Screening Surface‐Defective Graphene Quantum Dots: Promoting Plant Growth and Combating Phytovirus
Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana. Surface‐defe...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 10; pp. e2407289 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana. Surface‐defective GOQD and C‐GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C‐GQD at 400 mg L−1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up‐regulate the expression of growth‐related genes NtLRX1, CycB, and NtPIP1 by more than two‐fold. Second, different from the transient inhibition shown by r‐GQD and the TMV enhancement shown by GOQD, C‐GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21‐day. Specially, C‐GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11‐fold and 0.29‐fold, and down‐regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface‐functionalizations, highlighting C‐GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.
A comparative analysis of three GQDs in promoting tobacco growth and combating tobacco mosaic virus is provided. C‐GQD is screened out to serve as a plant‐friendly agent that directly inactivates TMV rather than inducing plant immunity. The sustainable application of C‐GQD in agriculture offers novel directions and new insights not only in promoting plant growth but also for controlling phytovirus. |
---|---|
AbstractList | Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana. Surface‐defective GOQD and C‐GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C‐GQD at 400 mg L−1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up‐regulate the expression of growth‐related genes NtLRX1, CycB, and NtPIP1 by more than two‐fold. Second, different from the transient inhibition shown by r‐GQD and the TMV enhancement shown by GOQD, C‐GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21‐day. Specially, C‐GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11‐fold and 0.29‐fold, and down‐regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface‐functionalizations, highlighting C‐GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus. Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana. Surface‐defective GOQD and C‐GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C‐GQD at 400 mg L−1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up‐regulate the expression of growth‐related genes NtLRX1, CycB, and NtPIP1 by more than two‐fold. Second, different from the transient inhibition shown by r‐GQD and the TMV enhancement shown by GOQD, C‐GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21‐day. Specially, C‐GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11‐fold and 0.29‐fold, and down‐regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface‐functionalizations, highlighting C‐GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus. A comparative analysis of three GQDs in promoting tobacco growth and combating tobacco mosaic virus is provided. C‐GQD is screened out to serve as a plant‐friendly agent that directly inactivates TMV rather than inducing plant immunity. The sustainable application of C‐GQD in agriculture offers novel directions and new insights not only in promoting plant growth but also for controlling phytovirus. Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana . Surface‐defective GOQD and C‐GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH 2 O treatment, GOQD/C‐GQD at 400 mg L −1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up‐regulate the expression of growth‐related genes NtLRX1 , CycB , and NtPIP1 by more than two‐fold. Second, different from the transient inhibition shown by r‐GQD and the TMV enhancement shown by GOQD, C‐GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21‐day. Specially, C‐GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11‐fold and 0.29‐fold, and down‐regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface‐functionalizations, highlighting C‐GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus. Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21-day foliar exposure is employed to explore GQDs' impacts on N. benthamiana. Surface-defective GOQD and C-GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH O treatment, GOQD/C-GQD at 400 mg L increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up-regulate the expression of growth-related genes NtLRX1, CycB, and NtPIP1 by more than two-fold. Second, different from the transient inhibition shown by r-GQD and the TMV enhancement shown by GOQD, C-GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21-day. Specially, C-GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11-fold and 0.29-fold, and down-regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface-functionalizations, highlighting C-GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus. Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21-day foliar exposure is employed to explore GQDs' impacts on N. benthamiana. Surface-defective GOQD and C-GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C-GQD at 400 mg L-1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up-regulate the expression of growth-related genes NtLRX1, CycB, and NtPIP1 by more than two-fold. Second, different from the transient inhibition shown by r-GQD and the TMV enhancement shown by GOQD, C-GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21-day. Specially, C-GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11-fold and 0.29-fold, and down-regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface-functionalizations, highlighting C-GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21-day foliar exposure is employed to explore GQDs' impacts on N. benthamiana. Surface-defective GOQD and C-GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C-GQD at 400 mg L-1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up-regulate the expression of growth-related genes NtLRX1, CycB, and NtPIP1 by more than two-fold. Second, different from the transient inhibition shown by r-GQD and the TMV enhancement shown by GOQD, C-GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21-day. Specially, C-GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11-fold and 0.29-fold, and down-regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface-functionalizations, highlighting C-GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus. |
Author | Wu, Jian Lv, Menglan Xu, Ying Wang, Ya Guo, Shengxin Guo, Renjiang Chen, Moxian Tang, Yao |
Author_xml | – sequence: 1 givenname: Shengxin surname: Guo fullname: Guo, Shengxin organization: Guizhou University – sequence: 2 givenname: Ying surname: Xu fullname: Xu, Ying organization: Guizhou University – sequence: 3 givenname: Ya surname: Wang fullname: Wang, Ya organization: Guizhou University – sequence: 4 givenname: Renjiang surname: Guo fullname: Guo, Renjiang organization: Guizhou University – sequence: 5 givenname: Yao surname: Tang fullname: Tang, Yao organization: Guizhou University – sequence: 6 givenname: Moxian surname: Chen fullname: Chen, Moxian organization: Guizhou University – sequence: 7 givenname: Menglan surname: Lv fullname: Lv, Menglan email: mllv@gzu.edu.cn organization: Guizhou University – sequence: 8 givenname: Jian orcidid: 0000-0002-0740-0280 surname: Wu fullname: Wu, Jian email: jwu6@gzu.edu.cn organization: Guizhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39479741$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0btOwzAUBmALgbgUVkYUiYUlxTdimw21UJCCABXmyElOaFASFzsp6sYj8Iw8Ca4CRWJhsmV_v3WOzx7abEwDCB0SPCQY01NXV9WQYsqxoFJtoF0SERZGkqrN9Z7gHbTn3AvGjFAuttEOU1wowckuyqeZBWjK5jmYdrbQGXy-f4yhgKwtFxBMrJ7PoIHgodNN29XB2LTuPLi3pjbtKnRf-XPPzFs7C3STByNTp7q_mi1bsyht5_bRVqErBwff6wA9XV0-jq7D-G5yM7qIw4wpqUImU6FTplPAssjPJJNKKM0UkTkBrDLFlcQkgkxoqiWmhY5EGimZYsGZONNsgE76d-fWvHbg2qQuXQaVrxFM5xLfPo04j4Tw9PgPfTGdbXx1XomISikJ9-roW3VpDXkyt2Wt7TL5-T8Phj3IrHHOQrEmBCerASWrASXrAfmA6gNvZQXLf3QyvY3j3-wXxR6Ugg |
Cites_doi | 10.1093/nar/29.9.e45 10.1038/ncomms3943 10.1016/j.carbon.2018.04.051 10.1021/acs.est.7b01602 10.1104/pp.112.900439 10.1111/j.1364-3703.2011.00752.x 10.1039/C8TB00153G 10.1007/s13762-023-05033-1 10.1016/j.cis.2014.04.008 10.1002/jsfa.7106 10.1111/pce.13973 10.17957/IJAB/15.0365 10.1002/ppsc.201400219 10.1038/ncomms15318 10.1126/science.1185383 10.1021/acs.est.4c03522 10.1021/acs.est.7b05837 10.1111/pce.13051 10.1146/annurev-virology-092818-015606 10.1038/ismej.2017.155 10.1021/acs.est.0c04538 10.1021/acs.jafc.1c03586 10.1021/acsmaterialslett.0c00550 10.1016/j.envpol.2024.123617 10.1055/s-2001-11746 10.1093/pcp/pcs087 10.1080/13102818.2009.10817637 10.1016/j.jhazmat.2021.127898 10.1021/acsnano.4c05875 10.1002/smll.202207335 10.1016/j.scitotenv.2021.151506 10.1007/s40415-019-00519-0 10.1038/s43016-020-0110-1 10.1007/s10895-010-0769-z 10.1021/nn204643g 10.1111/j.1365-313X.2008.03501.x 10.1016/j.cej.2021.130114 10.1016/j.envpol.2023.122875 10.1038/ncomms5596 10.1038/s41377-018-0048-3 10.1111/ppl.13942 10.1038/s41929-022-00823-1 10.1016/j.trechm.2023.07.004 10.3390/agriculture11060502 10.1016/j.jhazmat.2020.124167 10.1007/BF00199676 10.1002/ppsc.201300252 10.1016/j.jhazmat.2020.122415 10.1016/j.scitotenv.2019.134816 10.1039/C9EN00850K 10.1016/j.eng.2020.04.001 10.1016/j.jcis.2022.10.082 10.1021/acsnano.4c01835 10.1002/smll.202402899 10.1002/gch2.202400008 10.1038/206740a0 10.1021/acs.est.7b04121 10.1016/j.biomaterials.2014.02.014 10.1007/s13205-019-1740-6 10.1016/j.jhazmat.2020.123960 10.1016/j.bmc.2008.09.070 10.1021/acsnano.0c10910 10.1111/pbi.14159 10.1002/adfm.201805860 10.1038/s41467-024-52851-z 10.1021/acsnano.8b09781 10.1021/jacs.6b07402 10.3390/ijms22042112 10.1039/D4EN00520A 10.1002/adfm.201804004 10.1021/acsami.3c02798 10.1002/smll.202304497 10.1021/jf051050w |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH. 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202407289 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39479741 10_1002_smll_202407289 SMLL202407289 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Graduate Research Fund in Guizhou Province funderid: YJSKYJJ[2021]038 – fundername: National Natural Science Foundation of China funderid: 32072445 – fundername: Program of Introducing Talents to Chinese Universities funderid: D20023 – fundername: Frontiers Science Centre for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province funderid: Qianjiaohe; KY (2020)004 – fundername: Central Government Guides Local Science and Technology Development Fund Projects funderid: Qiankehezhongyindi(2023)001 – fundername: Science and Technology Plan Project of Guizhou Province funderid: Qiankehezhicheng[2024]thegeneral083 – fundername: Graduate Research Fund in Guizhou Province grantid: YJSKYJJ[2021]038 – fundername: Frontiers Science Centre for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province grantid: Qianjiaohe – fundername: Program of Introducing Talents to Chinese Universities grantid: D20023 – fundername: Frontiers Science Centre for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province grantid: KY (2020)004 – fundername: National Natural Science Foundation of China grantid: 32072445 – fundername: Central Government Guides Local Science and Technology Development Fund Projects grantid: Qiankehezhongyindi(2023)001 – fundername: Science and Technology Plan Project of Guizhou Province grantid: Qiankehezhicheng[2024]thegeneral083 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ 53G AAMMB AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3989-38b7ab3abe08fd5838979a3918d1e09c9498016ec7a2a802fa67b698b074375a3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 16:42:45 EDT 2025 Fri Jul 25 12:04:07 EDT 2025 Mon Jul 21 05:57:22 EDT 2025 Sun Jul 06 05:06:05 EDT 2025 Wed Mar 12 09:40:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | plant growth surface‐functionalization phytovirus control graphene quantum dots |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3989-38b7ab3abe08fd5838979a3918d1e09c9498016ec7a2a802fa67b698b074375a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0740-0280 |
PMID | 39479741 |
PQID | 3176288814 |
PQPubID | 1046358 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3122644677 proquest_journals_3176288814 pubmed_primary_39479741 crossref_primary_10_1002_smll_202407289 wiley_primary_10_1002_smll_202407289_SMLL202407289 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2021; 69 2017; 8 2013; 4 2021; 22 2024; 346 2023; 5 2021; 403 2019; 13 2015; 222 2021; 404 2015; 32 2024; 340 2011; 12 2008; 3 2024 2020; 54 2022; 812 2014; 23 2012; 53 2018; 7 2023; 21 2018; 6 2020; 6 2010; 21 2014; 5 2020; 1 2023; 175 2024; 8 2018; 136 2024; 20 1967; 57 2020; 44 1965; 206 2018; 29 2018; 28 2019; 9 2019; 6 2021; 3 2010; 327 2023; 15 2015; 95 2021; 422 2023; 19 2008; 16 1994; 195 2020; 701 2008; 55 2001; 29 2024; 58 2024; 15 2024; 18 2017; 51 2021; 15 2021; 11 2019; 42 2020; 393 2022; 5 2023; 630 2005; 53 2014; 35 2017; 19 2018; 52 2016; 138 2018; 12 2012; 6 2012; 159 2022; 425 2014; 31 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 Gooding G. V. (e_1_2_9_71_1) 1967; 57 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 8 year: 2024 publication-title: Global Challenges – volume: 422 year: 2021 publication-title: Chem. Eng. J. – volume: 51 start-page: 7686 year: 2017 publication-title: Environ. Sci. Technol. – volume: 403 year: 2021 publication-title: J. Hazard. Mater. – volume: 6 start-page: 3653 year: 2019 publication-title: Environ. Sci.: Nano – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 195 start-page: 175 year: 1994 publication-title: Planta – volume: 701 year: 2020 publication-title: Sci. Total Environ. – volume: 5 start-page: 814 year: 2023 publication-title: Trends in Chemistry – volume: 15 start-page: 8509 year: 2024 publication-title: Nat. Commun. – volume: 16 start-page: 9699 year: 2008 publication-title: Bioorg. Med. Chem. – volume: 9 start-page: 220 year: 2019 publication-title: 3 Biotech – volume: 7 start-page: 47 year: 2018 publication-title: Light: Sci. Appl. – volume: 40 start-page: 2771 year: 2017 publication-title: Plant, Cell Environ. – volume: 159 start-page: 1291 year: 2012 publication-title: Plant Physiol. – volume: 57 start-page: 1285 year: 1967 publication-title: Phytopathology – volume: 5 start-page: 694 year: 2022 publication-title: Nat. Catal. – volume: 13 start-page: 5291 year: 2019 publication-title: ACS Nano – volume: 29 start-page: 45e year: 2001 publication-title: Nucleic Acids Res. – volume: 222 start-page: 119 year: 2015 publication-title: Adv. Colloid Interface Sci. – volume: 6 start-page: 387 year: 2019 publication-title: Annu. Rev. Virol. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 31 start-page: 415 year: 2014 publication-title: Part. Part. Syst. Charact. – volume: 3 start-page: 889 year: 2021 publication-title: ACS Mater. Lett. – volume: 52 start-page: 2451 year: 2018 publication-title: Environ. Sci. Technol. – year: 2024 publication-title: Environ. Sci.: Nano – volume: 21 start-page: 1637 year: 2023 publication-title: Int. J. Environ. Sci. Technol. – volume: 23 start-page: 1194 year: 2014 publication-title: Biotechnol. Biotechnol. Equip. – volume: 6 start-page: 2128 year: 2012 publication-title: ACS Nano – volume: 346 year: 2024 publication-title: Environ. Pollut. – volume: 1 start-page: 416 year: 2020 publication-title: Nature Food – volume: 11 start-page: 502 year: 2021 publication-title: Agriculture – volume: 54 year: 2020 publication-title: Environ. Sci. Technol. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 19 year: 2023 publication-title: Small – volume: 29 year: 2018 publication-title: Adv. Funct. Mater. – volume: 20 year: 2024 publication-title: Small – volume: 630 start-page: 1 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 18 year: 2024 publication-title: ACS Nano – volume: 6 start-page: 483 year: 2020 publication-title: Engineering – volume: 32 start-page: 515 year: 2015 publication-title: Part. Part. Syst. Charact. – volume: 812 year: 2022 publication-title: Sci. Total Environ. – volume: 21 start-page: 765 year: 2010 publication-title: J. Fluoresc. – volume: 5 start-page: 4596 year: 2014 publication-title: Nat. Commun. – volume: 4 start-page: 2943 year: 2013 publication-title: Nat. Commun. – volume: 44 start-page: 885 year: 2020 publication-title: Plant, Cell Environ. – volume: 95 start-page: 2772 year: 2015 publication-title: J. Sci. Food Agric. – volume: 206 start-page: 740 year: 1965 publication-title: Nature – volume: 53 start-page: 1418 year: 2012 publication-title: Plant Cell Physiol. – volume: 404 year: 2021 publication-title: J. Hazard. Mater. – volume: 53 start-page: 7886 year: 2005 publication-title: J. Agric. Food Chem. – volume: 136 start-page: 94 year: 2018 publication-title: Carbon – volume: 6 start-page: 2690 year: 2018 publication-title: J. Mater. Chem. B – volume: 3 start-page: 32 year: 2008 publication-title: Plant Biol. – volume: 35 start-page: 4428 year: 2014 publication-title: Biomaterials – volume: 12 start-page: 173 year: 2018 publication-title: ISME J. – volume: 19 start-page: 792 year: 2017 publication-title: Int. J. Agric. Biol. – volume: 55 start-page: 278 year: 2008 publication-title: The Plant Journal – volume: 58 start-page: 9051 year: 2024 publication-title: Environ. Sci. Technol. – volume: 21 start-page: 2641 year: 2023 publication-title: Plant Biotechnol. J. – volume: 15 start-page: 6030 year: 2021 publication-title: ACS Nano – volume: 52 start-page: 2558 year: 2018 publication-title: Environ. Sci. Technol. – volume: 69 year: 2021 publication-title: J. Agric. Food Chem. – volume: 327 start-page: 812 year: 2010 publication-title: Science – volume: 42 start-page: 29 year: 2019 publication-title: Braz J Bot. – volume: 425 year: 2022 publication-title: J. Hazard. Mater. – volume: 340 year: 2024 publication-title: Environ. Pollut. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 175 year: 2023 publication-title: Physiol. Plant – volume: 22 start-page: 2112 year: 2021 publication-title: Int. J. Mol. Sci. – volume: 393 year: 2020 publication-title: J. Hazard. Mater. – volume: 12 start-page: 938 year: 2011 publication-title: Mol. Plant Pathol. – ident: e_1_2_9_74_1 doi: 10.1093/nar/29.9.e45 – ident: e_1_2_9_18_1 doi: 10.1038/ncomms3943 – ident: e_1_2_9_45_1 doi: 10.1016/j.carbon.2018.04.051 – ident: e_1_2_9_68_1 doi: 10.1021/acs.est.7b01602 – ident: e_1_2_9_51_1 doi: 10.1104/pp.112.900439 – ident: e_1_2_9_4_1 doi: 10.1111/j.1364-3703.2011.00752.x – ident: e_1_2_9_24_1 doi: 10.1039/C8TB00153G – ident: e_1_2_9_23_1 doi: 10.1007/s13762-023-05033-1 – ident: e_1_2_9_59_1 doi: 10.1016/j.cis.2014.04.008 – ident: e_1_2_9_28_1 doi: 10.1002/jsfa.7106 – ident: e_1_2_9_31_1 doi: 10.1111/pce.13973 – ident: e_1_2_9_7_1 doi: 10.17957/IJAB/15.0365 – ident: e_1_2_9_19_1 doi: 10.1002/ppsc.201400219 – ident: e_1_2_9_21_1 doi: 10.1038/ncomms15318 – ident: e_1_2_9_1_1 doi: 10.1126/science.1185383 – ident: e_1_2_9_12_1 doi: 10.1021/acs.est.4c03522 – ident: e_1_2_9_69_1 doi: 10.1021/acs.est.7b05837 – ident: e_1_2_9_33_1 doi: 10.1111/pce.13051 – ident: e_1_2_9_67_1 doi: 10.1146/annurev-virology-092818-015606 – ident: e_1_2_9_2_1 doi: 10.1038/ismej.2017.155 – ident: e_1_2_9_62_1 doi: 10.1021/acs.est.0c04538 – ident: e_1_2_9_72_1 doi: 10.1021/acs.jafc.1c03586 – ident: e_1_2_9_20_1 doi: 10.1021/acsmaterialslett.0c00550 – ident: e_1_2_9_17_1 doi: 10.1016/j.envpol.2024.123617 – ident: e_1_2_9_47_1 doi: 10.1055/s-2001-11746 – ident: e_1_2_9_52_1 doi: 10.1093/pcp/pcs087 – ident: e_1_2_9_48_1 doi: 10.1080/13102818.2009.10817637 – ident: e_1_2_9_56_1 doi: 10.1016/j.jhazmat.2021.127898 – ident: e_1_2_9_61_1 doi: 10.1021/acsnano.4c05875 – ident: e_1_2_9_25_1 doi: 10.1002/smll.202207335 – ident: e_1_2_9_34_1 doi: 10.1016/j.scitotenv.2021.151506 – ident: e_1_2_9_55_1 doi: 10.1007/s40415-019-00519-0 – ident: e_1_2_9_38_1 doi: 10.1038/s43016-020-0110-1 – ident: e_1_2_9_35_1 doi: 10.1007/s10895-010-0769-z – ident: e_1_2_9_49_1 doi: 10.1021/nn204643g – ident: e_1_2_9_65_1 doi: 10.1111/j.1365-313X.2008.03501.x – ident: e_1_2_9_43_1 doi: 10.1016/j.cej.2021.130114 – ident: e_1_2_9_40_1 doi: 10.1016/j.envpol.2023.122875 – ident: e_1_2_9_54_1 doi: 10.1038/ncomms5596 – ident: e_1_2_9_22_1 doi: 10.1038/s41377-018-0048-3 – ident: e_1_2_9_57_1 doi: 10.1111/ppl.13942 – ident: e_1_2_9_70_1 doi: 10.1038/s41929-022-00823-1 – ident: e_1_2_9_30_1 doi: 10.1016/j.trechm.2023.07.004 – ident: e_1_2_9_6_1 doi: 10.3390/agriculture11060502 – ident: e_1_2_9_10_1 doi: 10.1016/j.jhazmat.2020.124167 – ident: e_1_2_9_46_1 doi: 10.1007/BF00199676 – ident: e_1_2_9_15_1 doi: 10.1002/ppsc.201300252 – ident: e_1_2_9_60_1 doi: 10.1016/j.jhazmat.2020.122415 – volume: 57 start-page: 1285 year: 1967 ident: e_1_2_9_71_1 publication-title: Phytopathology – ident: e_1_2_9_53_1 doi: 10.1016/j.scitotenv.2019.134816 – ident: e_1_2_9_11_1 doi: 10.1039/C9EN00850K – ident: e_1_2_9_14_1 doi: 10.1016/j.eng.2020.04.001 – ident: e_1_2_9_29_1 doi: 10.1016/j.jcis.2022.10.082 – ident: e_1_2_9_39_1 doi: 10.1021/acsnano.4c01835 – ident: e_1_2_9_41_1 doi: 10.1002/smll.202402899 – ident: e_1_2_9_37_1 doi: 10.1002/gch2.202400008 – ident: e_1_2_9_8_1 doi: 10.1038/206740a0 – ident: e_1_2_9_58_1 doi: 10.1021/acs.est.7b04121 – ident: e_1_2_9_27_1 doi: 10.1016/j.biomaterials.2014.02.014 – ident: e_1_2_9_66_1 doi: 10.1007/s13205-019-1740-6 – ident: e_1_2_9_32_1 doi: 10.1016/j.jhazmat.2020.123960 – ident: e_1_2_9_64_1 doi: 10.1016/j.bmc.2008.09.070 – ident: e_1_2_9_9_1 doi: 10.1021/acsnano.0c10910 – ident: e_1_2_9_5_1 doi: 10.1111/pbi.14159 – ident: e_1_2_9_26_1 doi: 10.1002/adfm.201805860 – ident: e_1_2_9_63_1 doi: 10.1038/s41467-024-52851-z – ident: e_1_2_9_36_1 doi: 10.1021/acsnano.8b09781 – ident: e_1_2_9_3_1 doi: 10.1021/jacs.6b07402 – ident: e_1_2_9_50_1 doi: 10.3390/ijms22042112 – ident: e_1_2_9_42_1 doi: 10.1039/D4EN00520A – ident: e_1_2_9_44_1 doi: 10.1002/adfm.201804004 – ident: e_1_2_9_13_1 doi: 10.1021/acsami.3c02798 – ident: e_1_2_9_16_1 doi: 10.1002/smll.202304497 – ident: e_1_2_9_73_1 doi: 10.1021/jf051050w |
SSID | ssj0031247 |
Score | 2.4809642 |
Snippet | Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco... Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2407289 |
SubjectTerms | control Deactivation Graphene graphene quantum dots Graphite - chemistry Graphite - pharmacology Nicotiana - growth & development Nicotiana - virology phytovirus Plant Diseases - virology Plant growth Plant Leaves - virology Plant Viruses - drug effects Quantum dots Quantum Dots - chemistry Quantum Dots - ultrastructure Surface Properties surface‐functionalization Tobacco Tobacco Mosaic Virus - drug effects Tobacco Mosaic Virus - physiology |
Title | Screening Surface‐Defective Graphene Quantum Dots: Promoting Plant Growth and Combating Phytovirus |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202407289 https://www.ncbi.nlm.nih.gov/pubmed/39479741 https://www.proquest.com/docview/3176288814 https://www.proquest.com/docview/3122644677 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VnOih5dFHKCAjVeopkBdxzK3qsqAKqpYFiVtkO7ZAQFJtklZw4if0N_aXMBPvpiwckMotUezE8XhmvsQz3wB8TDjKNTaJHyaK-4lJtS-LwPiplVYHNlRCU-7w4bd0_yT5erp9ei-L3_FD9D_cSDM6e00KLlW99Y80tL66pK2DjuEroww-CtgiVHTU80fF6Ly66iros3wi3pqyNgbR1mz3Wa_0CGrOItfO9Qxfg5wO2kWcXGy2jdrUNw_4HJ_zVgvwaoJL2We3kBbhhSmX4OU9tsJlKEaagnTwmI3asZXa_L39MzDWmUy2R9TXaDnZjxal1V6xQdXUO-y7i_fDTlQfqcFm1e_mjMmyYGiLlHSXzq6b6tf5uK3fwMlw9_jLvj8p0uDrmMKt4kxxqWKpTJDZgjZhBRcyFmFWhCYQWiQCnWBqNJeRzILIypSrVGSKsAvflvFbmCur0rwHRtRlCgEKp7K8iqiRLMcbGZtS48B68GkqpPyn4-LIHetylNO85f28ebA6lWE-0ck6R6REtZWzMPFgo7-M2kRbJLI0VUttKLEYnQf34J2Tff-oWCQcv75CD6JOgk-MIR8dHhz0Zyv_0-kDzEdUbrgLeVuFuWbcmjXEQI1a79b5HRqd_r0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAeyn8bKGAkEKe0-WscI3FALGVLdytgW6m3YDu2WkGTapNQlROPwKvwKjwCT8JMsgksHJCQeuCWyD9xPL-2x98APIw40jU0ketHiruRibUrM8-4sZVWe9ZXQtPd4fFuPNyPXh1sHizA1-4uTIsP0W-4kWQ0-poEnDakN36ihpbHH-jsoIH4SsQsrnLHnJ3iqq18uj1AEj8Kgq0Xe8-H7iyxgKtDChEKE8WlCqUyXmIzOjgUXMhQ-EnmG09oEQlU3LHRXAYy8QIrY65ikSiyt3xThtjvBbhIacQJrn_wtkesCtFcNvlc0Eq6BPXV4UR6wcb8eOft4B_O7byv3Bi7rSvwrZumNsbl_XpdqXX96TcEyf9qHq_C8sz1Zs9aWbkGCya_Dku_ADLegGyiKQ4Jn9mknlqpzffPXwbGtlaBvSR0bzQO7E2NDFkfs0FRlU_Y6zakERtRCqgKqxWn1SGTecZQ3SrZFh2eVcXHo2ld3oT9c_nNW7CYF7lZBUbobAp9ME6ZhxWhP1mOHRkbU2XPOvC444r0pIUbSVtg6SAlOqU9nRxY65gmnamdMkVnkNJHJ37kwIO-GBUGnQLJ3BQ11aG702gfuQMrLbP1nwpFxHGB6TsQNCzzlzGkk_Fo1L_d_pdG9-HScG88Skfbuzt34HJA2ZWbCL81WKymtbmLLl-l7jVCxuDdeXPjD2OyWsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64P8nUMBIIE5p8-PGMRIHRFhauq0KS6XeUjux1QqaVJuEqpx4BB6FV-EVeBJmkk1g4YCE1AO3RLEdxzOebxyPvwF4xAXKNTTc9bkWLjdR5qrcM25klc0862uZ0dnhre1ofZe_3lvbW4Cv_VmYjh9i-OFGM6O11zTBj3O7-pM0tDr6QFsHLcNXLGdhlZvm9AQXbdWzjQQl_DgIRi_fvVh3Z3kF3CykCKEw1kLpUGnjxTanfUMppAqlH-e-8WQmuUS7HZlMqEDFXmBVJHQkY01wK9ZUiO2eg_M88iQli0jeDoRVIaJlm84FQdIlpq-eJtILVuf7Ow-Df_i2865yi3Wjy_CtH6UuxOX9SlPrlezTbwSS_9MwXoFLM8ebPe9mylVYMMU1WPqFjvE65JOMopDwmk2aqVWZ-f75S2JshwnsFXF7IzSwNw2qY3PEkrKunrKdLqARK1ECqBqLlSf1AVNFztDYatU9Ojity4-H06a6Abtn8pk3YbEoC3MbGHGzafTABOUd1sT9ZAU2ZGxEhT3rwJNeKdLjjmwk7Wilg5TklA5ycmC515l0ZnSqFF1BSh4d-9yBh8NjNBe0B6QKUzZUhk5OIzoKB251uja8KpRc4PLSdyBoNeYvfUgnW-PxcHfnXyo9gAs7ySgdb2xv3oWLAaVWbsP7lmGxnjbmHvp7tb7fTjEG-2etjD8A07hZdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+Surface-Defective+Graphene+Quantum+Dots%3A+Promoting+Plant+Growth+and+Combating+Phytovirus&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Guo%2C+Shengxin&rft.au=Xu%2C+Ying&rft.au=Wang%2C+Ya&rft.au=Guo%2C+Renjiang&rft.date=2025-03-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=10&rft.spage=e2407289&rft_id=info:doi/10.1002%2Fsmll.202407289&rft_id=info%3Apmid%2F39479741&rft.externalDocID=39479741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |