Approximate Gauss-Newton methods for optimal state estimation using reduced-order models

The Gauss–Newton (GN) method is a well‐known iterative technique for solving nonlinear least‐squares problems subject to dynamical system constraints. Such problems arise commonly in optimal state estimation where the systems may be stochastic. Variational data assimilation techniques for state esti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 56; no. 8; pp. 1367 - 1373
Main Authors Lawless, A. S., Nichols, N. K., Boess, C., Bunse-Gerstner, A.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 20.03.2008
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Gauss–Newton (GN) method is a well‐known iterative technique for solving nonlinear least‐squares problems subject to dynamical system constraints. Such problems arise commonly in optimal state estimation where the systems may be stochastic. Variational data assimilation techniques for state estimation in weather, ocean and climate systems currently use approximate GN methods. The GN method solves a sequence of linear least‐squares problems subject to linearized system constraints. For very large systems, low‐resolution linear approximations to the model dynamics are used to improve the efficiency of the algorithm. We propose a new method for deriving low‐order system approximations based on model reduction techniques from control theory. We show how this technique can be combined with the GN method to retain the response of the dynamical system more accurately and improve the performance of the approximate GN method. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList The Gauss–Newton (GN) method is a well‐known iterative technique for solving nonlinear least‐squares problems subject to dynamical system constraints. Such problems arise commonly in optimal state estimation where the systems may be stochastic. Variational data assimilation techniques for state estimation in weather, ocean and climate systems currently use approximate GN methods. The GN method solves a sequence of linear least‐squares problems subject to linearized system constraints. For very large systems, low‐resolution linear approximations to the model dynamics are used to improve the efficiency of the algorithm. We propose a new method for deriving low‐order system approximations based on model reduction techniques from control theory. We show how this technique can be combined with the GN method to retain the response of the dynamical system more accurately and improve the performance of the approximate GN method. Copyright © 2007 John Wiley & Sons, Ltd.
The Gauss-Newton (GN) method is a well-known iterative technique for solving nonlinear least-squares problems subject to dynamical system constraints. Such problems arise commonly in optimal state estimation where the systems may be stochastic. Variational data assimilation techniques for state estimation in weather, ocean and climate systems currently use approximate GN methods. The GN method solves a sequence of linear least-squares problems subject to linearized system constraints. For very large systems, low-resolution linear approximations to the model dynamics are used to improve the efficiency of the algorithm. We propose a new method for deriving low-order system approximations based on model reduction techniques from control theory. We show how this technique can be combined with the GN method to retain the response of the dynamical system more accurately and improve the performance of the approximate GN method.
Author Nichols, N. K.
Boess, C.
Bunse-Gerstner, A.
Lawless, A. S.
Author_xml – sequence: 1
  givenname: A. S.
  surname: Lawless
  fullname: Lawless, A. S.
  organization: Department of Mathematics, University of Reading, P.O. Box 220, Reading RG6 6AX, U.K
– sequence: 2
  givenname: N. K.
  surname: Nichols
  fullname: Nichols, N. K.
  email: n.k.nichols@rdg.ac.uk
  organization: Department of Mathematics, University of Reading, P.O. Box 220, Reading RG6 6AX, U.K
– sequence: 3
  givenname: C.
  surname: Boess
  fullname: Boess, C.
  organization: Zentrum fuer Technomathematik, Universitaet Bremen, Postfach 330440, D-28334 Bremen, Germany
– sequence: 4
  givenname: A.
  surname: Bunse-Gerstner
  fullname: Bunse-Gerstner, A.
  organization: Zentrum fuer Technomathematik, Universitaet Bremen, Postfach 330440, D-28334 Bremen, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20329681$$DView record in Pascal Francis
BookMark eNp10F1rFDEUBuAgFdxWwZ8wN4o3sz1JNjPJZal2tSwVxI_ehUzmRKPZyZpkaPvvzbpVUPQqHHjOIe97TI6mOCEhTyksKQA7dWFc0o6pB2RBQfUt8I4fkQWwnrYMFH1EjnP-CgCKSb4g12e7XYq3fmsKNmsz59xe4U2JU7PF8iWOuXExNXFXqghNLnuGeT8VX9Gc_fS5STjOFsc2phFTs40jhvyYPHQmZHxy_56QDxev3p-_bjdv12_Ozzat5UqqVhnBQTnHV6jYauCASgx8UFxQJo3oQdhhZcVgpaHMGgkCmZNsNM6qAajhJ-T54W6N8X2uX9Nbny2GYCaMc9acCUlVBxU-u4cmWxNcMpP1We9SzZLuNAPOVCdpdcuDsynmnNBp68vPtCUZHzQFvS9a16L1vui68OKvhV83_0HbA73xAe_-6_TF5uWf3ueCt7-9Sd901_Ne6E9Xa70Ceb2-5B_1O_4DedSeQg
CODEN IJNFDW
CitedBy_id crossref_primary_10_1002_pamm_202300019
crossref_primary_10_1007_s10915_023_02358_4
crossref_primary_10_1016_j_compfluid_2010_11_033
crossref_primary_10_1017_S0962492910000061
crossref_primary_10_1002_gamm_202000014
Cites_doi 10.1017/S0962492902000120
10.1109/TAC.1987.1104549
10.1002/fld.851
10.1023/A:1022205420182
10.1002/qj.49712051912
10.1137/1.9780898718713
10.1175/1520-0469(2001)058<3666:SEUARO>2.0.CO;2
10.1137/050624935
10.1017/CBO9780511526480
10.1007/3-540-27909-1_5
10.1002/fld.1365
10.1256/qj.04.20
ContentType Journal Article
Conference Proceeding
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
– notice: 2008 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/fld.1629
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1097-0363
EndPage 1373
ExternalDocumentID 20329681
10_1002_fld_1629
FLD1629
ark_67375_WNG_408XGJ3V_R
Genre article
GrantInformation_xml – fundername: The German Academic Exchange Service (DAAD)
– fundername: The British Council
– fundername: The UK Natural Environment Research Council
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
TUS
AAYXX
CITATION
6TJ
ABEML
ACSCC
AGHNM
AI.
AMVHM
HF~
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3989-9a5309ff34e924b30e95b3b935128a5705cb4c5bc8a12ca805e2f82dafc9b01a3
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Thu Jul 10 20:43:56 EDT 2025
Mon Jul 21 09:11:26 EDT 2025
Tue Jul 01 02:08:29 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
Wed Aug 20 07:24:22 EDT 2025
Wed Oct 30 09:50:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords iterative methods
Atmospheric dynamics
Least squares method
Gauss Newton method
digital simulation
Ocean dynamics
large-scale nonlinear least-squares problems subject to dynamical system constraints; Gauss-Newton methods; variational data assimilation; weather
ocean and climate prediction
Modeling
Data assimilation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MeetingName Special issue: 9th ICFD Conference on Numerical Methods for Fluid Dynamics
MergedId FETCHMERGED-LOGICAL-c3989-9a5309ff34e924b30e95b3b935128a5705cb4c5bc8a12ca805e2f82dafc9b01a3
Notes istex:6564EC06B8AAD8920664984E0D692116D96E5A51
ark:/67375/WNG-408XGJ3V-R
The UK Natural Environment Research Council
The British Council
The German Academic Exchange Service (DAAD)
ArticleID:FLD1629
SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/fld.1629
PQID 32581960
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_32581960
pascalfrancis_primary_20329681
crossref_citationtrail_10_1002_fld_1629
crossref_primary_10_1002_fld_1629
wiley_primary_10_1002_fld_1629_FLD1629
istex_primary_ark_67375_WNG_408XGJ3V_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 March 2008
PublicationDateYYYYMMDD 2008-03-20
PublicationDate_xml – month: 03
  year: 2008
  text: 20 March 2008
  day: 20
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Courtier P, Thépaut J-N, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society 1994; 120:1367-1387.
Cao Y, Zhu J, Navon IM, Luo Z. A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. International Journal for Numerical Methods in Fluids 2007; 53:1571-1583.
Gugercin S, Sorensen DC, Antoulas AC. A modified low-rank Smith method for large-scale Lyapunov equations. Numerical Algorithms 2003; 32:27-55.
Lawless AS, Gratton S, Nichols NK. An investigation of incremental 4D-Var using non-tangent linear models. Quarterly Journal of the Royal Meteorological Society 2005; 131:459-476.
Lawless AS, Gratton S, Nichols NK. Approximate iterative methods for variational data assimilation. International Journal for Numerical Methods in Fluids 2005; 47:1129-1135.
Antoulas AC. Approximation of Large-scale Dynamical Systems. SIAM: Philadelphia, PA, 2005.
Lewis JM, Lakshmivarahan S, Dhall S. Dynamic Data Assimilation: A Least Squares Approach. Cambridge University Press: Cambridge, 2006.
Lawless AS, Nichols NK, Boess C, Bunse-Gerstner A. Using model reduction methods within incremental 4D-Var. Monthly Weather Review, in press.
Lawless AS, Gratton S, Nichols NK. Approximate Gauss-Newton methods for nonlinear least squares problems. SIAM Journal on Optimization 2007; 18:106-132.
Gill PE, Murray W, Wright MR. Practical Optimization. Academic Press: New York, 1986.
Laub AJ, Heath MT, Paige CC, Ward RC. Computation of system balancing transformations and other applications of simultaneous diagnolization algorithms. IEEE Transactions on Automatic Control 1987; AC-32:115-122.
Farrell BF, Ioannou PJ. State estimation using a reduced-order Kalman filter. Journal of Atmospheric Science 2001; 58:3666-3680.
Freund RW. Model reduction methods based on Krylov subspaces. Acta Numerica 2003; 12:267-319.
1986
2007; 18
2006
2005
2005; 131
2007; 53
2001; 58
1994; 120
2003; 32
2005; 47
1987; AC‐32
2003; 12
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
Lawless AS (e_1_2_1_15_2)
e_1_2_1_10_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
Gill PE (e_1_2_1_2_2) 1986
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Lawless AS, Nichols NK, Boess C, Bunse-Gerstner A. Using model reduction methods within incremental 4D-Var. Monthly Weather Review, in press.
– reference: Antoulas AC. Approximation of Large-scale Dynamical Systems. SIAM: Philadelphia, PA, 2005.
– reference: Cao Y, Zhu J, Navon IM, Luo Z. A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. International Journal for Numerical Methods in Fluids 2007; 53:1571-1583.
– reference: Lawless AS, Gratton S, Nichols NK. Approximate Gauss-Newton methods for nonlinear least squares problems. SIAM Journal on Optimization 2007; 18:106-132.
– reference: Lewis JM, Lakshmivarahan S, Dhall S. Dynamic Data Assimilation: A Least Squares Approach. Cambridge University Press: Cambridge, 2006.
– reference: Lawless AS, Gratton S, Nichols NK. An investigation of incremental 4D-Var using non-tangent linear models. Quarterly Journal of the Royal Meteorological Society 2005; 131:459-476.
– reference: Courtier P, Thépaut J-N, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society 1994; 120:1367-1387.
– reference: Gill PE, Murray W, Wright MR. Practical Optimization. Academic Press: New York, 1986.
– reference: Lawless AS, Gratton S, Nichols NK. Approximate iterative methods for variational data assimilation. International Journal for Numerical Methods in Fluids 2005; 47:1129-1135.
– reference: Farrell BF, Ioannou PJ. State estimation using a reduced-order Kalman filter. Journal of Atmospheric Science 2001; 58:3666-3680.
– reference: Gugercin S, Sorensen DC, Antoulas AC. A modified low-rank Smith method for large-scale Lyapunov equations. Numerical Algorithms 2003; 32:27-55.
– reference: Laub AJ, Heath MT, Paige CC, Ward RC. Computation of system balancing transformations and other applications of simultaneous diagnolization algorithms. IEEE Transactions on Automatic Control 1987; AC-32:115-122.
– reference: Freund RW. Model reduction methods based on Krylov subspaces. Acta Numerica 2003; 12:267-319.
– volume: 47
  start-page: 1129
  year: 2005
  end-page: 1135
  article-title: Approximate iterative methods for variational data assimilation
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 32
  start-page: 27
  year: 2003
  end-page: 55
  article-title: A modified low‐rank Smith method for large‐scale Lyapunov equations
  publication-title: Numerical Algorithms
– year: 1986
– volume: AC‐32
  start-page: 115
  year: 1987
  end-page: 122
  article-title: Computation of system balancing transformations and other applications of simultaneous diagnolization algorithms
  publication-title: IEEE Transactions on Automatic Control
– volume: 18
  start-page: 106
  year: 2007
  end-page: 132
  article-title: Approximate Gauss–Newton methods for nonlinear least squares problems
  publication-title: SIAM Journal on Optimization
– year: 2005
– article-title: Using model reduction methods within incremental 4D‐Var
  publication-title: Monthly Weather Review
– volume: 120
  start-page: 1367
  year: 1994
  end-page: 1387
  article-title: A strategy for operational implementation of 4D‐Var, using an incremental approach
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2006
– volume: 12
  start-page: 267
  year: 2003
  end-page: 319
  article-title: Model reduction methods based on Krylov subspaces
  publication-title: Acta Numerica
– volume: 58
  start-page: 3666
  year: 2001
  end-page: 3680
  article-title: State estimation using a reduced‐order Kalman filter
  publication-title: Journal of Atmospheric Science
– volume: 131
  start-page: 459
  year: 2005
  end-page: 476
  article-title: An investigation of incremental 4D‐Var using non‐tangent linear models
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 53
  start-page: 1571
  year: 2007
  end-page: 1583
  article-title: A reduced order approach to four‐dimensional variational data assimilation using proper orthogonal decomposition
  publication-title: International Journal for Numerical Methods in Fluids
– ident: e_1_2_1_13_2
  doi: 10.1017/S0962492902000120
– ident: e_1_2_1_11_2
  doi: 10.1109/TAC.1987.1104549
– ident: e_1_2_1_5_2
  doi: 10.1002/fld.851
– ident: e_1_2_1_14_2
  doi: 10.1023/A:1022205420182
– ident: e_1_2_1_6_2
  doi: 10.1002/qj.49712051912
– ident: e_1_2_1_16_2
– ident: e_1_2_1_7_2
  doi: 10.1137/1.9780898718713
– ident: e_1_2_1_8_2
  doi: 10.1175/1520-0469(2001)058<3666:SEUARO>2.0.CO;2
– ident: e_1_2_1_3_2
  doi: 10.1137/050624935
– volume-title: Practical Optimization
  year: 1986
  ident: e_1_2_1_2_2
– ident: e_1_2_1_10_2
  doi: 10.1017/CBO9780511526480
– ident: e_1_2_1_12_2
  doi: 10.1007/3-540-27909-1_5
– ident: e_1_2_1_15_2
  article-title: Using model reduction methods within incremental 4D‐Var
  publication-title: Monthly Weather Review
– ident: e_1_2_1_9_2
  doi: 10.1002/fld.1365
– ident: e_1_2_1_4_2
  doi: 10.1256/qj.04.20
SSID ssj0009283
Score 1.8596361
Snippet The Gauss–Newton (GN) method is a well‐known iterative technique for solving nonlinear least‐squares problems subject to dynamical system constraints. Such...
The Gauss-Newton (GN) method is a well-known iterative technique for solving nonlinear least-squares problems subject to dynamical system constraints. Such...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1367
SubjectTerms Dynamics of the ocean (upper and deep oceans)
Earth, ocean, space
Exact sciences and technology
External geophysics
Gauss-Newton methods
General circulation. Atmospheric waves
large-scale nonlinear least-squares problems subject to dynamical system constraints
Meteorology
ocean and climate prediction
Physics of the oceans
variational data assimilation
weather
weather, ocean and climate prediction
Title Approximate Gauss-Newton methods for optimal state estimation using reduced-order models
URI https://api.istex.fr/ark:/67375/WNG-408XGJ3V-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.1629
https://www.proquest.com/docview/32581960
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFA3SvuiD1aq4ftQIUp9mO5OP2eSxqLulaB-K1QWFkGQSkdZd2dmF0qf-hEL_YX-J905mtl1REJ-GgWTI3NybnMycey4hr4RWooJzQSYxf0tYW2VKiEEWnAM4G6NlCvOdPxyUe0difyzHLasSc2GSPsTygxtGRrNeY4BbV-9ci4bGk6pflAxz95CqhXjo8Fo5SrOkwMkGBTiCLjrd2ZztdB1XdqJ1NOopMiNtDcaJqarFCuy8CV6b3We4Qb50406kk-P-Yu76_uw3Scf_e7F75G4LSulu8qL75FaYbJKNFqDSNvzrTXLnhnrhA_J1F_XIT78D5g10ZBd1fXV-CYsmoEmaClPXFCAxncKq9AMe3-QuUVT1SOmSFDn33-gMxWNDdXV-0ciA0qY2T_2QHA3ffXyzl7XFGjLPkXalreS5jpGLAEc6x_OgpeNOc0AUyspBLr0TXjqvbMG8VbkMLCpW2ei1ywvLH5G1yXQSHhMK954zL6IrpXBlYVl0oZCwnXMhK533yOtu4oxvlcyxoMaJSRrMzIAJDZqwR14uW_5M6h1_aLPdzP2ygZ0dI9ttIM3ng5ERuRqP9vknc9gjWyvOseyAReh1qYoeedF5i4EgxT8vdhKmi9pwJgF5lTDy7Wbm_zoYM3z_Fq9P_rXhU3I7MVg4uPkzsjafLcJzgElzt9UExC95ChIE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6V9gAcKBQQ4addJFROTu39cbziVFGSUNIcqhZyqLTatXdR1TZBcSJVnPoISLxhn4Qdr502CCTEybI0a61nZ2Y_r2e-AXjDZcYL_10QCazf4loXUcZ5J7LGeDjrnKYZ1jsfDNP-Md8fidEKvGtqYQI_xOLADT2jitfo4HggvXPDGurOi3aSUnkH1rChNxLn7x3ecEdJGjg4aSfxpiCThnk2pjvNyKW9aA3Veom5kbr06nGhr8US8LwNX6v9p7sOJ83MQ9rJWXs-M-38-2-kjv_5ag_hQY1LyW4wpEewYscbsF5jVFJHgHID7t8iMHwMJ7tISX556mGvJT09L8vrq58-bnpASUJv6pJ4VEwmPjBd-MdX5UsEiT1CxSTBtPuvZIr8sba4vvpRMYGSqj1P-QSOux-O3vejul9DlDPMvJJasFg6x7j1X3WGxVYKw4xkHlRkWnRikRueC5NnOqG5zmJhqctooV0uTZxo9hRWx5OxfQbE3-eM5tyZVHCTJpo6YxPhd3TGRSHjFrxtVk7lNZk59tQ4V4GGmSqvQoUqbMHrheS3QODxB5ntavEXAnp6hglvHaG-DHuKx9mot88-q8MWbC5Zx2IA9qGXaZa0YKsxF-X9FH--6LGdzEvFqPDgK_Uz366W_q-TUd3BHl6f_6vgFtztHx0M1ODj8NMLuBcSWpi3-ZewOpvO7SuPmmZms_KOX3hpFiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFB60BdEHq1UxXtoRpD4l3Z3LZuexNCa11iDFakBhmJmdEWlNSjaB4lN_guA_7C_pOTu7aSMK4tOycGaZPZeZb3bP-Q4hL4XKRQHngrbE-i1hTNHOhei2vbUAZ0MwLMd653fDbO9I7I_kqM6qxFqYyA-x-OCGkVGt1xjgp0XYviINDSdFJ82YuklWRZYobNvQO7yijlIsUnCybgqeoNKGeDZh283Ipa1oFbV6hqmRpgTthNjWYgl3Xkev1fbTXyOfm4nHrJPjznxmO-7Hb5yO__dm98jdGpXSnehG98kNP14nazVCpXX8l-vkzjX6wgfkyw4Skp99A9Dr6cDMy_Li_BesmgAnaexMXVLAxHQCy9J3eHxVvESR1iPWS1JMuv9Kp8ge64uL858VDyitmvOUD8lR__WH3b123a2h7TjmXSkjeaJC4MLDmc7yxCtpuVUcIEVuZDeRzgonrctNypzJE-lZyFlhglM2SQ1_RFbGk7F_TCjcO86cCDaTwmapYcH6VMJ-zoUsVNIirxrDaVdTmWNHjRMdSZiZBhVqVGGLvFhInkb6jj_IbFW2XwiY6TGmu3Wl_jQcaJHko8E-_6gPW2RjyTkWA7ALvcrytEU2G2_REKX468WM_WReas4kQK8MZr5VWf6vk9H9gx5en_yr4Ca59b7X1wdvhm-fktsxm4WDxz8jK7Pp3D8HyDSzG1VsXAI2XRTP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+journal+for+numerical+methods+in+fluids&rft.atitle=Approximate+Gauss-Newton+methods+for+optimal+state+estimation+using+reduced-order+models&rft.au=LAWLESS%2C+A.+S&rft.au=NICHOLS%2C+N.+K&rft.au=BOESS%2C+C&rft.au=BUNSE-GERSTNER%2C+A&rft.date=2008-03-20&rft.pub=Wiley&rft.issn=0271-2091&rft.volume=56&rft.issue=8&rft.spage=1367&rft.epage=1373&rft_id=info:doi/10.1002%2Ffld.1629&rft.externalDBID=n%2Fa&rft.externalDocID=20329681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon