow carbon spheres.
Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO2@CS@PCL) as a green flame retardant through layer-by-layer assembly using hollow mesoporous silica (HM-SiO2), chitosan (CS) and phosphorylated cellulose (PCL). The electrostatic interactions deposited the CS/PCL coating on the surface of HM-SiO2. Subsequently, this multifunctional flame retardant was used to enhance thermal properties and flame retardancy of epoxy resin. The addition of HM-SiO2@CS@PCL to the epoxy resin thermally destabilized the epoxy resin composite, but generated a higher char yield. Furthermore, HM-SiO2 played a critical role and generated synergies with CS and PCL to improve fire safety of the epoxy resin due to the multiple flame retardancy elements (P, N and Si). This multi-element, synergistic, flame-retardant system resulted in a remarkable reduction (51%) of peak heat release rate and a considerable removal of flammable decomposed products. Additionally, the incorporation of HM-SiO2@CS@PCL can sustainably recycle the epoxy resin into high value-added hollow carbon spheres during combustion. Therefore, the HM-SiO2@CS@PCL system provides a practical possibility for preparing recyclable polymer materials with multi-functions and high performances. Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO₂@CS@PCL) as a green flame retardant through layer-by-layer assembly using hollow mesoporous silica (HM-SiO₂), chitosan (CS) and phosphorylated cellulose (PCL). The electrostatic interactions deposited the CS/PCL coating on the surface of HM-SiO₂. Subsequently, this multifunctional flame retardant was used to enhance thermal properties and flame retardancy of epoxy resin. The addition of HM-SiO₂@CS@PCL to the epoxy resin thermally destabilized the epoxy resin composite, but generated a higher char yield. Furthermore, HM-SiO₂ played a critical role and generated synergies with CS and PCL to improve fire safety of the epoxy resin due to the multiple flame retardancy elements (P, N and Si). This multi-element, synergistic, flame-retardant system resulted in a remarkable reduction (51%) of peak heat release rate and a considerable removal of flammable decomposed products. Additionally, the incorporation of HM-SiO₂@CS@PCL can sustainably recycle the epoxy resin into high value-added hollow carbon spheres during combustion. Therefore, the HM-SiO₂@CS@PCL system provides a practical possibility for preparing recyclable polymer materials with multi-functions and high performances. Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO @CS@PCL) as a green flame retardant through layer-by-layer assembly using hollow mesoporous silica (HM-SiO ), chitosan (CS) and phosphorylated cellulose (PCL). The electrostatic interactions deposited the CS/PCL coating on the surface of HM-SiO . Subsequently, this multifunctional flame retardant was used to enhance thermal properties and flame retardancy of epoxy resin. The addition of HM-SiO @CS@PCL to the epoxy resin thermally destabilized the epoxy resin composite, but generated a higher char yield. Furthermore, HM-SiO played a critical role and generated synergies with CS and PCL to improve fire safety of the epoxy resin due to the multiple flame retardancy elements (P, N and Si). This multi-element, synergistic, flame-retardant system resulted in a remarkable reduction (51%) of peak heat release rate and a considerable removal of flammable decomposed products. Additionally, the incorporation of HM-SiO @CS@PCL can sustainably recycle the epoxy resin into high value-added hollow carbon spheres during combustion. Therefore, the HM-SiO @CS@PCL system provides a practical possibility for preparing recyclable polymer materials with multi-functions and high performances. Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO2@CS@PCL) as a green flame retardant through layer-by-layer assembly using hollow mesoporous silica (HM-SiO2), chitosan (CS) and phosphorylated cellulose (PCL). The electrostatic interactions deposited the CS/PCL coating on the surface of HM-SiO2. Subsequently, this multifunctional flame retardant was used to enhance thermal properties and flame retardancy of epoxy resin. The addition of HM-SiO2@CS@PCL to the epoxy resin thermally destabilized the epoxy resin composite, but generated a higher char yield. Furthermore, HM-SiO2 played a critical role and generated synergies with CS and PCL to improve fire safety of the epoxy resin due to the multiple flame retardancy elements (P, N and Si). This multi-element, synergistic, flame-retardant system resulted in a remarkable reduction (51%) of peak heat release rate and a considerable removal of flammable decomposed products. Additionally, the incorporation of HM-SiO2@CS@PCL can sustainably recycle the epoxy resin into high value-added hollow carbon spheres during combustion. Therefore, the HM-SiO2@CS@PCL system provides a practical possibility for preparing recyclable polymer materials with multi-functions and high performances.Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO2@CS@PCL) as a green flame retardant through layer-by-layer assembly using hollow mesoporous silica (HM-SiO2), chitosan (CS) and phosphorylated cellulose (PCL). The electrostatic interactions deposited the CS/PCL coating on the surface of HM-SiO2. Subsequently, this multifunctional flame retardant was used to enhance thermal properties and flame retardancy of epoxy resin. The addition of HM-SiO2@CS@PCL to the epoxy resin thermally destabilized the epoxy resin composite, but generated a higher char yield. Furthermore, HM-SiO2 played a critical role and generated synergies with CS and PCL to improve fire safety of the epoxy resin due to the multiple flame retardancy elements (P, N and Si). This multi-element, synergistic, flame-retardant system resulted in a remarkable reduction (51%) of peak heat release rate and a considerable removal of flammable decomposed products. Additionally, the incorporation of HM-SiO2@CS@PCL can sustainably recycle the epoxy resin into high value-added hollow carbon spheres during combustion. Therefore, the HM-SiO2@CS@PCL system provides a practical possibility for preparing recyclable polymer materials with multi-functions and high performances. |
Author | Huang, Zheng-Qi Tang, Gang Hu, Yuan Jiang, Shu-Dong Chen, Junmin |
Author_xml | – sequence: 1 givenname: Shu-Dong surname: Jiang fullname: Jiang, Shu-Dong email: shudj@mail.ustc.edu.cn organization: Department of Fire Protection Engineering, Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, The Western Park of the Hi-Tech Industrial Development Zone, Chengdu, Sichuan, PR China – sequence: 2 givenname: Gang surname: Tang fullname: Tang, Gang organization: School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma’anshan, Anhui 243002, PR China – sequence: 3 givenname: Junmin surname: Chen fullname: Chen, Junmin organization: Department of Fire Protection Engineering, Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, The Western Park of the Hi-Tech Industrial Development Zone, Chengdu, Sichuan, PR China – sequence: 4 givenname: Zheng-Qi surname: Huang fullname: Huang, Zheng-Qi organization: State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China – sequence: 5 givenname: Yuan surname: Hu fullname: Hu, Yuan organization: School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma’anshan, Anhui 243002, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28910653$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFRwB5ySbBP4njiAWCij-pEhtYW3eca-qREwfbUxieHlczsGAzK1vWd66vzndFLpa4ICHPOWs54-rVrt3dwe8ZSisYH1o2tozxR2TD9SAbKaW6IBsmWddIPXaX5CrnHavE0HdPyKXQI2eqlxuyvPNxCxknusZwwIC2pHopSOd9KD7AAVNjI5RK3MUQ4k86Y45rTHGfafbBW6CQKdDvCXGhLsCMNGGBNMFSqIuJ4hp_Hepb9stT8thByPjsdF6Tbx_ef7351Nx--fj55u1tY-WoSyMGCVLJret4J_ikJtGB4p1W0FvnRitVr2ESilvL3TAMgG4LwgpXcauHSV6Tl8e5a4o_9piLmX22GAIsWBc3onYouZZcnUX52NcfxCB0RV-c0P12xsmsyc-QDuZvnRXoj4BNMeeE7h_CmXnQZnbmpM08aDNsNFVKzb3-L2d9geLjUhL4cDb95pjG2ui9x2Sy9bhYnHyqPs0U_ZkJfwBKw7id |
CitedBy_id | crossref_primary_10_1016_j_polymdegradstab_2023_110604 crossref_primary_10_1002_pc_25516 crossref_primary_10_1002_vnl_22170 crossref_primary_10_1016_j_polymdegradstab_2018_03_006 crossref_primary_10_1016_j_jhazmat_2020_123769 crossref_primary_10_1002_app_47194 crossref_primary_10_1016_j_polymdegradstab_2022_110059 crossref_primary_10_1016_j_clay_2021_106215 crossref_primary_10_1016_j_compositesb_2024_112092 crossref_primary_10_1016_j_jiec_2023_07_016 crossref_primary_10_1016_j_compositesb_2022_109905 crossref_primary_10_1002_vnl_21890 crossref_primary_10_1007_s10904_018_0905_9 crossref_primary_10_1016_j_compositesb_2020_108017 crossref_primary_10_1016_j_porgcoat_2023_108041 crossref_primary_10_1016_j_porgcoat_2022_107054 crossref_primary_10_1002_app_51593 crossref_primary_10_1016_j_mtcomm_2022_104702 crossref_primary_10_1016_j_jcis_2021_10_056 crossref_primary_10_3390_macromol5010009 crossref_primary_10_1007_s10971_022_05730_2 crossref_primary_10_1515_ntrev_2022_0484 crossref_primary_10_1007_s10965_023_03580_2 crossref_primary_10_1007_s10570_020_03140_7 crossref_primary_10_1016_j_polymdegradstab_2019_109023 crossref_primary_10_1016_j_matdes_2020_108838 crossref_primary_10_1016_j_cej_2019_122777 crossref_primary_10_1002_pat_4834 crossref_primary_10_1002_app_52723 crossref_primary_10_1002_fam_2950 crossref_primary_10_1002_mame_202200259 crossref_primary_10_1016_j_cej_2019_121933 crossref_primary_10_1002_app_55201 crossref_primary_10_1016_j_compositesa_2019_105751 crossref_primary_10_1016_j_polymdegradstab_2020_109432 crossref_primary_10_1016_j_compositesb_2024_111260 crossref_primary_10_1002_app_50950 crossref_primary_10_1016_j_carbpol_2020_116173 crossref_primary_10_1021_acsomega_0c01247 crossref_primary_10_1002_app_53546 crossref_primary_10_1016_j_reactfunctpolym_2021_104965 crossref_primary_10_1007_s42243_022_00901_5 crossref_primary_10_1016_j_jhazmat_2020_122343 crossref_primary_10_1016_j_matchemphys_2022_126674 crossref_primary_10_1016_j_cej_2021_129008 crossref_primary_10_1016_j_jhazmat_2019_04_065 crossref_primary_10_1016_j_jhazmat_2020_123439 crossref_primary_10_1021_acsami_9b16482 crossref_primary_10_1002_pat_5546 crossref_primary_10_1016_j_polymdegradstab_2022_110181 crossref_primary_10_1002_mame_201900419 crossref_primary_10_1002_pat_4734 crossref_primary_10_1016_j_desal_2024_117716 crossref_primary_10_1007_s10853_021_06672_w crossref_primary_10_1016_j_matchemphys_2020_123373 crossref_primary_10_1021_acsapm_2c01863 crossref_primary_10_1080_03602559_2018_1520248 crossref_primary_10_1016_j_jcis_2022_03_078 crossref_primary_10_1016_j_polymer_2024_127418 crossref_primary_10_3390_polym13213635 crossref_primary_10_1177_0734904120947324 crossref_primary_10_1016_j_porgcoat_2021_106217 crossref_primary_10_3390_coatings13101663 crossref_primary_10_3390_polym13162646 crossref_primary_10_1002_slct_202100708 crossref_primary_10_1007_s11595_020_2278_5 crossref_primary_10_1007_s10854_023_11008_2 crossref_primary_10_1016_j_cej_2019_122046 crossref_primary_10_1002_adfm_202412902 crossref_primary_10_1016_j_porgcoat_2024_108861 crossref_primary_10_1002_mame_201800619 crossref_primary_10_1002_app_49601 crossref_primary_10_1007_s10570_020_03648_y crossref_primary_10_3390_ma14061470 crossref_primary_10_3390_polym12010132 crossref_primary_10_1016_j_cej_2023_142061 crossref_primary_10_1007_s10973_021_10592_x crossref_primary_10_1016_j_coco_2022_101311 crossref_primary_10_3390_molecules28062826 crossref_primary_10_1016_j_cej_2024_150877 crossref_primary_10_1021_acssuschemeng_2c07627 crossref_primary_10_1016_j_cej_2022_137065 crossref_primary_10_1016_j_colsurfa_2023_132342 crossref_primary_10_1016_j_polymdegradstab_2020_109195 crossref_primary_10_1007_s10570_021_04309_4 crossref_primary_10_1002_smll_202310724 crossref_primary_10_1002_adfm_202412492 crossref_primary_10_1002_pat_5875 crossref_primary_10_1016_j_apmt_2020_100762 crossref_primary_10_1021_acssuschemeng_3c02140 crossref_primary_10_1002_app_55404 crossref_primary_10_1007_s10118_020_2444_4 crossref_primary_10_1021_acs_iecr_9b02330 crossref_primary_10_3390_polym16233343 crossref_primary_10_1016_j_compositesb_2022_109887 crossref_primary_10_1002_app_56100 crossref_primary_10_3390_ma13092145 crossref_primary_10_1002_fam_2749 crossref_primary_10_1002_pat_5197 crossref_primary_10_1002_pat_5472 crossref_primary_10_1016_j_jhazmat_2018_08_053 crossref_primary_10_1016_j_polymdegradstab_2025_111207 crossref_primary_10_1007_s10973_021_10950_9 crossref_primary_10_1002_pat_5987 crossref_primary_10_3390_coatings9020094 crossref_primary_10_1016_j_cej_2024_152415 crossref_primary_10_1016_j_apt_2024_104759 crossref_primary_10_1016_j_coco_2022_101282 |
Cites_doi | 10.1016/j.apsusc.2017.03.013 10.1002/app.1976.070201017 10.1021/nn4066395 10.1039/c3gc40547h 10.1039/C4TA06613H 10.1021/am503412y 10.1016/j.powtec.2014.08.035 10.1016/j.polymdegradstab.2013.09.028 10.1007/s10570-012-9682-8 10.1021/am302563w 10.1021/acsami.5b00176 10.1021/acssuschemeng.5b00438 10.1016/j.jhazmat.2016.11.057 10.1016/j.polymdegradstab.2016.09.023 10.1021/acsami.5b04570 10.1016/j.jhazmat.2016.04.029 10.1016/j.matchemphys.2010.10.020 10.1016/j.compscitech.2013.03.019 10.1016/S1748-0132(08)70040-9 10.1039/c3tb21193b 10.1021/ma400461p 10.1039/C3CS60204D 10.1021/acs.biomac.5b01117 10.1039/c4ta01030b 10.1039/c3ta00035d 10.1002/pat.3805 10.1039/C5CS00243E 10.1016/S0304-3894(03)00061-X 10.1021/acs.chemrev.5b00264 10.1021/acs.langmuir.5b00418 10.1039/C4TA02882A 10.1016/j.powtec.2015.02.044 10.1007/s10570-014-0276-5 10.1002/app.23201 10.1016/j.powtec.2015.03.013 10.1016/j.addr.2011.03.016 10.1016/j.jhazmat.2015.06.040 10.1016/j.carbpol.2013.09.102 10.1039/C3PY00963G 10.1016/j.addr.2011.03.010 10.1021/acssuschemeng.7b00062 10.1021/acsnano.5b00121 10.1002/chem.201502170 10.1039/C4TA02899F 10.1016/j.compositesa.2017.04.012 10.1039/C5TA09482H 10.1016/j.polymer.2004.03.088 10.1021/acs.chemmater.5b03013 10.1021/es0618245 10.1021/bm300873b 10.1039/C4TA02778G 10.1016/j.polymdegradstab.2015.08.002 10.1021/mz400105e 10.1021/am2017915 10.1039/C4TA06486K 10.1002/mame.201500250 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2017.09.001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
EndPage | 697 |
ExternalDocumentID | 28910653 10_1016_j_jhazmat_2017_09_001 S0304389417306829 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- SCE SEN SEW SSH T9H TAE VH1 WUQ NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-273a363bf41421d6d24a61486a5cff9c3658ad261cc1f777aefba2c2f142c87d3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Fri Jul 11 00:22:19 EDT 2025 Thu Jul 10 17:24:39 EDT 2025 Wed Feb 19 02:40:52 EST 2025 Tue Jul 01 00:49:12 EDT 2025 Thu Apr 24 23:06:16 EDT 2025 Fri Feb 23 02:46:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Epoxy resin Green flame retardant Hollow mesoporous silica Polyelectrolyte multilayer Sustainable recycling |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-273a363bf41421d6d24a61486a5cff9c3658ad261cc1f777aefba2c2f142c87d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28910653 |
PQID | 1957772728 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2101318316 proquest_miscellaneous_1957772728 pubmed_primary_28910653 crossref_primary_10_1016_j_jhazmat_2017_09_001 crossref_citationtrail_10_1016_j_jhazmat_2017_09_001 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2017_09_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-15 |
PublicationDateYYYYMMDD | 2018-01-15 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Delcea, Möhwald, Skirtach (bib0105) 2011; 63 Chen, Li, Li, Sun (bib0010) 2015; 9 Elbasuney (bib0090) 2015; 277 Yang, Zhang, Hu (bib0240) 2016; 133 Laufer, Kirkland, Morgan, Grunlan (bib0005) 2012; 13 Wang, Zhou, Xing, Yu, Feng, Song, Hu (bib0170) 2013; 1 El-Tahlawy, Hudson (bib0125) 2006; 100 Schartel, Perret, Dittrich, Ciesielski, Krämer, Müller, Altstädt, Zang, Döring (bib0260) 2016; 301 Kalali, Wang, Wang (bib0160) 2016; 4 Yuan, Hu, Chen, Shi, Niu, Zhang, He, Dai (bib0070) 2017; 100 Jiang, Cheng, Liu, Wang, He, Wang (bib0230) 2015; 3 Matar, Azambre, Cochez, Vahabi, Fradet (bib0195) 2016; 27 Kashiwagi, Grulke, Hilding, Groth, Harris, Butler, Shields, Kharchenko, Douglas (bib0215) 2004; 45 Cui, Forssberg (bib0280) 2003; 99 Cho, Vasagar, Shanmuganathan, Jones, Nazarenko, Ellison (bib0060) 2015; 27 Jiang, Bai, Tang, Song, Stec, Hull, Hu, Hu (bib0045) 2014; 6 Wang, Song, Xing, Lu, Hu (bib0205) 2011; 125 Ariga, Lvov, Kawakami, Ji, Hill (bib0110) 2011; 63 Füllbrandt, Purohit, Schönhals (bib0185) 2013; 46 Li, Lu, Guo, Xu, Zhou (bib0275) 2007; 41 Gandini, Lacerda, Carvalho, Trovatti (bib0135) 2016; 116 Jiang, Song, Zeng, Huang, Zhan, Stec, Hull, Hu, Hu (bib0050) 2015; 7 Wang, Tang, Han, Cao, Zhang, Huang, Chen, Yu (bib0255) 2014; 2 Wang, Xing, Feng, Yu, Song, Hu (bib0190) 2014; 5 Elbasuney (bib0095) 2017; 409 Zhang, He, Gu, Colorado, Wei, Guo (bib0165) 2013; 5 Laufer, Kirkland, Cain, Grunlan (bib0210) 2012; 4 Wang, Zhou, Guo, Wang, Xing, Song, Hu (bib0235) 2017; 5 Ghanadpour, Carosio, Larsson, Wågberg (bib0155) 2015; 16 Pan, Song, Ma, Pan, Liew, Hu (bib0150) 2014; 21 Some, Shackery, Kim, Jun (bib0055) 2015; 21 Inagaki, Nakamura, Asai, Katsuura (bib0175) 1976; 20 Lagström, Gmür, Quaroni, Goel, Brown (bib0120) 2015; 31 Yu, Shi, Yuan, Qiu, Xing, Hu, Song, Lo, Hu (bib0225) 2015; 3 Alongi, Carosio, Malucelli (bib0130) 2012; 19 Kim, Jeon, Seo, Dai, Baek (bib0020) 2014; 8 Jiang, Bai, Tang, Song, Stec, Hull, Zhan, Hu (bib0270) 2014; 2 Elbasuney (bib0180) 2014; 268 Shao, Deng, Tan, Yu, Chen, Chen, Wang (bib0080) 2014; 2 Hu, Chen, Yang, Li, Wang (bib0145) 2014; 101 Pang, Wang, Zhu, Tian, Ning (bib0200) 2015; 120 Han, Zhang, Wu, Lu (bib0025) 2015; 3 Gao, Wu, Wang, Wilkie, O'Hare (bib0015) 2014; 2 Qiu, Wang, Yu, Feng, Mu, Yuen, Hu (bib0075) 2017; 325 Cain, Nolen, Li, Davis, Grunlan (bib0220) 2013; 98 Laufer, Kirkland, Morgan, Grunlan (bib0265) 2013; 2 Elbasuney, Mostafa (bib0085) 2015; 278 Wang, Sheng, Shi, Song, Zhang, Hu, Hu (bib0245) 2016; 314 Gil, del Mercato, del Pino, Muñoz Javier, Parak (bib0115) 2008; 3 Feng, Zhou, He, Qiu, Nie, Chen, Wang, Mo, Zhang (bib0100) 2013; 1 Habibi (bib0140) 2014; 43 Hu, Yu, Jiang, Song, Hu, Wang (bib0250) 2015; 300 Song, Yang (bib0035) 2015; 44 Gao, Jin, Zhang, Liang, Ye, Liu (bib0030) 2013; 15 Qian, Wei, Jiang, Li, Yan, Ji (bib0040) 2013; 82 Tan, Shao, Chen, Long, Chen, Wang (bib0065) 2015; 7 Cui (10.1016/j.jhazmat.2017.09.001_bib0280) 2003; 99 Elbasuney (10.1016/j.jhazmat.2017.09.001_bib0095) 2017; 409 Shao (10.1016/j.jhazmat.2017.09.001_bib0080) 2014; 2 Laufer (10.1016/j.jhazmat.2017.09.001_bib0210) 2012; 4 Li (10.1016/j.jhazmat.2017.09.001_bib0275) 2007; 41 Elbasuney (10.1016/j.jhazmat.2017.09.001_bib0085) 2015; 278 Jiang (10.1016/j.jhazmat.2017.09.001_bib0050) 2015; 7 Yu (10.1016/j.jhazmat.2017.09.001_bib0225) 2015; 3 Kim (10.1016/j.jhazmat.2017.09.001_bib0020) 2014; 8 Ariga (10.1016/j.jhazmat.2017.09.001_bib0110) 2011; 63 Wang (10.1016/j.jhazmat.2017.09.001_bib0205) 2011; 125 Chen (10.1016/j.jhazmat.2017.09.001_bib0010) 2015; 9 Tan (10.1016/j.jhazmat.2017.09.001_bib0065) 2015; 7 Pan (10.1016/j.jhazmat.2017.09.001_bib0150) 2014; 21 Hu (10.1016/j.jhazmat.2017.09.001_bib0145) 2014; 101 Elbasuney (10.1016/j.jhazmat.2017.09.001_bib0180) 2014; 268 Schartel (10.1016/j.jhazmat.2017.09.001_bib0260) 2016; 301 Cho (10.1016/j.jhazmat.2017.09.001_bib0060) 2015; 27 Laufer (10.1016/j.jhazmat.2017.09.001_bib0265) 2013; 2 Gandini (10.1016/j.jhazmat.2017.09.001_bib0135) 2016; 116 Wang (10.1016/j.jhazmat.2017.09.001_bib0245) 2016; 314 Jiang (10.1016/j.jhazmat.2017.09.001_bib0230) 2015; 3 Elbasuney (10.1016/j.jhazmat.2017.09.001_bib0090) 2015; 277 Lagström (10.1016/j.jhazmat.2017.09.001_bib0120) 2015; 31 Inagaki (10.1016/j.jhazmat.2017.09.001_bib0175) 1976; 20 Füllbrandt (10.1016/j.jhazmat.2017.09.001_bib0185) 2013; 46 Cain (10.1016/j.jhazmat.2017.09.001_bib0220) 2013; 98 Feng (10.1016/j.jhazmat.2017.09.001_bib0100) 2013; 1 Kalali (10.1016/j.jhazmat.2017.09.001_bib0160) 2016; 4 Laufer (10.1016/j.jhazmat.2017.09.001_bib0005) 2012; 13 Matar (10.1016/j.jhazmat.2017.09.001_bib0195) 2016; 27 Qiu (10.1016/j.jhazmat.2017.09.001_bib0075) 2017; 325 Ghanadpour (10.1016/j.jhazmat.2017.09.001_bib0155) 2015; 16 Delcea (10.1016/j.jhazmat.2017.09.001_bib0105) 2011; 63 Hu (10.1016/j.jhazmat.2017.09.001_bib0250) 2015; 300 Gao (10.1016/j.jhazmat.2017.09.001_bib0015) 2014; 2 Gao (10.1016/j.jhazmat.2017.09.001_bib0030) 2013; 15 Alongi (10.1016/j.jhazmat.2017.09.001_bib0130) 2012; 19 Habibi (10.1016/j.jhazmat.2017.09.001_bib0140) 2014; 43 Wang (10.1016/j.jhazmat.2017.09.001_bib0170) 2013; 1 Han (10.1016/j.jhazmat.2017.09.001_bib0025) 2015; 3 Kashiwagi (10.1016/j.jhazmat.2017.09.001_bib0215) 2004; 45 Wang (10.1016/j.jhazmat.2017.09.001_bib0235) 2017; 5 Song (10.1016/j.jhazmat.2017.09.001_bib0035) 2015; 44 Jiang (10.1016/j.jhazmat.2017.09.001_bib0045) 2014; 6 Wang (10.1016/j.jhazmat.2017.09.001_bib0255) 2014; 2 Qian (10.1016/j.jhazmat.2017.09.001_bib0040) 2013; 82 Yang (10.1016/j.jhazmat.2017.09.001_bib0240) 2016; 133 Pang (10.1016/j.jhazmat.2017.09.001_bib0200) 2015; 120 Zhang (10.1016/j.jhazmat.2017.09.001_bib0165) 2013; 5 Wang (10.1016/j.jhazmat.2017.09.001_bib0190) 2014; 5 Some (10.1016/j.jhazmat.2017.09.001_bib0055) 2015; 21 Jiang (10.1016/j.jhazmat.2017.09.001_bib0270) 2014; 2 Yuan (10.1016/j.jhazmat.2017.09.001_bib0070) 2017; 100 El-Tahlawy (10.1016/j.jhazmat.2017.09.001_bib0125) 2006; 100 Gil (10.1016/j.jhazmat.2017.09.001_bib0115) 2008; 3 |
References_xml | – volume: 7 start-page: 17919 year: 2015 end-page: 17928 ident: bib0065 article-title: Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 15480 year: 2015 end-page: 15485 ident: bib0055 article-title: Phosphorus-doped graphene oxide layer as a highly efficient flame retardant publication-title: Chem. Eur. J. – volume: 1 start-page: 5886 year: 2013 end-page: 5898 ident: bib0100 article-title: Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility publication-title: J. Mater. Chem. B – volume: 101 start-page: 1043 year: 2014 end-page: 1060 ident: bib0145 article-title: Functionalized bacterial cellulose derivatives and nanocomposites publication-title: Carbohydr. Polym. – volume: 133 start-page: 358 year: 2016 end-page: 366 ident: bib0240 article-title: Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin publication-title: Polym. Degrad. Stab. – volume: 3 start-page: 1853 year: 2015 end-page: 1859 ident: bib0025 article-title: Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures publication-title: ACS Sustain. Chem. Eng. – volume: 4 start-page: 1643 year: 2012 end-page: 1649 ident: bib0210 article-title: Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 2995 year: 2014 end-page: 3006 ident: bib0150 article-title: Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric publication-title: Cellulose – volume: 6 start-page: 14076 year: 2014 end-page: 14086 ident: bib0045 article-title: Synthesis of mesoporous silica@Co–Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1145 year: 2014 end-page: 1154 ident: bib0190 article-title: Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism publication-title: Polym. Chem. – volume: 13 start-page: 2843 year: 2012 end-page: 2848 ident: bib0005 article-title: Intumescent multilayer nanocoating made with renewable polyelectrolytes, for flame-retardant cotton publication-title: Biomacromolecules – volume: 100 start-page: 106 year: 2017 end-page: 117 ident: bib0070 article-title: Dual modification of graphene by polymeric flame retardant and Ni(OH) publication-title: Compos. Part A: Appl. Sci. Manuf. – volume: 268 start-page: 158 year: 2014 end-page: 164 ident: bib0180 article-title: Dispersion characteristics of dry and colloidal nano-titania into epoxy resin publication-title: Powder Technol. – volume: 5 start-page: 3409 year: 2017 end-page: 3416 ident: bib0235 article-title: Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins publication-title: ACS Sustain. Chem. Eng. – volume: 2 start-page: 13955 year: 2014 end-page: 13965 ident: bib0080 article-title: Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene publication-title: J. Mater. Chem. A – volume: 31 start-page: 3621 year: 2015 end-page: 3626 ident: bib0120 article-title: Surface vibrational structure of colloidal silica and its direct correlation with surface charge density publication-title: Langmuir – volume: 4 start-page: 2147 year: 2016 end-page: 2157 ident: bib0160 article-title: Multifunctional intercalation in layered double hydroxide: toward multifunctional nanohybrids for epoxy resin publication-title: J. Mater. Chem. A – volume: 3 start-page: 8034 year: 2015 end-page: 8044 ident: bib0225 article-title: Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites publication-title: J. Mater. Chem. A – volume: 27 start-page: 1363 year: 2016 end-page: 1375 ident: bib0195 article-title: Influence of modified mesoporous silica SBA-15 on the flammability of intumescent high-density polyethylene publication-title: Polym. Adv. Technol. – volume: 16 start-page: 3399 year: 2015 end-page: 3410 ident: bib0155 article-title: Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials publication-title: Biomacromolecules – volume: 8 start-page: 2820 year: 2014 end-page: 2825 ident: bib0020 article-title: Graphene phosphonic acid as an efficient flame retardant publication-title: ACS Nano – volume: 45 start-page: 4227 year: 2004 end-page: 4239 ident: bib0215 article-title: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites publication-title: Polymer – volume: 120 start-page: 410 year: 2015 end-page: 418 ident: bib0200 article-title: Nanoengineering of brucite@SiO2 for enhanced mechanical properties and flame retardant behaviors publication-title: Polym. Degrad. Stab. – volume: 98 start-page: 2645 year: 2013 end-page: 2652 ident: bib0220 article-title: Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire publication-title: Polym. Degrad. Stab. – volume: 2 start-page: 17341 year: 2014 end-page: 17351 ident: bib0270 article-title: Fabrication of Ce-doped MnO2 decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism publication-title: J. Mater. Chem. A – volume: 46 start-page: 4626 year: 2013 end-page: 4632 ident: bib0185 article-title: Combined FTIR and dielectric investigation of poly(vinyl acetate) adsorbed on silica particles publication-title: Macromolecules – volume: 314 start-page: 260 year: 2016 end-page: 269 ident: bib0245 article-title: The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites publication-title: J. Hazard. Mater. – volume: 301 start-page: 9 year: 2016 end-page: 35 ident: bib0260 article-title: Flame retardancy of polymers: the role of specific reactions in the condensed phase publication-title: Macromol. Mater. Eng. – volume: 99 start-page: 243 year: 2003 end-page: 263 ident: bib0280 article-title: Mechanical recycling of waste electric and electronic equipment: a review publication-title: J. Hazard. Mater. – volume: 5 start-page: 898 year: 2013 end-page: 910 ident: bib0165 article-title: Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 19298 year: 2014 end-page: 19307 ident: bib0255 article-title: Synthesis of hollow organosiliceous spheres for volatile organic compound removal publication-title: J. Mater. Chem. A – volume: 63 start-page: 730 year: 2011 end-page: 747 ident: bib0105 article-title: Stimuli-responsive LbL capsules and nanoshells for drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 2 start-page: 361 year: 2013 end-page: 365 ident: bib0265 article-title: Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions publication-title: ACS Macro Lett. – volume: 7 start-page: 8506 year: 2015 end-page: 8514 ident: bib0050 article-title: Self-assembly fabrication of hollow mesoporous silica@Co–Al layered double hydroxide@graphene and application in toxic effluents elimination publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 6784 year: 2015 end-page: 6790 ident: bib0060 article-title: Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams publication-title: Chem. Mater. – volume: 41 start-page: 1995 year: 2007 end-page: 2000 ident: bib0275 article-title: Recycle technology for recovering resources and products from waste printed circuit boards publication-title: Environ. Sci. Technol. – volume: 409 start-page: 438 year: 2017 end-page: 447 ident: bib0095 article-title: Sustainable steric stabilization of colloidal titania nanoparticles publication-title: Appl. Surf. Sci. – volume: 82 start-page: 1 year: 2013 end-page: 7 ident: bib0040 article-title: Aluminated mesoporous silica as novel high-effective flame retardant in polylactide publication-title: Compos. Sci. Technol. – volume: 1 start-page: 4383 year: 2013 end-page: 4390 ident: bib0170 article-title: Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites publication-title: J. Mater. Chem. A – volume: 15 start-page: 2208 year: 2013 end-page: 2214 ident: bib0030 article-title: Flower-like mesoporous silica: a bifunctionalized catalyst for rhodium-catalyzed asymmetric transfer hydrogenation of aromatic ketones in aqueous medium publication-title: Green Chem. – volume: 2 start-page: 10996 year: 2014 end-page: 11016 ident: bib0015 article-title: Flame retardant polymer/layered double hydroxide nanocomposites publication-title: J. Mater. Chem. A – volume: 63 start-page: 762 year: 2011 end-page: 771 ident: bib0110 article-title: Layer-by-layer self-assembled shells for drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 3 start-page: 4284 year: 2015 end-page: 4290 ident: bib0230 article-title: Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites publication-title: J. Mater. Chem. A – volume: 3 start-page: 12 year: 2008 end-page: 21 ident: bib0115 article-title: Nanoparticle-modified polyelectrolyte capsules publication-title: Nano Today – volume: 325 start-page: 327 year: 2017 end-page: 339 ident: bib0075 article-title: Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins publication-title: J. Hazard. Mater. – volume: 44 start-page: 3474 year: 2015 end-page: 3504 ident: bib0035 article-title: Molecular and supramolecular switches on mesoporous silica nanoparticles publication-title: Chem. Soc. Rev. – volume: 19 start-page: 1041 year: 2012 end-page: 1050 ident: bib0130 article-title: Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: flammability and combustion behaviour publication-title: Cellulose – volume: 300 start-page: 58 year: 2015 end-page: 66 ident: bib0250 article-title: Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene publication-title: J. Hazard. Mater. – volume: 116 start-page: 1637 year: 2016 end-page: 1669 ident: bib0135 article-title: Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides publication-title: Chem. Rev. – volume: 9 start-page: 4070 year: 2015 end-page: 4076 ident: bib0010 article-title: Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric publication-title: ACS Nano – volume: 20 start-page: 2829 year: 1976 end-page: 2836 ident: bib0175 article-title: Phosphorylation of cellulose with phosphorous acid and thermal degradation of the product publication-title: J. Appl. Polym. Sci. – volume: 125 start-page: 536 year: 2011 end-page: 541 ident: bib0205 article-title: A effective flame retardant for epoxy resins based on poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate) publication-title: Mater. Chem. Phys. – volume: 277 start-page: 63 year: 2015 end-page: 73 ident: bib0090 article-title: Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy publication-title: Powder Technol. – volume: 100 start-page: 1162 year: 2006 end-page: 1168 ident: bib0125 article-title: Chitosan: aspects of fiber spinnability publication-title: J. Appl. Polym. Sci. – volume: 278 start-page: 72 year: 2015 end-page: 83 ident: bib0085 article-title: Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher publication-title: Powder Technol. – volume: 43 start-page: 1519 year: 2014 end-page: 1542 ident: bib0140 article-title: Key advances in the chemical modification of nanocelluloses publication-title: Chem. Soc. Rev. – volume: 409 start-page: 438 year: 2017 ident: 10.1016/j.jhazmat.2017.09.001_bib0095 article-title: Sustainable steric stabilization of colloidal titania nanoparticles publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.03.013 – volume: 20 start-page: 2829 year: 1976 ident: 10.1016/j.jhazmat.2017.09.001_bib0175 article-title: Phosphorylation of cellulose with phosphorous acid and thermal degradation of the product publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1976.070201017 – volume: 8 start-page: 2820 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0020 article-title: Graphene phosphonic acid as an efficient flame retardant publication-title: ACS Nano doi: 10.1021/nn4066395 – volume: 15 start-page: 2208 year: 2013 ident: 10.1016/j.jhazmat.2017.09.001_bib0030 article-title: Flower-like mesoporous silica: a bifunctionalized catalyst for rhodium-catalyzed asymmetric transfer hydrogenation of aromatic ketones in aqueous medium publication-title: Green Chem. doi: 10.1039/c3gc40547h – volume: 3 start-page: 8034 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0225 article-title: Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06613H – volume: 6 start-page: 14076 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0045 article-title: Synthesis of mesoporous silica@Co–Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503412y – volume: 268 start-page: 158 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0180 article-title: Dispersion characteristics of dry and colloidal nano-titania into epoxy resin publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.08.035 – volume: 98 start-page: 2645 year: 2013 ident: 10.1016/j.jhazmat.2017.09.001_bib0220 article-title: Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2013.09.028 – volume: 19 start-page: 1041 year: 2012 ident: 10.1016/j.jhazmat.2017.09.001_bib0130 article-title: Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: flammability and combustion behaviour publication-title: Cellulose doi: 10.1007/s10570-012-9682-8 – volume: 5 start-page: 898 year: 2013 ident: 10.1016/j.jhazmat.2017.09.001_bib0165 article-title: Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302563w – volume: 7 start-page: 8506 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0050 article-title: Self-assembly fabrication of hollow mesoporous silica@Co–Al layered double hydroxide@graphene and application in toxic effluents elimination publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00176 – volume: 3 start-page: 1853 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0025 article-title: Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00438 – volume: 325 start-page: 327 year: 2017 ident: 10.1016/j.jhazmat.2017.09.001_bib0075 article-title: Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.11.057 – volume: 133 start-page: 358 year: 2016 ident: 10.1016/j.jhazmat.2017.09.001_bib0240 article-title: Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2016.09.023 – volume: 7 start-page: 17919 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0065 article-title: Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04570 – volume: 314 start-page: 260 year: 2016 ident: 10.1016/j.jhazmat.2017.09.001_bib0245 article-title: The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.04.029 – volume: 125 start-page: 536 year: 2011 ident: 10.1016/j.jhazmat.2017.09.001_bib0205 article-title: A effective flame retardant for epoxy resins based on poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate) publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.10.020 – volume: 82 start-page: 1 year: 2013 ident: 10.1016/j.jhazmat.2017.09.001_bib0040 article-title: Aluminated mesoporous silica as novel high-effective flame retardant in polylactide publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.03.019 – volume: 3 start-page: 12 year: 2008 ident: 10.1016/j.jhazmat.2017.09.001_bib0115 article-title: Nanoparticle-modified polyelectrolyte capsules publication-title: Nano Today doi: 10.1016/S1748-0132(08)70040-9 – volume: 1 start-page: 5886 year: 2013 ident: 10.1016/j.jhazmat.2017.09.001_bib0100 article-title: Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility publication-title: J. Mater. Chem. B doi: 10.1039/c3tb21193b – volume: 46 start-page: 4626 year: 2013 ident: 10.1016/j.jhazmat.2017.09.001_bib0185 article-title: Combined FTIR and dielectric investigation of poly(vinyl acetate) adsorbed on silica particles publication-title: Macromolecules doi: 10.1021/ma400461p – volume: 43 start-page: 1519 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0140 article-title: Key advances in the chemical modification of nanocelluloses publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60204D – volume: 16 start-page: 3399 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0155 article-title: Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01117 – volume: 2 start-page: 10996 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0015 article-title: Flame retardant polymer/layered double hydroxide nanocomposites publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01030b – volume: 1 start-page: 4383 year: 2013 ident: 10.1016/j.jhazmat.2017.09.001_bib0170 article-title: Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites publication-title: J. Mater. Chem. A doi: 10.1039/c3ta00035d – volume: 27 start-page: 1363 issue: 10 year: 2016 ident: 10.1016/j.jhazmat.2017.09.001_bib0195 article-title: Influence of modified mesoporous silica SBA-15 on the flammability of intumescent high-density polyethylene publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3805 – volume: 44 start-page: 3474 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0035 article-title: Molecular and supramolecular switches on mesoporous silica nanoparticles publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00243E – volume: 99 start-page: 243 year: 2003 ident: 10.1016/j.jhazmat.2017.09.001_bib0280 article-title: Mechanical recycling of waste electric and electronic equipment: a review publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(03)00061-X – volume: 116 start-page: 1637 year: 2016 ident: 10.1016/j.jhazmat.2017.09.001_bib0135 article-title: Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00264 – volume: 31 start-page: 3621 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0120 article-title: Surface vibrational structure of colloidal silica and its direct correlation with surface charge density publication-title: Langmuir doi: 10.1021/acs.langmuir.5b00418 – volume: 2 start-page: 17341 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0270 article-title: Fabrication of Ce-doped MnO2 decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02882A – volume: 277 start-page: 63 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0090 article-title: Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.02.044 – volume: 21 start-page: 2995 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0150 article-title: Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric publication-title: Cellulose doi: 10.1007/s10570-014-0276-5 – volume: 100 start-page: 1162 year: 2006 ident: 10.1016/j.jhazmat.2017.09.001_bib0125 article-title: Chitosan: aspects of fiber spinnability publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.23201 – volume: 278 start-page: 72 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0085 article-title: Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.03.013 – volume: 63 start-page: 762 year: 2011 ident: 10.1016/j.jhazmat.2017.09.001_bib0110 article-title: Layer-by-layer self-assembled shells for drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.03.016 – volume: 300 start-page: 58 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0250 article-title: Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.06.040 – volume: 101 start-page: 1043 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0145 article-title: Functionalized bacterial cellulose derivatives and nanocomposites publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.09.102 – volume: 5 start-page: 1145 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0190 article-title: Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism publication-title: Polym. Chem. doi: 10.1039/C3PY00963G – volume: 63 start-page: 730 year: 2011 ident: 10.1016/j.jhazmat.2017.09.001_bib0105 article-title: Stimuli-responsive LbL capsules and nanoshells for drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.03.010 – volume: 5 start-page: 3409 year: 2017 ident: 10.1016/j.jhazmat.2017.09.001_bib0235 article-title: Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00062 – volume: 9 start-page: 4070 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0010 article-title: Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric publication-title: ACS Nano doi: 10.1021/acsnano.5b00121 – volume: 21 start-page: 15480 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0055 article-title: Phosphorus-doped graphene oxide layer as a highly efficient flame retardant publication-title: Chem. Eur. J. doi: 10.1002/chem.201502170 – volume: 2 start-page: 19298 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0255 article-title: Synthesis of hollow organosiliceous spheres for volatile organic compound removal publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02899F – volume: 100 start-page: 106 year: 2017 ident: 10.1016/j.jhazmat.2017.09.001_bib0070 article-title: Dual modification of graphene by polymeric flame retardant and Ni(OH)2 nanosheets for improving flame retardancy of polypropylene publication-title: Compos. Part A: Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.04.012 – volume: 4 start-page: 2147 year: 2016 ident: 10.1016/j.jhazmat.2017.09.001_bib0160 article-title: Multifunctional intercalation in layered double hydroxide: toward multifunctional nanohybrids for epoxy resin publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09482H – volume: 45 start-page: 4227 year: 2004 ident: 10.1016/j.jhazmat.2017.09.001_bib0215 article-title: Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites publication-title: Polymer doi: 10.1016/j.polymer.2004.03.088 – volume: 27 start-page: 6784 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0060 article-title: Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03013 – volume: 41 start-page: 1995 year: 2007 ident: 10.1016/j.jhazmat.2017.09.001_bib0275 article-title: Recycle technology for recovering resources and products from waste printed circuit boards publication-title: Environ. Sci. Technol. doi: 10.1021/es0618245 – volume: 13 start-page: 2843 year: 2012 ident: 10.1016/j.jhazmat.2017.09.001_bib0005 article-title: Intumescent multilayer nanocoating made with renewable polyelectrolytes, for flame-retardant cotton publication-title: Biomacromolecules doi: 10.1021/bm300873b – volume: 2 start-page: 13955 year: 2014 ident: 10.1016/j.jhazmat.2017.09.001_bib0080 article-title: Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02778G – volume: 120 start-page: 410 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0200 article-title: Nanoengineering of brucite@SiO2 for enhanced mechanical properties and flame retardant behaviors publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2015.08.002 – volume: 2 start-page: 361 year: 2013 ident: 10.1016/j.jhazmat.2017.09.001_bib0265 article-title: Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions publication-title: ACS Macro Lett. doi: 10.1021/mz400105e – volume: 4 start-page: 1643 year: 2012 ident: 10.1016/j.jhazmat.2017.09.001_bib0210 article-title: Clay–chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am2017915 – volume: 3 start-page: 4284 year: 2015 ident: 10.1016/j.jhazmat.2017.09.001_bib0230 article-title: Intergrowth charring for flame-retardant glass fabric-reinforced epoxy resin composites publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06486K – volume: 301 start-page: 9 year: 2016 ident: 10.1016/j.jhazmat.2017.09.001_bib0260 article-title: Flame retardancy of polymers: the role of specific reactions in the condensed phase publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201500250 |
SSID | ssj0001754 |
Score | 2.5578318 |
Snippet | •A green flame retardant (HM–SiO2@CS@PCL) was successfully synthesized through layer-by-layer assembly.•The integrated effect of HM–SiO2@CS@PCL endows epoxy... Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO @CS@PCL) as a green flame retardant through... Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO2@CS@PCL) as a green flame retardant through... Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO₂@CS@PCL) as a green flame retardant through... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 689 |
SubjectTerms | carbon cellulose chitosan coatings combustion electrolytes electrostatic interactions epoxides Epoxy resin fire safety flame retardants Green flame retardant heat Hollow mesoporous silica Polyelectrolyte multilayer polymers porous media silica silicon Sustainable recycling thermal properties value added |
Title | Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin |
URI | https://dx.doi.org/10.1016/j.jhazmat.2017.09.001 https://www.ncbi.nlm.nih.gov/pubmed/28910653 https://www.proquest.com/docview/1957772728 https://www.proquest.com/docview/2101318316 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXNoDaumDpS1ypV6zu44dOzkCKloe5dIicbMcP9qsQrIii2A58NuZ2STQHlZIHGPZkuMZz3xjfzMm5Ltz0jPnQyRzYSPheBwZm9ooy_GUf5wFLjFR-OeZnJyL44vkYo0c9LkwSKvsbH9r05fWumsZdas5mhXF6Bde6oG7FQyUVKYxJvEJoVDLh_dPNA9wj20JKbwBgN5PWTyj6XD619wBMESGlxq2lStX-adV-HPphw7fks0OQNK9do7vyJqvtsibf8oKbpFXp-bmPan2ixp9lKOzulx0z92Ui7mnSxJhaQBsR7YGrOkomMCyvqGXvqkBj9fXDW0KPM2jpqGG_kFuDg2gO54iPfHKgTgooF0K6P12AW1NUX0g54c_fh9Mou51hcjyLJ1jTo7hkudBMBEzJ10sDFYFlSaxIWSWAzYxDgIsa1lQShkfchPbOEB3myrHP5L1qq78NqFj6aTMVEgU84IZngYruAgidxC-5D4MiOjXVNuu9Di-gFHqnmM21Z0oNIpCjzPk2g3I8HHYrK298dyAtBeY_k-JNPiH54Z-6wWsYYPhrYmpPKy3ZlkCfx-rOF3dB-JmhsaRyQH51GrH44whomVYAHjn5ZP7TF7DF5IOI5Z8Ievzq2v_FbDQPN9dKvsu2dg7OpmcPQBhHAs7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELaAHtoeUEtbun26UnvM7tpxnOTAoS-0lIVLQeLmOn60WaXJiixatgf-FH-QmU0C7WGFVIlrYkfOzHge9jczhLy3VjpmnQ9kJkwgbMgDbRITpBme8g9TH0pMFD44lKNj8e0kOlkjl10uDMIqW93f6PSltm6fDFpqDqZ5PviOl3pgbgUDIZUJT1tk5b5bzCFuq3f2vgCTP3C--_Xo8yhoWwsEJkyTGSak6FCGmRdMcGal5UJjSUypI-N9akIwzNpCdGEM83Eca-czzQ33MNwksQ3hu-vkngB1gW0T-hc3uBKwx03NKrxygOXdpA0NJv3JL_0HPFGElMX9plTmKoO4yuFdGr7dR2Sz9Vjpx4Yoj8maK7fIw7_qGG6R9bGePyHlp7xCo2jptCoWbX-dYjFzdIlaLDR494GpwLm1FHRuUc3pb1dXEABUZzWtczw-pLqmmv5EMBD1IKyOIh7y1AL_KbjXFMKF8wU8q_PyKTm-E5o_IxtlVbrnhA6llTKNfRQzJ5gOE29EKLzILMRLmfM9IjqaKtPWOseWG4XqQG0T1bJCISvUMEVwX4_0r6dNm2Ift01IOoapf6RWgUG6beq7jsEKdjRe0-jSAb0VSyP4ex7zZPUYCNQZamMme2S7kY7rFUMIzbDi8Iv_X9xbcn90dDBW473D_ZfkAbxBxGPAoldkY3Z65l6DIzbL3iwFn5Ifd73TrgB6u0b9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biobased+polyelectrolyte+multilayer-coated+hollow+mesoporous+silica+as+a+green+flame+retardant+for+epoxy+resin&rft.jtitle=Journal+of+hazardous+materials&rft.au=Jiang%2C+Shu-Dong&rft.au=Tang%2C+Gang&rft.au=Chen%2C+Junmin&rft.au=Huang%2C+Zheng-Qi&rft.date=2018-01-15&rft.pub=Elsevier+B.V&rft.issn=0304-3894&rft.eissn=1873-3336&rft.volume=342&rft.spage=689&rft.epage=697&rft_id=info:doi/10.1016%2Fj.jhazmat.2017.09.001&rft.externalDocID=S0304389417306829 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |