Phase-averaged equation for water waves

We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 718; pp. 280 - 303
Main Authors Gramstad, Odin, Stiassnie, Michael
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’ $O({\epsilon }^{- 2} )$ time scale, where $\epsilon $ is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira (J. Fluid Mech., vol. 561, 2006b, pp. 181–207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the ‘fast’ evolution of a spectrum on the $O({\epsilon }^{- 2} )$ time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where ‘fast’ field evolution takes place.
AbstractList Abstract We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann's kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the 'fast' [formula omitted, refer to PDF] time scale, where [formula omitted, refer to PDF] is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira (J. Fluid Mech., vol. 561, 2006b, pp. 181-207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the 'fast' evolution of a spectrum on the [formula omitted, refer to PDF] time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where 'fast' field evolution takes place. [PUBLICATION ABSTRACT]
We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’ $O({\epsilon }^{- 2} )$ time scale, where $\epsilon $ is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira ( J. Fluid Mech. , vol. 561, 2006 b , pp. 181–207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the ‘fast’ evolution of a spectrum on the $O({\epsilon }^{- 2} )$ time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where ‘fast’ field evolution takes place.
We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’ $O({\epsilon }^{- 2} )$ time scale, where $\epsilon $ is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira (J. Fluid Mech., vol. 561, 2006b, pp. 181–207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the ‘fast’ evolution of a spectrum on the $O({\epsilon }^{- 2} )$ time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where ‘fast’ field evolution takes place.
Author Stiassnie, Michael
Gramstad, Odin
Author_xml – sequence: 1
  givenname: Odin
  surname: Gramstad
  fullname: Gramstad, Odin
  email: oding@math.uio.no
  organization: Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway
– sequence: 2
  givenname: Michael
  surname: Stiassnie
  fullname: Stiassnie, Michael
  organization: Faculty of Civil and Environmental Engineering, Technion IIT, Haifa 32000, Israel
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27125648$$DView record in Pascal Francis
BookMark eNp1kE1LAzEURYNUsK3u_AEFETfOmJdkJslSSv2Agi50HV4zmTqlnWmTacV_b8YWEdFNsjn33csZkF7d1I6Qc6ApUJA3i3KVMgoszak-In0QuU5kLrIe6VPKWALA6AkZhLCgFDjVsk-unt8wuAR3zuPcFSO32WJbNfWobPzoHVvXvTsXTslxicvgzg7_kLzeTV7GD8n06f5xfDtNLNeqTWKlUE7OcscEILWFmClwsZzzjHKNGaAUhcols4JbxZmOS5SlIFSeM5HxIbnY3137ZrN1oTWLZuvrWGmAqQw0aNlRlwcKg8Vl6bG2VTBrX63QfxgmgWVxSOSu95z1TQjeld8IUNMpM1GZ6ZSZqCzi7Bduq_ZLR-uxWv4XSg8hXM18Vczdj8l_BT4Bwvd8Yw
CODEN JFLSA7
CitedBy_id crossref_primary_10_3390_fluids4010002
crossref_primary_10_1016_j_coastaleng_2021_104004
crossref_primary_10_3367_UFNe_2021_08_039038
crossref_primary_10_1017_jfm_2013_649
crossref_primary_10_1098_rsta_2017_0101
crossref_primary_10_1017_jfm_2020_1036
crossref_primary_10_1063_5_0061897
crossref_primary_10_1017_jfm_2023_729
crossref_primary_10_1088_0034_4885_77_10_105901
crossref_primary_10_1017_jfm_2018_185
crossref_primary_10_1016_j_euromechflu_2018_03_015
crossref_primary_10_1017_jfm_2015_25
crossref_primary_10_9765_KSCOE_2015_27_1_38
crossref_primary_10_1007_s10236_016_0940_4
crossref_primary_10_1063_1_4896378
crossref_primary_10_1175_JPO_D_14_0182_1
crossref_primary_10_1017_jfm_2016_632
Cites_doi 10.1017/S0022112002002616
10.1016/S0167-2789(98)00015-3
10.1023/A:1021287032271
10.1103/PhysRevLett.102.024502
10.1016/j.euromechflu.2010.10.004
10.1017/S0022112062000373
10.1017/S0022112094004350
10.1007/BF00913182
10.1103/PhysRevLett.96.204501
10.1029/2006GL029135
10.1017/S0022112006000632
10.1175/1520-0485(1993)023<0177:TDROOW>2.0.CO;2
10.1007/978-3-642-50052-7
10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
10.1017/CBO9780511525018
10.1016/j.wavemoti.2004.07.002
10.1017/S002211200999245X
10.1017/S0022112084001257
10.1017/S0022112060001043
10.1017/S002211209000252X
10.1016/0375-9601(94)90067-1
ContentType Journal Article
Copyright 2013 Cambridge University Press
2014 INIST-CNRS
Copyright_xml – notice: 2013 Cambridge University Press
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2012.609
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate O. Gramstad and M. Stiassnie
Phase-averaged equation for water waves
EISSN 1469-7645
EndPage 303
ExternalDocumentID 2886784391
27125648
10_1017_jfm_2012_609
Genre Feature
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABXHF
AKMAY
CITATION
PHGZM
PHGZT
-1F
-2V
-~N
6TJ
6~7
8WZ
9M5
A6W
AANRG
ABDMP
ABDPE
ABFSI
ABKAW
ABVFV
ABVZP
ABZUI
ACETC
ACKIV
ACRPL
ADMLS
ADNMO
ADOVH
AEBPU
AEMFK
AENCP
AGQPQ
AI.
ALEEW
BESQT
CAG
CCUQV
CDIZJ
COF
H~9
I.9
IQODW
KAFGG
NMFBF
PQGLB
RIG
VH1
VOH
ZJOSE
ZY4
~V1
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c398t-14648e7b6e241a0cd4b81e002335039a51a74d8672c43c83290018c0148662453
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Fri Aug 15 23:02:11 EDT 2025
Mon Jul 21 09:17:32 EDT 2025
Tue Jul 01 01:45:05 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Tue Jan 21 06:17:02 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords surface gravity waves
waves/free-surface flows
Free surface flow
Wave interaction
digital simulation
Modeling
ocean waves
Surface gravity wave
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-14648e7b6e241a0cd4b81e002335039a51a74d8672c43c83290018c0148662453
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1285191975
PQPubID 34769
PageCount 24
ParticipantIDs proquest_journals_1285191975
pascalfrancis_primary_27125648
crossref_primary_10_1017_jfm_2012_609
crossref_citationtrail_10_1017_jfm_2012_609
cambridge_journals_10_1017_jfm_2012_609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130310
PublicationDateYYYYMMDD 2013-03-10
PublicationDate_xml – month: 03
  year: 2013
  text: 20130310
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2013
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S002211201200609X_r8
S002211201200609X_r9
Dold (S002211201200609X_r7) 1986
S002211201200609X_r6
Mei (S002211201200609X_r16) 2005; vol. 23
S002211201200609X_r20
S002211201200609X_r10
S002211201200609X_r21
S002211201200609X_r1
S002211201200609X_r11
S002211201200609X_r22
S002211201200609X_r12
S002211201200609X_r23
S002211201200609X_r4
S002211201200609X_r5
S002211201200609X_r2
S002211201200609X_r3
S002211201200609X_r17
S002211201200609X_r18
S002211201200609X_r19
S002211201200609X_r13
S002211201200609X_r14
S002211201200609X_r15
References_xml – ident: S002211201200609X_r9
  doi: 10.1017/S0022112002002616
– ident: S002211201200609X_r15
  doi: 10.1016/S0167-2789(98)00015-3
– ident: S002211201200609X_r21
  doi: 10.1023/A:1021287032271
– ident: S002211201200609X_r3
  doi: 10.1103/PhysRevLett.102.024502
– ident: S002211201200609X_r10
  doi: 10.1016/j.euromechflu.2010.10.004
– ident: S002211201200609X_r11
  doi: 10.1017/S0022112062000373
– ident: S002211201200609X_r14
  doi: 10.1017/S0022112094004350
– ident: S002211201200609X_r22
  doi: 10.1007/BF00913182
– ident: S002211201200609X_r1
  doi: 10.1103/PhysRevLett.96.204501
– ident: S002211201200609X_r4
  doi: 10.1029/2006GL029135
– ident: S002211201200609X_r2
  doi: 10.1017/S0022112006000632
– volume: vol. 23
  volume-title: Theory and Applications of Ocean Surface Waves, Part 2: Nonlinear Aspects
  year: 2005
  ident: S002211201200609X_r16
– ident: S002211201200609X_r20
  doi: 10.1175/1520-0485(1993)023<0177:TDROOW>2.0.CO;2
– ident: S002211201200609X_r23
  doi: 10.1007/978-3-642-50052-7
– ident: S002211201200609X_r12
  doi: 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
– ident: S002211201200609X_r13
  doi: 10.1017/CBO9780511525018
– ident: S002211201200609X_r19
  doi: 10.1016/j.wavemoti.2004.07.002
– ident: S002211201200609X_r5
  doi: 10.1017/S002211200999245X
– ident: S002211201200609X_r18
  doi: 10.1017/S0022112084001257
– ident: S002211201200609X_r17
  doi: 10.1017/S0022112060001043
– start-page: 671
  volume-title: Numerical Methods for Fluid Dynamics II
  year: 1986
  ident: S002211201200609X_r7
– ident: S002211201200609X_r6
  doi: 10.1017/S002211209000252X
– ident: S002211201200609X_r8
  doi: 10.1016/0375-9601(94)90067-1
SSID ssj0013097
Score 2.1952941
Snippet We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In...
Abstract We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions....
SourceID proquest
pascalfrancis
crossref
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 280
SubjectTerms Dynamics of the ocean (upper and deep oceans)
Earth, ocean, space
Exact sciences and technology
External geophysics
Fluid mechanics
Kinetics
Monte Carlo simulation
Numerical analysis
Physics of the oceans
Spectrum analysis
Surface water
Surface waves
Water waves
Title Phase-averaged equation for water waves
URI https://www.cambridge.org/core/product/identifier/S002211201200609X/type/journal_article
https://www.proquest.com/docview/1285191975
Volume 718
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB7UIijioypWa8hB6UGieWyyyUnqo4rYUnyAt5B9ISJtNVX_vrPNNm2Resklc1hmZ2e-3Z39PoAjRLnCFTxxEi4yhyilhdxx48qoklj_qSJK3-i2O9HtM7l7CV_MgVtu2irHOXGUqEWf6zPyM8yjCDa8hIbngw9Hq0bp21UjobEIFUzBMW6-KhfXne7D5B7BTeiYLxyRhWta3zVp9JvSD9E9_zTSzYgTYoWZArU2yHL0lSpELv7k61ERam3CukGPdrOY7i1YkL0qbBgkaZt1mldhdYpmsArLozZPnm9Do_uKVcvJMH4xjwhbfhRM3zZCV_sHYaf-fst8B55b10-Xt46RSnB4kMRDB_MdiSVlkcSKnLlcEBZ7UhfkIHSDJAu9jBIRR9TnJOC4ihOtxsf1cWIU-SQMdmGp1-_JPbBJJBkTniv0K1OPUUaUq4LExX0PU4FHatAofZWagM_TolmMpujVVHs1Ra_W4GTsyZQbxnEtfPE-x_q4tB4UTBtz7KyZSSmNfYpgDd1Qg_p4lqbGV4bP_v-_D2DFHyle6Ja9OiwNP7_kIeKOIbNgMW7dWFBpXrXvHy0Tar9U5NTz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LLwRBEK4IEUQ8FrGecyAOMsyjd3r6ICJY6xkHErcx_YqI7C6ziD_lN6qaxyLCzWUuU4dJVXXV19PV3wewhihXe1oJVyidusxaEnLHjavk1mD_55ZZOtE9v4ha1-zkpnEzAO_VXRgaq6xqYl6odUfRP_JtrKMINnzBG7vdR5dUo-h0tZLQKNLi1Ly94pYt2zk-wPiuB0Hz8Gq_5ZaqAq4KRdxzsTSw2HAZGWxeqac0k7FvqHeFDS8UacNPOdNxxAPFQoUJL0i4TtGftygKGKlEYMkfYmEoaEXFzaPPUwtP8IqdHHGMVw7aE0X1vaVr736wFdHo4yeNw7d2ON5NM4yMLSQ1fnSHvOU1p2CixKrOXpFc0zBg2jWYLHGrU1aFrAZjX0gNazCcD5WqbAY2Lu-wR7oprhasWtoxjwWvuINA2XlFkEvPF5PNwvW_uHAOBtudtpkHh0VGSu17mu60-pJLZj0bCg93WdKGPqvDRt9XSbm8sqQYTeMJejUhrybo1TpsVp5MVMlvTjIbD79Yr_etuwWvxy92K9-C0jcOOEJDdEMdlqooffm-frIu_P16FUZaV-dnydnxxekijAa51gYNCy7BYO_p2Swj4unJlTzNHLj977z-AAfqCe4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-averaged+equation+for+water+waves&rft.jtitle=Journal+of+fluid+mechanics&rft.au=GRAMSTAD%2C+Odin&rft.au=STIASSNIE%2C+Michael&rft.date=2013-03-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.volume=718&rft.spage=280&rft.epage=303&rft_id=info:doi/10.1017%2Fjfm.2012.609&rft.externalDBID=n%2Fa&rft.externalDocID=27125648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon