Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds

•BC-ZnO nanocomposites were formulated by impregnating BC with ZnO nanoparticles.•Fe-SEM, XRD and FTIR confirmed the reinforcement of nanoparticles into BC.•BC-ZnO nanocomposites showed activity against common burn wound pathogens.•The nanocomposites showed excellent wound healing activity in burn B...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 164; pp. 214 - 221
Main Authors Khalid, Ayesha, Khan, Romana, Ul-Islam, Mazhar, Khan, Taous, Wahid, Fazli
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.05.2017
Subjects
Online AccessGet full text
ISSN0144-8617
1879-1344
1879-1344
DOI10.1016/j.carbpol.2017.01.061

Cover

Loading…
Abstract •BC-ZnO nanocomposites were formulated by impregnating BC with ZnO nanoparticles.•Fe-SEM, XRD and FTIR confirmed the reinforcement of nanoparticles into BC.•BC-ZnO nanocomposites showed activity against common burn wound pathogens.•The nanocomposites showed excellent wound healing activity in burn BALBc mice model. Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns.
AbstractList Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALB mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns.
Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns.
Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns.Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns.
•BC-ZnO nanocomposites were formulated by impregnating BC with ZnO nanoparticles.•Fe-SEM, XRD and FTIR confirmed the reinforcement of nanoparticles into BC.•BC-ZnO nanocomposites showed activity against common burn wound pathogens.•The nanocomposites showed excellent wound healing activity in burn BALBc mice model. Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns.
Author Khan, Taous
Khan, Romana
Wahid, Fazli
Ul-Islam, Mazhar
Khalid, Ayesha
Author_xml – sequence: 1
  givenname: Ayesha
  surname: Khalid
  fullname: Khalid, Ayesha
  organization: Biotechnology Program, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
– sequence: 2
  givenname: Romana
  surname: Khan
  fullname: Khan, Romana
  organization: Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
– sequence: 3
  givenname: Mazhar
  surname: Ul-Islam
  fullname: Ul-Islam, Mazhar
  organization: Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
– sequence: 4
  givenname: Taous
  surname: Khan
  fullname: Khan, Taous
  email: taouskhan@ciit.net.pk
  organization: Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
– sequence: 5
  givenname: Fazli
  surname: Wahid
  fullname: Wahid, Fazli
  email: fazliwahid@ciit.net.pk, fazli_2008@yahoo.com
  organization: Biotechnology Program, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28325319$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFjwDykUuCx06cWBwQrfhTqVIvReJmOfYEeZXYi-0Uyqcnq1049LKjkebyeyO99y7IWYgBCXkNrAYG8t22tiYNuzjVnEFXM6iZhGdkA32nKhBNc0Y2DJqm6iV05-Qi5y1bRwJ7Qc55L3grQG3I9ytjCyZvJmpxmpYpZqz--GBp_O0d0mBCtHHexewLZmrWpSE-4ERdwpx9-EHzYy440zEmOiwp0F9xCS6_JM9HM2V8dbyX5NvnT_fXX6vbuy831x9vKytUXypw6EznoJNi7LlkLZrVT2ukGxgHBXawFu04NJJ3wo7YClStVQ3nCAMfrbgkbw9_dyn-XDAXPfu8t2ICxiVrvpoWfa-4PIlC3zPWKan4ir45osswo9O75GeTHvW_4FagPQA2xZwTjv8RYHpfkN7qY0F6X5BmoNfwV937Jzrriyk-hpKMn06qPxzUuCb64DHpbD0Gi84ntEW76E98-Asg67BG
CitedBy_id crossref_primary_10_1007_s00396_023_05074_5
crossref_primary_10_1002_mabi_202100308
crossref_primary_10_1016_j_ijbiomac_2017_06_109
crossref_primary_10_1016_j_jwpe_2022_102775
crossref_primary_10_3390_ijms232315376
crossref_primary_10_1007_s10965_022_03435_2
crossref_primary_10_3390_pharmaceutics13091426
crossref_primary_10_1016_j_bioadv_2023_213503
crossref_primary_10_1016_j_burns_2021_07_002
crossref_primary_10_1007_s10924_019_01565_1
crossref_primary_10_1016_j_heliyon_2024_e38497
crossref_primary_10_1016_j_msec_2019_110249
crossref_primary_10_1016_j_ijbiomac_2019_03_240
crossref_primary_10_1002_sscp_202300169
crossref_primary_10_3390_coatings9090550
crossref_primary_10_1177_08839115221143445
crossref_primary_10_1016_j_mattod_2018_02_001
crossref_primary_10_1016_j_micpath_2025_107314
crossref_primary_10_1093_rb_rbx025
crossref_primary_10_1016_j_ijbiomac_2019_06_232
crossref_primary_10_2174_1389450120666181129092144
crossref_primary_10_1016_j_jtemb_2022_126983
crossref_primary_10_1039_C8TC04103B
crossref_primary_10_1016_j_procbio_2023_12_021
crossref_primary_10_1177_1528083720977201
crossref_primary_10_1007_s11356_021_14427_y
crossref_primary_10_1016_j_carbpol_2025_123270
crossref_primary_10_1016_j_pmpp_2023_102023
crossref_primary_10_1016_j_jcis_2022_09_051
crossref_primary_10_1007_s10965_021_02689_6
crossref_primary_10_3389_fbioe_2020_593768
crossref_primary_10_1016_j_ijbiomac_2020_03_163
crossref_primary_10_1039_C7RA06699F
crossref_primary_10_1134_S0965545X21040015
crossref_primary_10_1177_0885328221998033
crossref_primary_10_3390_jcs8110475
crossref_primary_10_1016_j_compositesb_2021_109134
crossref_primary_10_1007_s10570_021_04119_8
crossref_primary_10_1021_acsapm_1c00723
crossref_primary_10_1016_j_msec_2019_109963
crossref_primary_10_1002_smsc_202200076
crossref_primary_10_1007_s10876_024_02632_x
crossref_primary_10_1080_13880209_2019_1676266
crossref_primary_10_1016_j_carbpol_2020_116573
crossref_primary_10_1016_j_biomaterials_2023_122348
crossref_primary_10_1016_j_bioactmat_2023_11_012
crossref_primary_10_1016_j_ejpb_2018_02_022
crossref_primary_10_1016_j_carbpol_2019_115349
crossref_primary_10_3390_ijms22094748
crossref_primary_10_1016_j_ijbiomac_2021_05_025
crossref_primary_10_1039_C9NR08234D
crossref_primary_10_1039_D2TB01106A
crossref_primary_10_1002_adma_201704290
crossref_primary_10_1016_j_carbpol_2018_11_061
crossref_primary_10_1039_D0TB01747G
crossref_primary_10_1016_j_ijbiomac_2024_135602
crossref_primary_10_1016_j_ijbiomac_2024_134874
crossref_primary_10_1557_s43578_023_01116_4
crossref_primary_10_3390_polym14214670
crossref_primary_10_1002_mabi_202100103
crossref_primary_10_1016_j_ijbiomac_2022_03_067
crossref_primary_10_1016_j_jpcs_2018_01_012
crossref_primary_10_1016_j_ijbiomac_2020_02_109
crossref_primary_10_1016_j_reactfunctpolym_2021_105126
crossref_primary_10_1016_j_ijbiomac_2018_10_192
crossref_primary_10_1097_MS9_0000000000000638
crossref_primary_10_3390_ma10080977
crossref_primary_10_1016_j_apsusc_2023_156633
crossref_primary_10_1016_j_matchemphys_2022_125696
crossref_primary_10_3389_fmats_2023_1058050
crossref_primary_10_1016_j_ijbiomac_2024_138672
crossref_primary_10_3390_molecules26102848
crossref_primary_10_3390_app11177769
crossref_primary_10_1080_20909977_2020_1821573
crossref_primary_10_1007_s10570_023_05210_y
crossref_primary_10_1007_s10876_022_02379_3
crossref_primary_10_1016_j_arabjc_2018_12_003
crossref_primary_10_1016_j_matpr_2019_06_074
crossref_primary_10_1016_j_carbpol_2018_02_016
crossref_primary_10_2478_acb_2019_0013
crossref_primary_10_1016_j_eurpolymj_2022_111293
crossref_primary_10_3389_fbioe_2020_553037
crossref_primary_10_3390_ph15101286
crossref_primary_10_1016_j_colsurfa_2022_130114
crossref_primary_10_3390_pharmaceutics13081125
crossref_primary_10_4155_tde_2017_0059
crossref_primary_10_1016_j_carbpol_2019_115360
crossref_primary_10_1002_mabi_202000070
crossref_primary_10_1016_j_fpsl_2024_101298
crossref_primary_10_1016_j_ijbiomac_2020_02_095
crossref_primary_10_3390_ma15020676
crossref_primary_10_1007_s40883_019_00134_1
crossref_primary_10_1016_j_ijbiomac_2023_123316
crossref_primary_10_1007_s13399_023_05175_9
crossref_primary_10_1016_j_compositesb_2020_108208
crossref_primary_10_1007_s11356_022_18515_5
crossref_primary_10_1016_j_ijbiomac_2023_123551
crossref_primary_10_3390_ma14020458
crossref_primary_10_1007_s10570_021_04155_4
crossref_primary_10_1093_burnst_tkab026
crossref_primary_10_1002_mame_201900848
crossref_primary_10_1016_j_carbpol_2021_118235
crossref_primary_10_3390_pharmaceutics15020424
crossref_primary_10_1007_s10570_024_06037_x
crossref_primary_10_1007_s42452_020_1970_6
crossref_primary_10_1080_15583724_2019_1663210
crossref_primary_10_1007_s00441_018_2830_1
crossref_primary_10_1049_2024_6024411
crossref_primary_10_1007_s10570_021_04359_8
crossref_primary_10_1016_j_ejmcr_2024_100190
crossref_primary_10_3390_polym14061080
crossref_primary_10_1007_s10924_023_02779_0
crossref_primary_10_1016_j_carbpol_2018_02_003
crossref_primary_10_1016_j_chemosphere_2020_128607
crossref_primary_10_1016_j_colsurfa_2024_135749
crossref_primary_10_3389_fbioe_2020_557885
crossref_primary_10_1049_mna2_12177
crossref_primary_10_1016_j_carbpol_2023_121239
crossref_primary_10_3390_pharmaceutics14081661
crossref_primary_10_1016_j_nanoso_2024_101270
crossref_primary_10_1021_acsami_2c20486
crossref_primary_10_1016_j_ijbiomac_2022_01_146
crossref_primary_10_1007_s13205_020_02436_6
crossref_primary_10_35812_CelluloseChemTechnol_2022_56_10
crossref_primary_10_1016_j_matlet_2017_10_058
crossref_primary_10_1007_s10904_023_02550_x
crossref_primary_10_1016_j_carbpol_2020_116159
crossref_primary_10_1016_j_jsps_2019_04_010
crossref_primary_10_1016_j_ijbiomac_2021_12_083
crossref_primary_10_1016_j_ijbiomac_2025_142183
crossref_primary_10_1016_j_msec_2019_04_043
crossref_primary_10_1515_ntrev_2023_0129
crossref_primary_10_2174_1381612825999191011104722
crossref_primary_10_5004_dwt_2020_25961
crossref_primary_10_1039_D1TB02677A
crossref_primary_10_1016_j_carbpol_2025_123427
crossref_primary_10_1002_asia_202200598
crossref_primary_10_1007_s00203_021_02634_7
crossref_primary_10_1016_j_carbpol_2021_119017
crossref_primary_10_1002_elsc_201700138
crossref_primary_10_1016_j_burns_2024_07_010
crossref_primary_10_1016_j_apmt_2023_101829
crossref_primary_10_1002_pc_25461
crossref_primary_10_1007_s12221_020_9465_z
crossref_primary_10_1016_j_carbpol_2019_114985
crossref_primary_10_1111_iwj_14492
crossref_primary_10_1007_s10570_020_03456_4
crossref_primary_10_1007_s10904_022_02351_8
crossref_primary_10_3390_ijms21155396
crossref_primary_10_3390_ijms22062836
crossref_primary_10_1088_1757_899X_833_1_012030
crossref_primary_10_1016_j_ijbiomac_2019_03_192
crossref_primary_10_1016_j_ijbiomac_2017_04_110
crossref_primary_10_1016_j_apmt_2018_03_001
crossref_primary_10_1016_j_ijbiomac_2019_02_032
crossref_primary_10_1002_star_202200023
crossref_primary_10_1002_biot_201900059
crossref_primary_10_1016_j_carbpol_2018_04_041
crossref_primary_10_1016_j_colsurfb_2024_114476
crossref_primary_10_3390_molecules22091552
crossref_primary_10_1021_acssuschemeng_0c00125
crossref_primary_10_1007_s10570_023_05406_2
crossref_primary_10_1007_s40201_020_00576_8
crossref_primary_10_1007_s12668_024_01593_9
crossref_primary_10_1088_1757_899X_732_1_012064
crossref_primary_10_1515_epoly_2019_0013
crossref_primary_10_1016_j_ijbiomac_2024_133702
crossref_primary_10_1007_s10904_022_02406_w
crossref_primary_10_3390_fermentation10020100
crossref_primary_10_3390_molecules23102684
crossref_primary_10_1007_s11356_022_19019_y
crossref_primary_10_1016_j_eurpolymj_2019_109365
crossref_primary_10_1016_j_ijbiomac_2018_09_090
crossref_primary_10_3390_jfb14040228
crossref_primary_10_1002_adsu_202400341
crossref_primary_10_1007_s10854_017_8038_4
crossref_primary_10_1016_j_carbpol_2023_120936
crossref_primary_10_1016_j_ijbiomac_2024_137627
crossref_primary_10_3390_ijms22083996
crossref_primary_10_3390_nano9101352
crossref_primary_10_1039_D1TB02709C
crossref_primary_10_1186_s11671_024_04116_3
crossref_primary_10_1080_24701556_2021_1952243
crossref_primary_10_1007_s10570_019_02307_1
crossref_primary_10_1016_j_biotechadv_2022_107914
crossref_primary_10_1002_btpr_3200
crossref_primary_10_1007_s10971_024_06380_2
crossref_primary_10_1007_s10876_024_02681_2
crossref_primary_10_3390_molecules25184045
crossref_primary_10_1016_j_ijbiomac_2020_01_221
crossref_primary_10_1039_C9MH01727E
crossref_primary_10_4252_wjsc_v16_i4_334
crossref_primary_10_1089_wound_2020_1219
crossref_primary_10_1007_s10570_018_2041_7
crossref_primary_10_3390_molecules27238341
crossref_primary_10_1080_09205063_2020_1817706
crossref_primary_10_1016_j_ijbiomac_2022_12_145
crossref_primary_10_3390_nano12111837
crossref_primary_10_1016_j_ijbiomac_2024_132157
crossref_primary_10_3390_ijms25126610
crossref_primary_10_1002_cjce_25609
crossref_primary_10_1080_20909977_2020_1846246
crossref_primary_10_1016_j_ijbiomac_2019_05_118
crossref_primary_10_3390_ijms25031462
crossref_primary_10_1007_s00253_018_09602_0
crossref_primary_10_3390_ma12132176
crossref_primary_10_1016_j_ijbiomac_2025_142373
crossref_primary_10_1016_j_cej_2020_126202
crossref_primary_10_1186_s11671_024_04091_9
crossref_primary_10_3390_cells9071622
crossref_primary_10_1016_j_jconrel_2018_11_024
crossref_primary_10_1016_j_biotechadv_2021_107856
crossref_primary_10_3390_polym13213734
crossref_primary_10_3390_ma14112889
crossref_primary_10_1007_s11814_021_0926_x
crossref_primary_10_1016_j_carbpol_2021_118995
crossref_primary_10_1039_D0BM01553A
crossref_primary_10_1016_j_mtcomm_2024_108557
crossref_primary_10_1039_D3TB02492J
crossref_primary_10_1007_s13399_021_01643_2
crossref_primary_10_1089_3dp_2021_0327
crossref_primary_10_1039_D4TB01024H
crossref_primary_10_1016_j_actbio_2021_01_039
crossref_primary_10_1016_j_indcrop_2023_116929
crossref_primary_10_3390_nano11030713
crossref_primary_10_3390_nano12050778
crossref_primary_10_1016_j_carbpol_2024_122656
crossref_primary_10_1089_wound_2018_0790
crossref_primary_10_1016_j_aiepr_2023_07_004
crossref_primary_10_1007_s10876_024_02660_7
crossref_primary_10_1016_j_mser_2021_100623
crossref_primary_10_1016_j_scp_2020_100223
crossref_primary_10_3390_jcs6100316
crossref_primary_10_3390_pharmaceutics15030970
crossref_primary_10_1016_j_molliq_2017_10_047
crossref_primary_10_1080_00914037_2023_2167080
crossref_primary_10_52547_iau_32_1_11
crossref_primary_10_1007_s42114_021_00369_z
crossref_primary_10_1007_s10924_024_03308_3
crossref_primary_10_1155_2022_1214734
crossref_primary_10_1016_j_indcrop_2023_117589
crossref_primary_10_1007_s00253_023_12458_8
crossref_primary_10_1016_j_btre_2022_e00726
crossref_primary_10_1016_j_carbpol_2018_11_023
Cites_doi 10.1111/j.1524-475X.2006.00179.x
10.1093/bja/71.6.885
10.1166/jnn.2009.1466
10.1016/j.carbpol.2006.06.004
10.1016/S1452-3981(23)15125-X
10.1016/j.carbpol.2009.08.039
10.1016/j.polymer.2007.10.039
10.1016/j.burns.2003.11.010
10.1038/nm1328
10.1016/j.burns.2007.03.020
10.1016/j.ijbiomac.2016.08.076
10.1007/s11814-011-0042-4
10.1016/j.carbpol.2010.10.072
10.1016/j.burns.2011.06.005
10.1007/s10570-016-0986-y
10.1166/jnn.2014.9016
10.1007/s10570-014-0528-4
10.1016/j.jhazmat.2010.10.110
10.1021/la7035949
10.1016/0305-4179(95)80015-G
10.1016/j.carbpol.2016.05.029
10.1134/S0020168506120119
10.4333/KPS.2002.32.2.113
10.1016/j.jconrel.2011.07.002
10.3144/expresspolymlett.2009.68
10.1177/147323000903700531
10.1007/s10570-013-0109-y
10.1007/s00268-003-7397-6
10.1086/376993
10.1002/jps.21210
10.1097/01.prs.0000225430.42531.c2
10.1007/BF02980032
10.1016/j.carbpol.2007.07.025
10.1021/es060999b
10.1097/BCR.0B013E31814B25B1
10.1002/app.27118
10.1016/j.biomaterials.2005.10.026
10.1097/MCO.0b013e3282fbd35a
10.1016/S0926-6690(00)00077-7
10.4103/0972-5229.128705
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.carbpol.2017.01.061
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
EndPage 221
ExternalDocumentID 28325319
10_1016_j_carbpol_2017_01_061
S0144861717300723
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
SCB
SEW
SMS
SOC
SSH
WUQ
XPP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c398t-1deda7d1763f82605ea2015a6db02191cbccecfb46273cfe53e95c9422e1b2fc3
IEDL.DBID .~1
ISSN 0144-8617
1879-1344
IngestDate Tue Aug 05 10:37:19 EDT 2025
Fri Jul 11 03:07:50 EDT 2025
Wed Feb 19 02:41:37 EST 2025
Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 04:15:04 EDT 2025
Fri Feb 23 02:33:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bacterial cellulose
Tissue regeneration
Bacterial cellulose-zinc oxide nanocomposites
Burn wound
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-1deda7d1763f82605ea2015a6db02191cbccecfb46273cfe53e95c9422e1b2fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28325319
PQID 1880079692
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000388926
proquest_miscellaneous_1880079692
pubmed_primary_28325319
crossref_primary_10_1016_j_carbpol_2017_01_061
crossref_citationtrail_10_1016_j_carbpol_2017_01_061
elsevier_sciencedirect_doi_10_1016_j_carbpol_2017_01_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-15
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Przybyszewska, Zaborski (bib0155) 2009; 3
Ghayempour, Montazer, Rad (bib0070) 2016; 93
Ul-Islam, Khattak, Ullah, Khan, Park (bib0175) 2014; 21
Castro, Zuluaga, Putaux, Caro, Mondragon, Ganán (bib0040) 2011; 84
Khan, Ul-Islam, Khattak, Ullah, Park (bib0100) 2015; 22
Akhtar, Ahmed, Kumar, Khan, Ahmad, Alrokayan (bib0010) 2012; 7
Phisalaphong, Suwanmajo, Sangtherapitikul (bib0150) 2008; 107
Huang, Zheng, Yan, Yin, Liao, Kang (bib0085) 2008; 24
Pham, Greenwood, Cleland, Woodruff, Maddern (bib0145) 2007; 33
Broughton, Janis, Attinger (bib0030) 2006; 117
Flecknell (bib0055) 1993; 71
Huh, Kwon (bib0090) 2011; 156
Maneerung, Tokura, Rujiravanit (bib0125) 2008; 72
Wahid, Khan, Shehzad, Ul-Islam, Kim (bib0195) 2014; 14
Latarjet (bib0110) 1995; 21
Gosain, DiPietro (bib0075) 2004; 28
Lansdown, Mirastschijski, Stubbs, Scanlon, Ågren (bib0105) 2007; 15
Dahman (bib0050) 2009; 9
Ullah, Santos, Khan (bib0180) 2016; 23
Mehta, Gupta, Todi, Myatra, Samaddar, Patil (bib0130) 2014; 18
Boateng, Matthews, Stevens, Eccleston (bib0025) 2008; 97
Barros, Barbosa, Dos Santos, Barros, Souza (bib0020) 2006; 42
Agnihotri, Gupta, Joshi (bib0005) 2004; 30
Thill, Zeyons, Spalla, Chauvat, Rose, Auffan (bib0165) 2006; 40
Gunister, Pestreli, Unlu, Atici, Gungor (bib0080) 2007; 67
Wan, Zhang, Wang, Qi, Wu, Hou (bib0200) 2011; 186
Ul-Islam, Shah, Ha, Park (bib0170) 2011; 28
Velnar, Bailey, Smrkolj (bib0190) 2009; 37
Moghaddam, Nazari, Badraghi, Kazemzad (bib0135) 2009; 4
Ito, Liu, Yang, Nguyen, Liang, Morris (bib0095) 2005; 11
Lee, Moon (bib0120) 2003; 26
Peck (bib0140) 2011; 37
Cho (bib0045) 2002; 32
Saibuatong, Phisalaphong (bib0160) 2010; 79
Ullah, Wahid, Santos, Khan (bib0185) 2016; 150
Weinstein, Mayhall (bib0205) 2003; 37
Gelin, Bodin, Gatenholm, Mihranyan, Edwards, Strømme (bib0065) 2007; 48
Latenser, Miller, Bessey, Browning, Caruso, Gomez (bib0115) 2007; 28
Campos, Groth, Branco (bib0035) 2008; 11
Backdahl, Helenius, Bodin, Nannmark, Johansson, Risberg (bib0015) 2006; 27
Focher, Palma, Canetti, Torri, Cosentino, Gastaldi (bib0060) 2001; 13
Ullah (10.1016/j.carbpol.2017.01.061_bib0180) 2016; 23
Campos (10.1016/j.carbpol.2017.01.061_bib0035) 2008; 11
Moghaddam (10.1016/j.carbpol.2017.01.061_bib0135) 2009; 4
Saibuatong (10.1016/j.carbpol.2017.01.061_bib0160) 2010; 79
Latenser (10.1016/j.carbpol.2017.01.061_bib0115) 2007; 28
Ullah (10.1016/j.carbpol.2017.01.061_bib0185) 2016; 150
Ghayempour (10.1016/j.carbpol.2017.01.061_bib0070) 2016; 93
Ito (10.1016/j.carbpol.2017.01.061_bib0095) 2005; 11
Wahid (10.1016/j.carbpol.2017.01.061_bib0195) 2014; 14
Ul-Islam (10.1016/j.carbpol.2017.01.061_bib0175) 2014; 21
Barros (10.1016/j.carbpol.2017.01.061_bib0020) 2006; 42
Thill (10.1016/j.carbpol.2017.01.061_bib0165) 2006; 40
Wan (10.1016/j.carbpol.2017.01.061_bib0200) 2011; 186
Phisalaphong (10.1016/j.carbpol.2017.01.061_bib0150) 2008; 107
Gelin (10.1016/j.carbpol.2017.01.061_bib0065) 2007; 48
Latarjet (10.1016/j.carbpol.2017.01.061_bib0110) 1995; 21
Cho (10.1016/j.carbpol.2017.01.061_bib0045) 2002; 32
Maneerung (10.1016/j.carbpol.2017.01.061_bib0125) 2008; 72
Peck (10.1016/j.carbpol.2017.01.061_bib0140) 2011; 37
Broughton (10.1016/j.carbpol.2017.01.061_bib0030) 2006; 117
Mehta (10.1016/j.carbpol.2017.01.061_bib0130) 2014; 18
Gunister (10.1016/j.carbpol.2017.01.061_bib0080) 2007; 67
Przybyszewska (10.1016/j.carbpol.2017.01.061_bib0155) 2009; 3
Velnar (10.1016/j.carbpol.2017.01.061_bib0190) 2009; 37
Huang (10.1016/j.carbpol.2017.01.061_bib0085) 2008; 24
Lansdown (10.1016/j.carbpol.2017.01.061_bib0105) 2007; 15
Weinstein (10.1016/j.carbpol.2017.01.061_bib0205) 2003; 37
Focher (10.1016/j.carbpol.2017.01.061_bib0060) 2001; 13
Castro (10.1016/j.carbpol.2017.01.061_bib0040) 2011; 84
Backdahl (10.1016/j.carbpol.2017.01.061_bib0015) 2006; 27
Khan (10.1016/j.carbpol.2017.01.061_bib0100) 2015; 22
Ul-Islam (10.1016/j.carbpol.2017.01.061_bib0170) 2011; 28
Lee (10.1016/j.carbpol.2017.01.061_bib0120) 2003; 26
Pham (10.1016/j.carbpol.2017.01.061_bib0145) 2007; 33
Boateng (10.1016/j.carbpol.2017.01.061_bib0025) 2008; 97
Dahman (10.1016/j.carbpol.2017.01.061_bib0050) 2009; 9
Akhtar (10.1016/j.carbpol.2017.01.061_bib0010) 2012; 7
Agnihotri (10.1016/j.carbpol.2017.01.061_bib0005) 2004; 30
Gosain (10.1016/j.carbpol.2017.01.061_bib0075) 2004; 28
Huh (10.1016/j.carbpol.2017.01.061_bib0090) 2011; 156
Flecknell (10.1016/j.carbpol.2017.01.061_bib0055) 1993; 71
References_xml – volume: 27
  start-page: 2141
  year: 2006
  end-page: 2149
  ident: bib0015
  article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells
  publication-title: Biomaterials
– volume: 40
  start-page: 6151
  year: 2006
  end-page: 6156
  ident: bib0165
  article-title: Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism
  publication-title: Environmental Science & Technology
– volume: 21
  start-page: 433
  year: 2014
  end-page: 447
  ident: bib0175
  article-title: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications
  publication-title: Cellulose
– volume: 23
  start-page: 2291
  year: 2016
  end-page: 2314
  ident: bib0180
  article-title: Applications of bacterial cellulose in food cosmetics and drug delivery
  publication-title: Cellulose
– volume: 3
  start-page: 542
  year: 2009
  end-page: 552
  ident: bib0155
  article-title: The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer
  publication-title: Express Polymer Letter
– volume: 156
  start-page: 128
  year: 2011
  end-page: 145
  ident: bib0090
  article-title: Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era
  publication-title: Journal of Controlled Release
– volume: 18
  start-page: 149
  year: 2014
  ident: bib0130
  article-title: Guidelines for prevention of hospital acquired infections
  publication-title: Indian Journal of Critical Care Medicine
– volume: 4
  start-page: 247
  year: 2009
  end-page: 257
  ident: bib0135
  article-title: Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film
  publication-title: International Journel of Electrochemical Sciences
– volume: 48
  start-page: 7623
  year: 2007
  end-page: 7631
  ident: bib0065
  article-title: Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy
  publication-title: Polymer
– volume: 186
  start-page: 306
  year: 2011
  end-page: 312
  ident: bib0200
  article-title: Vancomycin-functionalised Ag@ TiO 2 phototoxicity for bacteria
  publication-title: Journal of Hazardous Materials
– volume: 21
  start-page: 221
  year: 1995
  end-page: 225
  ident: bib0110
  article-title: A simple guide to burn treatment
  publication-title: Burns
– volume: 14
  start-page: 744
  year: 2014
  end-page: 754
  ident: bib0195
  article-title: Interaction of nanomaterials with cells and their medical applications
  publication-title: Journal of Nanoscience and Nanotechnology
– volume: 72
  start-page: 43
  year: 2008
  end-page: 51
  ident: bib0125
  article-title: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing
  publication-title: Carbohydrate Polymers
– volume: 79
  start-page: 455
  year: 2010
  end-page: 460
  ident: bib0160
  article-title: Novo aloe vera–Bacterial cellulose composite film from biosynthesis
  publication-title: Carbohydrate Polymers
– volume: 93
  start-page: 344
  year: 2016
  end-page: 349
  ident: bib0070
  article-title: Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product
  publication-title: International Journal of Biological Macromolecules
– volume: 11
  start-page: 1351
  year: 2005
  end-page: 1354
  ident: bib0095
  article-title: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis
  publication-title: Nature Medicine
– volume: 37
  start-page: 1087
  year: 2011
  end-page: 1100
  ident: bib0140
  article-title: Epidemiology of burns throughout the world. Part I: Distribution and risk factors
– volume: 13
  start-page: 193
  year: 2001
  end-page: 208
  ident: bib0060
  article-title: Structural differences between non-wood plant celluloses: Evidence from solid state NMR: Vibrational spectroscopy and X-ray diffractometry
  publication-title: Industrial Crops and Products
– volume: 37
  start-page: 1528
  year: 2009
  end-page: 1542
  ident: bib0190
  article-title: The wound healing process: An overview of the cellular and molecular mechanisms
  publication-title: Journal of International Medical Research
– volume: 7
  start-page: 845
  year: 2012
  end-page: 857
  ident: bib0010
  article-title: Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species
  publication-title: International Journel of Nanomedicine
– volume: 33
  start-page: 946
  year: 2007
  end-page: 957
  ident: bib0145
  article-title: Bioengineered skin substitutes for the management of burns: A systematic review
  publication-title: Burns
– volume: 42
  start-page: 1348
  year: 2006
  end-page: 1351
  ident: bib0020
  article-title: Synthesis and x-ray diffraction characterization of nanocrystalline ZnO obtained by Pechini method
  publication-title: Inorganic Materials
– volume: 26
  start-page: 855
  year: 2003
  end-page: 860
  ident: bib0120
  article-title: Effect of topically applied silver sulfadiazine on fibroblast cell proliferation and biomechanical properties of the wound
  publication-title: Archives of Pharmacal Research
– volume: 32
  start-page: 113
  year: 2002
  end-page: 117
  ident: bib0045
  article-title: Effect of silver sulfadiazine on the skin cell proliferation and wound healing process in hairless mouse 2nd degree burn model
  publication-title: Journal of Pharmaceutical Investigation
– volume: 150
  start-page: 330
  year: 2016
  end-page: 352
  ident: bib0185
  article-title: Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites
  publication-title: Carbohydrate Polymers
– volume: 9
  start-page: 5105
  year: 2009
  end-page: 5122
  ident: bib0050
  article-title: Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers
  publication-title: Journal of Nanoscience and Nanotechnology
– volume: 24
  start-page: 4140
  year: 2008
  end-page: 4144
  ident: bib0085
  article-title: Toxicological effect of ZnO nanoparticles based on bacteria
  publication-title: Langmuir
– volume: 84
  start-page: 96
  year: 2011
  end-page: 102
  ident: bib0040
  article-title: Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes
  publication-title: Carbohydrate Polymers
– volume: 15
  start-page: 2
  year: 2007
  end-page: 16
  ident: bib0105
  article-title: Zinc in wound healing: Theoretical, experimental, and clinical aspects
  publication-title: Wound Repair and Regeneration
– volume: 28
  start-page: 635
  year: 2007
  end-page: 658
  ident: bib0115
  article-title: National burn repository 2006: A ten-year review
  publication-title: Journal of Burn Care & Research
– volume: 117
  start-page: 12S
  year: 2006
  end-page: 34S
  ident: bib0030
  article-title: The basic science of wound healing
  publication-title: Plastic and Reconstructive Surgery
– volume: 28
  start-page: 1736
  year: 2011
  end-page: 1743
  ident: bib0170
  article-title: Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose
  publication-title: Korean Journal of Chemical Engineering
– volume: 37
  start-page: 543
  year: 2003
  end-page: 550
  ident: bib0205
  article-title: The epidemiology of burn wound infections: Then and now
  publication-title: Clinical Infectious Diseases
– volume: 97
  start-page: 2892
  year: 2008
  end-page: 2923
  ident: bib0025
  article-title: Wound healing dressings and drug delivery systems: A review
  publication-title: Journal of Pharmaceutical Sciences
– volume: 11
  start-page: 281
  year: 2008
  end-page: 288
  ident: bib0035
  article-title: Assessment and nutritional aspects of wound healing
  publication-title: Current Opinion in Clinical Nutrition & Metabolic Care
– volume: 71
  start-page: 885
  year: 1993
  end-page: 894
  ident: bib0055
  article-title: Anaesthesia of animals for biomedical research
  publication-title: British Journal of Anaesthesia
– volume: 22
  start-page: 565
  year: 2015
  end-page: 579
  ident: bib0100
  article-title: Bacterial cellulose-titanium dioxide nanocomposites: Nanostructural characteristics, antibacterial mechanism and biocompatibility
  publication-title: Cellulose
– volume: 30
  start-page: 241
  year: 2004
  end-page: 243
  ident: bib0005
  article-title: Aerobic bacterial isolates from burn wound infections and their antibiograms—A five-year study
  publication-title: Burns
– volume: 67
  start-page: 358
  year: 2007
  end-page: 365
  ident: bib0080
  article-title: Synthesis and characterization of chitosan-MMT biocomposite systems
  publication-title: Carbohydrate Polymers
– volume: 28
  start-page: 321
  year: 2004
  end-page: 326
  ident: bib0075
  article-title: Aging and wound healing
  publication-title: World Journal of Surgery
– volume: 107
  start-page: 292
  year: 2008
  end-page: 299
  ident: bib0150
  article-title: Novel nanoporous membranes from regenerated bacterial cellulose
  publication-title: Journal of Applied Polymer Science
– volume: 15
  start-page: 2
  year: 2007
  ident: 10.1016/j.carbpol.2017.01.061_bib0105
  article-title: Zinc in wound healing: Theoretical, experimental, and clinical aspects
  publication-title: Wound Repair and Regeneration
  doi: 10.1111/j.1524-475X.2006.00179.x
– volume: 7
  start-page: 845
  year: 2012
  ident: 10.1016/j.carbpol.2017.01.061_bib0010
  article-title: Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species
  publication-title: International Journel of Nanomedicine
– volume: 71
  start-page: 885
  year: 1993
  ident: 10.1016/j.carbpol.2017.01.061_bib0055
  article-title: Anaesthesia of animals for biomedical research
  publication-title: British Journal of Anaesthesia
  doi: 10.1093/bja/71.6.885
– volume: 9
  start-page: 5105
  year: 2009
  ident: 10.1016/j.carbpol.2017.01.061_bib0050
  article-title: Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2009.1466
– volume: 67
  start-page: 358
  year: 2007
  ident: 10.1016/j.carbpol.2017.01.061_bib0080
  article-title: Synthesis and characterization of chitosan-MMT biocomposite systems
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2006.06.004
– volume: 4
  start-page: 247
  year: 2009
  ident: 10.1016/j.carbpol.2017.01.061_bib0135
  article-title: Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film
  publication-title: International Journel of Electrochemical Sciences
  doi: 10.1016/S1452-3981(23)15125-X
– volume: 79
  start-page: 455
  year: 2010
  ident: 10.1016/j.carbpol.2017.01.061_bib0160
  article-title: Novo aloe vera–Bacterial cellulose composite film from biosynthesis
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2009.08.039
– volume: 48
  start-page: 7623
  year: 2007
  ident: 10.1016/j.carbpol.2017.01.061_bib0065
  article-title: Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.10.039
– volume: 30
  start-page: 241
  year: 2004
  ident: 10.1016/j.carbpol.2017.01.061_bib0005
  article-title: Aerobic bacterial isolates from burn wound infections and their antibiograms—A five-year study
  publication-title: Burns
  doi: 10.1016/j.burns.2003.11.010
– volume: 11
  start-page: 1351
  year: 2005
  ident: 10.1016/j.carbpol.2017.01.061_bib0095
  article-title: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis
  publication-title: Nature Medicine
  doi: 10.1038/nm1328
– volume: 33
  start-page: 946
  year: 2007
  ident: 10.1016/j.carbpol.2017.01.061_bib0145
  article-title: Bioengineered skin substitutes for the management of burns: A systematic review
  publication-title: Burns
  doi: 10.1016/j.burns.2007.03.020
– volume: 93
  start-page: 344
  year: 2016
  ident: 10.1016/j.carbpol.2017.01.061_bib0070
  article-title: Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2016.08.076
– volume: 28
  start-page: 1736
  year: 2011
  ident: 10.1016/j.carbpol.2017.01.061_bib0170
  article-title: Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose
  publication-title: Korean Journal of Chemical Engineering
  doi: 10.1007/s11814-011-0042-4
– volume: 84
  start-page: 96
  year: 2011
  ident: 10.1016/j.carbpol.2017.01.061_bib0040
  article-title: Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2010.10.072
– volume: 37
  start-page: 1087
  year: 2011
  ident: 10.1016/j.carbpol.2017.01.061_bib0140
  article-title: Epidemiology of burns throughout the world. Part I: Distribution and risk factors
  publication-title: Burns
  doi: 10.1016/j.burns.2011.06.005
– volume: 23
  start-page: 2291
  year: 2016
  ident: 10.1016/j.carbpol.2017.01.061_bib0180
  article-title: Applications of bacterial cellulose in food cosmetics and drug delivery
  publication-title: Cellulose
  doi: 10.1007/s10570-016-0986-y
– volume: 14
  start-page: 744
  year: 2014
  ident: 10.1016/j.carbpol.2017.01.061_bib0195
  article-title: Interaction of nanomaterials with cells and their medical applications
  publication-title: Journal of Nanoscience and Nanotechnology
  doi: 10.1166/jnn.2014.9016
– volume: 22
  start-page: 565
  year: 2015
  ident: 10.1016/j.carbpol.2017.01.061_bib0100
  article-title: Bacterial cellulose-titanium dioxide nanocomposites: Nanostructural characteristics, antibacterial mechanism and biocompatibility
  publication-title: Cellulose
  doi: 10.1007/s10570-014-0528-4
– volume: 186
  start-page: 306
  year: 2011
  ident: 10.1016/j.carbpol.2017.01.061_bib0200
  article-title: Vancomycin-functionalised Ag@ TiO 2 phototoxicity for bacteria
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2010.10.110
– volume: 24
  start-page: 4140
  year: 2008
  ident: 10.1016/j.carbpol.2017.01.061_bib0085
  article-title: Toxicological effect of ZnO nanoparticles based on bacteria
  publication-title: Langmuir
  doi: 10.1021/la7035949
– volume: 21
  start-page: 221
  year: 1995
  ident: 10.1016/j.carbpol.2017.01.061_bib0110
  article-title: A simple guide to burn treatment
  publication-title: Burns
  doi: 10.1016/0305-4179(95)80015-G
– volume: 150
  start-page: 330
  year: 2016
  ident: 10.1016/j.carbpol.2017.01.061_bib0185
  article-title: Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2016.05.029
– volume: 42
  start-page: 1348
  year: 2006
  ident: 10.1016/j.carbpol.2017.01.061_bib0020
  article-title: Synthesis and x-ray diffraction characterization of nanocrystalline ZnO obtained by Pechini method
  publication-title: Inorganic Materials
  doi: 10.1134/S0020168506120119
– volume: 32
  start-page: 113
  year: 2002
  ident: 10.1016/j.carbpol.2017.01.061_bib0045
  article-title: Effect of silver sulfadiazine on the skin cell proliferation and wound healing process in hairless mouse 2nd degree burn model
  publication-title: Journal of Pharmaceutical Investigation
  doi: 10.4333/KPS.2002.32.2.113
– volume: 156
  start-page: 128
  year: 2011
  ident: 10.1016/j.carbpol.2017.01.061_bib0090
  article-title: Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2011.07.002
– volume: 3
  start-page: 542
  year: 2009
  ident: 10.1016/j.carbpol.2017.01.061_bib0155
  article-title: The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer
  publication-title: Express Polymer Letter
  doi: 10.3144/expresspolymlett.2009.68
– volume: 37
  start-page: 1528
  year: 2009
  ident: 10.1016/j.carbpol.2017.01.061_bib0190
  article-title: The wound healing process: An overview of the cellular and molecular mechanisms
  publication-title: Journal of International Medical Research
  doi: 10.1177/147323000903700531
– volume: 21
  start-page: 433
  year: 2014
  ident: 10.1016/j.carbpol.2017.01.061_bib0175
  article-title: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications
  publication-title: Cellulose
  doi: 10.1007/s10570-013-0109-y
– volume: 28
  start-page: 321
  year: 2004
  ident: 10.1016/j.carbpol.2017.01.061_bib0075
  article-title: Aging and wound healing
  publication-title: World Journal of Surgery
  doi: 10.1007/s00268-003-7397-6
– volume: 37
  start-page: 543
  year: 2003
  ident: 10.1016/j.carbpol.2017.01.061_bib0205
  article-title: The epidemiology of burn wound infections: Then and now
  publication-title: Clinical Infectious Diseases
  doi: 10.1086/376993
– volume: 97
  start-page: 2892
  year: 2008
  ident: 10.1016/j.carbpol.2017.01.061_bib0025
  article-title: Wound healing dressings and drug delivery systems: A review
  publication-title: Journal of Pharmaceutical Sciences
  doi: 10.1002/jps.21210
– volume: 117
  start-page: 12S
  year: 2006
  ident: 10.1016/j.carbpol.2017.01.061_bib0030
  article-title: The basic science of wound healing
  publication-title: Plastic and Reconstructive Surgery
  doi: 10.1097/01.prs.0000225430.42531.c2
– volume: 26
  start-page: 855
  year: 2003
  ident: 10.1016/j.carbpol.2017.01.061_bib0120
  article-title: Effect of topically applied silver sulfadiazine on fibroblast cell proliferation and biomechanical properties of the wound
  publication-title: Archives of Pharmacal Research
  doi: 10.1007/BF02980032
– volume: 72
  start-page: 43
  year: 2008
  ident: 10.1016/j.carbpol.2017.01.061_bib0125
  article-title: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2007.07.025
– volume: 40
  start-page: 6151
  year: 2006
  ident: 10.1016/j.carbpol.2017.01.061_bib0165
  article-title: Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism
  publication-title: Environmental Science & Technology
  doi: 10.1021/es060999b
– volume: 28
  start-page: 635
  year: 2007
  ident: 10.1016/j.carbpol.2017.01.061_bib0115
  article-title: National burn repository 2006: A ten-year review
  publication-title: Journal of Burn Care & Research
  doi: 10.1097/BCR.0B013E31814B25B1
– volume: 107
  start-page: 292
  year: 2008
  ident: 10.1016/j.carbpol.2017.01.061_bib0150
  article-title: Novel nanoporous membranes from regenerated bacterial cellulose
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/app.27118
– volume: 27
  start-page: 2141
  year: 2006
  ident: 10.1016/j.carbpol.2017.01.061_bib0015
  article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.026
– volume: 11
  start-page: 281
  year: 2008
  ident: 10.1016/j.carbpol.2017.01.061_bib0035
  article-title: Assessment and nutritional aspects of wound healing
  publication-title: Current Opinion in Clinical Nutrition & Metabolic Care
  doi: 10.1097/MCO.0b013e3282fbd35a
– volume: 13
  start-page: 193
  year: 2001
  ident: 10.1016/j.carbpol.2017.01.061_bib0060
  article-title: Structural differences between non-wood plant celluloses: Evidence from solid state NMR: Vibrational spectroscopy and X-ray diffractometry
  publication-title: Industrial Crops and Products
  doi: 10.1016/S0926-6690(00)00077-7
– volume: 18
  start-page: 149
  issue: 3
  year: 2014
  ident: 10.1016/j.carbpol.2017.01.061_bib0130
  article-title: Guidelines for prevention of hospital acquired infections
  publication-title: Indian Journal of Critical Care Medicine
  doi: 10.4103/0972-5229.128705
SSID ssj0000610
Score 2.6230404
Snippet •BC-ZnO nanocomposites were formulated by impregnating BC with ZnO nanoparticles.•Fe-SEM, XRD and FTIR confirmed the reinforcement of nanoparticles into...
Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms Animals
Anti-Bacterial Agents
anti-infective properties
Bacterial cellulose
Bacterial cellulose-zinc oxide nanocomposites
Bandages
Burn wound
Burns - therapy
cellulose
Cellulose - chemistry
Citrobacter freundii
Escherichia coli
mechanical properties
mice
Mice, Inbred BALB C
nanocomposites
Nanocomposites - chemistry
nanoparticles
pathogens
Pseudomonas aeruginosa
Staphylococcus aureus
Tissue regeneration
tissue repair
zinc oxide
Zinc Oxide - chemistry
Title Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds
URI https://dx.doi.org/10.1016/j.carbpol.2017.01.061
https://www.ncbi.nlm.nih.gov/pubmed/28325319
https://www.proquest.com/docview/1880079692
https://www.proquest.com/docview/2000388926
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhPbSX0Ece7iOo0OvGllbSSsfUNLgtzakB34Sk1RYHozWxnYQc8tszsw-3PRhDYC9aRqCdEd_MrEbfEPIFIF-7ka8yUeWQoESdZ445nTlIh0ayZJw7vCj861JNrsSPqZzukXF_FwbLKjvsbzG9QevuzbDT5nAxmw2xLElocMAMKdcLjoyfyF4He_rskf2Dxg0jAQpnKP33Fs_wGlLAG7-o8QSCFQ17p2Lb_NO2-LPxQxevyUEXQNLzdo1vyF5Mb8nLcd-37R2Zfm0JmEEI_8qv5_UyZg-zFGh9PysjTS7VWEiO1VpxSR08NNW3cU7LpiY2_aEtvTOFeJaCzhO9w95Ly0NydfHt93iSdf0TspAbvcpYGUtXlAwgpNKYt0QHHyqdKj14dsOCDyGGygsFMUyoosyjkcEIziPzvAr5EdlPdYonhOaFUEryIkRVCGGC9txzA8mI8jKUSg6I6LVmQ0cujj0u5ravIru2nbItKtuOmAVlD8jZZtqiZdfYNUH3JrH_bRMLHmDX1M-9CS1YBC3gUqzXS4uUdKPCKMO3y_DmDFUbrgbkuLX_ZsXY7Qmh7P3zF_eBvMIRliUw-ZHsr27W8RNEOyt_2mznU_Li_PvPyeUTkIz_QA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKeigXxLsBWozEdUnstb32sUSt0ldOrZSbZXu9KFXkjZoEEL-emX0UOESVkPbk9UjeGeubmfX4G0I-A-RrN_ZVJqocEpSo88wxpzMH6dBYloxzhxeFr2dqeisu5nK-Ryb9XRgsq-ywv8X0Bq27kVGnzdFqsRhhWZLQ4IAZUq4XPH9C9pGdSgzI_sn55XT2FyA3pAQ4P0OBPxd5RneQBd77VY2HEKxoCDwV2-WidoWgjSs6e06edTEkPWmX-YLsxfSSHEz61m2vyPxry8EMk_DH_HZZr2P2a5ECrX8uykiTSzXWkmPBVlxTBw9N9fe4pGVTFpu-0ZbhmUJIS0Htif7A9kvr1-T27PRmMs26FgpZyI3eZKyMpStKBihSaUxdooMPlU6VHpy7YcGHEEPlhYIwJlRR5tHIYATnkXlehfwNGaQ6xUNC80IoJXkRoiqEMEF77rmBfER5GUolh0T0WrOh4xfHNhdL2xeS3dlO2RaVbcfMgrKH5MuD2Kol2HhMQPcmsf_sFAtO4DHRT70JLVgELeBSrLdri6x048Iow3fP4c0xqjZcDcnb1v4PK8aGT4hm7_5_cR_JwfTm-spenc8u35On-AarFJj8QAab-208guBn44-7zf0bSM8CAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+cellulose-zinc+oxide+nanocomposites+as+a+novel+dressing+system+for+burn+wounds&rft.jtitle=Carbohydrate+polymers&rft.au=Khalid%2C+Ayesha&rft.au=Khan%2C+Romana&rft.au=Ul-Islam%2C+Mazhar&rft.au=Khan%2C+Taous&rft.date=2017-05-15&rft.issn=0144-8617&rft.volume=164&rft.spage=214&rft.epage=221&rft_id=info:doi/10.1016%2Fj.carbpol.2017.01.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbpol_2017_01_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon