Phase-averaged equation for water waves
We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’...
Saved in:
Published in | Journal of fluid mechanics Vol. 718; pp. 280 - 303 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’
$O({\epsilon }^{- 2} )$
time scale, where
$\epsilon $
is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira (J. Fluid Mech., vol. 561, 2006b, pp. 181–207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the ‘fast’ evolution of a spectrum on the
$O({\epsilon }^{- 2} )$
time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where ‘fast’ field evolution takes place. |
---|---|
AbstractList | Abstract We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann's kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the 'fast' [formula omitted, refer to PDF] time scale, where [formula omitted, refer to PDF] is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira (J. Fluid Mech., vol. 561, 2006b, pp. 181-207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the 'fast' evolution of a spectrum on the [formula omitted, refer to PDF] time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where 'fast' field evolution takes place. [PUBLICATION ABSTRACT] We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’ $O({\epsilon }^{- 2} )$ time scale, where $\epsilon $ is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira ( J. Fluid Mech. , vol. 561, 2006 b , pp. 181–207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the ‘fast’ evolution of a spectrum on the $O({\epsilon }^{- 2} )$ time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where ‘fast’ field evolution takes place. We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’ $O({\epsilon }^{- 2} )$ time scale, where $\epsilon $ is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira (J. Fluid Mech., vol. 561, 2006b, pp. 181–207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the ‘fast’ evolution of a spectrum on the $O({\epsilon }^{- 2} )$ time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where ‘fast’ field evolution takes place. |
Author | Stiassnie, Michael Gramstad, Odin |
Author_xml | – sequence: 1 givenname: Odin surname: Gramstad fullname: Gramstad, Odin email: oding@math.uio.no organization: Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway – sequence: 2 givenname: Michael surname: Stiassnie fullname: Stiassnie, Michael organization: Faculty of Civil and Environmental Engineering, Technion IIT, Haifa 32000, Israel |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27125648$$DView record in Pascal Francis |
BookMark | eNp1kE1LAzEURYNUsK3u_AEFETfOmJdkJslSSv2Agi50HV4zmTqlnWmTacV_b8YWEdFNsjn33csZkF7d1I6Qc6ApUJA3i3KVMgoszak-In0QuU5kLrIe6VPKWALA6AkZhLCgFDjVsk-unt8wuAR3zuPcFSO32WJbNfWobPzoHVvXvTsXTslxicvgzg7_kLzeTV7GD8n06f5xfDtNLNeqTWKlUE7OcscEILWFmClwsZzzjHKNGaAUhcols4JbxZmOS5SlIFSeM5HxIbnY3137ZrN1oTWLZuvrWGmAqQw0aNlRlwcKg8Vl6bG2VTBrX63QfxgmgWVxSOSu95z1TQjeld8IUNMpM1GZ6ZSZqCzi7Bduq_ZLR-uxWv4XSg8hXM18Vczdj8l_BT4Bwvd8Yw |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_3390_fluids4010002 crossref_primary_10_1016_j_coastaleng_2021_104004 crossref_primary_10_3367_UFNe_2021_08_039038 crossref_primary_10_1017_jfm_2013_649 crossref_primary_10_1098_rsta_2017_0101 crossref_primary_10_1017_jfm_2020_1036 crossref_primary_10_1063_5_0061897 crossref_primary_10_1017_jfm_2023_729 crossref_primary_10_1088_0034_4885_77_10_105901 crossref_primary_10_1017_jfm_2018_185 crossref_primary_10_1016_j_euromechflu_2018_03_015 crossref_primary_10_1017_jfm_2015_25 crossref_primary_10_9765_KSCOE_2015_27_1_38 crossref_primary_10_1007_s10236_016_0940_4 crossref_primary_10_1063_1_4896378 crossref_primary_10_1175_JPO_D_14_0182_1 crossref_primary_10_1017_jfm_2016_632 |
Cites_doi | 10.1017/S0022112002002616 10.1016/S0167-2789(98)00015-3 10.1023/A:1021287032271 10.1103/PhysRevLett.102.024502 10.1016/j.euromechflu.2010.10.004 10.1017/S0022112062000373 10.1017/S0022112094004350 10.1007/BF00913182 10.1103/PhysRevLett.96.204501 10.1029/2006GL029135 10.1017/S0022112006000632 10.1175/1520-0485(1993)023<0177:TDROOW>2.0.CO;2 10.1007/978-3-642-50052-7 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2 10.1017/CBO9780511525018 10.1016/j.wavemoti.2004.07.002 10.1017/S002211200999245X 10.1017/S0022112084001257 10.1017/S0022112060001043 10.1017/S002211209000252X 10.1016/0375-9601(94)90067-1 |
ContentType | Journal Article |
Copyright | 2013 Cambridge University Press 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Cambridge University Press – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2012.609 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database (ProQuest) Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | O. Gramstad and M. Stiassnie Phase-averaged equation for water waves |
EISSN | 1469-7645 |
EndPage | 303 |
ExternalDocumentID | 2886784391 27125648 10_1017_jfm_2012_609 |
Genre | Feature |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AARAB AASVR AATMM AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVKB ABXAU ABZCX ACBEA ACBMC ACDLN ACGFO ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEUYN AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ BQFHP C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WYP ZE2 ZMEZD ZYDXJ ~02 AAYXX ABXHF AKMAY CITATION PHGZM PHGZT -1F -2V -~N 6TJ 6~7 8WZ 9M5 A6W AANRG ABDMP ABDPE ABFSI ABKAW ABVFV ABVZP ABZUI ACETC ACKIV ACRPL ADMLS ADNMO ADOVH AEBPU AEMFK AENCP AGQPQ AI. ALEEW BESQT CAG CCUQV CDIZJ COF H~9 I.9 IQODW KAFGG NMFBF PQGLB RIG VH1 VOH ZJOSE ZY4 ~V1 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c398t-14648e7b6e241a0cd4b81e002335039a51a74d8672c43c83290018c0148662453 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Fri Aug 15 23:02:11 EDT 2025 Mon Jul 21 09:17:32 EDT 2025 Tue Jul 01 01:45:05 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Tue Jan 21 06:17:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | surface gravity waves waves/free-surface flows Free surface flow Wave interaction digital simulation Modeling ocean waves Surface gravity wave |
Language | English |
License | https://www.cambridge.org/core/terms CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-14648e7b6e241a0cd4b81e002335039a51a74d8672c43c83290018c0148662453 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1285191975 |
PQPubID | 34769 |
PageCount | 24 |
ParticipantIDs | proquest_journals_1285191975 pascalfrancis_primary_27125648 crossref_primary_10_1017_jfm_2012_609 crossref_citationtrail_10_1017_jfm_2012_609 cambridge_journals_10_1017_jfm_2012_609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130310 |
PublicationDateYYYYMMDD | 2013-03-10 |
PublicationDate_xml | – month: 03 year: 2013 text: 20130310 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2013 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S002211201200609X_r8 S002211201200609X_r9 Dold (S002211201200609X_r7) 1986 S002211201200609X_r6 Mei (S002211201200609X_r16) 2005; vol. 23 S002211201200609X_r20 S002211201200609X_r10 S002211201200609X_r21 S002211201200609X_r1 S002211201200609X_r11 S002211201200609X_r22 S002211201200609X_r12 S002211201200609X_r23 S002211201200609X_r4 S002211201200609X_r5 S002211201200609X_r2 S002211201200609X_r3 S002211201200609X_r17 S002211201200609X_r18 S002211201200609X_r19 S002211201200609X_r13 S002211201200609X_r14 S002211201200609X_r15 |
References_xml | – ident: S002211201200609X_r9 doi: 10.1017/S0022112002002616 – ident: S002211201200609X_r15 doi: 10.1016/S0167-2789(98)00015-3 – ident: S002211201200609X_r21 doi: 10.1023/A:1021287032271 – ident: S002211201200609X_r3 doi: 10.1103/PhysRevLett.102.024502 – ident: S002211201200609X_r10 doi: 10.1016/j.euromechflu.2010.10.004 – ident: S002211201200609X_r11 doi: 10.1017/S0022112062000373 – ident: S002211201200609X_r14 doi: 10.1017/S0022112094004350 – ident: S002211201200609X_r22 doi: 10.1007/BF00913182 – ident: S002211201200609X_r1 doi: 10.1103/PhysRevLett.96.204501 – ident: S002211201200609X_r4 doi: 10.1029/2006GL029135 – ident: S002211201200609X_r2 doi: 10.1017/S0022112006000632 – volume: vol. 23 volume-title: Theory and Applications of Ocean Surface Waves, Part 2: Nonlinear Aspects year: 2005 ident: S002211201200609X_r16 – ident: S002211201200609X_r20 doi: 10.1175/1520-0485(1993)023<0177:TDROOW>2.0.CO;2 – ident: S002211201200609X_r23 doi: 10.1007/978-3-642-50052-7 – ident: S002211201200609X_r12 doi: 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2 – ident: S002211201200609X_r13 doi: 10.1017/CBO9780511525018 – ident: S002211201200609X_r19 doi: 10.1016/j.wavemoti.2004.07.002 – ident: S002211201200609X_r5 doi: 10.1017/S002211200999245X – ident: S002211201200609X_r18 doi: 10.1017/S0022112084001257 – ident: S002211201200609X_r17 doi: 10.1017/S0022112060001043 – start-page: 671 volume-title: Numerical Methods for Fluid Dynamics II year: 1986 ident: S002211201200609X_r7 – ident: S002211201200609X_r6 doi: 10.1017/S002211209000252X – ident: S002211201200609X_r8 doi: 10.1016/0375-9601(94)90067-1 |
SSID | ssj0013097 |
Score | 2.1952941 |
Snippet | We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In... Abstract We investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions.... |
SourceID | proquest pascalfrancis crossref cambridge |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 280 |
SubjectTerms | Dynamics of the ocean (upper and deep oceans) Earth, ocean, space Exact sciences and technology External geophysics Fluid mechanics Kinetics Monte Carlo simulation Numerical analysis Physics of the oceans Spectrum analysis Surface water Surface waves Water waves |
Title | Phase-averaged equation for water waves |
URI | https://www.cambridge.org/core/product/identifier/S002211201200609X/type/journal_article https://www.proquest.com/docview/1285191975 |
Volume | 718 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB7UIijioypWa8hB6UGieWyyyUnqo4rYUnyAt5B9ISJtNVX_vrPNNm2Resklc1hmZ2e-3Z39PoAjRLnCFTxxEi4yhyilhdxx48qoklj_qSJK3-i2O9HtM7l7CV_MgVtu2irHOXGUqEWf6zPyM8yjCDa8hIbngw9Hq0bp21UjobEIFUzBMW6-KhfXne7D5B7BTeiYLxyRhWta3zVp9JvSD9E9_zTSzYgTYoWZArU2yHL0lSpELv7k61ERam3CukGPdrOY7i1YkL0qbBgkaZt1mldhdYpmsArLozZPnm9Do_uKVcvJMH4xjwhbfhRM3zZCV_sHYaf-fst8B55b10-Xt46RSnB4kMRDB_MdiSVlkcSKnLlcEBZ7UhfkIHSDJAu9jBIRR9TnJOC4ihOtxsf1cWIU-SQMdmGp1-_JPbBJJBkTniv0K1OPUUaUq4LExX0PU4FHatAofZWagM_TolmMpujVVHs1Ra_W4GTsyZQbxnEtfPE-x_q4tB4UTBtz7KyZSSmNfYpgDd1Qg_p4lqbGV4bP_v-_D2DFHyle6Ja9OiwNP7_kIeKOIbNgMW7dWFBpXrXvHy0Tar9U5NTz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LLwRBEK4IEUQ8FrGecyAOMsyjd3r6ICJY6xkHErcx_YqI7C6ziD_lN6qaxyLCzWUuU4dJVXXV19PV3wewhihXe1oJVyidusxaEnLHjavk1mD_55ZZOtE9v4ha1-zkpnEzAO_VXRgaq6xqYl6odUfRP_JtrKMINnzBG7vdR5dUo-h0tZLQKNLi1Ly94pYt2zk-wPiuB0Hz8Gq_5ZaqAq4KRdxzsTSw2HAZGWxeqac0k7FvqHeFDS8UacNPOdNxxAPFQoUJL0i4TtGftygKGKlEYMkfYmEoaEXFzaPPUwtP8IqdHHGMVw7aE0X1vaVr736wFdHo4yeNw7d2ON5NM4yMLSQ1fnSHvOU1p2CixKrOXpFc0zBg2jWYLHGrU1aFrAZjX0gNazCcD5WqbAY2Lu-wR7oprhasWtoxjwWvuINA2XlFkEvPF5PNwvW_uHAOBtudtpkHh0VGSu17mu60-pJLZj0bCg93WdKGPqvDRt9XSbm8sqQYTeMJejUhrybo1TpsVp5MVMlvTjIbD79Yr_etuwWvxy92K9-C0jcOOEJDdEMdlqooffm-frIu_P16FUZaV-dnydnxxekijAa51gYNCy7BYO_p2Swj4unJlTzNHLj977z-AAfqCe4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-averaged+equation+for+water+waves&rft.jtitle=Journal+of+fluid+mechanics&rft.au=GRAMSTAD%2C+Odin&rft.au=STIASSNIE%2C+Michael&rft.date=2013-03-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.volume=718&rft.spage=280&rft.epage=303&rft_id=info:doi/10.1017%2Fjfm.2012.609&rft.externalDBID=n%2Fa&rft.externalDocID=27125648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |