Subject-specific timing adaption in time-encoded arterial spin labeling imaging

Objectives One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not op...

Full description

Saved in:
Bibliographic Details
Published inMagma (New York, N.Y.) Vol. 37; no. 1; pp. 53 - 68
Main Authors Breutigam, Nora-Josefin, Hoinkiss, Daniel Christopher, Konstandin, Simon, Buck, Mareike Alicja, Mahroo, Amnah, Eickel, Klaus, von Samson-Himmelstjerna, Federico, Günther, Matthias
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objectives One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL). Material and methods Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings. Results The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions. Discussion A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.
AbstractList One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL). Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings. The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions. A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.
One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).OBJECTIVESOne challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.MATERIAL AND METHODSFive healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.RESULTSThe algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.DISCUSSIONA first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.
Objectives One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL). Material and methods Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings. Results The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions. Discussion A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.
Author Konstandin, Simon
Hoinkiss, Daniel Christopher
Buck, Mareike Alicja
Eickel, Klaus
von Samson-Himmelstjerna, Federico
Günther, Matthias
Breutigam, Nora-Josefin
Mahroo, Amnah
Author_xml – sequence: 1
  givenname: Nora-Josefin
  orcidid: 0000-0002-8528-9792
  surname: Breutigam
  fullname: Breutigam, Nora-Josefin
  email: nora-josefin.breutigam@mevis.fraunhofer.de
  organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS
– sequence: 2
  givenname: Daniel Christopher
  surname: Hoinkiss
  fullname: Hoinkiss, Daniel Christopher
  organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS
– sequence: 3
  givenname: Simon
  surname: Konstandin
  fullname: Konstandin, Simon
  organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Mediri GmbH
– sequence: 4
  givenname: Mareike Alicja
  surname: Buck
  fullname: Buck, Mareike Alicja
  organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Faculty 1 (Physics/Electrical Engineering), University of Bremen
– sequence: 5
  givenname: Amnah
  surname: Mahroo
  fullname: Mahroo, Amnah
  organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS
– sequence: 6
  givenname: Klaus
  surname: Eickel
  fullname: Eickel, Klaus
  organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Mediri GmbH, Bremerhaven University of Applied Science
– sequence: 7
  givenname: Federico
  surname: von Samson-Himmelstjerna
  fullname: von Samson-Himmelstjerna, Federico
  organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Faculty 1 (Physics/Electrical Engineering), University of Bremen
– sequence: 8
  givenname: Matthias
  surname: Günther
  fullname: Günther, Matthias
  organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Mediri GmbH, Faculty 1 (Physics/Electrical Engineering), University of Bremen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37768433$$D View this record in MEDLINE/PubMed
BookMark eNp9kT9vFDEQxS0URP7xBSjQljQOHttn71UIRUCQIqUgqS2vPT582rMXexfpvj2-XIhCQzWW5_fejOadk5OUExLyDtgVMKY_VmBCSMq4oAyAA92_ImcgVpz2SsHJi_cpOa91yxiHFRNvyKnQWvVSiDNy92MZtuhmWid0MUTXzXEX06az3k5zzKmL6fCFFJPLHn1ny4wl2rGrU2uNdsDxwMed3bR6SV4HO1Z8-1QvyMPXL_fXN_T27tv368-31Il1P1PwTCDvkWEAq5wKiovBa60t1yE4BA8rVA6UktJ74bWUKzms0Ykgw1oGcUE-HX2nZdihd5jmYkczlbZH2Ztso_m3k-JPs8m_DbBeK61Zc_jw5FDyrwXrbHaxOhxHmzAv1fBeM5Cg16Kh718Oe57y94wN4EfAlVxrwfCMADOHrMwxK9OyMo9ZmX0TiaOoNjhtsJhtXkpqV_uf6g-lQZjG
Cites_doi 10.1016/j.mric.2009.01.008
10.1007/s12975-012-0159-8
10.1212/WNL.0b013e3181b7840c
10.1002/mrm.24335
10.1002/mrm.1910230106
10.1002/mrm.21293
10.1016/j.neuroimage.2009.07.068
10.1002/mrm.25024
10.1002/mrm.25197
10.1002/mrm.26078
10.1002/jmri.28472
10.1002/mrm.21790
10.1007/s00330-014-3098-9
10.1002/mrm.23103
10.1155/2012/818456
10.1002/mrm.1910400308
10.3389/fnins.2021.719676
10.1002/mrm.20906
10.1002/jmri.25367
10.1038/sj.jcbfm.9600398
10.1002/mrm.22266
10.1109/TSP.2008.2005752
10.1073/pnas.89.1.212
10.1002/mrm.27141
10.1371/journal.pone.0087143
10.1002/mrm.25083
10.1097/RMR.0b013e31821e570a
10.1002/mrm.1910400303
10.1007/s00247-011-2205-1
10.1016/0022-2364(84)90181-1
10.1016/S0140-6736(07)60151-2
10.1002/jmri.24873
10.1002/mrm.20580
10.18632/aging.202673
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s10334-023-01121-y
DatabaseName Springerlink
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1352-8661
EndPage 68
ExternalDocumentID PMC10876770
37768433
10_1007_s10334_023_01121_y
Genre Journal Article
GrantInformation_xml – fundername: Fraunhofer-Institut für Digitale Medizin MEVIS (1050)
– fundername: EU Joint Programme – Neurodegenerative Disease Research
  grantid: 825664
  funderid: http://dx.doi.org/10.13039/100013278
– fundername: EU Joint Programme - Neurodegenerative Disease Research
  grantid: 825664
GroupedDBID ---
--K
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1B1
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIUM
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACRPL
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK5
LLZTM
M1P
M2P
M41
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R2-
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SEW
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UHS
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADHKG
NPM
PHGZT
7X8
5PM
ABRTQ
ID FETCH-LOGICAL-c398t-1d03e28e0ef1a6c6f623bd777a27ffce1d15e6c16644dd3d74454b9ec3f4f94f3
IEDL.DBID U2A
ISSN 1352-8661
0968-5243
IngestDate Thu Aug 21 18:35:21 EDT 2025
Thu Jul 10 18:48:17 EDT 2025
Thu Apr 03 07:10:52 EDT 2025
Tue Jul 01 01:44:09 EDT 2025
Fri Feb 21 02:42:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Arterial transit delay artifacts
Subject-specific timing
Free-lunch approach
Time-encoded pCASL
Arterial spin labeling
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-1d03e28e0ef1a6c6f623bd777a27ffce1d15e6c16644dd3d74454b9ec3f4f94f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8528-9792
OpenAccessLink https://link.springer.com/10.1007/s10334-023-01121-y
PMID 37768433
PQID 2870141793
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10876770
proquest_miscellaneous_2870141793
pubmed_primary_37768433
crossref_primary_10_1007_s10334_023_01121_y
springer_journals_10_1007_s10334_023_01121_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
PublicationSubtitle Official Journal of the European Society for Magnetic Resonance in Medicine and Biology
PublicationTitle Magma (New York, N.Y.)
PublicationTitleAbbrev Magn Reson Mater Phy
PublicationTitleAlternate MAGMA
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Detre (CR6) 1992; 23
Silver, Joseph, Hoult (CR34) 1984; 59
Lin (CR3) 2018; 80
Alisch (CR37) 2021; 13
CR39
Guenther, Oshio, Feinberg (CR33) 2005; 54
Madore, Hess, van Niekerk, Hoinkiss, Hucker, Zaitsev, Afacan, Günther (CR40) 2022; 57
CR32
CR31
CR30
Wong, Buxton, Frank (CR4) 1998; 40
Petersen, Mouridsen, Golay (CR13) 2010; 49
Buxton (CR14) 1998; 40
Wang (CR19) 2014; 24
Wells, Lythgoe, Gadian, Ordidge, Thomas (CR23) 2010; 63
Dai, Robson, Shankaranarayanan, Alsop (CR29) 2012; 67
Wang, Fernandez-Seara, Wang, St Lawrence (CR2) 2007; 27
Dai (CR9) 2008; 60
Wong (CR5) 2006; 55
Amukotuwa, Yu, Zaharchuk (CR36) 2016; 43
Borogovac, Asllani (CR20) 2012; 2012
Teeuwisse (CR21) 2014; 72
Wu, St Lawrence, Licht, Wang (CR11) 2010; 21
Williams (CR1) 1992; 89
CR7
Pollock (CR10) 2009; 17
Alsop (CR15) 2015; 73
von Samson-Himmelstjerna, Madai, Sobesky, Guenther (CR28) 2015; 76
Zaharchuk (CR12) 2012; 3
Mutke (CR18) 2014; 9
Kuperman, Brown, Ahmadi, Erhart, White, Roddey, Shankaranarayanan, Han, Rettmann, Dale (CR26) 2011; 41
Dai, Fong, Jones, Marcantonio, Schmitt, Inouye, Alsop (CR16) 2017; 45
CR22
Chappell, Groves, Whitcher, Woolrich (CR35) 2009; 57
Mahroo, Buck, Huber, Breutigam, Mutsaerts, Craig, Chappell, Günther (CR38) 2021; 15
Wong (CR8) 2007; 58
Zun, Shankaranarayanan, Zaharchuk (CR27) 2014; 72
Dai, Shankaranarayanan, Alsop (CR24) 2013; 69
Chalela, Kidwell, Nentwich, Luby, Butman, Demchuk, Hill, Patronas, Latour, Warach (CR25) 2007; 369
Bokkers, van der Worp, Mali, Hendrikse (CR17) 2009; 73
B Madore (1121_CR40) 2022; 57
F von Samson-Himmelstjerna (1121_CR28) 2015; 76
A Mahroo (1121_CR38) 2021; 15
SA Amukotuwa (1121_CR36) 2016; 43
J Wang (1121_CR2) 2007; 27
W Dai (1121_CR16) 2017; 45
JSR Alisch (1121_CR37) 2021; 13
JA Wells (1121_CR23) 2010; 63
1121_CR32
1121_CR30
1121_CR31
1121_CR7
EC Wong (1121_CR8) 2007; 58
W Dai (1121_CR24) 2013; 69
1121_CR39
A Borogovac (1121_CR20) 2012; 2012
DS Williams (1121_CR1) 1992; 89
MA Mutke (1121_CR18) 2014; 9
EC Wong (1121_CR5) 2006; 55
RP Bokkers (1121_CR17) 2009; 73
Z Lin (1121_CR3) 2018; 80
W Dai (1121_CR9) 2008; 60
JA Detre (1121_CR6) 1992; 23
M Guenther (1121_CR33) 2005; 54
WM Teeuwisse (1121_CR21) 2014; 72
MA Chappell (1121_CR35) 2009; 57
R Wang (1121_CR19) 2014; 24
JA Chalela (1121_CR25) 2007; 369
W-C Wu (1121_CR11) 2010; 21
JM Pollock (1121_CR10) 2009; 17
1121_CR22
Z Zun (1121_CR27) 2014; 72
RB Buxton (1121_CR14) 1998; 40
G Zaharchuk (1121_CR12) 2012; 3
EC Wong (1121_CR4) 1998; 40
JM Kuperman (1121_CR26) 2011; 41
ET Petersen (1121_CR13) 2010; 49
W Dai (1121_CR29) 2012; 67
DC Alsop (1121_CR15) 2015; 73
M Silver (1121_CR34) 1984; 59
References_xml – volume: 17
  start-page: 315
  issue: 2
  year: 2009
  end-page: 338
  ident: CR10
  article-title: Arterial spin-labeled MR perfusion imaging: clinical applications
  publication-title: Magn Reson Imaging Clin N Am
  doi: 10.1016/j.mric.2009.01.008
– volume: 3
  start-page: 228
  year: 2012
  end-page: 235
  ident: CR12
  article-title: Arterial spin labeling for acute stroke: practical considerations
  publication-title: Transl Stroke Res
  doi: 10.1007/s12975-012-0159-8
– ident: CR22
– volume: 73
  start-page: 869
  year: 2009
  end-page: 875
  ident: CR17
  article-title: Noninvasive MR imaging of cerebral perfusion in patients with a carotid artery stenosis
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181b7840c
– volume: 69
  start-page: 1014
  year: 2013
  end-page: 1022
  ident: CR24
  article-title: Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24335
– volume: 23
  start-page: 37
  issue: 1
  year: 1992
  end-page: 45
  ident: CR6
  article-title: Perfusion imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910230106
– ident: CR39
– volume: 58
  start-page: 1086
  issue: 6
  year: 2007
  end-page: 1091
  ident: CR8
  article-title: Vessel-encoded arterial spin-labeling using pseudocontinuous tagging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21293
– volume: 49
  start-page: 104
  year: 2010
  end-page: 113
  ident: CR13
  article-title: The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.068
– volume: 72
  start-page: 1049
  year: 2014
  end-page: 1056
  ident: CR27
  article-title: Pseudocontinuous arterial spin labeling with prospective motion correction (PCASL-PROMO)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25024
– ident: CR30
– volume: 73
  start-page: 102
  issue: 1
  year: 2015
  end-page: 116
  ident: CR15
  article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25197
– volume: 76
  start-page: 1814
  issue: 6
  year: 2015
  end-page: 1824
  ident: CR28
  article-title: Walsh-ordered hadamard time-encoded pseudocontinuous ASL (WH pCASL)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26078
– volume: 57
  start-page: 690
  issue: 3
  year: 2022
  end-page: 705
  ident: CR40
  article-title: External hardware and sensors for improved MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28472
– volume: 60
  start-page: 1488
  issue: 6
  year: 2008
  end-page: 1497
  ident: CR9
  article-title: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21790
– volume: 24
  start-page: 1135
  issue: 5
  year: 2014
  end-page: 1144
  ident: CR19
  article-title: Multi-delay arterial spin labeling perfusion MRI in moyamoya disease—comparison with CT perfusion imaging
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3098-9
– volume: 67
  start-page: 1252
  issue: 5
  year: 2012
  end-page: 1265
  ident: CR29
  article-title: Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23103
– volume: 2012
  year: 2012
  ident: CR20
  article-title: Arterial spin labeling (ASL) fMRI: advantages, theoretical constrains and experimental challenges in neurosciences
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2012/818456
– volume: 40
  start-page: 383
  issue: 3
  year: 1998
  end-page: 396
  ident: CR14
  article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910400308
– volume: 15
  year: 2021
  ident: CR38
  article-title: Robust multi-TE ASL-based blood–brain barrier integrity measurements
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.719676
– volume: 55
  start-page: 1334
  issue: 6
  year: 2006
  end-page: 1341
  ident: CR5
  article-title: Velocity-selective arterial spin labeling
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20906
– volume: 45
  start-page: 472
  issue: 2
  year: 2017
  end-page: 481
  ident: CR16
  article-title: Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25367
– volume: 27
  start-page: 839
  year: 2007
  end-page: 849
  ident: CR2
  article-title: When perfusion meets diffusion: in vivo measurement of water permeability in human brain
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600398
– volume: 63
  start-page: 1111
  year: 2010
  end-page: 1118
  ident: CR23
  article-title: In vivo Hadamard encoded continuous arterial spin labeling (H-CASL)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22266
– volume: 57
  start-page: 223
  issue: 1
  year: 2009
  end-page: 236
  ident: CR35
  article-title: Variational Bayesian inference for a non-linear forward model
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2008.2005752
– volume: 89
  start-page: 212
  issue: 1
  year: 1992
  end-page: 216
  ident: CR1
  article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.1.212
– volume: 80
  start-page: 1507
  year: 2018
  end-page: 1520
  ident: CR3
  article-title: Non-contrast MR imaging of blood–brain barrier permeability to water
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27141
– volume: 9
  issue: 2
  year: 2014
  ident: CR18
  article-title: Clinical evaluation of an arterial-spin-labeling product sequence in steno-occlusive disease of the brain
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0087143
– volume: 72
  start-page: 1712
  issue: 6
  year: 2014
  end-page: 1722
  ident: CR21
  article-title: Time-encoded pseudocontinuous arterial spin labeling: basic properties and timing strategies for human applications
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25083
– volume: 21
  start-page: 65
  year: 2010
  end-page: 73
  ident: CR11
  article-title: Quantification issues in arterial spin labeling perfusion magnetic resonance imaging
  publication-title: Top Magn Reson Imaging
  doi: 10.1097/RMR.0b013e31821e570a
– ident: CR31
– volume: 40
  start-page: 348
  issue: 3
  year: 1998
  end-page: 355
  ident: CR4
  article-title: A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910400303
– volume: 41
  start-page: 1578
  year: 2011
  end-page: 1582
  ident: CR26
  article-title: Prospective motion correction improves diagnostic utility of pediatric MRI scans
  publication-title: Pediatr Radiol
  doi: 10.1007/s00247-011-2205-1
– volume: 59
  start-page: 347
  year: 1984
  end-page: 351
  ident: CR34
  article-title: Highly selective and π pulse generation
  publication-title: J Magn Reson
  doi: 10.1016/0022-2364(84)90181-1
– ident: CR32
– volume: 369
  start-page: 293
  year: 2007
  end-page: 298
  ident: CR25
  article-title: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60151-2
– volume: 43
  start-page: 11
  issue: 1
  year: 2016
  end-page: 27
  ident: CR36
  article-title: 3D pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24873
– ident: CR7
– volume: 54
  start-page: 491
  issue: 2
  year: 2005
  end-page: 498
  ident: CR33
  article-title: Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20580
– volume: 13
  start-page: 4911
  issue: 4
  year: 2021
  end-page: 4925
  ident: CR37
  article-title: Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.202673
– volume: 73
  start-page: 102
  issue: 1
  year: 2015
  ident: 1121_CR15
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25197
– volume: 9
  issue: 2
  year: 2014
  ident: 1121_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0087143
– volume: 63
  start-page: 1111
  year: 2010
  ident: 1121_CR23
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22266
– volume: 40
  start-page: 348
  issue: 3
  year: 1998
  ident: 1121_CR4
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910400303
– volume: 67
  start-page: 1252
  issue: 5
  year: 2012
  ident: 1121_CR29
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23103
– ident: 1121_CR39
– volume: 27
  start-page: 839
  year: 2007
  ident: 1121_CR2
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600398
– volume: 13
  start-page: 4911
  issue: 4
  year: 2021
  ident: 1121_CR37
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.202673
– ident: 1121_CR31
– volume: 49
  start-page: 104
  year: 2010
  ident: 1121_CR13
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.07.068
– volume: 15
  year: 2021
  ident: 1121_CR38
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.719676
– volume: 45
  start-page: 472
  issue: 2
  year: 2017
  ident: 1121_CR16
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25367
– volume: 72
  start-page: 1712
  issue: 6
  year: 2014
  ident: 1121_CR21
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25083
– ident: 1121_CR22
– volume: 43
  start-page: 11
  issue: 1
  year: 2016
  ident: 1121_CR36
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24873
– volume: 58
  start-page: 1086
  issue: 6
  year: 2007
  ident: 1121_CR8
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21293
– volume: 23
  start-page: 37
  issue: 1
  year: 1992
  ident: 1121_CR6
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910230106
– volume: 3
  start-page: 228
  year: 2012
  ident: 1121_CR12
  publication-title: Transl Stroke Res
  doi: 10.1007/s12975-012-0159-8
– ident: 1121_CR7
– volume: 369
  start-page: 293
  year: 2007
  ident: 1121_CR25
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60151-2
– volume: 59
  start-page: 347
  year: 1984
  ident: 1121_CR34
  publication-title: J Magn Reson
  doi: 10.1016/0022-2364(84)90181-1
– volume: 60
  start-page: 1488
  issue: 6
  year: 2008
  ident: 1121_CR9
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21790
– volume: 41
  start-page: 1578
  year: 2011
  ident: 1121_CR26
  publication-title: Pediatr Radiol
  doi: 10.1007/s00247-011-2205-1
– volume: 40
  start-page: 383
  issue: 3
  year: 1998
  ident: 1121_CR14
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910400308
– volume: 72
  start-page: 1049
  year: 2014
  ident: 1121_CR27
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25024
– volume: 54
  start-page: 491
  issue: 2
  year: 2005
  ident: 1121_CR33
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20580
– volume: 76
  start-page: 1814
  issue: 6
  year: 2015
  ident: 1121_CR28
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26078
– volume: 17
  start-page: 315
  issue: 2
  year: 2009
  ident: 1121_CR10
  publication-title: Magn Reson Imaging Clin N Am
  doi: 10.1016/j.mric.2009.01.008
– ident: 1121_CR32
– volume: 2012
  year: 2012
  ident: 1121_CR20
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2012/818456
– ident: 1121_CR30
– volume: 21
  start-page: 65
  year: 2010
  ident: 1121_CR11
  publication-title: Top Magn Reson Imaging
  doi: 10.1097/RMR.0b013e31821e570a
– volume: 73
  start-page: 869
  year: 2009
  ident: 1121_CR17
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181b7840c
– volume: 24
  start-page: 1135
  issue: 5
  year: 2014
  ident: 1121_CR19
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3098-9
– volume: 55
  start-page: 1334
  issue: 6
  year: 2006
  ident: 1121_CR5
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20906
– volume: 80
  start-page: 1507
  year: 2018
  ident: 1121_CR3
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27141
– volume: 69
  start-page: 1014
  year: 2013
  ident: 1121_CR24
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24335
– volume: 57
  start-page: 690
  issue: 3
  year: 2022
  ident: 1121_CR40
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28472
– volume: 57
  start-page: 223
  issue: 1
  year: 2009
  ident: 1121_CR35
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2008.2005752
– volume: 89
  start-page: 212
  issue: 1
  year: 1992
  ident: 1121_CR1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.1.212
SSID ssj0021503
Score 2.3577058
Snippet Objectives One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit...
One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD)...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 53
SubjectTerms Basic Science - Perfusion imaging
Biomedical Engineering and Bioengineering
Computer Appl. in Life Sciences
Health Informatics
Imaging
Medicine
Medicine & Public Health
Radiology
Research Article
Solid State Physics
Title Subject-specific timing adaption in time-encoded arterial spin labeling imaging
URI https://link.springer.com/article/10.1007/s10334-023-01121-y
https://www.ncbi.nlm.nih.gov/pubmed/37768433
https://www.proquest.com/docview/2870141793
https://pubmed.ncbi.nlm.nih.gov/PMC10876770
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gHgR39ZHieBNF7rZTTY5lqIWiwpisZ5Cug_twSi2PfTfO7NNqlURPAUymxDmsfNt5gVwkiZ5ol2omERvwKTQMUulMMxKnSeIP7RLqDj5-iZud-VVL-qVRWHDKtu9Ckn6nfpLsZsQkqGPweMvDzmbLMJyRGd31OJu2JwdsxDiiLI85vfn5l3QD1z5Mz3yW4zUu56LdVgrMWPQnAp5AxZssQkr12VUfAtu0frpdwqjsklK_QlGNKvrKchN7neEYFDQLcuoa6WxJvCJnKh5wfANSagIvio9GLz4mUXb0L04v2-1WTkogWmRJiPGTUPYMLEN63ge69ghpukbpVQeKue05YZHNtY8RvBjjDBKykj2U6uFky6VTuzAUvFa2D0IqN0dyrWv0fKREKaqoZW0Lo1NhH4tqcFpxbvsbdoPI_vsfEyczpDTmed0NqnBccXeDNWWYhF5YV_Hw4ziq5ymn4ka7E7ZPXufUBQdFEhJ5gQxW0AtsecpxeDZt8bm1GFPqUYNziqZZaVRDv_4zv3_LT-AVdQ7OU3ePoSl0fvYHiE2GfXrsNy8fOyc07Vz99Cpw2IrbtW9gn4AbFri1A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMAF8aY8i8QNIi1N1rRHNIHGY-MyJG5RlwfsQIdYOezfY7fd0AAhca3TqrKd-kttfwY4S5MsMT5STGI0YFKYmKVSWOakyRLEH8Yn1Jzc7cWdR3n71HqqaXKoF-Zb_p5a3ISQDCMLHnp5xNlkEZYknpSpfK8dt2eHKwQ2om6K-f2--cDzA03-LIr8lhktA871OqzVSDG8rEy7AQsu34Tlbp0L34IH3PP0E4VRsyQV_IQFTeh6DjObld-BcJjTJceIq9I6G5blm-hv4fgNRWj-shc9HL6Wk4q24fH6qt_usHo8AjMiTQrGbVO4KHFN53kWm9gjkhlYpVQWKe-N45a3XGx4jJDHWmGVlC05SJ0RXvpUerEDjXyUuz0IieQOrTkwuN9REKWqaZR0Po1tC6NZEsD5VHf6rWLB0F98x6RpjZrWpab1JIDTqXo1OitlILLcjT7GmrKqnGaeiQB2K3XPnicU5QQFSpI5Q8wWEBH2vCQfvpSE2Jx49ZRqBnAxtZmut-L4j_fc_9_yE1jp9Lv3-v6md3cAqxGim6p8-xAaxfuHO0J0UgyOS7f8BLsM3ZI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SBMXxJvxLBI3iFiarGmPaDCN1-DApN2iLg_YgW5i3YF_j5N2gzGExLVOq8p24y-1_RngNInTWNlQEI7RgHCmIpJwponhKo0Rfygbu-bkh3bU6vDbbr37rYvfV7tPUpJFT4Njacryi6G2F98a3xjjBOMNHoVpSMnHIizjScUnahtRY3rkQrjDylaZ3--bDUdzGHO-VPJHvtSHoeYarJb4MbgsDL4OCybbgMpDmSHfhEfcCdyvFeJaKF0ZUJC7uV0vQapTvzsE_cxdMsQxWGqjA1_UiV4YjIYoQqfwHepB_83PL9qCTvP6udEi5dAEolgS54TqGjNhbGrG0jRSkUV809NCiDQU1ipDNa2bSNEIgZDWTAvO67yXGMUstwm3bBuWskFmdiFw1Hdo457CXQAFYSJqSnBjk0jXMcbFVTib6E4OC24M-cWC7DQtUdPSa1p-VOFkol6JLuzyEmlmBuORdLlW6iahsSrsFOqePo8JlylkKIlnDDFd4OixZyVZ_9XTZFPHtidErQrnE5vJ8gMd_fGee_9bfgyVp6umvL9p3-3DSoiQp6jpPoCl_H1sDhGy5L0j75WfhgXl2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-specific+timing+adaption+in+time-encoded+arterial+spin+labeling+imaging&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Breutigam%2C+Nora-Josefin&rft.au=Hoinkiss%2C+Daniel+Christopher&rft.au=Konstandin%2C+Simon&rft.au=Buck%2C+Mareike+Alicja&rft.date=2024-02-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft.volume=37&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1007%2Fs10334-023-01121-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon