Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds
•BC-ZnO nanocomposites were formulated by impregnating BC with ZnO nanoparticles.•Fe-SEM, XRD and FTIR confirmed the reinforcement of nanoparticles into BC.•BC-ZnO nanocomposites showed activity against common burn wound pathogens.•The nanocomposites showed excellent wound healing activity in burn B...
Saved in:
Published in | Carbohydrate polymers Vol. 164; pp. 214 - 221 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0144-8617 1879-1344 1879-1344 |
DOI | 10.1016/j.carbpol.2017.01.061 |
Cover
Loading…
Abstract | •BC-ZnO nanocomposites were formulated by impregnating BC with ZnO nanoparticles.•Fe-SEM, XRD and FTIR confirmed the reinforcement of nanoparticles into BC.•BC-ZnO nanocomposites showed activity against common burn wound pathogens.•The nanocomposites showed excellent wound healing activity in burn BALBc mice model.
Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns. |
---|---|
AbstractList | Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALB
mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns. Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns. Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns.Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns. •BC-ZnO nanocomposites were formulated by impregnating BC with ZnO nanoparticles.•Fe-SEM, XRD and FTIR confirmed the reinforcement of nanoparticles into BC.•BC-ZnO nanocomposites showed activity against common burn wound pathogens.•The nanocomposites showed excellent wound healing activity in burn BALBc mice model. Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical applications. Therefore, in current study, the inherent wound healing characteristics of bacterial cellulose and antimicrobial properties of zinc oxide nanoparticles were combined. The reinforcement (impregnation) of zinc oxide nanoparticles into bacterial cellulose sheets was confirmed through various characterization techniques. The antimicrobial capacity of bacterial cellulose-zinc oxide nanocomposites was tested against common burn pathogens. The in-vivo wound healing and tissue regeneration of the nanocomposites was investigated in burn BALBc mice model. Characterization techniques confirmed the successful impregnation of nanoparticles into bacterial cellulose. Bacterial cellulose-zinc oxide nanocomposites exhibited 90%, 87.4%, 94.3% and 90.9% activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Citrobacter freundii, respectively. Bacterial cellulose-zinc oxide nanocomposites treated animals showed significant (66%) healing activity. The histological analysis revealed fine tissue regeneration in composites treated group. These findings suggest that bacterial cellulose-zinc oxide nanocomposites could be a novel dressing material for burns. |
Author | Khan, Taous Khan, Romana Wahid, Fazli Ul-Islam, Mazhar Khalid, Ayesha |
Author_xml | – sequence: 1 givenname: Ayesha surname: Khalid fullname: Khalid, Ayesha organization: Biotechnology Program, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan – sequence: 2 givenname: Romana surname: Khan fullname: Khan, Romana organization: Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan – sequence: 3 givenname: Mazhar surname: Ul-Islam fullname: Ul-Islam, Mazhar organization: Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman – sequence: 4 givenname: Taous surname: Khan fullname: Khan, Taous email: taouskhan@ciit.net.pk organization: Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan – sequence: 5 givenname: Fazli surname: Wahid fullname: Wahid, Fazli email: fazliwahid@ciit.net.pk, fazli_2008@yahoo.com organization: Biotechnology Program, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28325319$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFjwDykUuCx06cWBwQrfhTqVIvReJmOfYEeZXYi-0Uyqcnq1049LKjkebyeyO99y7IWYgBCXkNrAYG8t22tiYNuzjVnEFXM6iZhGdkA32nKhBNc0Y2DJqm6iV05-Qi5y1bRwJ7Qc55L3grQG3I9ytjCyZvJmpxmpYpZqz--GBp_O0d0mBCtHHexewLZmrWpSE-4ERdwpx9-EHzYy440zEmOiwp0F9xCS6_JM9HM2V8dbyX5NvnT_fXX6vbuy831x9vKytUXypw6EznoJNi7LlkLZrVT2ukGxgHBXawFu04NJJ3wo7YClStVQ3nCAMfrbgkbw9_dyn-XDAXPfu8t2ICxiVrvpoWfa-4PIlC3zPWKan4ir45osswo9O75GeTHvW_4FagPQA2xZwTjv8RYHpfkN7qY0F6X5BmoNfwV937Jzrriyk-hpKMn06qPxzUuCb64DHpbD0Gi84ntEW76E98-Asg67BG |
CitedBy_id | crossref_primary_10_1007_s00396_023_05074_5 crossref_primary_10_1002_mabi_202100308 crossref_primary_10_1016_j_ijbiomac_2017_06_109 crossref_primary_10_1016_j_jwpe_2022_102775 crossref_primary_10_3390_ijms232315376 crossref_primary_10_1007_s10965_022_03435_2 crossref_primary_10_3390_pharmaceutics13091426 crossref_primary_10_1016_j_bioadv_2023_213503 crossref_primary_10_1016_j_burns_2021_07_002 crossref_primary_10_1007_s10924_019_01565_1 crossref_primary_10_1016_j_heliyon_2024_e38497 crossref_primary_10_1016_j_msec_2019_110249 crossref_primary_10_1016_j_ijbiomac_2019_03_240 crossref_primary_10_1002_sscp_202300169 crossref_primary_10_3390_coatings9090550 crossref_primary_10_1177_08839115221143445 crossref_primary_10_1016_j_mattod_2018_02_001 crossref_primary_10_1016_j_micpath_2025_107314 crossref_primary_10_1093_rb_rbx025 crossref_primary_10_1016_j_ijbiomac_2019_06_232 crossref_primary_10_2174_1389450120666181129092144 crossref_primary_10_1016_j_jtemb_2022_126983 crossref_primary_10_1039_C8TC04103B crossref_primary_10_1016_j_procbio_2023_12_021 crossref_primary_10_1177_1528083720977201 crossref_primary_10_1007_s11356_021_14427_y crossref_primary_10_1016_j_carbpol_2025_123270 crossref_primary_10_1016_j_pmpp_2023_102023 crossref_primary_10_1016_j_jcis_2022_09_051 crossref_primary_10_1007_s10965_021_02689_6 crossref_primary_10_3389_fbioe_2020_593768 crossref_primary_10_1016_j_ijbiomac_2020_03_163 crossref_primary_10_1039_C7RA06699F crossref_primary_10_1134_S0965545X21040015 crossref_primary_10_1177_0885328221998033 crossref_primary_10_3390_jcs8110475 crossref_primary_10_1016_j_compositesb_2021_109134 crossref_primary_10_1007_s10570_021_04119_8 crossref_primary_10_1021_acsapm_1c00723 crossref_primary_10_1016_j_msec_2019_109963 crossref_primary_10_1002_smsc_202200076 crossref_primary_10_1007_s10876_024_02632_x crossref_primary_10_1080_13880209_2019_1676266 crossref_primary_10_1016_j_carbpol_2020_116573 crossref_primary_10_1016_j_biomaterials_2023_122348 crossref_primary_10_1016_j_bioactmat_2023_11_012 crossref_primary_10_1016_j_ejpb_2018_02_022 crossref_primary_10_1016_j_carbpol_2019_115349 crossref_primary_10_3390_ijms22094748 crossref_primary_10_1016_j_ijbiomac_2021_05_025 crossref_primary_10_1039_C9NR08234D crossref_primary_10_1039_D2TB01106A crossref_primary_10_1002_adma_201704290 crossref_primary_10_1016_j_carbpol_2018_11_061 crossref_primary_10_1039_D0TB01747G crossref_primary_10_1016_j_ijbiomac_2024_135602 crossref_primary_10_1016_j_ijbiomac_2024_134874 crossref_primary_10_1557_s43578_023_01116_4 crossref_primary_10_3390_polym14214670 crossref_primary_10_1002_mabi_202100103 crossref_primary_10_1016_j_ijbiomac_2022_03_067 crossref_primary_10_1016_j_jpcs_2018_01_012 crossref_primary_10_1016_j_ijbiomac_2020_02_109 crossref_primary_10_1016_j_reactfunctpolym_2021_105126 crossref_primary_10_1016_j_ijbiomac_2018_10_192 crossref_primary_10_1097_MS9_0000000000000638 crossref_primary_10_3390_ma10080977 crossref_primary_10_1016_j_apsusc_2023_156633 crossref_primary_10_1016_j_matchemphys_2022_125696 crossref_primary_10_3389_fmats_2023_1058050 crossref_primary_10_1016_j_ijbiomac_2024_138672 crossref_primary_10_3390_molecules26102848 crossref_primary_10_3390_app11177769 crossref_primary_10_1080_20909977_2020_1821573 crossref_primary_10_1007_s10570_023_05210_y crossref_primary_10_1007_s10876_022_02379_3 crossref_primary_10_1016_j_arabjc_2018_12_003 crossref_primary_10_1016_j_matpr_2019_06_074 crossref_primary_10_1016_j_carbpol_2018_02_016 crossref_primary_10_2478_acb_2019_0013 crossref_primary_10_1016_j_eurpolymj_2022_111293 crossref_primary_10_3389_fbioe_2020_553037 crossref_primary_10_3390_ph15101286 crossref_primary_10_1016_j_colsurfa_2022_130114 crossref_primary_10_3390_pharmaceutics13081125 crossref_primary_10_4155_tde_2017_0059 crossref_primary_10_1016_j_carbpol_2019_115360 crossref_primary_10_1002_mabi_202000070 crossref_primary_10_1016_j_fpsl_2024_101298 crossref_primary_10_1016_j_ijbiomac_2020_02_095 crossref_primary_10_3390_ma15020676 crossref_primary_10_1007_s40883_019_00134_1 crossref_primary_10_1016_j_ijbiomac_2023_123316 crossref_primary_10_1007_s13399_023_05175_9 crossref_primary_10_1016_j_compositesb_2020_108208 crossref_primary_10_1007_s11356_022_18515_5 crossref_primary_10_1016_j_ijbiomac_2023_123551 crossref_primary_10_3390_ma14020458 crossref_primary_10_1007_s10570_021_04155_4 crossref_primary_10_1093_burnst_tkab026 crossref_primary_10_1002_mame_201900848 crossref_primary_10_1016_j_carbpol_2021_118235 crossref_primary_10_3390_pharmaceutics15020424 crossref_primary_10_1007_s10570_024_06037_x crossref_primary_10_1007_s42452_020_1970_6 crossref_primary_10_1080_15583724_2019_1663210 crossref_primary_10_1007_s00441_018_2830_1 crossref_primary_10_1049_2024_6024411 crossref_primary_10_1007_s10570_021_04359_8 crossref_primary_10_1016_j_ejmcr_2024_100190 crossref_primary_10_3390_polym14061080 crossref_primary_10_1007_s10924_023_02779_0 crossref_primary_10_1016_j_carbpol_2018_02_003 crossref_primary_10_1016_j_chemosphere_2020_128607 crossref_primary_10_1016_j_colsurfa_2024_135749 crossref_primary_10_3389_fbioe_2020_557885 crossref_primary_10_1049_mna2_12177 crossref_primary_10_1016_j_carbpol_2023_121239 crossref_primary_10_3390_pharmaceutics14081661 crossref_primary_10_1016_j_nanoso_2024_101270 crossref_primary_10_1021_acsami_2c20486 crossref_primary_10_1016_j_ijbiomac_2022_01_146 crossref_primary_10_1007_s13205_020_02436_6 crossref_primary_10_35812_CelluloseChemTechnol_2022_56_10 crossref_primary_10_1016_j_matlet_2017_10_058 crossref_primary_10_1007_s10904_023_02550_x crossref_primary_10_1016_j_carbpol_2020_116159 crossref_primary_10_1016_j_jsps_2019_04_010 crossref_primary_10_1016_j_ijbiomac_2021_12_083 crossref_primary_10_1016_j_ijbiomac_2025_142183 crossref_primary_10_1016_j_msec_2019_04_043 crossref_primary_10_1515_ntrev_2023_0129 crossref_primary_10_2174_1381612825999191011104722 crossref_primary_10_5004_dwt_2020_25961 crossref_primary_10_1039_D1TB02677A crossref_primary_10_1016_j_carbpol_2025_123427 crossref_primary_10_1002_asia_202200598 crossref_primary_10_1007_s00203_021_02634_7 crossref_primary_10_1016_j_carbpol_2021_119017 crossref_primary_10_1002_elsc_201700138 crossref_primary_10_1016_j_burns_2024_07_010 crossref_primary_10_1016_j_apmt_2023_101829 crossref_primary_10_1002_pc_25461 crossref_primary_10_1007_s12221_020_9465_z crossref_primary_10_1016_j_carbpol_2019_114985 crossref_primary_10_1111_iwj_14492 crossref_primary_10_1007_s10570_020_03456_4 crossref_primary_10_1007_s10904_022_02351_8 crossref_primary_10_3390_ijms21155396 crossref_primary_10_3390_ijms22062836 crossref_primary_10_1088_1757_899X_833_1_012030 crossref_primary_10_1016_j_ijbiomac_2019_03_192 crossref_primary_10_1016_j_ijbiomac_2017_04_110 crossref_primary_10_1016_j_apmt_2018_03_001 crossref_primary_10_1016_j_ijbiomac_2019_02_032 crossref_primary_10_1002_star_202200023 crossref_primary_10_1002_biot_201900059 crossref_primary_10_1016_j_carbpol_2018_04_041 crossref_primary_10_1016_j_colsurfb_2024_114476 crossref_primary_10_3390_molecules22091552 crossref_primary_10_1021_acssuschemeng_0c00125 crossref_primary_10_1007_s10570_023_05406_2 crossref_primary_10_1007_s40201_020_00576_8 crossref_primary_10_1007_s12668_024_01593_9 crossref_primary_10_1088_1757_899X_732_1_012064 crossref_primary_10_1515_epoly_2019_0013 crossref_primary_10_1016_j_ijbiomac_2024_133702 crossref_primary_10_1007_s10904_022_02406_w crossref_primary_10_3390_fermentation10020100 crossref_primary_10_3390_molecules23102684 crossref_primary_10_1007_s11356_022_19019_y crossref_primary_10_1016_j_eurpolymj_2019_109365 crossref_primary_10_1016_j_ijbiomac_2018_09_090 crossref_primary_10_3390_jfb14040228 crossref_primary_10_1002_adsu_202400341 crossref_primary_10_1007_s10854_017_8038_4 crossref_primary_10_1016_j_carbpol_2023_120936 crossref_primary_10_1016_j_ijbiomac_2024_137627 crossref_primary_10_3390_ijms22083996 crossref_primary_10_3390_nano9101352 crossref_primary_10_1039_D1TB02709C crossref_primary_10_1186_s11671_024_04116_3 crossref_primary_10_1080_24701556_2021_1952243 crossref_primary_10_1007_s10570_019_02307_1 crossref_primary_10_1016_j_biotechadv_2022_107914 crossref_primary_10_1002_btpr_3200 crossref_primary_10_1007_s10971_024_06380_2 crossref_primary_10_1007_s10876_024_02681_2 crossref_primary_10_3390_molecules25184045 crossref_primary_10_1016_j_ijbiomac_2020_01_221 crossref_primary_10_1039_C9MH01727E crossref_primary_10_4252_wjsc_v16_i4_334 crossref_primary_10_1089_wound_2020_1219 crossref_primary_10_1007_s10570_018_2041_7 crossref_primary_10_3390_molecules27238341 crossref_primary_10_1080_09205063_2020_1817706 crossref_primary_10_1016_j_ijbiomac_2022_12_145 crossref_primary_10_3390_nano12111837 crossref_primary_10_1016_j_ijbiomac_2024_132157 crossref_primary_10_3390_ijms25126610 crossref_primary_10_1002_cjce_25609 crossref_primary_10_1080_20909977_2020_1846246 crossref_primary_10_1016_j_ijbiomac_2019_05_118 crossref_primary_10_3390_ijms25031462 crossref_primary_10_1007_s00253_018_09602_0 crossref_primary_10_3390_ma12132176 crossref_primary_10_1016_j_ijbiomac_2025_142373 crossref_primary_10_1016_j_cej_2020_126202 crossref_primary_10_1186_s11671_024_04091_9 crossref_primary_10_3390_cells9071622 crossref_primary_10_1016_j_jconrel_2018_11_024 crossref_primary_10_1016_j_biotechadv_2021_107856 crossref_primary_10_3390_polym13213734 crossref_primary_10_3390_ma14112889 crossref_primary_10_1007_s11814_021_0926_x crossref_primary_10_1016_j_carbpol_2021_118995 crossref_primary_10_1039_D0BM01553A crossref_primary_10_1016_j_mtcomm_2024_108557 crossref_primary_10_1039_D3TB02492J crossref_primary_10_1007_s13399_021_01643_2 crossref_primary_10_1089_3dp_2021_0327 crossref_primary_10_1039_D4TB01024H crossref_primary_10_1016_j_actbio_2021_01_039 crossref_primary_10_1016_j_indcrop_2023_116929 crossref_primary_10_3390_nano11030713 crossref_primary_10_3390_nano12050778 crossref_primary_10_1016_j_carbpol_2024_122656 crossref_primary_10_1089_wound_2018_0790 crossref_primary_10_1016_j_aiepr_2023_07_004 crossref_primary_10_1007_s10876_024_02660_7 crossref_primary_10_1016_j_mser_2021_100623 crossref_primary_10_1016_j_scp_2020_100223 crossref_primary_10_3390_jcs6100316 crossref_primary_10_3390_pharmaceutics15030970 crossref_primary_10_1016_j_molliq_2017_10_047 crossref_primary_10_1080_00914037_2023_2167080 crossref_primary_10_52547_iau_32_1_11 crossref_primary_10_1007_s42114_021_00369_z crossref_primary_10_1007_s10924_024_03308_3 crossref_primary_10_1155_2022_1214734 crossref_primary_10_1016_j_indcrop_2023_117589 crossref_primary_10_1007_s00253_023_12458_8 crossref_primary_10_1016_j_btre_2022_e00726 crossref_primary_10_1016_j_carbpol_2018_11_023 |
Cites_doi | 10.1111/j.1524-475X.2006.00179.x 10.1093/bja/71.6.885 10.1166/jnn.2009.1466 10.1016/j.carbpol.2006.06.004 10.1016/S1452-3981(23)15125-X 10.1016/j.carbpol.2009.08.039 10.1016/j.polymer.2007.10.039 10.1016/j.burns.2003.11.010 10.1038/nm1328 10.1016/j.burns.2007.03.020 10.1016/j.ijbiomac.2016.08.076 10.1007/s11814-011-0042-4 10.1016/j.carbpol.2010.10.072 10.1016/j.burns.2011.06.005 10.1007/s10570-016-0986-y 10.1166/jnn.2014.9016 10.1007/s10570-014-0528-4 10.1016/j.jhazmat.2010.10.110 10.1021/la7035949 10.1016/0305-4179(95)80015-G 10.1016/j.carbpol.2016.05.029 10.1134/S0020168506120119 10.4333/KPS.2002.32.2.113 10.1016/j.jconrel.2011.07.002 10.3144/expresspolymlett.2009.68 10.1177/147323000903700531 10.1007/s10570-013-0109-y 10.1007/s00268-003-7397-6 10.1086/376993 10.1002/jps.21210 10.1097/01.prs.0000225430.42531.c2 10.1007/BF02980032 10.1016/j.carbpol.2007.07.025 10.1021/es060999b 10.1097/BCR.0B013E31814B25B1 10.1002/app.27118 10.1016/j.biomaterials.2005.10.026 10.1097/MCO.0b013e3282fbd35a 10.1016/S0926-6690(00)00077-7 10.4103/0972-5229.128705 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2017.01.061 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
EndPage | 221 |
ExternalDocumentID | 28325319 10_1016_j_carbpol_2017_01_061 S0144861717300723 |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- SCB SEW SMS SOC SSH WUQ XPP CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c398t-1deda7d1763f82605ea2015a6db02191cbccecfb46273cfe53e95c9422e1b2fc3 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Tue Aug 05 10:37:19 EDT 2025 Fri Jul 11 03:07:50 EDT 2025 Wed Feb 19 02:41:37 EST 2025 Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 04:15:04 EDT 2025 Fri Feb 23 02:33:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bacterial cellulose Tissue regeneration Bacterial cellulose-zinc oxide nanocomposites Burn wound |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-1deda7d1763f82605ea2015a6db02191cbccecfb46273cfe53e95c9422e1b2fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28325319 |
PQID | 1880079692 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000388926 proquest_miscellaneous_1880079692 pubmed_primary_28325319 crossref_primary_10_1016_j_carbpol_2017_01_061 crossref_citationtrail_10_1016_j_carbpol_2017_01_061 elsevier_sciencedirect_doi_10_1016_j_carbpol_2017_01_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-15 |
PublicationDateYYYYMMDD | 2017-05-15 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Przybyszewska, Zaborski (bib0155) 2009; 3 Ghayempour, Montazer, Rad (bib0070) 2016; 93 Ul-Islam, Khattak, Ullah, Khan, Park (bib0175) 2014; 21 Castro, Zuluaga, Putaux, Caro, Mondragon, Ganán (bib0040) 2011; 84 Khan, Ul-Islam, Khattak, Ullah, Park (bib0100) 2015; 22 Akhtar, Ahmed, Kumar, Khan, Ahmad, Alrokayan (bib0010) 2012; 7 Phisalaphong, Suwanmajo, Sangtherapitikul (bib0150) 2008; 107 Huang, Zheng, Yan, Yin, Liao, Kang (bib0085) 2008; 24 Pham, Greenwood, Cleland, Woodruff, Maddern (bib0145) 2007; 33 Broughton, Janis, Attinger (bib0030) 2006; 117 Flecknell (bib0055) 1993; 71 Huh, Kwon (bib0090) 2011; 156 Maneerung, Tokura, Rujiravanit (bib0125) 2008; 72 Wahid, Khan, Shehzad, Ul-Islam, Kim (bib0195) 2014; 14 Latarjet (bib0110) 1995; 21 Gosain, DiPietro (bib0075) 2004; 28 Lansdown, Mirastschijski, Stubbs, Scanlon, Ågren (bib0105) 2007; 15 Dahman (bib0050) 2009; 9 Ullah, Santos, Khan (bib0180) 2016; 23 Mehta, Gupta, Todi, Myatra, Samaddar, Patil (bib0130) 2014; 18 Boateng, Matthews, Stevens, Eccleston (bib0025) 2008; 97 Barros, Barbosa, Dos Santos, Barros, Souza (bib0020) 2006; 42 Agnihotri, Gupta, Joshi (bib0005) 2004; 30 Thill, Zeyons, Spalla, Chauvat, Rose, Auffan (bib0165) 2006; 40 Gunister, Pestreli, Unlu, Atici, Gungor (bib0080) 2007; 67 Wan, Zhang, Wang, Qi, Wu, Hou (bib0200) 2011; 186 Ul-Islam, Shah, Ha, Park (bib0170) 2011; 28 Velnar, Bailey, Smrkolj (bib0190) 2009; 37 Moghaddam, Nazari, Badraghi, Kazemzad (bib0135) 2009; 4 Ito, Liu, Yang, Nguyen, Liang, Morris (bib0095) 2005; 11 Lee, Moon (bib0120) 2003; 26 Peck (bib0140) 2011; 37 Cho (bib0045) 2002; 32 Saibuatong, Phisalaphong (bib0160) 2010; 79 Ullah, Wahid, Santos, Khan (bib0185) 2016; 150 Weinstein, Mayhall (bib0205) 2003; 37 Gelin, Bodin, Gatenholm, Mihranyan, Edwards, Strømme (bib0065) 2007; 48 Latenser, Miller, Bessey, Browning, Caruso, Gomez (bib0115) 2007; 28 Campos, Groth, Branco (bib0035) 2008; 11 Backdahl, Helenius, Bodin, Nannmark, Johansson, Risberg (bib0015) 2006; 27 Focher, Palma, Canetti, Torri, Cosentino, Gastaldi (bib0060) 2001; 13 Ullah (10.1016/j.carbpol.2017.01.061_bib0180) 2016; 23 Campos (10.1016/j.carbpol.2017.01.061_bib0035) 2008; 11 Moghaddam (10.1016/j.carbpol.2017.01.061_bib0135) 2009; 4 Saibuatong (10.1016/j.carbpol.2017.01.061_bib0160) 2010; 79 Latenser (10.1016/j.carbpol.2017.01.061_bib0115) 2007; 28 Ullah (10.1016/j.carbpol.2017.01.061_bib0185) 2016; 150 Ghayempour (10.1016/j.carbpol.2017.01.061_bib0070) 2016; 93 Ito (10.1016/j.carbpol.2017.01.061_bib0095) 2005; 11 Wahid (10.1016/j.carbpol.2017.01.061_bib0195) 2014; 14 Ul-Islam (10.1016/j.carbpol.2017.01.061_bib0175) 2014; 21 Barros (10.1016/j.carbpol.2017.01.061_bib0020) 2006; 42 Thill (10.1016/j.carbpol.2017.01.061_bib0165) 2006; 40 Wan (10.1016/j.carbpol.2017.01.061_bib0200) 2011; 186 Phisalaphong (10.1016/j.carbpol.2017.01.061_bib0150) 2008; 107 Gelin (10.1016/j.carbpol.2017.01.061_bib0065) 2007; 48 Latarjet (10.1016/j.carbpol.2017.01.061_bib0110) 1995; 21 Cho (10.1016/j.carbpol.2017.01.061_bib0045) 2002; 32 Maneerung (10.1016/j.carbpol.2017.01.061_bib0125) 2008; 72 Peck (10.1016/j.carbpol.2017.01.061_bib0140) 2011; 37 Broughton (10.1016/j.carbpol.2017.01.061_bib0030) 2006; 117 Mehta (10.1016/j.carbpol.2017.01.061_bib0130) 2014; 18 Gunister (10.1016/j.carbpol.2017.01.061_bib0080) 2007; 67 Przybyszewska (10.1016/j.carbpol.2017.01.061_bib0155) 2009; 3 Velnar (10.1016/j.carbpol.2017.01.061_bib0190) 2009; 37 Huang (10.1016/j.carbpol.2017.01.061_bib0085) 2008; 24 Lansdown (10.1016/j.carbpol.2017.01.061_bib0105) 2007; 15 Weinstein (10.1016/j.carbpol.2017.01.061_bib0205) 2003; 37 Focher (10.1016/j.carbpol.2017.01.061_bib0060) 2001; 13 Castro (10.1016/j.carbpol.2017.01.061_bib0040) 2011; 84 Backdahl (10.1016/j.carbpol.2017.01.061_bib0015) 2006; 27 Khan (10.1016/j.carbpol.2017.01.061_bib0100) 2015; 22 Ul-Islam (10.1016/j.carbpol.2017.01.061_bib0170) 2011; 28 Lee (10.1016/j.carbpol.2017.01.061_bib0120) 2003; 26 Pham (10.1016/j.carbpol.2017.01.061_bib0145) 2007; 33 Boateng (10.1016/j.carbpol.2017.01.061_bib0025) 2008; 97 Dahman (10.1016/j.carbpol.2017.01.061_bib0050) 2009; 9 Akhtar (10.1016/j.carbpol.2017.01.061_bib0010) 2012; 7 Agnihotri (10.1016/j.carbpol.2017.01.061_bib0005) 2004; 30 Gosain (10.1016/j.carbpol.2017.01.061_bib0075) 2004; 28 Huh (10.1016/j.carbpol.2017.01.061_bib0090) 2011; 156 Flecknell (10.1016/j.carbpol.2017.01.061_bib0055) 1993; 71 |
References_xml | – volume: 27 start-page: 2141 year: 2006 end-page: 2149 ident: bib0015 article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells publication-title: Biomaterials – volume: 40 start-page: 6151 year: 2006 end-page: 6156 ident: bib0165 article-title: Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism publication-title: Environmental Science & Technology – volume: 21 start-page: 433 year: 2014 end-page: 447 ident: bib0175 article-title: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications publication-title: Cellulose – volume: 23 start-page: 2291 year: 2016 end-page: 2314 ident: bib0180 article-title: Applications of bacterial cellulose in food cosmetics and drug delivery publication-title: Cellulose – volume: 3 start-page: 542 year: 2009 end-page: 552 ident: bib0155 article-title: The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer publication-title: Express Polymer Letter – volume: 156 start-page: 128 year: 2011 end-page: 145 ident: bib0090 article-title: Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era publication-title: Journal of Controlled Release – volume: 18 start-page: 149 year: 2014 ident: bib0130 article-title: Guidelines for prevention of hospital acquired infections publication-title: Indian Journal of Critical Care Medicine – volume: 4 start-page: 247 year: 2009 end-page: 257 ident: bib0135 article-title: Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film publication-title: International Journel of Electrochemical Sciences – volume: 48 start-page: 7623 year: 2007 end-page: 7631 ident: bib0065 article-title: Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy publication-title: Polymer – volume: 186 start-page: 306 year: 2011 end-page: 312 ident: bib0200 article-title: Vancomycin-functionalised Ag@ TiO 2 phototoxicity for bacteria publication-title: Journal of Hazardous Materials – volume: 21 start-page: 221 year: 1995 end-page: 225 ident: bib0110 article-title: A simple guide to burn treatment publication-title: Burns – volume: 14 start-page: 744 year: 2014 end-page: 754 ident: bib0195 article-title: Interaction of nanomaterials with cells and their medical applications publication-title: Journal of Nanoscience and Nanotechnology – volume: 72 start-page: 43 year: 2008 end-page: 51 ident: bib0125 article-title: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing publication-title: Carbohydrate Polymers – volume: 79 start-page: 455 year: 2010 end-page: 460 ident: bib0160 article-title: Novo aloe vera–Bacterial cellulose composite film from biosynthesis publication-title: Carbohydrate Polymers – volume: 93 start-page: 344 year: 2016 end-page: 349 ident: bib0070 article-title: Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product publication-title: International Journal of Biological Macromolecules – volume: 11 start-page: 1351 year: 2005 end-page: 1354 ident: bib0095 article-title: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis publication-title: Nature Medicine – volume: 37 start-page: 1087 year: 2011 end-page: 1100 ident: bib0140 article-title: Epidemiology of burns throughout the world. Part I: Distribution and risk factors – volume: 13 start-page: 193 year: 2001 end-page: 208 ident: bib0060 article-title: Structural differences between non-wood plant celluloses: Evidence from solid state NMR: Vibrational spectroscopy and X-ray diffractometry publication-title: Industrial Crops and Products – volume: 37 start-page: 1528 year: 2009 end-page: 1542 ident: bib0190 article-title: The wound healing process: An overview of the cellular and molecular mechanisms publication-title: Journal of International Medical Research – volume: 7 start-page: 845 year: 2012 end-page: 857 ident: bib0010 article-title: Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species publication-title: International Journel of Nanomedicine – volume: 33 start-page: 946 year: 2007 end-page: 957 ident: bib0145 article-title: Bioengineered skin substitutes for the management of burns: A systematic review publication-title: Burns – volume: 42 start-page: 1348 year: 2006 end-page: 1351 ident: bib0020 article-title: Synthesis and x-ray diffraction characterization of nanocrystalline ZnO obtained by Pechini method publication-title: Inorganic Materials – volume: 26 start-page: 855 year: 2003 end-page: 860 ident: bib0120 article-title: Effect of topically applied silver sulfadiazine on fibroblast cell proliferation and biomechanical properties of the wound publication-title: Archives of Pharmacal Research – volume: 32 start-page: 113 year: 2002 end-page: 117 ident: bib0045 article-title: Effect of silver sulfadiazine on the skin cell proliferation and wound healing process in hairless mouse 2nd degree burn model publication-title: Journal of Pharmaceutical Investigation – volume: 150 start-page: 330 year: 2016 end-page: 352 ident: bib0185 article-title: Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites publication-title: Carbohydrate Polymers – volume: 9 start-page: 5105 year: 2009 end-page: 5122 ident: bib0050 article-title: Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers publication-title: Journal of Nanoscience and Nanotechnology – volume: 24 start-page: 4140 year: 2008 end-page: 4144 ident: bib0085 article-title: Toxicological effect of ZnO nanoparticles based on bacteria publication-title: Langmuir – volume: 84 start-page: 96 year: 2011 end-page: 102 ident: bib0040 article-title: Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes publication-title: Carbohydrate Polymers – volume: 15 start-page: 2 year: 2007 end-page: 16 ident: bib0105 article-title: Zinc in wound healing: Theoretical, experimental, and clinical aspects publication-title: Wound Repair and Regeneration – volume: 28 start-page: 635 year: 2007 end-page: 658 ident: bib0115 article-title: National burn repository 2006: A ten-year review publication-title: Journal of Burn Care & Research – volume: 117 start-page: 12S year: 2006 end-page: 34S ident: bib0030 article-title: The basic science of wound healing publication-title: Plastic and Reconstructive Surgery – volume: 28 start-page: 1736 year: 2011 end-page: 1743 ident: bib0170 article-title: Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose publication-title: Korean Journal of Chemical Engineering – volume: 37 start-page: 543 year: 2003 end-page: 550 ident: bib0205 article-title: The epidemiology of burn wound infections: Then and now publication-title: Clinical Infectious Diseases – volume: 97 start-page: 2892 year: 2008 end-page: 2923 ident: bib0025 article-title: Wound healing dressings and drug delivery systems: A review publication-title: Journal of Pharmaceutical Sciences – volume: 11 start-page: 281 year: 2008 end-page: 288 ident: bib0035 article-title: Assessment and nutritional aspects of wound healing publication-title: Current Opinion in Clinical Nutrition & Metabolic Care – volume: 71 start-page: 885 year: 1993 end-page: 894 ident: bib0055 article-title: Anaesthesia of animals for biomedical research publication-title: British Journal of Anaesthesia – volume: 22 start-page: 565 year: 2015 end-page: 579 ident: bib0100 article-title: Bacterial cellulose-titanium dioxide nanocomposites: Nanostructural characteristics, antibacterial mechanism and biocompatibility publication-title: Cellulose – volume: 30 start-page: 241 year: 2004 end-page: 243 ident: bib0005 article-title: Aerobic bacterial isolates from burn wound infections and their antibiograms—A five-year study publication-title: Burns – volume: 67 start-page: 358 year: 2007 end-page: 365 ident: bib0080 article-title: Synthesis and characterization of chitosan-MMT biocomposite systems publication-title: Carbohydrate Polymers – volume: 28 start-page: 321 year: 2004 end-page: 326 ident: bib0075 article-title: Aging and wound healing publication-title: World Journal of Surgery – volume: 107 start-page: 292 year: 2008 end-page: 299 ident: bib0150 article-title: Novel nanoporous membranes from regenerated bacterial cellulose publication-title: Journal of Applied Polymer Science – volume: 15 start-page: 2 year: 2007 ident: 10.1016/j.carbpol.2017.01.061_bib0105 article-title: Zinc in wound healing: Theoretical, experimental, and clinical aspects publication-title: Wound Repair and Regeneration doi: 10.1111/j.1524-475X.2006.00179.x – volume: 7 start-page: 845 year: 2012 ident: 10.1016/j.carbpol.2017.01.061_bib0010 article-title: Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species publication-title: International Journel of Nanomedicine – volume: 71 start-page: 885 year: 1993 ident: 10.1016/j.carbpol.2017.01.061_bib0055 article-title: Anaesthesia of animals for biomedical research publication-title: British Journal of Anaesthesia doi: 10.1093/bja/71.6.885 – volume: 9 start-page: 5105 year: 2009 ident: 10.1016/j.carbpol.2017.01.061_bib0050 article-title: Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2009.1466 – volume: 67 start-page: 358 year: 2007 ident: 10.1016/j.carbpol.2017.01.061_bib0080 article-title: Synthesis and characterization of chitosan-MMT biocomposite systems publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2006.06.004 – volume: 4 start-page: 247 year: 2009 ident: 10.1016/j.carbpol.2017.01.061_bib0135 article-title: Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film publication-title: International Journel of Electrochemical Sciences doi: 10.1016/S1452-3981(23)15125-X – volume: 79 start-page: 455 year: 2010 ident: 10.1016/j.carbpol.2017.01.061_bib0160 article-title: Novo aloe vera–Bacterial cellulose composite film from biosynthesis publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2009.08.039 – volume: 48 start-page: 7623 year: 2007 ident: 10.1016/j.carbpol.2017.01.061_bib0065 article-title: Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy publication-title: Polymer doi: 10.1016/j.polymer.2007.10.039 – volume: 30 start-page: 241 year: 2004 ident: 10.1016/j.carbpol.2017.01.061_bib0005 article-title: Aerobic bacterial isolates from burn wound infections and their antibiograms—A five-year study publication-title: Burns doi: 10.1016/j.burns.2003.11.010 – volume: 11 start-page: 1351 year: 2005 ident: 10.1016/j.carbpol.2017.01.061_bib0095 article-title: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis publication-title: Nature Medicine doi: 10.1038/nm1328 – volume: 33 start-page: 946 year: 2007 ident: 10.1016/j.carbpol.2017.01.061_bib0145 article-title: Bioengineered skin substitutes for the management of burns: A systematic review publication-title: Burns doi: 10.1016/j.burns.2007.03.020 – volume: 93 start-page: 344 year: 2016 ident: 10.1016/j.carbpol.2017.01.061_bib0070 article-title: Encapsulation of Aloe Vera extract into natural Tragacanth Gum as a novel green wound healing product publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2016.08.076 – volume: 28 start-page: 1736 year: 2011 ident: 10.1016/j.carbpol.2017.01.061_bib0170 article-title: Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose publication-title: Korean Journal of Chemical Engineering doi: 10.1007/s11814-011-0042-4 – volume: 84 start-page: 96 year: 2011 ident: 10.1016/j.carbpol.2017.01.061_bib0040 article-title: Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2010.10.072 – volume: 37 start-page: 1087 year: 2011 ident: 10.1016/j.carbpol.2017.01.061_bib0140 article-title: Epidemiology of burns throughout the world. Part I: Distribution and risk factors publication-title: Burns doi: 10.1016/j.burns.2011.06.005 – volume: 23 start-page: 2291 year: 2016 ident: 10.1016/j.carbpol.2017.01.061_bib0180 article-title: Applications of bacterial cellulose in food cosmetics and drug delivery publication-title: Cellulose doi: 10.1007/s10570-016-0986-y – volume: 14 start-page: 744 year: 2014 ident: 10.1016/j.carbpol.2017.01.061_bib0195 article-title: Interaction of nanomaterials with cells and their medical applications publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2014.9016 – volume: 22 start-page: 565 year: 2015 ident: 10.1016/j.carbpol.2017.01.061_bib0100 article-title: Bacterial cellulose-titanium dioxide nanocomposites: Nanostructural characteristics, antibacterial mechanism and biocompatibility publication-title: Cellulose doi: 10.1007/s10570-014-0528-4 – volume: 186 start-page: 306 year: 2011 ident: 10.1016/j.carbpol.2017.01.061_bib0200 article-title: Vancomycin-functionalised Ag@ TiO 2 phototoxicity for bacteria publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2010.10.110 – volume: 24 start-page: 4140 year: 2008 ident: 10.1016/j.carbpol.2017.01.061_bib0085 article-title: Toxicological effect of ZnO nanoparticles based on bacteria publication-title: Langmuir doi: 10.1021/la7035949 – volume: 21 start-page: 221 year: 1995 ident: 10.1016/j.carbpol.2017.01.061_bib0110 article-title: A simple guide to burn treatment publication-title: Burns doi: 10.1016/0305-4179(95)80015-G – volume: 150 start-page: 330 year: 2016 ident: 10.1016/j.carbpol.2017.01.061_bib0185 article-title: Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.05.029 – volume: 42 start-page: 1348 year: 2006 ident: 10.1016/j.carbpol.2017.01.061_bib0020 article-title: Synthesis and x-ray diffraction characterization of nanocrystalline ZnO obtained by Pechini method publication-title: Inorganic Materials doi: 10.1134/S0020168506120119 – volume: 32 start-page: 113 year: 2002 ident: 10.1016/j.carbpol.2017.01.061_bib0045 article-title: Effect of silver sulfadiazine on the skin cell proliferation and wound healing process in hairless mouse 2nd degree burn model publication-title: Journal of Pharmaceutical Investigation doi: 10.4333/KPS.2002.32.2.113 – volume: 156 start-page: 128 year: 2011 ident: 10.1016/j.carbpol.2017.01.061_bib0090 article-title: Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2011.07.002 – volume: 3 start-page: 542 year: 2009 ident: 10.1016/j.carbpol.2017.01.061_bib0155 article-title: The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer publication-title: Express Polymer Letter doi: 10.3144/expresspolymlett.2009.68 – volume: 37 start-page: 1528 year: 2009 ident: 10.1016/j.carbpol.2017.01.061_bib0190 article-title: The wound healing process: An overview of the cellular and molecular mechanisms publication-title: Journal of International Medical Research doi: 10.1177/147323000903700531 – volume: 21 start-page: 433 year: 2014 ident: 10.1016/j.carbpol.2017.01.061_bib0175 article-title: Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications publication-title: Cellulose doi: 10.1007/s10570-013-0109-y – volume: 28 start-page: 321 year: 2004 ident: 10.1016/j.carbpol.2017.01.061_bib0075 article-title: Aging and wound healing publication-title: World Journal of Surgery doi: 10.1007/s00268-003-7397-6 – volume: 37 start-page: 543 year: 2003 ident: 10.1016/j.carbpol.2017.01.061_bib0205 article-title: The epidemiology of burn wound infections: Then and now publication-title: Clinical Infectious Diseases doi: 10.1086/376993 – volume: 97 start-page: 2892 year: 2008 ident: 10.1016/j.carbpol.2017.01.061_bib0025 article-title: Wound healing dressings and drug delivery systems: A review publication-title: Journal of Pharmaceutical Sciences doi: 10.1002/jps.21210 – volume: 117 start-page: 12S year: 2006 ident: 10.1016/j.carbpol.2017.01.061_bib0030 article-title: The basic science of wound healing publication-title: Plastic and Reconstructive Surgery doi: 10.1097/01.prs.0000225430.42531.c2 – volume: 26 start-page: 855 year: 2003 ident: 10.1016/j.carbpol.2017.01.061_bib0120 article-title: Effect of topically applied silver sulfadiazine on fibroblast cell proliferation and biomechanical properties of the wound publication-title: Archives of Pharmacal Research doi: 10.1007/BF02980032 – volume: 72 start-page: 43 year: 2008 ident: 10.1016/j.carbpol.2017.01.061_bib0125 article-title: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2007.07.025 – volume: 40 start-page: 6151 year: 2006 ident: 10.1016/j.carbpol.2017.01.061_bib0165 article-title: Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism publication-title: Environmental Science & Technology doi: 10.1021/es060999b – volume: 28 start-page: 635 year: 2007 ident: 10.1016/j.carbpol.2017.01.061_bib0115 article-title: National burn repository 2006: A ten-year review publication-title: Journal of Burn Care & Research doi: 10.1097/BCR.0B013E31814B25B1 – volume: 107 start-page: 292 year: 2008 ident: 10.1016/j.carbpol.2017.01.061_bib0150 article-title: Novel nanoporous membranes from regenerated bacterial cellulose publication-title: Journal of Applied Polymer Science doi: 10.1002/app.27118 – volume: 27 start-page: 2141 year: 2006 ident: 10.1016/j.carbpol.2017.01.061_bib0015 article-title: Mechanical properties of bacterial cellulose and interactions with smooth muscle cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.026 – volume: 11 start-page: 281 year: 2008 ident: 10.1016/j.carbpol.2017.01.061_bib0035 article-title: Assessment and nutritional aspects of wound healing publication-title: Current Opinion in Clinical Nutrition & Metabolic Care doi: 10.1097/MCO.0b013e3282fbd35a – volume: 13 start-page: 193 year: 2001 ident: 10.1016/j.carbpol.2017.01.061_bib0060 article-title: Structural differences between non-wood plant celluloses: Evidence from solid state NMR: Vibrational spectroscopy and X-ray diffractometry publication-title: Industrial Crops and Products doi: 10.1016/S0926-6690(00)00077-7 – volume: 18 start-page: 149 issue: 3 year: 2014 ident: 10.1016/j.carbpol.2017.01.061_bib0130 article-title: Guidelines for prevention of hospital acquired infections publication-title: Indian Journal of Critical Care Medicine doi: 10.4103/0972-5229.128705 |
SSID | ssj0000610 |
Score | 2.6230404 |
Snippet | •BC-ZnO nanocomposites were formulated by impregnating BC with ZnO nanoparticles.•Fe-SEM, XRD and FTIR confirmed the reinforcement of nanoparticles into... Bacterial cellulose possesses physical and mechanical properties of an ideal wound dressing material but lack of antimicrobial activity limits its biomedical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 214 |
SubjectTerms | Animals Anti-Bacterial Agents anti-infective properties Bacterial cellulose Bacterial cellulose-zinc oxide nanocomposites Bandages Burn wound Burns - therapy cellulose Cellulose - chemistry Citrobacter freundii Escherichia coli mechanical properties mice Mice, Inbred BALB C nanocomposites Nanocomposites - chemistry nanoparticles pathogens Pseudomonas aeruginosa Staphylococcus aureus Tissue regeneration tissue repair zinc oxide Zinc Oxide - chemistry |
Title | Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds |
URI | https://dx.doi.org/10.1016/j.carbpol.2017.01.061 https://www.ncbi.nlm.nih.gov/pubmed/28325319 https://www.proquest.com/docview/1880079692 https://www.proquest.com/docview/2000388926 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhPbSX0Ece7iOo0OvGllbSSsfUNLgtzakB34Sk1RYHozWxnYQc8tszsw-3PRhDYC9aRqCdEd_MrEbfEPIFIF-7ka8yUeWQoESdZ445nTlIh0ayZJw7vCj861JNrsSPqZzukXF_FwbLKjvsbzG9QevuzbDT5nAxmw2xLElocMAMKdcLjoyfyF4He_rskf2Dxg0jAQpnKP33Fs_wGlLAG7-o8QSCFQ17p2Lb_NO2-LPxQxevyUEXQNLzdo1vyF5Mb8nLcd-37R2Zfm0JmEEI_8qv5_UyZg-zFGh9PysjTS7VWEiO1VpxSR08NNW3cU7LpiY2_aEtvTOFeJaCzhO9w95Ly0NydfHt93iSdf0TspAbvcpYGUtXlAwgpNKYt0QHHyqdKj14dsOCDyGGygsFMUyoosyjkcEIziPzvAr5EdlPdYonhOaFUEryIkRVCGGC9txzA8mI8jKUSg6I6LVmQ0cujj0u5ravIru2nbItKtuOmAVlD8jZZtqiZdfYNUH3JrH_bRMLHmDX1M-9CS1YBC3gUqzXS4uUdKPCKMO3y_DmDFUbrgbkuLX_ZsXY7Qmh7P3zF_eBvMIRliUw-ZHsr27W8RNEOyt_2mznU_Li_PvPyeUTkIz_QA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZKeigXxLsBWozEdUnstb32sUSt0ldOrZSbZXu9KFXkjZoEEL-emX0UOESVkPbk9UjeGeubmfX4G0I-A-RrN_ZVJqocEpSo88wxpzMH6dBYloxzhxeFr2dqeisu5nK-Ryb9XRgsq-ywv8X0Bq27kVGnzdFqsRhhWZLQ4IAZUq4XPH9C9pGdSgzI_sn55XT2FyA3pAQ4P0OBPxd5RneQBd77VY2HEKxoCDwV2-WidoWgjSs6e06edTEkPWmX-YLsxfSSHEz61m2vyPxry8EMk_DH_HZZr2P2a5ECrX8uykiTSzXWkmPBVlxTBw9N9fe4pGVTFpu-0ZbhmUJIS0Htif7A9kvr1-T27PRmMs26FgpZyI3eZKyMpStKBihSaUxdooMPlU6VHpy7YcGHEEPlhYIwJlRR5tHIYATnkXlehfwNGaQ6xUNC80IoJXkRoiqEMEF77rmBfER5GUolh0T0WrOh4xfHNhdL2xeS3dlO2RaVbcfMgrKH5MuD2Kol2HhMQPcmsf_sFAtO4DHRT70JLVgELeBSrLdri6x048Iow3fP4c0xqjZcDcnb1v4PK8aGT4hm7_5_cR_JwfTm-spenc8u35On-AarFJj8QAab-208guBn44-7zf0bSM8CAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+cellulose-zinc+oxide+nanocomposites+as+a+novel+dressing+system+for+burn+wounds&rft.jtitle=Carbohydrate+polymers&rft.au=Khalid%2C+Ayesha&rft.au=Khan%2C+Romana&rft.au=Ul-Islam%2C+Mazhar&rft.au=Khan%2C+Taous&rft.date=2017-05-15&rft.issn=0144-8617&rft.volume=164&rft.spage=214&rft.epage=221&rft_id=info:doi/10.1016%2Fj.carbpol.2017.01.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbpol_2017_01_061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |