Screening Surface‐Defective Graphene Quantum Dots: Promoting Plant Growth and Combating Phytovirus

Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana. Surface‐defe...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 10; pp. e2407289 - n/a
Main Authors Guo, Shengxin, Xu, Ying, Wang, Ya, Guo, Renjiang, Tang, Yao, Chen, Moxian, Lv, Menglan, Wu, Jian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana. Surface‐defective GOQD and C‐GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C‐GQD at 400 mg L−1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up‐regulate the expression of growth‐related genes NtLRX1, CycB, and NtPIP1 by more than two‐fold. Second, different from the transient inhibition shown by r‐GQD and the TMV enhancement shown by GOQD, C‐GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21‐day. Specially, C‐GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11‐fold and 0.29‐fold, and down‐regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface‐functionalizations, highlighting C‐GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus. A comparative analysis of three GQDs in promoting tobacco growth and combating tobacco mosaic virus is provided. C‐GQD is screened out to serve as a plant‐friendly agent that directly inactivates TMV rather than inducing plant immunity. The sustainable application of C‐GQD in agriculture offers novel directions and new insights not only in promoting plant growth but also for controlling phytovirus.
AbstractList Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana. Surface‐defective GOQD and C‐GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C‐GQD at 400 mg L−1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up‐regulate the expression of growth‐related genes NtLRX1, CycB, and NtPIP1 by more than two‐fold. Second, different from the transient inhibition shown by r‐GQD and the TMV enhancement shown by GOQD, C‐GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21‐day. Specially, C‐GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11‐fold and 0.29‐fold, and down‐regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface‐functionalizations, highlighting C‐GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.
Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana. Surface‐defective GOQD and C‐GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C‐GQD at 400 mg L−1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up‐regulate the expression of growth‐related genes NtLRX1, CycB, and NtPIP1 by more than two‐fold. Second, different from the transient inhibition shown by r‐GQD and the TMV enhancement shown by GOQD, C‐GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21‐day. Specially, C‐GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11‐fold and 0.29‐fold, and down‐regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface‐functionalizations, highlighting C‐GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus. A comparative analysis of three GQDs in promoting tobacco growth and combating tobacco mosaic virus is provided. C‐GQD is screened out to serve as a plant‐friendly agent that directly inactivates TMV rather than inducing plant immunity. The sustainable application of C‐GQD in agriculture offers novel directions and new insights not only in promoting plant growth but also for controlling phytovirus.
Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21‐day foliar exposure is employed to explore GQDs’ impacts on N. benthamiana . Surface‐defective GOQD and C‐GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH 2 O treatment, GOQD/C‐GQD at 400 mg L −1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up‐regulate the expression of growth‐related genes NtLRX1 , CycB , and NtPIP1 by more than two‐fold. Second, different from the transient inhibition shown by r‐GQD and the TMV enhancement shown by GOQD, C‐GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21‐day. Specially, C‐GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11‐fold and 0.29‐fold, and down‐regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface‐functionalizations, highlighting C‐GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.
Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21-day foliar exposure is employed to explore GQDs' impacts on N. benthamiana. Surface-defective GOQD and C-GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH O treatment, GOQD/C-GQD at 400 mg L increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up-regulate the expression of growth-related genes NtLRX1, CycB, and NtPIP1 by more than two-fold. Second, different from the transient inhibition shown by r-GQD and the TMV enhancement shown by GOQD, C-GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21-day. Specially, C-GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11-fold and 0.29-fold, and down-regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface-functionalizations, highlighting C-GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.
Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21-day foliar exposure is employed to explore GQDs' impacts on N. benthamiana. Surface-defective GOQD and C-GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C-GQD at 400 mg L-1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up-regulate the expression of growth-related genes NtLRX1, CycB, and NtPIP1 by more than two-fold. Second, different from the transient inhibition shown by r-GQD and the TMV enhancement shown by GOQD, C-GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21-day. Specially, C-GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11-fold and 0.29-fold, and down-regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface-functionalizations, highlighting C-GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco growth and combat tobacco mosaic virus (TMV). First, a 21-day foliar exposure is employed to explore GQDs' impacts on N. benthamiana. Surface-defective GOQD and C-GQD are screened out to facilitate N. benthamiana uptake through leaf stomata, and to promote seedlings of differently leaf ages to various degrees at different concentrations after different durations of foliar exposure. Specially, compared to the ddH2O treatment, GOQD/C-GQD at 400 mg L-1 increase biomass by 44%/68%, increase chlorophyll content by 43%/54% and up-regulate the expression of growth-related genes NtLRX1, CycB, and NtPIP1 by more than two-fold. Second, different from the transient inhibition shown by r-GQD and the TMV enhancement shown by GOQD, C-GQD can directly inactivate TMV infection by inducing TMV aggregation and attachment outside TMV, significantly decreasing TMV replication and hindering TMV spread over 21-day. Specially, C-GQD decreases the transcript abundance of TMV RdRp and TMV CP to 0.11-fold and 0.29-fold, and down-regulates the host defensive response pathways. This work provides a comparative analysis of GQDs with different surface-functionalizations, highlighting C-GQD as a promising nanotechnology tool for promoting plant growth and inactivating phytovirus.
Author Wu, Jian
Lv, Menglan
Xu, Ying
Wang, Ya
Guo, Shengxin
Guo, Renjiang
Chen, Moxian
Tang, Yao
Author_xml – sequence: 1
  givenname: Shengxin
  surname: Guo
  fullname: Guo, Shengxin
  organization: Guizhou University
– sequence: 2
  givenname: Ying
  surname: Xu
  fullname: Xu, Ying
  organization: Guizhou University
– sequence: 3
  givenname: Ya
  surname: Wang
  fullname: Wang, Ya
  organization: Guizhou University
– sequence: 4
  givenname: Renjiang
  surname: Guo
  fullname: Guo, Renjiang
  organization: Guizhou University
– sequence: 5
  givenname: Yao
  surname: Tang
  fullname: Tang, Yao
  organization: Guizhou University
– sequence: 6
  givenname: Moxian
  surname: Chen
  fullname: Chen, Moxian
  organization: Guizhou University
– sequence: 7
  givenname: Menglan
  surname: Lv
  fullname: Lv, Menglan
  email: mllv@gzu.edu.cn
  organization: Guizhou University
– sequence: 8
  givenname: Jian
  orcidid: 0000-0002-0740-0280
  surname: Wu
  fullname: Wu, Jian
  email: jwu6@gzu.edu.cn
  organization: Guizhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39479741$$D View this record in MEDLINE/PubMed
BookMark eNqF0btOwzAUBmALgbgUVkYUiYUlxTdimw21UJCCABXmyElOaFASFzsp6sYj8Iw8Ca4CRWJhsmV_v3WOzx7abEwDCB0SPCQY01NXV9WQYsqxoFJtoF0SERZGkqrN9Z7gHbTn3AvGjFAuttEOU1wowckuyqeZBWjK5jmYdrbQGXy-f4yhgKwtFxBMrJ7PoIHgodNN29XB2LTuPLi3pjbtKnRf-XPPzFs7C3STByNTp7q_mi1bsyht5_bRVqErBwff6wA9XV0-jq7D-G5yM7qIw4wpqUImU6FTplPAssjPJJNKKM0UkTkBrDLFlcQkgkxoqiWmhY5EGimZYsGZONNsgE76d-fWvHbg2qQuXQaVrxFM5xLfPo04j4Tw9PgPfTGdbXx1XomISikJ9-roW3VpDXkyt2Wt7TL5-T8Phj3IrHHOQrEmBCerASWrASXrAfmA6gNvZQXLf3QyvY3j3-wXxR6Ugg
Cites_doi 10.1093/nar/29.9.e45
10.1038/ncomms3943
10.1016/j.carbon.2018.04.051
10.1021/acs.est.7b01602
10.1104/pp.112.900439
10.1111/j.1364-3703.2011.00752.x
10.1039/C8TB00153G
10.1007/s13762-023-05033-1
10.1016/j.cis.2014.04.008
10.1002/jsfa.7106
10.1111/pce.13973
10.17957/IJAB/15.0365
10.1002/ppsc.201400219
10.1038/ncomms15318
10.1126/science.1185383
10.1021/acs.est.4c03522
10.1021/acs.est.7b05837
10.1111/pce.13051
10.1146/annurev-virology-092818-015606
10.1038/ismej.2017.155
10.1021/acs.est.0c04538
10.1021/acs.jafc.1c03586
10.1021/acsmaterialslett.0c00550
10.1016/j.envpol.2024.123617
10.1055/s-2001-11746
10.1093/pcp/pcs087
10.1080/13102818.2009.10817637
10.1016/j.jhazmat.2021.127898
10.1021/acsnano.4c05875
10.1002/smll.202207335
10.1016/j.scitotenv.2021.151506
10.1007/s40415-019-00519-0
10.1038/s43016-020-0110-1
10.1007/s10895-010-0769-z
10.1021/nn204643g
10.1111/j.1365-313X.2008.03501.x
10.1016/j.cej.2021.130114
10.1016/j.envpol.2023.122875
10.1038/ncomms5596
10.1038/s41377-018-0048-3
10.1111/ppl.13942
10.1038/s41929-022-00823-1
10.1016/j.trechm.2023.07.004
10.3390/agriculture11060502
10.1016/j.jhazmat.2020.124167
10.1007/BF00199676
10.1002/ppsc.201300252
10.1016/j.jhazmat.2020.122415
10.1016/j.scitotenv.2019.134816
10.1039/C9EN00850K
10.1016/j.eng.2020.04.001
10.1016/j.jcis.2022.10.082
10.1021/acsnano.4c01835
10.1002/smll.202402899
10.1002/gch2.202400008
10.1038/206740a0
10.1021/acs.est.7b04121
10.1016/j.biomaterials.2014.02.014
10.1007/s13205-019-1740-6
10.1016/j.jhazmat.2020.123960
10.1016/j.bmc.2008.09.070
10.1021/acsnano.0c10910
10.1111/pbi.14159
10.1002/adfm.201805860
10.1038/s41467-024-52851-z
10.1021/acsnano.8b09781
10.1021/jacs.6b07402
10.3390/ijms22042112
10.1039/D4EN00520A
10.1002/adfm.201804004
10.1021/acsami.3c02798
10.1002/smll.202304497
10.1021/jf051050w
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202407289
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39479741
10_1002_smll_202407289
SMLL202407289
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Graduate Research Fund in Guizhou Province
  funderid: YJSKYJJ[2021]038
– fundername: National Natural Science Foundation of China
  funderid: 32072445
– fundername: Program of Introducing Talents to Chinese Universities
  funderid: D20023
– fundername: Frontiers Science Centre for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
  funderid: Qianjiaohe; KY (2020)004
– fundername: Central Government Guides Local Science and Technology Development Fund Projects
  funderid: Qiankehezhongyindi(2023)001
– fundername: Science and Technology Plan Project of Guizhou Province
  funderid: Qiankehezhicheng[2024]thegeneral083
– fundername: Graduate Research Fund in Guizhou Province
  grantid: YJSKYJJ[2021]038
– fundername: Frontiers Science Centre for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
  grantid: Qianjiaohe
– fundername: Program of Introducing Talents to Chinese Universities
  grantid: D20023
– fundername: Frontiers Science Centre for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
  grantid: KY (2020)004
– fundername: National Natural Science Foundation of China
  grantid: 32072445
– fundername: Central Government Guides Local Science and Technology Development Fund Projects
  grantid: Qiankehezhongyindi(2023)001
– fundername: Science and Technology Plan Project of Guizhou Province
  grantid: Qiankehezhicheng[2024]thegeneral083
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
53G
AAMMB
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3989-38b7ab3abe08fd5838979a3918d1e09c9498016ec7a2a802fa67b698b074375a3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 16:42:45 EDT 2025
Fri Jul 25 12:04:07 EDT 2025
Mon Jul 21 05:57:22 EDT 2025
Sun Jul 06 05:06:05 EDT 2025
Wed Mar 12 09:40:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords plant growth
surface‐functionalization
phytovirus
control
graphene quantum dots
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3989-38b7ab3abe08fd5838979a3918d1e09c9498016ec7a2a802fa67b698b074375a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0740-0280
PMID 39479741
PQID 3176288814
PQPubID 1046358
PageCount 14
ParticipantIDs proquest_miscellaneous_3122644677
proquest_journals_3176288814
pubmed_primary_39479741
crossref_primary_10_1002_smll_202407289
wiley_primary_10_1002_smll_202407289_SMLL202407289
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2021; 69
2017; 8
2013; 4
2021; 22
2024; 346
2023; 5
2021; 403
2019; 13
2015; 222
2021; 404
2015; 32
2024; 340
2011; 12
2008; 3
2024
2020; 54
2022; 812
2014; 23
2012; 53
2018; 7
2023; 21
2018; 6
2020; 6
2010; 21
2014; 5
2020; 1
2023; 175
2024; 8
2018; 136
2024; 20
1967; 57
2020; 44
1965; 206
2018; 29
2018; 28
2019; 9
2019; 6
2021; 3
2010; 327
2023; 15
2015; 95
2021; 422
2023; 19
2008; 16
1994; 195
2020; 701
2008; 55
2001; 29
2024; 58
2024; 15
2024; 18
2017; 51
2021; 15
2021; 11
2019; 42
2020; 393
2022; 5
2023; 630
2005; 53
2014; 35
2017; 19
2018; 52
2016; 138
2018; 12
2012; 6
2012; 159
2022; 425
2014; 31
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
Gooding G. V. (e_1_2_9_71_1) 1967; 57
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 8
  year: 2024
  publication-title: Global Challenges
– volume: 422
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 7686
  year: 2017
  publication-title: Environ. Sci. Technol.
– volume: 403
  year: 2021
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 3653
  year: 2019
  publication-title: Environ. Sci.: Nano
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 195
  start-page: 175
  year: 1994
  publication-title: Planta
– volume: 701
  year: 2020
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 814
  year: 2023
  publication-title: Trends in Chemistry
– volume: 15
  start-page: 8509
  year: 2024
  publication-title: Nat. Commun.
– volume: 16
  start-page: 9699
  year: 2008
  publication-title: Bioorg. Med. Chem.
– volume: 9
  start-page: 220
  year: 2019
  publication-title: 3 Biotech
– volume: 7
  start-page: 47
  year: 2018
  publication-title: Light: Sci. Appl.
– volume: 40
  start-page: 2771
  year: 2017
  publication-title: Plant, Cell Environ.
– volume: 159
  start-page: 1291
  year: 2012
  publication-title: Plant Physiol.
– volume: 57
  start-page: 1285
  year: 1967
  publication-title: Phytopathology
– volume: 5
  start-page: 694
  year: 2022
  publication-title: Nat. Catal.
– volume: 13
  start-page: 5291
  year: 2019
  publication-title: ACS Nano
– volume: 29
  start-page: 45e
  year: 2001
  publication-title: Nucleic Acids Res.
– volume: 222
  start-page: 119
  year: 2015
  publication-title: Adv. Colloid Interface Sci.
– volume: 6
  start-page: 387
  year: 2019
  publication-title: Annu. Rev. Virol.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 31
  start-page: 415
  year: 2014
  publication-title: Part. Part. Syst. Charact.
– volume: 3
  start-page: 889
  year: 2021
  publication-title: ACS Mater. Lett.
– volume: 52
  start-page: 2451
  year: 2018
  publication-title: Environ. Sci. Technol.
– year: 2024
  publication-title: Environ. Sci.: Nano
– volume: 21
  start-page: 1637
  year: 2023
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 23
  start-page: 1194
  year: 2014
  publication-title: Biotechnol. Biotechnol. Equip.
– volume: 6
  start-page: 2128
  year: 2012
  publication-title: ACS Nano
– volume: 346
  year: 2024
  publication-title: Environ. Pollut.
– volume: 1
  start-page: 416
  year: 2020
  publication-title: Nature Food
– volume: 11
  start-page: 502
  year: 2021
  publication-title: Agriculture
– volume: 54
  year: 2020
  publication-title: Environ. Sci. Technol.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 29
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 20
  year: 2024
  publication-title: Small
– volume: 630
  start-page: 1
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 18
  year: 2024
  publication-title: ACS Nano
– volume: 6
  start-page: 483
  year: 2020
  publication-title: Engineering
– volume: 32
  start-page: 515
  year: 2015
  publication-title: Part. Part. Syst. Charact.
– volume: 812
  year: 2022
  publication-title: Sci. Total Environ.
– volume: 21
  start-page: 765
  year: 2010
  publication-title: J. Fluoresc.
– volume: 5
  start-page: 4596
  year: 2014
  publication-title: Nat. Commun.
– volume: 4
  start-page: 2943
  year: 2013
  publication-title: Nat. Commun.
– volume: 44
  start-page: 885
  year: 2020
  publication-title: Plant, Cell Environ.
– volume: 95
  start-page: 2772
  year: 2015
  publication-title: J. Sci. Food Agric.
– volume: 206
  start-page: 740
  year: 1965
  publication-title: Nature
– volume: 53
  start-page: 1418
  year: 2012
  publication-title: Plant Cell Physiol.
– volume: 404
  year: 2021
  publication-title: J. Hazard. Mater.
– volume: 53
  start-page: 7886
  year: 2005
  publication-title: J. Agric. Food Chem.
– volume: 136
  start-page: 94
  year: 2018
  publication-title: Carbon
– volume: 6
  start-page: 2690
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 32
  year: 2008
  publication-title: Plant Biol.
– volume: 35
  start-page: 4428
  year: 2014
  publication-title: Biomaterials
– volume: 12
  start-page: 173
  year: 2018
  publication-title: ISME J.
– volume: 19
  start-page: 792
  year: 2017
  publication-title: Int. J. Agric. Biol.
– volume: 55
  start-page: 278
  year: 2008
  publication-title: The Plant Journal
– volume: 58
  start-page: 9051
  year: 2024
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 2641
  year: 2023
  publication-title: Plant Biotechnol. J.
– volume: 15
  start-page: 6030
  year: 2021
  publication-title: ACS Nano
– volume: 52
  start-page: 2558
  year: 2018
  publication-title: Environ. Sci. Technol.
– volume: 69
  year: 2021
  publication-title: J. Agric. Food Chem.
– volume: 327
  start-page: 812
  year: 2010
  publication-title: Science
– volume: 42
  start-page: 29
  year: 2019
  publication-title: Braz J Bot.
– volume: 425
  year: 2022
  publication-title: J. Hazard. Mater.
– volume: 340
  year: 2024
  publication-title: Environ. Pollut.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 175
  year: 2023
  publication-title: Physiol. Plant
– volume: 22
  start-page: 2112
  year: 2021
  publication-title: Int. J. Mol. Sci.
– volume: 393
  year: 2020
  publication-title: J. Hazard. Mater.
– volume: 12
  start-page: 938
  year: 2011
  publication-title: Mol. Plant Pathol.
– ident: e_1_2_9_74_1
  doi: 10.1093/nar/29.9.e45
– ident: e_1_2_9_18_1
  doi: 10.1038/ncomms3943
– ident: e_1_2_9_45_1
  doi: 10.1016/j.carbon.2018.04.051
– ident: e_1_2_9_68_1
  doi: 10.1021/acs.est.7b01602
– ident: e_1_2_9_51_1
  doi: 10.1104/pp.112.900439
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1364-3703.2011.00752.x
– ident: e_1_2_9_24_1
  doi: 10.1039/C8TB00153G
– ident: e_1_2_9_23_1
  doi: 10.1007/s13762-023-05033-1
– ident: e_1_2_9_59_1
  doi: 10.1016/j.cis.2014.04.008
– ident: e_1_2_9_28_1
  doi: 10.1002/jsfa.7106
– ident: e_1_2_9_31_1
  doi: 10.1111/pce.13973
– ident: e_1_2_9_7_1
  doi: 10.17957/IJAB/15.0365
– ident: e_1_2_9_19_1
  doi: 10.1002/ppsc.201400219
– ident: e_1_2_9_21_1
  doi: 10.1038/ncomms15318
– ident: e_1_2_9_1_1
  doi: 10.1126/science.1185383
– ident: e_1_2_9_12_1
  doi: 10.1021/acs.est.4c03522
– ident: e_1_2_9_69_1
  doi: 10.1021/acs.est.7b05837
– ident: e_1_2_9_33_1
  doi: 10.1111/pce.13051
– ident: e_1_2_9_67_1
  doi: 10.1146/annurev-virology-092818-015606
– ident: e_1_2_9_2_1
  doi: 10.1038/ismej.2017.155
– ident: e_1_2_9_62_1
  doi: 10.1021/acs.est.0c04538
– ident: e_1_2_9_72_1
  doi: 10.1021/acs.jafc.1c03586
– ident: e_1_2_9_20_1
  doi: 10.1021/acsmaterialslett.0c00550
– ident: e_1_2_9_17_1
  doi: 10.1016/j.envpol.2024.123617
– ident: e_1_2_9_47_1
  doi: 10.1055/s-2001-11746
– ident: e_1_2_9_52_1
  doi: 10.1093/pcp/pcs087
– ident: e_1_2_9_48_1
  doi: 10.1080/13102818.2009.10817637
– ident: e_1_2_9_56_1
  doi: 10.1016/j.jhazmat.2021.127898
– ident: e_1_2_9_61_1
  doi: 10.1021/acsnano.4c05875
– ident: e_1_2_9_25_1
  doi: 10.1002/smll.202207335
– ident: e_1_2_9_34_1
  doi: 10.1016/j.scitotenv.2021.151506
– ident: e_1_2_9_55_1
  doi: 10.1007/s40415-019-00519-0
– ident: e_1_2_9_38_1
  doi: 10.1038/s43016-020-0110-1
– ident: e_1_2_9_35_1
  doi: 10.1007/s10895-010-0769-z
– ident: e_1_2_9_49_1
  doi: 10.1021/nn204643g
– ident: e_1_2_9_65_1
  doi: 10.1111/j.1365-313X.2008.03501.x
– ident: e_1_2_9_43_1
  doi: 10.1016/j.cej.2021.130114
– ident: e_1_2_9_40_1
  doi: 10.1016/j.envpol.2023.122875
– ident: e_1_2_9_54_1
  doi: 10.1038/ncomms5596
– ident: e_1_2_9_22_1
  doi: 10.1038/s41377-018-0048-3
– ident: e_1_2_9_57_1
  doi: 10.1111/ppl.13942
– ident: e_1_2_9_70_1
  doi: 10.1038/s41929-022-00823-1
– ident: e_1_2_9_30_1
  doi: 10.1016/j.trechm.2023.07.004
– ident: e_1_2_9_6_1
  doi: 10.3390/agriculture11060502
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jhazmat.2020.124167
– ident: e_1_2_9_46_1
  doi: 10.1007/BF00199676
– ident: e_1_2_9_15_1
  doi: 10.1002/ppsc.201300252
– ident: e_1_2_9_60_1
  doi: 10.1016/j.jhazmat.2020.122415
– volume: 57
  start-page: 1285
  year: 1967
  ident: e_1_2_9_71_1
  publication-title: Phytopathology
– ident: e_1_2_9_53_1
  doi: 10.1016/j.scitotenv.2019.134816
– ident: e_1_2_9_11_1
  doi: 10.1039/C9EN00850K
– ident: e_1_2_9_14_1
  doi: 10.1016/j.eng.2020.04.001
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jcis.2022.10.082
– ident: e_1_2_9_39_1
  doi: 10.1021/acsnano.4c01835
– ident: e_1_2_9_41_1
  doi: 10.1002/smll.202402899
– ident: e_1_2_9_37_1
  doi: 10.1002/gch2.202400008
– ident: e_1_2_9_8_1
  doi: 10.1038/206740a0
– ident: e_1_2_9_58_1
  doi: 10.1021/acs.est.7b04121
– ident: e_1_2_9_27_1
  doi: 10.1016/j.biomaterials.2014.02.014
– ident: e_1_2_9_66_1
  doi: 10.1007/s13205-019-1740-6
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jhazmat.2020.123960
– ident: e_1_2_9_64_1
  doi: 10.1016/j.bmc.2008.09.070
– ident: e_1_2_9_9_1
  doi: 10.1021/acsnano.0c10910
– ident: e_1_2_9_5_1
  doi: 10.1111/pbi.14159
– ident: e_1_2_9_26_1
  doi: 10.1002/adfm.201805860
– ident: e_1_2_9_63_1
  doi: 10.1038/s41467-024-52851-z
– ident: e_1_2_9_36_1
  doi: 10.1021/acsnano.8b09781
– ident: e_1_2_9_3_1
  doi: 10.1021/jacs.6b07402
– ident: e_1_2_9_50_1
  doi: 10.3390/ijms22042112
– ident: e_1_2_9_42_1
  doi: 10.1039/D4EN00520A
– ident: e_1_2_9_44_1
  doi: 10.1002/adfm.201804004
– ident: e_1_2_9_13_1
  doi: 10.1021/acsami.3c02798
– ident: e_1_2_9_16_1
  doi: 10.1002/smll.202304497
– ident: e_1_2_9_73_1
  doi: 10.1021/jf051050w
SSID ssj0031247
Score 2.4809642
Snippet Reduced graphene quantum dots (r‐GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C‐GQD) are screened to promote tobacco...
Reduced graphene quantum dots (r-GQD), graphene oxide quantum dots (GOQD), and carboxylated graphene quantum dots (C-GQD) are screened to promote tobacco...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2407289
SubjectTerms control
Deactivation
Graphene
graphene quantum dots
Graphite - chemistry
Graphite - pharmacology
Nicotiana - growth & development
Nicotiana - virology
phytovirus
Plant Diseases - virology
Plant growth
Plant Leaves - virology
Plant Viruses - drug effects
Quantum dots
Quantum Dots - chemistry
Quantum Dots - ultrastructure
Surface Properties
surface‐functionalization
Tobacco
Tobacco Mosaic Virus - drug effects
Tobacco Mosaic Virus - physiology
Title Screening Surface‐Defective Graphene Quantum Dots: Promoting Plant Growth and Combating Phytovirus
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202407289
https://www.ncbi.nlm.nih.gov/pubmed/39479741
https://www.proquest.com/docview/3176288814
https://www.proquest.com/docview/3122644677
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VnOih5dFHKCAjVeopkBdxzK3qsqAKqpYFiVtkO7ZAQFJtklZw4if0N_aXMBPvpiwckMotUezE8XhmvsQz3wB8TDjKNTaJHyaK-4lJtS-LwPiplVYHNlRCU-7w4bd0_yT5erp9ei-L3_FD9D_cSDM6e00KLlW99Y80tL66pK2DjuEroww-CtgiVHTU80fF6Ly66iros3wi3pqyNgbR1mz3Wa_0CGrOItfO9Qxfg5wO2kWcXGy2jdrUNw_4HJ_zVgvwaoJL2We3kBbhhSmX4OU9tsJlKEaagnTwmI3asZXa_L39MzDWmUy2R9TXaDnZjxal1V6xQdXUO-y7i_fDTlQfqcFm1e_mjMmyYGiLlHSXzq6b6tf5uK3fwMlw9_jLvj8p0uDrmMKt4kxxqWKpTJDZgjZhBRcyFmFWhCYQWiQCnWBqNJeRzILIypSrVGSKsAvflvFbmCur0rwHRtRlCgEKp7K8iqiRLMcbGZtS48B68GkqpPyn4-LIHetylNO85f28ebA6lWE-0ck6R6REtZWzMPFgo7-M2kRbJLI0VUttKLEYnQf34J2Tff-oWCQcv75CD6JOgk-MIR8dHhz0Zyv_0-kDzEdUbrgLeVuFuWbcmjXEQI1a79b5HRqd_r0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcoAeyn8bKGAkEKe0-WscI3FALGVLdytgW6m3YDu2WkGTapNQlROPwKvwKjwCT8JMsgksHJCQeuCWyD9xPL-2x98APIw40jU0ketHiruRibUrM8-4sZVWe9ZXQtPd4fFuPNyPXh1sHizA1-4uTIsP0W-4kWQ0-poEnDakN36ihpbHH-jsoIH4SsQsrnLHnJ3iqq18uj1AEj8Kgq0Xe8-H7iyxgKtDChEKE8WlCqUyXmIzOjgUXMhQ-EnmG09oEQlU3LHRXAYy8QIrY65ikSiyt3xThtjvBbhIacQJrn_wtkesCtFcNvlc0Eq6BPXV4UR6wcb8eOft4B_O7byv3Bi7rSvwrZumNsbl_XpdqXX96TcEyf9qHq_C8sz1Zs9aWbkGCya_Dku_ADLegGyiKQ4Jn9mknlqpzffPXwbGtlaBvSR0bzQO7E2NDFkfs0FRlU_Y6zakERtRCqgKqxWn1SGTecZQ3SrZFh2eVcXHo2ld3oT9c_nNW7CYF7lZBUbobAp9ME6ZhxWhP1mOHRkbU2XPOvC444r0pIUbSVtg6SAlOqU9nRxY65gmnamdMkVnkNJHJ37kwIO-GBUGnQLJ3BQ11aG702gfuQMrLbP1nwpFxHGB6TsQNCzzlzGkk_Fo1L_d_pdG9-HScG88Skfbuzt34HJA2ZWbCL81WKymtbmLLl-l7jVCxuDdeXPjD2OyWsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64P8nUMBIIE5p8-PGMRIHRFhauq0KS6XeUjux1QqaVJuEqpx4BB6FV-EVeBJmkk1g4YCE1AO3RLEdxzOebxyPvwF4xAXKNTTc9bkWLjdR5qrcM25klc0862uZ0dnhre1ofZe_3lvbW4Cv_VmYjh9i-OFGM6O11zTBj3O7-pM0tDr6QFsHLcNXLGdhlZvm9AQXbdWzjQQl_DgIRi_fvVh3Z3kF3CykCKEw1kLpUGnjxTanfUMppAqlH-e-8WQmuUS7HZlMqEDFXmBVJHQkY01wK9ZUiO2eg_M88iQli0jeDoRVIaJlm84FQdIlpq-eJtILVuf7Ow-Df_i2865yi3Wjy_CtH6UuxOX9SlPrlezTbwSS_9MwXoFLM8ebPe9mylVYMMU1WPqFjvE65JOMopDwmk2aqVWZ-f75S2JshwnsFXF7IzSwNw2qY3PEkrKunrKdLqARK1ECqBqLlSf1AVNFztDYatU9Ojity4-H06a6Abtn8pk3YbEoC3MbGHGzafTABOUd1sT9ZAU2ZGxEhT3rwJNeKdLjjmwk7Wilg5TklA5ycmC515l0ZnSqFF1BSh4d-9yBh8NjNBe0B6QKUzZUhk5OIzoKB251uja8KpRc4PLSdyBoNeYvfUgnW-PxcHfnXyo9gAs7ySgdb2xv3oWLAaVWbsP7lmGxnjbmHvp7tb7fTjEG-2etjD8A07hZdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+Surface-Defective+Graphene+Quantum+Dots%3A+Promoting+Plant+Growth+and+Combating+Phytovirus&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Guo%2C+Shengxin&rft.au=Xu%2C+Ying&rft.au=Wang%2C+Ya&rft.au=Guo%2C+Renjiang&rft.date=2025-03-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=10&rft.spage=e2407289&rft_id=info:doi/10.1002%2Fsmll.202407289&rft_id=info%3Apmid%2F39479741&rft.externalDocID=39479741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon