Approximate Gauss-Newton methods for optimal state estimation using reduced-order models
The Gauss–Newton (GN) method is a well‐known iterative technique for solving nonlinear least‐squares problems subject to dynamical system constraints. Such problems arise commonly in optimal state estimation where the systems may be stochastic. Variational data assimilation techniques for state esti...
Saved in:
Published in | International journal for numerical methods in fluids Vol. 56; no. 8; pp. 1367 - 1373 |
---|---|
Main Authors | , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
20.03.2008
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Gauss–Newton (GN) method is a well‐known iterative technique for solving nonlinear least‐squares problems subject to dynamical system constraints. Such problems arise commonly in optimal state estimation where the systems may be stochastic. Variational data assimilation techniques for state estimation in weather, ocean and climate systems currently use approximate GN methods. The GN method solves a sequence of linear least‐squares problems subject to linearized system constraints. For very large systems, low‐resolution linear approximations to the model dynamics are used to improve the efficiency of the algorithm. We propose a new method for deriving low‐order system approximations based on model reduction techniques from control theory. We show how this technique can be combined with the GN method to retain the response of the dynamical system more accurately and improve the performance of the approximate GN method. Copyright © 2007 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The Gauss–Newton (GN) method is a well‐known iterative technique for solving nonlinear least‐squares problems subject to dynamical system constraints. Such problems arise commonly in optimal state estimation where the systems may be stochastic. Variational data assimilation techniques for state estimation in weather, ocean and climate systems currently use approximate GN methods. The GN method solves a sequence of linear least‐squares problems subject to linearized system constraints. For very large systems, low‐resolution linear approximations to the model dynamics are used to improve the efficiency of the algorithm. We propose a new method for deriving low‐order system approximations based on model reduction techniques from control theory. We show how this technique can be combined with the GN method to retain the response of the dynamical system more accurately and improve the performance of the approximate GN method. Copyright © 2007 John Wiley & Sons, Ltd. The Gauss-Newton (GN) method is a well-known iterative technique for solving nonlinear least-squares problems subject to dynamical system constraints. Such problems arise commonly in optimal state estimation where the systems may be stochastic. Variational data assimilation techniques for state estimation in weather, ocean and climate systems currently use approximate GN methods. The GN method solves a sequence of linear least-squares problems subject to linearized system constraints. For very large systems, low-resolution linear approximations to the model dynamics are used to improve the efficiency of the algorithm. We propose a new method for deriving low-order system approximations based on model reduction techniques from control theory. We show how this technique can be combined with the GN method to retain the response of the dynamical system more accurately and improve the performance of the approximate GN method. |
Author | Nichols, N. K. Boess, C. Bunse-Gerstner, A. Lawless, A. S. |
Author_xml | – sequence: 1 givenname: A. S. surname: Lawless fullname: Lawless, A. S. organization: Department of Mathematics, University of Reading, P.O. Box 220, Reading RG6 6AX, U.K – sequence: 2 givenname: N. K. surname: Nichols fullname: Nichols, N. K. email: n.k.nichols@rdg.ac.uk organization: Department of Mathematics, University of Reading, P.O. Box 220, Reading RG6 6AX, U.K – sequence: 3 givenname: C. surname: Boess fullname: Boess, C. organization: Zentrum fuer Technomathematik, Universitaet Bremen, Postfach 330440, D-28334 Bremen, Germany – sequence: 4 givenname: A. surname: Bunse-Gerstner fullname: Bunse-Gerstner, A. organization: Zentrum fuer Technomathematik, Universitaet Bremen, Postfach 330440, D-28334 Bremen, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20329681$$DView record in Pascal Francis |
BookMark | eNp10F1rFDEUBuAgFdxWwZ8wN4o3sz1JNjPJZal2tSwVxI_ehUzmRKPZyZpkaPvvzbpVUPQqHHjOIe97TI6mOCEhTyksKQA7dWFc0o6pB2RBQfUt8I4fkQWwnrYMFH1EjnP-CgCKSb4g12e7XYq3fmsKNmsz59xe4U2JU7PF8iWOuXExNXFXqghNLnuGeT8VX9Gc_fS5STjOFsc2phFTs40jhvyYPHQmZHxy_56QDxev3p-_bjdv12_Ozzat5UqqVhnBQTnHV6jYauCASgx8UFxQJo3oQdhhZcVgpaHMGgkCmZNsNM6qAajhJ-T54W6N8X2uX9Nbny2GYCaMc9acCUlVBxU-u4cmWxNcMpP1We9SzZLuNAPOVCdpdcuDsynmnNBp68vPtCUZHzQFvS9a16L1vui68OKvhV83_0HbA73xAe_-6_TF5uWf3ueCt7-9Sd901_Ne6E9Xa70Ceb2-5B_1O_4DedSeQg |
CODEN | IJNFDW |
CitedBy_id | crossref_primary_10_1002_pamm_202300019 crossref_primary_10_1007_s10915_023_02358_4 crossref_primary_10_1016_j_compfluid_2010_11_033 crossref_primary_10_1017_S0962492910000061 crossref_primary_10_1002_gamm_202000014 |
Cites_doi | 10.1017/S0962492902000120 10.1109/TAC.1987.1104549 10.1002/fld.851 10.1023/A:1022205420182 10.1002/qj.49712051912 10.1137/1.9780898718713 10.1175/1520-0469(2001)058<3666:SEUARO>2.0.CO;2 10.1137/050624935 10.1017/CBO9780511526480 10.1007/3-540-27909-1_5 10.1002/fld.1365 10.1256/qj.04.20 |
ContentType | Journal Article Conference Proceeding |
Copyright | Copyright © 2007 John Wiley & Sons, Ltd. 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2007 John Wiley & Sons, Ltd. – notice: 2008 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/fld.1629 |
DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1097-0363 |
EndPage | 1373 |
ExternalDocumentID | 20329681 10_1002_fld_1629 FLD1629 ark_67375_WNG_408XGJ3V_R |
Genre | article |
GrantInformation_xml | – fundername: The German Academic Exchange Service (DAAD) – fundername: The British Council – fundername: The UK Natural Environment Research Council |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ TUS AAYXX CITATION 6TJ ABEML ACSCC AGHNM AI. AMVHM HF~ IQODW M6O PALCI RIWAO RJQFR SAMSI VH1 VOH ZY4 ~A~ 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3989-9a5309ff34e924b30e95b3b935128a5705cb4c5bc8a12ca805e2f82dafc9b01a3 |
IEDL.DBID | DR2 |
ISSN | 0271-2091 |
IngestDate | Thu Jul 10 20:43:56 EDT 2025 Mon Jul 21 09:11:26 EDT 2025 Tue Jul 01 02:08:29 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 Wed Aug 20 07:24:22 EDT 2025 Wed Oct 30 09:50:18 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | iterative methods Atmospheric dynamics Least squares method Gauss Newton method digital simulation Ocean dynamics large-scale nonlinear least-squares problems subject to dynamical system constraints; Gauss-Newton methods; variational data assimilation; weather ocean and climate prediction Modeling Data assimilation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Special issue: 9th ICFD Conference on Numerical Methods for Fluid Dynamics |
MergedId | FETCHMERGED-LOGICAL-c3989-9a5309ff34e924b30e95b3b935128a5705cb4c5bc8a12ca805e2f82dafc9b01a3 |
Notes | istex:6564EC06B8AAD8920664984E0D692116D96E5A51 ark:/67375/WNG-408XGJ3V-R The UK Natural Environment Research Council The British Council The German Academic Exchange Service (DAAD) ArticleID:FLD1629 SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/fld.1629 |
PQID | 32581960 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_32581960 pascalfrancis_primary_20329681 crossref_citationtrail_10_1002_fld_1629 crossref_primary_10_1002_fld_1629 wiley_primary_10_1002_fld_1629_FLD1629 istex_primary_ark_67375_WNG_408XGJ3V_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20 March 2008 |
PublicationDateYYYYMMDD | 2008-03-20 |
PublicationDate_xml | – month: 03 year: 2008 text: 20 March 2008 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | International journal for numerical methods in fluids |
PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
PublicationYear | 2008 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Courtier P, Thépaut J-N, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society 1994; 120:1367-1387. Cao Y, Zhu J, Navon IM, Luo Z. A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. International Journal for Numerical Methods in Fluids 2007; 53:1571-1583. Gugercin S, Sorensen DC, Antoulas AC. A modified low-rank Smith method for large-scale Lyapunov equations. Numerical Algorithms 2003; 32:27-55. Lawless AS, Gratton S, Nichols NK. An investigation of incremental 4D-Var using non-tangent linear models. Quarterly Journal of the Royal Meteorological Society 2005; 131:459-476. Lawless AS, Gratton S, Nichols NK. Approximate iterative methods for variational data assimilation. International Journal for Numerical Methods in Fluids 2005; 47:1129-1135. Antoulas AC. Approximation of Large-scale Dynamical Systems. SIAM: Philadelphia, PA, 2005. Lewis JM, Lakshmivarahan S, Dhall S. Dynamic Data Assimilation: A Least Squares Approach. Cambridge University Press: Cambridge, 2006. Lawless AS, Nichols NK, Boess C, Bunse-Gerstner A. Using model reduction methods within incremental 4D-Var. Monthly Weather Review, in press. Lawless AS, Gratton S, Nichols NK. Approximate Gauss-Newton methods for nonlinear least squares problems. SIAM Journal on Optimization 2007; 18:106-132. Gill PE, Murray W, Wright MR. Practical Optimization. Academic Press: New York, 1986. Laub AJ, Heath MT, Paige CC, Ward RC. Computation of system balancing transformations and other applications of simultaneous diagnolization algorithms. IEEE Transactions on Automatic Control 1987; AC-32:115-122. Farrell BF, Ioannou PJ. State estimation using a reduced-order Kalman filter. Journal of Atmospheric Science 2001; 58:3666-3680. Freund RW. Model reduction methods based on Krylov subspaces. Acta Numerica 2003; 12:267-319. 1986 2007; 18 2006 2005 2005; 131 2007; 53 2001; 58 1994; 120 2003; 32 2005; 47 1987; AC‐32 2003; 12 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_3_2 e_1_2_1_12_2 Lawless AS (e_1_2_1_15_2) e_1_2_1_10_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 Gill PE (e_1_2_1_2_2) 1986 e_1_2_1_8_2 e_1_2_1_9_2 |
References_xml | – reference: Lawless AS, Nichols NK, Boess C, Bunse-Gerstner A. Using model reduction methods within incremental 4D-Var. Monthly Weather Review, in press. – reference: Antoulas AC. Approximation of Large-scale Dynamical Systems. SIAM: Philadelphia, PA, 2005. – reference: Cao Y, Zhu J, Navon IM, Luo Z. A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. International Journal for Numerical Methods in Fluids 2007; 53:1571-1583. – reference: Lawless AS, Gratton S, Nichols NK. Approximate Gauss-Newton methods for nonlinear least squares problems. SIAM Journal on Optimization 2007; 18:106-132. – reference: Lewis JM, Lakshmivarahan S, Dhall S. Dynamic Data Assimilation: A Least Squares Approach. Cambridge University Press: Cambridge, 2006. – reference: Lawless AS, Gratton S, Nichols NK. An investigation of incremental 4D-Var using non-tangent linear models. Quarterly Journal of the Royal Meteorological Society 2005; 131:459-476. – reference: Courtier P, Thépaut J-N, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society 1994; 120:1367-1387. – reference: Gill PE, Murray W, Wright MR. Practical Optimization. Academic Press: New York, 1986. – reference: Lawless AS, Gratton S, Nichols NK. Approximate iterative methods for variational data assimilation. International Journal for Numerical Methods in Fluids 2005; 47:1129-1135. – reference: Farrell BF, Ioannou PJ. State estimation using a reduced-order Kalman filter. Journal of Atmospheric Science 2001; 58:3666-3680. – reference: Gugercin S, Sorensen DC, Antoulas AC. A modified low-rank Smith method for large-scale Lyapunov equations. Numerical Algorithms 2003; 32:27-55. – reference: Laub AJ, Heath MT, Paige CC, Ward RC. Computation of system balancing transformations and other applications of simultaneous diagnolization algorithms. IEEE Transactions on Automatic Control 1987; AC-32:115-122. – reference: Freund RW. Model reduction methods based on Krylov subspaces. Acta Numerica 2003; 12:267-319. – volume: 47 start-page: 1129 year: 2005 end-page: 1135 article-title: Approximate iterative methods for variational data assimilation publication-title: International Journal for Numerical Methods in Fluids – volume: 32 start-page: 27 year: 2003 end-page: 55 article-title: A modified low‐rank Smith method for large‐scale Lyapunov equations publication-title: Numerical Algorithms – year: 1986 – volume: AC‐32 start-page: 115 year: 1987 end-page: 122 article-title: Computation of system balancing transformations and other applications of simultaneous diagnolization algorithms publication-title: IEEE Transactions on Automatic Control – volume: 18 start-page: 106 year: 2007 end-page: 132 article-title: Approximate Gauss–Newton methods for nonlinear least squares problems publication-title: SIAM Journal on Optimization – year: 2005 – article-title: Using model reduction methods within incremental 4D‐Var publication-title: Monthly Weather Review – volume: 120 start-page: 1367 year: 1994 end-page: 1387 article-title: A strategy for operational implementation of 4D‐Var, using an incremental approach publication-title: Quarterly Journal of the Royal Meteorological Society – year: 2006 – volume: 12 start-page: 267 year: 2003 end-page: 319 article-title: Model reduction methods based on Krylov subspaces publication-title: Acta Numerica – volume: 58 start-page: 3666 year: 2001 end-page: 3680 article-title: State estimation using a reduced‐order Kalman filter publication-title: Journal of Atmospheric Science – volume: 131 start-page: 459 year: 2005 end-page: 476 article-title: An investigation of incremental 4D‐Var using non‐tangent linear models publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 53 start-page: 1571 year: 2007 end-page: 1583 article-title: A reduced order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition publication-title: International Journal for Numerical Methods in Fluids – ident: e_1_2_1_13_2 doi: 10.1017/S0962492902000120 – ident: e_1_2_1_11_2 doi: 10.1109/TAC.1987.1104549 – ident: e_1_2_1_5_2 doi: 10.1002/fld.851 – ident: e_1_2_1_14_2 doi: 10.1023/A:1022205420182 – ident: e_1_2_1_6_2 doi: 10.1002/qj.49712051912 – ident: e_1_2_1_16_2 – ident: e_1_2_1_7_2 doi: 10.1137/1.9780898718713 – ident: e_1_2_1_8_2 doi: 10.1175/1520-0469(2001)058<3666:SEUARO>2.0.CO;2 – ident: e_1_2_1_3_2 doi: 10.1137/050624935 – volume-title: Practical Optimization year: 1986 ident: e_1_2_1_2_2 – ident: e_1_2_1_10_2 doi: 10.1017/CBO9780511526480 – ident: e_1_2_1_12_2 doi: 10.1007/3-540-27909-1_5 – ident: e_1_2_1_15_2 article-title: Using model reduction methods within incremental 4D‐Var publication-title: Monthly Weather Review – ident: e_1_2_1_9_2 doi: 10.1002/fld.1365 – ident: e_1_2_1_4_2 doi: 10.1256/qj.04.20 |
SSID | ssj0009283 |
Score | 1.8596361 |
Snippet | The Gauss–Newton (GN) method is a well‐known iterative technique for solving nonlinear least‐squares problems subject to dynamical system constraints. Such... The Gauss-Newton (GN) method is a well-known iterative technique for solving nonlinear least-squares problems subject to dynamical system constraints. Such... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1367 |
SubjectTerms | Dynamics of the ocean (upper and deep oceans) Earth, ocean, space Exact sciences and technology External geophysics Gauss-Newton methods General circulation. Atmospheric waves large-scale nonlinear least-squares problems subject to dynamical system constraints Meteorology ocean and climate prediction Physics of the oceans variational data assimilation weather weather, ocean and climate prediction |
Title | Approximate Gauss-Newton methods for optimal state estimation using reduced-order models |
URI | https://api.istex.fr/ark:/67375/WNG-408XGJ3V-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.1629 https://www.proquest.com/docview/32581960 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFA3SvuiD1aq4ftQIUp9mO5OP2eSxqLulaB-K1QWFkGQSkdZd2dmF0qf-hEL_YX-J905mtl1REJ-GgWTI3NybnMycey4hr4RWooJzQSYxf0tYW2VKiEEWnAM4G6NlCvOdPxyUe0difyzHLasSc2GSPsTygxtGRrNeY4BbV-9ci4bGk6pflAxz95CqhXjo8Fo5SrOkwMkGBTiCLjrd2ZztdB1XdqJ1NOopMiNtDcaJqarFCuy8CV6b3We4Qb50406kk-P-Yu76_uw3Scf_e7F75G4LSulu8qL75FaYbJKNFqDSNvzrTXLnhnrhA_J1F_XIT78D5g10ZBd1fXV-CYsmoEmaClPXFCAxncKq9AMe3-QuUVT1SOmSFDn33-gMxWNDdXV-0ciA0qY2T_2QHA3ffXyzl7XFGjLPkXalreS5jpGLAEc6x_OgpeNOc0AUyspBLr0TXjqvbMG8VbkMLCpW2ei1ywvLH5G1yXQSHhMK954zL6IrpXBlYVl0oZCwnXMhK533yOtu4oxvlcyxoMaJSRrMzIAJDZqwR14uW_5M6h1_aLPdzP2ygZ0dI9ttIM3ng5ERuRqP9vknc9gjWyvOseyAReh1qYoeedF5i4EgxT8vdhKmi9pwJgF5lTDy7Wbm_zoYM3z_Fq9P_rXhU3I7MVg4uPkzsjafLcJzgElzt9UExC95ChIE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6V9gAcKBQQ4addJFROTu39cbziVFGSUNIcqhZyqLTatXdR1TZBcSJVnPoISLxhn4Qdr502CCTEybI0a61nZ2Y_r2e-AXjDZcYL_10QCazf4loXUcZ5J7LGeDjrnKYZ1jsfDNP-Md8fidEKvGtqYQI_xOLADT2jitfo4HggvXPDGurOi3aSUnkH1rChNxLn7x3ecEdJGjg4aSfxpiCThnk2pjvNyKW9aA3Veom5kbr06nGhr8US8LwNX6v9p7sOJ83MQ9rJWXs-M-38-2-kjv_5ag_hQY1LyW4wpEewYscbsF5jVFJHgHID7t8iMHwMJ7tISX556mGvJT09L8vrq58-bnpASUJv6pJ4VEwmPjBd-MdX5UsEiT1CxSTBtPuvZIr8sba4vvpRMYGSqj1P-QSOux-O3vejul9DlDPMvJJasFg6x7j1X3WGxVYKw4xkHlRkWnRikRueC5NnOqG5zmJhqctooV0uTZxo9hRWx5OxfQbE3-eM5tyZVHCTJpo6YxPhd3TGRSHjFrxtVk7lNZk59tQ4V4GGmSqvQoUqbMHrheS3QODxB5ntavEXAnp6hglvHaG-DHuKx9mot88-q8MWbC5Zx2IA9qGXaZa0YKsxF-X9FH--6LGdzEvFqPDgK_Uz366W_q-TUd3BHl6f_6vgFtztHx0M1ODj8NMLuBcSWpi3-ZewOpvO7SuPmmZms_KOX3hpFiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFB60BdEHq1UxXtoRpD4l3Z3LZuexNCa11iDFakBhmJmdEWlNSjaB4lN_guA_7C_pOTu7aSMK4tOycGaZPZeZb3bP-Q4hL4XKRQHngrbE-i1hTNHOhei2vbUAZ0MwLMd653fDbO9I7I_kqM6qxFqYyA-x-OCGkVGt1xjgp0XYviINDSdFJ82YuklWRZYobNvQO7yijlIsUnCybgqeoNKGeDZh283Ipa1oFbV6hqmRpgTthNjWYgl3Xkev1fbTXyOfm4nHrJPjznxmO-7Hb5yO__dm98jdGpXSnehG98kNP14nazVCpXX8l-vkzjX6wgfkyw4Skp99A9Dr6cDMy_Li_BesmgAnaexMXVLAxHQCy9J3eHxVvESR1iPWS1JMuv9Kp8ge64uL858VDyitmvOUD8lR__WH3b123a2h7TjmXSkjeaJC4MLDmc7yxCtpuVUcIEVuZDeRzgonrctNypzJE-lZyFlhglM2SQ1_RFbGk7F_TCjcO86cCDaTwmapYcH6VMJ-zoUsVNIirxrDaVdTmWNHjRMdSZiZBhVqVGGLvFhInkb6jj_IbFW2XwiY6TGmu3Wl_jQcaJHko8E-_6gPW2RjyTkWA7ALvcrytEU2G2_REKX468WM_WReas4kQK8MZr5VWf6vk9H9gx5en_yr4Ca59b7X1wdvhm-fktsxm4WDxz8jK7Pp3D8HyDSzG1VsXAI2XRTP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+journal+for+numerical+methods+in+fluids&rft.atitle=Approximate+Gauss-Newton+methods+for+optimal+state+estimation+using+reduced-order+models&rft.au=LAWLESS%2C+A.+S&rft.au=NICHOLS%2C+N.+K&rft.au=BOESS%2C+C&rft.au=BUNSE-GERSTNER%2C+A&rft.date=2008-03-20&rft.pub=Wiley&rft.issn=0271-2091&rft.volume=56&rft.issue=8&rft.spage=1367&rft.epage=1373&rft_id=info:doi/10.1002%2Ffld.1629&rft.externalDBID=n%2Fa&rft.externalDocID=20329681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |