Subject-specific timing adaption in time-encoded arterial spin labeling imaging
Objectives One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not op...
Saved in:
Published in | Magma (New York, N.Y.) Vol. 37; no. 1; pp. 53 - 68 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objectives
One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).
Material and methods
Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.
Results
The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.
Discussion
A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies. |
---|---|
AbstractList | One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).
Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.
The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.
A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies. One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).OBJECTIVESOne challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.MATERIAL AND METHODSFive healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.RESULTSThe algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.DISCUSSIONA first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies. Objectives One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL). Material and methods Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings. Results The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions. Discussion A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies. |
Author | Konstandin, Simon Hoinkiss, Daniel Christopher Buck, Mareike Alicja Eickel, Klaus von Samson-Himmelstjerna, Federico Günther, Matthias Breutigam, Nora-Josefin Mahroo, Amnah |
Author_xml | – sequence: 1 givenname: Nora-Josefin orcidid: 0000-0002-8528-9792 surname: Breutigam fullname: Breutigam, Nora-Josefin email: nora-josefin.breutigam@mevis.fraunhofer.de organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS – sequence: 2 givenname: Daniel Christopher surname: Hoinkiss fullname: Hoinkiss, Daniel Christopher organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS – sequence: 3 givenname: Simon surname: Konstandin fullname: Konstandin, Simon organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Mediri GmbH – sequence: 4 givenname: Mareike Alicja surname: Buck fullname: Buck, Mareike Alicja organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Faculty 1 (Physics/Electrical Engineering), University of Bremen – sequence: 5 givenname: Amnah surname: Mahroo fullname: Mahroo, Amnah organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS – sequence: 6 givenname: Klaus surname: Eickel fullname: Eickel, Klaus organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Mediri GmbH, Bremerhaven University of Applied Science – sequence: 7 givenname: Federico surname: von Samson-Himmelstjerna fullname: von Samson-Himmelstjerna, Federico organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Faculty 1 (Physics/Electrical Engineering), University of Bremen – sequence: 8 givenname: Matthias surname: Günther fullname: Günther, Matthias organization: Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Mediri GmbH, Faculty 1 (Physics/Electrical Engineering), University of Bremen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37768433$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT9vFDEQxS0URP7xBSjQljQOHttn71UIRUCQIqUgqS2vPT582rMXexfpvj2-XIhCQzWW5_fejOadk5OUExLyDtgVMKY_VmBCSMq4oAyAA92_ImcgVpz2SsHJi_cpOa91yxiHFRNvyKnQWvVSiDNy92MZtuhmWid0MUTXzXEX06az3k5zzKmL6fCFFJPLHn1ny4wl2rGrU2uNdsDxwMed3bR6SV4HO1Z8-1QvyMPXL_fXN_T27tv368-31Il1P1PwTCDvkWEAq5wKiovBa60t1yE4BA8rVA6UktJ74bWUKzms0Ykgw1oGcUE-HX2nZdihd5jmYkczlbZH2Ztso_m3k-JPs8m_DbBeK61Zc_jw5FDyrwXrbHaxOhxHmzAv1fBeM5Cg16Kh718Oe57y94wN4EfAlVxrwfCMADOHrMwxK9OyMo9ZmX0TiaOoNjhtsJhtXkpqV_uf6g-lQZjG |
Cites_doi | 10.1016/j.mric.2009.01.008 10.1007/s12975-012-0159-8 10.1212/WNL.0b013e3181b7840c 10.1002/mrm.24335 10.1002/mrm.1910230106 10.1002/mrm.21293 10.1016/j.neuroimage.2009.07.068 10.1002/mrm.25024 10.1002/mrm.25197 10.1002/mrm.26078 10.1002/jmri.28472 10.1002/mrm.21790 10.1007/s00330-014-3098-9 10.1002/mrm.23103 10.1155/2012/818456 10.1002/mrm.1910400308 10.3389/fnins.2021.719676 10.1002/mrm.20906 10.1002/jmri.25367 10.1038/sj.jcbfm.9600398 10.1002/mrm.22266 10.1109/TSP.2008.2005752 10.1073/pnas.89.1.212 10.1002/mrm.27141 10.1371/journal.pone.0087143 10.1002/mrm.25083 10.1097/RMR.0b013e31821e570a 10.1002/mrm.1910400303 10.1007/s00247-011-2205-1 10.1016/0022-2364(84)90181-1 10.1016/S0140-6736(07)60151-2 10.1002/jmri.24873 10.1002/mrm.20580 10.18632/aging.202673 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s10334-023-01121-y |
DatabaseName | Springerlink CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1352-8661 |
EndPage | 68 |
ExternalDocumentID | PMC10876770 37768433 10_1007_s10334_023_01121_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fraunhofer-Institut für Digitale Medizin MEVIS (1050) – fundername: EU Joint Programme – Neurodegenerative Disease Research grantid: 825664 funderid: http://dx.doi.org/10.13039/100013278 – fundername: EU Joint Programme - Neurodegenerative Disease Research grantid: 825664 |
GroupedDBID | --- --K -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1B1 1N0 1SB 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 7X7 88E 88I 8FE 8FG 8FH 8FI 8FJ 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANXM AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIUM ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACRPL ACSNA ACUDM ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK5 LLZTM M1P M2P M41 M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9S PCBAR PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R2- R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SEW SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD SSZ STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UHS UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7X Z82 Z83 Z88 Z8R Z8V Z8W ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ADHKG NPM PHGZT 7X8 5PM ABRTQ |
ID | FETCH-LOGICAL-c398t-1d03e28e0ef1a6c6f623bd777a27ffce1d15e6c16644dd3d74454b9ec3f4f94f3 |
IEDL.DBID | U2A |
ISSN | 1352-8661 0968-5243 |
IngestDate | Thu Aug 21 18:35:21 EDT 2025 Thu Jul 10 18:48:17 EDT 2025 Thu Apr 03 07:10:52 EDT 2025 Tue Jul 01 01:44:09 EDT 2025 Fri Feb 21 02:42:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Arterial transit delay artifacts Subject-specific timing Free-lunch approach Time-encoded pCASL Arterial spin labeling |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-1d03e28e0ef1a6c6f623bd777a27ffce1d15e6c16644dd3d74454b9ec3f4f94f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8528-9792 |
OpenAccessLink | https://link.springer.com/10.1007/s10334-023-01121-y |
PMID | 37768433 |
PQID | 2870141793 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10876770 proquest_miscellaneous_2870141793 pubmed_primary_37768433 crossref_primary_10_1007_s10334_023_01121_y springer_journals_10_1007_s10334_023_01121_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Germany |
PublicationSubtitle | Official Journal of the European Society for Magnetic Resonance in Medicine and Biology |
PublicationTitle | Magma (New York, N.Y.) |
PublicationTitleAbbrev | Magn Reson Mater Phy |
PublicationTitleAlternate | MAGMA |
PublicationYear | 2024 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Detre (CR6) 1992; 23 Silver, Joseph, Hoult (CR34) 1984; 59 Lin (CR3) 2018; 80 Alisch (CR37) 2021; 13 CR39 Guenther, Oshio, Feinberg (CR33) 2005; 54 Madore, Hess, van Niekerk, Hoinkiss, Hucker, Zaitsev, Afacan, Günther (CR40) 2022; 57 CR32 CR31 CR30 Wong, Buxton, Frank (CR4) 1998; 40 Petersen, Mouridsen, Golay (CR13) 2010; 49 Buxton (CR14) 1998; 40 Wang (CR19) 2014; 24 Wells, Lythgoe, Gadian, Ordidge, Thomas (CR23) 2010; 63 Dai, Robson, Shankaranarayanan, Alsop (CR29) 2012; 67 Wang, Fernandez-Seara, Wang, St Lawrence (CR2) 2007; 27 Dai (CR9) 2008; 60 Wong (CR5) 2006; 55 Amukotuwa, Yu, Zaharchuk (CR36) 2016; 43 Borogovac, Asllani (CR20) 2012; 2012 Teeuwisse (CR21) 2014; 72 Wu, St Lawrence, Licht, Wang (CR11) 2010; 21 Williams (CR1) 1992; 89 CR7 Pollock (CR10) 2009; 17 Alsop (CR15) 2015; 73 von Samson-Himmelstjerna, Madai, Sobesky, Guenther (CR28) 2015; 76 Zaharchuk (CR12) 2012; 3 Mutke (CR18) 2014; 9 Kuperman, Brown, Ahmadi, Erhart, White, Roddey, Shankaranarayanan, Han, Rettmann, Dale (CR26) 2011; 41 Dai, Fong, Jones, Marcantonio, Schmitt, Inouye, Alsop (CR16) 2017; 45 CR22 Chappell, Groves, Whitcher, Woolrich (CR35) 2009; 57 Mahroo, Buck, Huber, Breutigam, Mutsaerts, Craig, Chappell, Günther (CR38) 2021; 15 Wong (CR8) 2007; 58 Zun, Shankaranarayanan, Zaharchuk (CR27) 2014; 72 Dai, Shankaranarayanan, Alsop (CR24) 2013; 69 Chalela, Kidwell, Nentwich, Luby, Butman, Demchuk, Hill, Patronas, Latour, Warach (CR25) 2007; 369 Bokkers, van der Worp, Mali, Hendrikse (CR17) 2009; 73 B Madore (1121_CR40) 2022; 57 F von Samson-Himmelstjerna (1121_CR28) 2015; 76 A Mahroo (1121_CR38) 2021; 15 SA Amukotuwa (1121_CR36) 2016; 43 J Wang (1121_CR2) 2007; 27 W Dai (1121_CR16) 2017; 45 JSR Alisch (1121_CR37) 2021; 13 JA Wells (1121_CR23) 2010; 63 1121_CR32 1121_CR30 1121_CR31 1121_CR7 EC Wong (1121_CR8) 2007; 58 W Dai (1121_CR24) 2013; 69 1121_CR39 A Borogovac (1121_CR20) 2012; 2012 DS Williams (1121_CR1) 1992; 89 MA Mutke (1121_CR18) 2014; 9 EC Wong (1121_CR5) 2006; 55 RP Bokkers (1121_CR17) 2009; 73 Z Lin (1121_CR3) 2018; 80 W Dai (1121_CR9) 2008; 60 JA Detre (1121_CR6) 1992; 23 M Guenther (1121_CR33) 2005; 54 WM Teeuwisse (1121_CR21) 2014; 72 MA Chappell (1121_CR35) 2009; 57 R Wang (1121_CR19) 2014; 24 JA Chalela (1121_CR25) 2007; 369 W-C Wu (1121_CR11) 2010; 21 JM Pollock (1121_CR10) 2009; 17 1121_CR22 Z Zun (1121_CR27) 2014; 72 RB Buxton (1121_CR14) 1998; 40 G Zaharchuk (1121_CR12) 2012; 3 EC Wong (1121_CR4) 1998; 40 JM Kuperman (1121_CR26) 2011; 41 ET Petersen (1121_CR13) 2010; 49 W Dai (1121_CR29) 2012; 67 DC Alsop (1121_CR15) 2015; 73 M Silver (1121_CR34) 1984; 59 |
References_xml | – volume: 17 start-page: 315 issue: 2 year: 2009 end-page: 338 ident: CR10 article-title: Arterial spin-labeled MR perfusion imaging: clinical applications publication-title: Magn Reson Imaging Clin N Am doi: 10.1016/j.mric.2009.01.008 – volume: 3 start-page: 228 year: 2012 end-page: 235 ident: CR12 article-title: Arterial spin labeling for acute stroke: practical considerations publication-title: Transl Stroke Res doi: 10.1007/s12975-012-0159-8 – ident: CR22 – volume: 73 start-page: 869 year: 2009 end-page: 875 ident: CR17 article-title: Noninvasive MR imaging of cerebral perfusion in patients with a carotid artery stenosis publication-title: Neurology doi: 10.1212/WNL.0b013e3181b7840c – volume: 69 start-page: 1014 year: 2013 end-page: 1022 ident: CR24 article-title: Volumetric measurement of perfusion and arterial transit delay using hadamard encoded continuous arterial spin labeling publication-title: Magn Reson Med doi: 10.1002/mrm.24335 – volume: 23 start-page: 37 issue: 1 year: 1992 end-page: 45 ident: CR6 article-title: Perfusion imaging publication-title: Magn Reson Med doi: 10.1002/mrm.1910230106 – ident: CR39 – volume: 58 start-page: 1086 issue: 6 year: 2007 end-page: 1091 ident: CR8 article-title: Vessel-encoded arterial spin-labeling using pseudocontinuous tagging publication-title: Magn Reson Med doi: 10.1002/mrm.21293 – volume: 49 start-page: 104 year: 2010 end-page: 113 ident: CR13 article-title: The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.068 – volume: 72 start-page: 1049 year: 2014 end-page: 1056 ident: CR27 article-title: Pseudocontinuous arterial spin labeling with prospective motion correction (PCASL-PROMO) publication-title: Magn Reson Med doi: 10.1002/mrm.25024 – ident: CR30 – volume: 73 start-page: 102 issue: 1 year: 2015 end-page: 116 ident: CR15 article-title: Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med doi: 10.1002/mrm.25197 – volume: 76 start-page: 1814 issue: 6 year: 2015 end-page: 1824 ident: CR28 article-title: Walsh-ordered hadamard time-encoded pseudocontinuous ASL (WH pCASL) publication-title: Magn Reson Med doi: 10.1002/mrm.26078 – volume: 57 start-page: 690 issue: 3 year: 2022 end-page: 705 ident: CR40 article-title: External hardware and sensors for improved MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28472 – volume: 60 start-page: 1488 issue: 6 year: 2008 end-page: 1497 ident: CR9 article-title: Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn Reson Med doi: 10.1002/mrm.21790 – volume: 24 start-page: 1135 issue: 5 year: 2014 end-page: 1144 ident: CR19 article-title: Multi-delay arterial spin labeling perfusion MRI in moyamoya disease—comparison with CT perfusion imaging publication-title: Eur Radiol doi: 10.1007/s00330-014-3098-9 – volume: 67 start-page: 1252 issue: 5 year: 2012 end-page: 1265 ident: CR29 article-title: Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging publication-title: Magn Reson Med doi: 10.1002/mrm.23103 – volume: 2012 year: 2012 ident: CR20 article-title: Arterial spin labeling (ASL) fMRI: advantages, theoretical constrains and experimental challenges in neurosciences publication-title: Int J Biomed Imaging doi: 10.1155/2012/818456 – volume: 40 start-page: 383 issue: 3 year: 1998 end-page: 396 ident: CR14 article-title: A general kinetic model for quantitative perfusion imaging with arterial spin labeling publication-title: Magn Reson Med doi: 10.1002/mrm.1910400308 – volume: 15 year: 2021 ident: CR38 article-title: Robust multi-TE ASL-based blood–brain barrier integrity measurements publication-title: Front Neurosci doi: 10.3389/fnins.2021.719676 – volume: 55 start-page: 1334 issue: 6 year: 2006 end-page: 1341 ident: CR5 article-title: Velocity-selective arterial spin labeling publication-title: Magn Reson Med doi: 10.1002/mrm.20906 – volume: 45 start-page: 472 issue: 2 year: 2017 end-page: 481 ident: CR16 article-title: Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25367 – volume: 27 start-page: 839 year: 2007 end-page: 849 ident: CR2 article-title: When perfusion meets diffusion: in vivo measurement of water permeability in human brain publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600398 – volume: 63 start-page: 1111 year: 2010 end-page: 1118 ident: CR23 article-title: In vivo Hadamard encoded continuous arterial spin labeling (H-CASL) publication-title: Magn Reson Med doi: 10.1002/mrm.22266 – volume: 57 start-page: 223 issue: 1 year: 2009 end-page: 236 ident: CR35 article-title: Variational Bayesian inference for a non-linear forward model publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2008.2005752 – volume: 89 start-page: 212 issue: 1 year: 1992 end-page: 216 ident: CR1 article-title: Magnetic resonance imaging of perfusion using spin inversion of arterial water publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.1.212 – volume: 80 start-page: 1507 year: 2018 end-page: 1520 ident: CR3 article-title: Non-contrast MR imaging of blood–brain barrier permeability to water publication-title: Magn Reson Med doi: 10.1002/mrm.27141 – volume: 9 issue: 2 year: 2014 ident: CR18 article-title: Clinical evaluation of an arterial-spin-labeling product sequence in steno-occlusive disease of the brain publication-title: PLoS ONE doi: 10.1371/journal.pone.0087143 – volume: 72 start-page: 1712 issue: 6 year: 2014 end-page: 1722 ident: CR21 article-title: Time-encoded pseudocontinuous arterial spin labeling: basic properties and timing strategies for human applications publication-title: Magn Reson Med doi: 10.1002/mrm.25083 – volume: 21 start-page: 65 year: 2010 end-page: 73 ident: CR11 article-title: Quantification issues in arterial spin labeling perfusion magnetic resonance imaging publication-title: Top Magn Reson Imaging doi: 10.1097/RMR.0b013e31821e570a – ident: CR31 – volume: 40 start-page: 348 issue: 3 year: 1998 end-page: 355 ident: CR4 article-title: A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging publication-title: Magn Reson Med doi: 10.1002/mrm.1910400303 – volume: 41 start-page: 1578 year: 2011 end-page: 1582 ident: CR26 article-title: Prospective motion correction improves diagnostic utility of pediatric MRI scans publication-title: Pediatr Radiol doi: 10.1007/s00247-011-2205-1 – volume: 59 start-page: 347 year: 1984 end-page: 351 ident: CR34 article-title: Highly selective and π pulse generation publication-title: J Magn Reson doi: 10.1016/0022-2364(84)90181-1 – ident: CR32 – volume: 369 start-page: 293 year: 2007 end-page: 298 ident: CR25 article-title: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison publication-title: Lancet doi: 10.1016/S0140-6736(07)60151-2 – volume: 43 start-page: 11 issue: 1 year: 2016 end-page: 27 ident: CR36 article-title: 3D pseudocontinuous arterial spin labeling in routine clinical practice: a review of clinically significant artifacts publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24873 – ident: CR7 – volume: 54 start-page: 491 issue: 2 year: 2005 end-page: 498 ident: CR33 article-title: Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements publication-title: Magn Reson Med doi: 10.1002/mrm.20580 – volume: 13 start-page: 4911 issue: 4 year: 2021 end-page: 4925 ident: CR37 article-title: Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging publication-title: Aging (Albany NY) doi: 10.18632/aging.202673 – volume: 73 start-page: 102 issue: 1 year: 2015 ident: 1121_CR15 publication-title: Magn Reson Med doi: 10.1002/mrm.25197 – volume: 9 issue: 2 year: 2014 ident: 1121_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0087143 – volume: 63 start-page: 1111 year: 2010 ident: 1121_CR23 publication-title: Magn Reson Med doi: 10.1002/mrm.22266 – volume: 40 start-page: 348 issue: 3 year: 1998 ident: 1121_CR4 publication-title: Magn Reson Med doi: 10.1002/mrm.1910400303 – volume: 67 start-page: 1252 issue: 5 year: 2012 ident: 1121_CR29 publication-title: Magn Reson Med doi: 10.1002/mrm.23103 – ident: 1121_CR39 – volume: 27 start-page: 839 year: 2007 ident: 1121_CR2 publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600398 – volume: 13 start-page: 4911 issue: 4 year: 2021 ident: 1121_CR37 publication-title: Aging (Albany NY) doi: 10.18632/aging.202673 – ident: 1121_CR31 – volume: 49 start-page: 104 year: 2010 ident: 1121_CR13 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.07.068 – volume: 15 year: 2021 ident: 1121_CR38 publication-title: Front Neurosci doi: 10.3389/fnins.2021.719676 – volume: 45 start-page: 472 issue: 2 year: 2017 ident: 1121_CR16 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25367 – volume: 72 start-page: 1712 issue: 6 year: 2014 ident: 1121_CR21 publication-title: Magn Reson Med doi: 10.1002/mrm.25083 – ident: 1121_CR22 – volume: 43 start-page: 11 issue: 1 year: 2016 ident: 1121_CR36 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24873 – volume: 58 start-page: 1086 issue: 6 year: 2007 ident: 1121_CR8 publication-title: Magn Reson Med doi: 10.1002/mrm.21293 – volume: 23 start-page: 37 issue: 1 year: 1992 ident: 1121_CR6 publication-title: Magn Reson Med doi: 10.1002/mrm.1910230106 – volume: 3 start-page: 228 year: 2012 ident: 1121_CR12 publication-title: Transl Stroke Res doi: 10.1007/s12975-012-0159-8 – ident: 1121_CR7 – volume: 369 start-page: 293 year: 2007 ident: 1121_CR25 publication-title: Lancet doi: 10.1016/S0140-6736(07)60151-2 – volume: 59 start-page: 347 year: 1984 ident: 1121_CR34 publication-title: J Magn Reson doi: 10.1016/0022-2364(84)90181-1 – volume: 60 start-page: 1488 issue: 6 year: 2008 ident: 1121_CR9 publication-title: Magn Reson Med doi: 10.1002/mrm.21790 – volume: 41 start-page: 1578 year: 2011 ident: 1121_CR26 publication-title: Pediatr Radiol doi: 10.1007/s00247-011-2205-1 – volume: 40 start-page: 383 issue: 3 year: 1998 ident: 1121_CR14 publication-title: Magn Reson Med doi: 10.1002/mrm.1910400308 – volume: 72 start-page: 1049 year: 2014 ident: 1121_CR27 publication-title: Magn Reson Med doi: 10.1002/mrm.25024 – volume: 54 start-page: 491 issue: 2 year: 2005 ident: 1121_CR33 publication-title: Magn Reson Med doi: 10.1002/mrm.20580 – volume: 76 start-page: 1814 issue: 6 year: 2015 ident: 1121_CR28 publication-title: Magn Reson Med doi: 10.1002/mrm.26078 – volume: 17 start-page: 315 issue: 2 year: 2009 ident: 1121_CR10 publication-title: Magn Reson Imaging Clin N Am doi: 10.1016/j.mric.2009.01.008 – ident: 1121_CR32 – volume: 2012 year: 2012 ident: 1121_CR20 publication-title: Int J Biomed Imaging doi: 10.1155/2012/818456 – ident: 1121_CR30 – volume: 21 start-page: 65 year: 2010 ident: 1121_CR11 publication-title: Top Magn Reson Imaging doi: 10.1097/RMR.0b013e31821e570a – volume: 73 start-page: 869 year: 2009 ident: 1121_CR17 publication-title: Neurology doi: 10.1212/WNL.0b013e3181b7840c – volume: 24 start-page: 1135 issue: 5 year: 2014 ident: 1121_CR19 publication-title: Eur Radiol doi: 10.1007/s00330-014-3098-9 – volume: 55 start-page: 1334 issue: 6 year: 2006 ident: 1121_CR5 publication-title: Magn Reson Med doi: 10.1002/mrm.20906 – volume: 80 start-page: 1507 year: 2018 ident: 1121_CR3 publication-title: Magn Reson Med doi: 10.1002/mrm.27141 – volume: 69 start-page: 1014 year: 2013 ident: 1121_CR24 publication-title: Magn Reson Med doi: 10.1002/mrm.24335 – volume: 57 start-page: 690 issue: 3 year: 2022 ident: 1121_CR40 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28472 – volume: 57 start-page: 223 issue: 1 year: 2009 ident: 1121_CR35 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2008.2005752 – volume: 89 start-page: 212 issue: 1 year: 1992 ident: 1121_CR1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.1.212 |
SSID | ssj0021503 |
Score | 2.3577058 |
Snippet | Objectives
One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit... One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD)... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 53 |
SubjectTerms | Basic Science - Perfusion imaging Biomedical Engineering and Bioengineering Computer Appl. in Life Sciences Health Informatics Imaging Medicine Medicine & Public Health Radiology Research Article Solid State Physics |
Title | Subject-specific timing adaption in time-encoded arterial spin labeling imaging |
URI | https://link.springer.com/article/10.1007/s10334-023-01121-y https://www.ncbi.nlm.nih.gov/pubmed/37768433 https://www.proquest.com/docview/2870141793 https://pubmed.ncbi.nlm.nih.gov/PMC10876770 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gHgR39ZHieBNF7rZTTY5lqIWiwpisZ5Cug_twSi2PfTfO7NNqlURPAUymxDmsfNt5gVwkiZ5ol2omERvwKTQMUulMMxKnSeIP7RLqDj5-iZud-VVL-qVRWHDKtu9Ckn6nfpLsZsQkqGPweMvDzmbLMJyRGd31OJu2JwdsxDiiLI85vfn5l3QD1z5Mz3yW4zUu56LdVgrMWPQnAp5AxZssQkr12VUfAtu0frpdwqjsklK_QlGNKvrKchN7neEYFDQLcuoa6WxJvCJnKh5wfANSagIvio9GLz4mUXb0L04v2-1WTkogWmRJiPGTUPYMLEN63ge69ghpukbpVQeKue05YZHNtY8RvBjjDBKykj2U6uFky6VTuzAUvFa2D0IqN0dyrWv0fKREKaqoZW0Lo1NhH4tqcFpxbvsbdoPI_vsfEyczpDTmed0NqnBccXeDNWWYhF5YV_Hw4ziq5ymn4ka7E7ZPXufUBQdFEhJ5gQxW0AtsecpxeDZt8bm1GFPqUYNziqZZaVRDv_4zv3_LT-AVdQ7OU3ePoSl0fvYHiE2GfXrsNy8fOyc07Vz99Cpw2IrbtW9gn4AbFri1A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMAF8aY8i8QNIi1N1rRHNIHGY-MyJG5RlwfsQIdYOezfY7fd0AAhca3TqrKd-kttfwY4S5MsMT5STGI0YFKYmKVSWOakyRLEH8Yn1Jzc7cWdR3n71HqqaXKoF-Zb_p5a3ISQDCMLHnp5xNlkEZYknpSpfK8dt2eHKwQ2om6K-f2--cDzA03-LIr8lhktA871OqzVSDG8rEy7AQsu34Tlbp0L34IH3PP0E4VRsyQV_IQFTeh6DjObld-BcJjTJceIq9I6G5blm-hv4fgNRWj-shc9HL6Wk4q24fH6qt_usHo8AjMiTQrGbVO4KHFN53kWm9gjkhlYpVQWKe-N45a3XGx4jJDHWmGVlC05SJ0RXvpUerEDjXyUuz0IieQOrTkwuN9REKWqaZR0Po1tC6NZEsD5VHf6rWLB0F98x6RpjZrWpab1JIDTqXo1OitlILLcjT7GmrKqnGaeiQB2K3XPnicU5QQFSpI5Q8wWEBH2vCQfvpSE2Jx49ZRqBnAxtZmut-L4j_fc_9_yE1jp9Lv3-v6md3cAqxGim6p8-xAaxfuHO0J0UgyOS7f8BLsM3ZI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SBMXxJvxLBI3iFiarGmPaDCN1-DApN2iLg_YgW5i3YF_j5N2gzGExLVOq8p24y-1_RngNInTWNlQEI7RgHCmIpJwponhKo0Rfygbu-bkh3bU6vDbbr37rYvfV7tPUpJFT4Njacryi6G2F98a3xjjBOMNHoVpSMnHIizjScUnahtRY3rkQrjDylaZ3--bDUdzGHO-VPJHvtSHoeYarJb4MbgsDL4OCybbgMpDmSHfhEfcCdyvFeJaKF0ZUJC7uV0vQapTvzsE_cxdMsQxWGqjA1_UiV4YjIYoQqfwHepB_83PL9qCTvP6udEi5dAEolgS54TqGjNhbGrG0jRSkUV809NCiDQU1ipDNa2bSNEIgZDWTAvO67yXGMUstwm3bBuWskFmdiFw1Hdo457CXQAFYSJqSnBjk0jXMcbFVTib6E4OC24M-cWC7DQtUdPSa1p-VOFkol6JLuzyEmlmBuORdLlW6iahsSrsFOqePo8JlylkKIlnDDFd4OixZyVZ_9XTZFPHtidErQrnE5vJ8gMd_fGee_9bfgyVp6umvL9p3-3DSoiQp6jpPoCl_H1sDhGy5L0j75WfhgXl2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-specific+timing+adaption+in+time-encoded+arterial+spin+labeling+imaging&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Breutigam%2C+Nora-Josefin&rft.au=Hoinkiss%2C+Daniel+Christopher&rft.au=Konstandin%2C+Simon&rft.au=Buck%2C+Mareike+Alicja&rft.date=2024-02-01&rft.issn=1352-8661&rft.eissn=1352-8661&rft.volume=37&rft.issue=1&rft.spage=53&rft_id=info:doi/10.1007%2Fs10334-023-01121-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon |