Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode

Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects o...

Full description

Saved in:
Bibliographic Details
Published inCarbon energy Vol. 3; no. 5; pp. 784 - 794
Main Authors Jung, Ji In, Park, Sunwoo, Ha, Son, Cho, Se Youn, Jin, Hyoung‐Joon, Yun, Young Soo
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.10.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kgelectrode−1 and an excellent power density of 4120 W kgelectrode−1 were obtained. The effects of nanopores and sulfur doping on a functionalized carbon‐based nanoporous host (CNH) electrode were investigated. Sulfur doping of the CNH electrode decreased the lithium metal nucleation overpotential, increased the average Coulombic efficiency in a wide range of current densities, and afforded more stable cycling performance. In addition, in the homogeneously distributed nanopores in the sulfur‐doped CNH fibers, lithium metal nanoparticles were uniformly grown and reversibly removed by a stripping process, resulting in protective lithium metal storage.
AbstractList Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kgelectrode−1 and an excellent power density of 4120 W kgelectrode−1 were obtained. The effects of nanopores and sulfur doping on a functionalized carbon‐based nanoporous host (CNH) electrode were investigated. Sulfur doping of the CNH electrode decreased the lithium metal nucleation overpotential, increased the average Coulombic efficiency in a wide range of current densities, and afforded more stable cycling performance. In addition, in the homogeneously distributed nanopores in the sulfur‐doped CNH fibers, lithium metal nanoparticles were uniformly grown and reversibly removed by a stripping process, resulting in protective lithium metal storage.
Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kgelectrode−1 and an excellent power density of 4120 W kgelectrode−1 were obtained.
Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kgelectrode−1 and an excellent power density of 4120 W kgelectrode−1 were obtained.
Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kg electrode −1 and an excellent power density of 4120 W kg electrode −1 were obtained.
Author Yun, Young Soo
Jin, Hyoung‐Joon
Jung, Ji In
Cho, Se Youn
Park, Sunwoo
Ha, Son
Author_xml – sequence: 1
  givenname: Ji In
  surname: Jung
  fullname: Jung, Ji In
  organization: Inha University
– sequence: 2
  givenname: Sunwoo
  surname: Park
  fullname: Park, Sunwoo
  organization: Inha University
– sequence: 3
  givenname: Son
  surname: Ha
  fullname: Ha, Son
  organization: Korea University
– sequence: 4
  givenname: Se Youn
  surname: Cho
  fullname: Cho, Se Youn
  organization: Korea Institute of Science and Technology
– sequence: 5
  givenname: Hyoung‐Joon
  surname: Jin
  fullname: Jin, Hyoung‐Joon
  email: hjjin@inha.ac.kr
  organization: Inha University
– sequence: 6
  givenname: Young Soo
  orcidid: 0000-0002-9643-596X
  surname: Yun
  fullname: Yun, Young Soo
  email: c-ysyun@korea.ac.kr
  organization: Korea University
BookMark eNp1kUFrHCEYhqWk0CQN9CcIvfQyG3VmHD2WZZMGAr20h57kG_3MuszqRmcI--_jdkPpJadPPh8eX3mvyEVMEQn5wtmKMyZuLR7Figv1gVwK2Q6NbqW6-O_8idyUsmMV5QNnQl-S_cZ7tHOhydMIMR1SxkIhOlqWyS-ZunQI8YmmSLcBM2S7DRam6UjHJdotOmohj_XWhxFzoXOih5zmqqRTmLdh2dM9zjBVZXL4mXz0MBW8eZvX5Pfd5tf6R_P48_5h_f2xsa1WqtGdHXvhGLR9DwhqQDl6oUd0rAWntYdWcy-xZ8wNkg_MemASpXAtDB6gvSYPZ69LsDOHHPaQjyZBMH8XKT8ZyHOwExrZexDc6qGaOiZ7PXimhAPejaLvnKiur2dX_dfzgmU2u7TkWOMb0asaRHVKVerbmbI5lZLR_3uVM3Pqxpy6MbWbijZn9CVMeHyXM-vNH3HiXwEfmJI8
CitedBy_id crossref_primary_10_1021_acsapm_2c01704
crossref_primary_10_1016_j_cej_2023_148105
crossref_primary_10_1016_j_cej_2024_150702
crossref_primary_10_1002_bte2_20220006
crossref_primary_10_1002_chem_202304152
crossref_primary_10_1016_j_cej_2023_141478
crossref_primary_10_1016_j_est_2022_105473
crossref_primary_10_1002_aenm_202201493
crossref_primary_10_1007_s10570_023_05170_3
crossref_primary_10_1002_cey2_254
crossref_primary_10_1002_cey2_288
crossref_primary_10_1002_slct_202202055
crossref_primary_10_1016_j_cej_2024_153126
crossref_primary_10_1002_cey2_169
crossref_primary_10_1002_cey2_423
crossref_primary_10_1002_cey2_348
crossref_primary_10_1002_cey2_359
Cites_doi 10.1002/adma.202002193
10.1002/aenm.201802777
10.1016/j.jpowsour.2014.03.084
10.1002/aenm.201802720
10.1016/j.ensm.2020.11.024
10.1038/nchem.1624
10.1002/smll.202004770
10.1002/smll.201901274
10.1016/j.matchemphys.2018.12.047
10.1002/smll.202003918
10.1038/ncomms8145
10.1038/ncomms10992
10.1002/adma.201907079
10.1038/s41560-019-0390-6
10.1039/C3EE40795K
10.1023/A:1003270406759
10.1016/j.nanoen.2021.105847
10.1002/adma.201504117
10.1002/adma.202002325
10.1021/jacs.0c01811
10.1038/nnano.2016.32
10.1126/sciadv.aau7728
10.1021/mz400649w
10.1016/j.carbon.2017.03.035
10.1021/acssuschemeng.0c08572
10.1039/D0TA02486D
10.1002/adfm.201909159
10.1038/am.2016.191
10.1021/acsami.8b15938
10.1038/s41467-017-00132-3
10.1038/nnano.2017.16
10.1038/nmat3191
10.1016/j.cej.2019.01.131
10.1038/s41557-018-0166-9
10.1002/eem2.12103
10.1021/acscentsci.8b00845
10.1039/C8TA07997H
10.1021/jacs.7b01763
10.1016/0008-6223(96)00177-7
10.1038/s41467-019-13774-2
10.1016/S0378-7753(99)00066-X
10.1002/adma.201902785
10.1002/adma.201807131
ContentType Journal Article
Copyright 2021 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
P5Z
P62
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.1002/cey2.128
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2637-9368
EndPage 794
ExternalDocumentID oai_doaj_org_article_65fa21c97d76406597f082da14b254d2
10_1002_cey2_128
CEY2128
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2019R1A2C1084836; 2021R1A4A2001403
GroupedDBID 0R~
1OC
24P
AAHHS
ACCFJ
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
ATCPS
AVUZU
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IEP
M7P
OK1
PATMY
PIMPY
PYCSY
WIN
AAYXX
CITATION
ITC
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3988-94cb52d0a355aea87e6bf29bed03ad99fa391f6e500d76170cfa06e62d3a7faa3
IEDL.DBID 24P
ISSN 2637-9368
IngestDate Tue Oct 22 15:09:48 EDT 2024
Thu Oct 10 19:41:50 EDT 2024
Thu Sep 26 16:06:40 EDT 2024
Sat Aug 24 00:59:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3988-94cb52d0a355aea87e6bf29bed03ad99fa391f6e500d76170cfa06e62d3a7faa3
ORCID 0000-0002-9643-596X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.128
PQID 2583918488
PQPubID 5066174
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_65fa21c97d76406597f082da14b254d2
proquest_journals_2583918488
crossref_primary_10_1002_cey2_128
wiley_primary_10_1002_cey2_128_CEY2128
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Carbon energy
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 9
1998; 28
2019; 9
2017; 8
2019; 4
2015; 6
2021; 4
2019; 5
2019; 31
2020; 142
2019; 11
2019; 32
2019; 15
2020; 16
2019; 224
2020; 11
2020; 32
1999; 80
2013; 5
2012; 11
2017; 139
1996; 34
2016; 11
2019; 363
2017; 118
2020; 8
2018; 6
2021; 35
2016; 7
2014; 3
2021; 33
2020; 30
2017; 12
2021; 83
2016; 28
2014; 7
2014; 262
2016; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 118
  start-page: 120
  year: 2017
  end-page: 126
  article-title: High performance rechargeable Li‐S batteries using binder‐free large sulfur‐loaded three‐dimensional carbon nanotubes
  publication-title: Carbon
– volume: 6
  start-page: 7145
  year: 2015
  article-title: Carbonization of a stable β‐sheet‐rich silk protein into a pseudographitic pyroprotein
  publication-title: Nat Commun
– volume: 7
  year: 2016
  article-title: Lithium‐coated polymeric matrix as a minimum volume‐change and dendrite‐free lithium metal anode
  publication-title: Nat Commun
– volume: 16
  issue: 39
  year: 2020
  article-title: Hierarchically nanoporous 3D assembly composed of functionalized onion‐like graphitic carbon nanospheres for anode‐minimized Li metal batteries
  publication-title: Small
– volume: 31
  issue: 8
  year: 2019
  article-title: Lithiophilic LiC layers on carbon hosts enabling stable Li metal anode in working batteries
  publication-title: Adv Mater
– volume: 11
  start-page: 19
  issue: 1
  year: 2012
  end-page: 29
  article-title: Li‐O and Li‐S batteries with high energy storage
  publication-title: Nat Mater
– volume: 11
  start-page: 64
  issue: 1
  year: 2019
  end-page: 70
  article-title: Prevention of dendrite growth and volume expansion to give high‐performance aprotic bimetallic Li‐Na alloy‐O batteries
  publication-title: Nat Chem
– volume: 5
  start-page: 518
  issue: 6
  year: 2013
  end-page: 524
  article-title: The use of elemental sulfur as an alternative feedstock for polymeric materials
  publication-title: Nat Chem
– volume: 4
  start-page: 103
  issue: 1
  year: 2021
  end-page: 110
  article-title: A lightweight, adhesive, dual‐functionalized over‐coating interphase toward ultra‐stable high‐current density lithium metal anodes
  publication-title: Energy Environ Mater
– volume: 32
  issue: 7
  year: 2019
  article-title: Reduced‐graphene‐oxide‐guided directional growth of planar lithium layers
  publication-title: Adv Mater
– volume: 33
  issue: 33
  year: 2021
  article-title: All‐solid‐state batteries with a limited lithium metal anode at room temperature using a garnet‐based electrolyte
  publication-title: Adv Mater
– volume: 4
  start-page: 551
  issue: 7
  year: 2019
  end-page: 559
  article-title: High‐energy lithium metal pouch cells with limited anode swelling and long stable cycles
  publication-title: Nat Energy
– volume: 224
  start-page: 384
  year: 2019
  end-page: 388
  article-title: Sulfur/Cu S hybrid material for Li/S primary battery with improved discharge capacity
  publication-title: Mater Chem Phys
– volume: 5
  issue: 2
  year: 2019
  article-title: Lithiophilicity chemistry of heteroatom‐doped carbon to guide uniform lithium nucleation in lithium metal anodes
  publication-title: Sci Adv
– volume: 5
  start-page: 468
  issue: 3
  year: 2019
  end-page: 476
  article-title: Self‐assembled monolayer enables slurry‐coating of Li anode
  publication-title: ACS Cent Sci
– volume: 363
  start-page: 270
  year: 2019
  end-page: 277
  article-title: Self‐supporting lithiophilic N‐doped carbon rod array for dendrite‐free lithium metal anode
  publication-title: Chem Eng J
– volume: 6
  start-page: 19664
  issue: 40
  year: 2018
  end-page: 19671
  article-title: Mechanistic insight into dendrite‐SEI interactions for lithium metal electrodes
  publication-title: J Mater Chem A
– volume: 7
  start-page: 513
  issue: 2
  year: 2014
  end-page: 537
  article-title: Lithium metal anodes for rechargeable batteries
  publication-title: Energy Environ Sci
– volume: 8
  year: 2016
  article-title: Restoration of thermally reduced graphene oxide by atomic‐level selenium doping
  publication-title: NPG Asia Mater
– volume: 83
  year: 2021
  article-title: Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition
  publication-title: Nano Energy
– volume: 12
  start-page: 194
  issue: 3
  year: 2017
  end-page: 206
  article-title: Reviving the lithium metal anode for high‐energy batteries
  publication-title: Nat Nanotechnol
– volume: 34
  start-page: 193
  issue: 2
  year: 1996
  end-page: 200
  article-title: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins
  publication-title: Carbon
– volume: 15
  issue: 37
  year: 2019
  article-title: Anode‐free sodium metal batteries based on nanohybrid core‐shell templates
  publication-title: Small
– volume: 9
  issue: 7
  year: 2019
  article-title: An interconnected channel‐like framework as host for lithium metal composite anodes
  publication-title: Adv Energy Mater
– volume: 35
  start-page: 378
  year: 2021
  end-page: 387
  article-title: Honeycomb inspired lithiophilic scaffold for ultra‐stable, high‐areal‐capacity metallic deposition
  publication-title: Energy Stor Mater
– volume: 32
  issue: 51
  year: 2020
  article-title: Advances in the design of 3D‐structured electrode materials for lithium‐metal anodes
  publication-title: Adv Mater
– volume: 142
  start-page: 8818
  issue: 19
  year: 2020
  end-page: 8826
  article-title: Solid‐solution‐based metal alloy phase for highly reversible lithium metal anode
  publication-title: J Am Chem Soc
– volume: 16
  issue: 44
  year: 2020
  article-title: High‐capacity, dendrite‐free, and ultrahigh‐rate lithium‐metal anodes based on monodisperse N‐doped hollow carbon nanospheres
  publication-title: Small
– volume: 30
  issue: 14
  year: 2020
  article-title: Regulating lithium nucleation and deposition via MOF‐derived Co@C‐modified carbon cloth for stable Li metal anode
  publication-title: Adv Funct Mater
– volume: 8
  start-page: 74
  year: 2017
  article-title: Ultra strong pyroprotein fibres with long‐range ordering
  publication-title: Nat Commun
– volume: 9
  issue: 37
  year: 2019
  article-title: Electrochemical diagram of an ultrathin lithium metal anode in pouch cells
  publication-title: Adv Mater
– volume: 9
  issue: 1
  year: 2019
  article-title: Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes
  publication-title: Adv Energy Mater
– volume: 9
  start-page: 2326
  issue: 5
  year: 2021
  end-page: 2337
  article-title: Self‐standing N‐doped carbonized cellulose fiber as a dual‐functional host for lithium metal anodes
  publication-title: ACS sustainable Chem Eng
– volume: 139
  start-page: 5916
  issue: 16
  year: 2017
  end-page: 5922
  article-title: Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons
  publication-title: J Am Chem Soc
– volume: 8
  start-page: 9331
  issue: 18
  year: 2020
  end-page: 9344
  article-title: A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode
  publication-title: J Mater Chem A
– volume: 11
  year: 2020
  article-title: Fluorinated hybrid solid‐electrolyte‐interphase for dendrite‐free lithium deposition
  publication-title: Nat Commun
– volume: 28
  start-page: 2155
  issue: 11
  year: 2016
  end-page: 2162
  article-title: Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth
  publication-title: Adv Mater
– volume: 11
  start-page: 12401
  issue: 13
  year: 2019
  end-page: 12407
  article-title: Catalytic pyroprotein seed layers for sodium metal anodes
  publication-title: ACS Appl Mater Interfaces
– volume: 80
  start-page: 103
  issue: 1‐2
  year: 1999
  end-page: 106
  article-title: Lithium metal rechargeable cells using Li MnO as the positive electrode
  publication-title: J Power Sources
– volume: 28
  start-page: 135
  year: 1998
  end-page: 140
  article-title: Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V O cathodes
  publication-title: J Appl Electrochem
– volume: 11
  start-page: 626
  issue: 7
  year: 2016
  end-page: 632
  article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
  publication-title: Nat Nanotechnol
– volume: 262
  start-page: 79
  year: 2014
  end-page: 85
  article-title: Effects of sulfur doping on graphene‐based nanosheets for use as anode materials in lithium‐ion batteries
  publication-title: J Power Sources
– volume: 3
  start-page: 229
  issue: 3
  year: 2014
  end-page: 232
  article-title: Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li–S batteries
  publication-title: ACS Macro Lett
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202002193
– ident: e_1_2_7_33_1
  doi: 10.1002/aenm.201802777
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jpowsour.2014.03.084
– ident: e_1_2_7_21_1
  doi: 10.1002/aenm.201802720
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ensm.2020.11.024
– ident: e_1_2_7_38_1
  doi: 10.1038/nchem.1624
– ident: e_1_2_7_16_1
  doi: 10.1002/smll.202004770
– ident: e_1_2_7_32_1
  doi: 10.1002/smll.201901274
– ident: e_1_2_7_44_1
  doi: 10.1016/j.matchemphys.2018.12.047
– ident: e_1_2_7_20_1
  doi: 10.1002/smll.202003918
– ident: e_1_2_7_30_1
  doi: 10.1038/ncomms8145
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms10992
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201907079
– ident: e_1_2_7_13_1
  doi: 10.1038/s41560-019-0390-6
– ident: e_1_2_7_3_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_8_1
  doi: 10.1023/A:1003270406759
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nanoen.2021.105847
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201504117
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202002325
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.0c01811
– ident: e_1_2_7_15_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_7_34_1
  doi: 10.1126/sciadv.aau7728
– ident: e_1_2_7_37_1
  doi: 10.1021/mz400649w
– ident: e_1_2_7_39_1
  doi: 10.1016/j.carbon.2017.03.035
– ident: e_1_2_7_24_1
  doi: 10.1021/acssuschemeng.0c08572
– ident: e_1_2_7_41_1
  doi: 10.1039/D0TA02486D
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.201909159
– ident: e_1_2_7_36_1
  doi: 10.1038/am.2016.191
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.8b15938
– ident: e_1_2_7_31_1
  doi: 10.1038/s41467-017-00132-3
– ident: e_1_2_7_22_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat3191
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cej.2019.01.131
– ident: e_1_2_7_27_1
  doi: 10.1038/s41557-018-0166-9
– ident: e_1_2_7_43_1
  doi: 10.1002/eem2.12103
– ident: e_1_2_7_12_1
  doi: 10.1021/acscentsci.8b00845
– ident: e_1_2_7_28_1
  doi: 10.1039/C8TA07997H
– ident: e_1_2_7_19_1
  doi: 10.1021/jacs.7b01763
– ident: e_1_2_7_29_1
  doi: 10.1016/0008-6223(96)00177-7
– ident: e_1_2_7_4_1
  doi: 10.1038/s41467-019-13774-2
– ident: e_1_2_7_7_1
  doi: 10.1016/S0378-7753(99)00066-X
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201902785
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201807131
SSID ssj0002171029
Score 2.3301384
Snippet Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes...
Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium...
Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 784
SubjectTerms Anodes
Anodic protection
By products
Carbon
Carbon fibers
carbon template
Copolymers
Doping
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Flux density
Lithium
lithium metal anode
lithium metal batteries
Lithium sulfur batteries
Li–S batteries
Metals
Morphology
nanoporous carbon
Natural polymers
Nucleation
Polymers
Radiation
Scanning electron microscopy
Spectrum analysis
Sulfur
sulfur doping
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65fRBBv1TRp0-ao4rIIenJhPYVJk6DgtrLdHvz3Ttqu1IN48dpAG2bSvPfI5A0hF1bmwieJiLhwDgUKsCjPQzd3QLRU0mc8DRecH5_kZJo8zNLZoNVXqAnr7IG7wF3L1AOPC5XZTCbhEDDziFoW4sSgtrHd7svUQEyFPRiJNiKnWrnNMn5duE9-FYem6wP8aW36f3DLIUNtIWa8TbZ6bkhvujntkDVX7pLNgWPgHpl3bsM1rTwtoayQPbuaQmlp3bz7ZkFtewGKViUNTa7bYwLMwvsnNQhgr87SAhYGR32oFKnpsqK9UwNFPv761szp3CEfx1dW1u2T6fj--W4S9R0TokIoXPIqKUzKLQNkEeAgz5w0nivjLBNglfIgVOylSxnDcMYZKzww6SS3AjIPIA7IelmV7pBQizySy8Irn5kEmDCovDyXxqKM9YngI3K-iqP-6IwxdGeBzHWItcZYj8htCPD3eLCybh9ggnWfYP1XgkfkZJUe3f9fteYpEjsUpzl-47JN2a-T0Hf3L4jP-dF_TOaYbPBQ1NJW852Q9eWicafISpbmrF2AX12C3tw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46L3oQf-J0SgTxVu2SNm1O4mQigiKioKfw0iQqbK2u28H_3pcu03nQawNpeC_J973k5XuEHBmRc5ckPGLcWgxQII7y3FdzB0RLKVzGUv_A-eZWXD0m10_pUzhwq0Na5WxPbDZqUxX-jPyUpQjlGI7k-dn7R-SrRvnb1VBCY5EsMYwUWIss9fq3d_ffpyxIuBFB5Ux1Nmanhf1kJ11ffH0Ohxq5_l8cc56pNlBzuUZWA0ek51OnrpMFW26QlTnlwE0ynKoO17RytISyQhZtawqlofVk4CYjapqHULQqqS923VwXoDcGn1QjkL1aQwsYaWx1PmOkpuOKBsUGirz89W0ypEOLvBy7rIzdIo-X_YeLqyhUTogKLnHqy6TQKTMxIJsAC3lmhXZMamtiDkZKB2hLJ2waxybzkuyFg1hYwQyHzAHwbdIqq9LuEGqQTzJROOkynUDMNUZgjgltMJx1CWdtcjizo3qfCmSoqRQyU97WCm3dJj1v4O92L2ndfKhGLyqsECVSB6xbyAxHlPjb3swhPTHQTTQGsQZ_1Jm5R4V1VqufWdEmx43L_hyEuug_I07nu__3s0eWmU9bafL1OqQ1Hk3sPvKOsT4Ik-sLKEzY1A
  priority: 102
  providerName: ProQuest
Title Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.128
https://www.proquest.com/docview/2583918488
https://doaj.org/article/65fa21c97d76406597f082da14b254d2
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELbYctk9IF6r5VUZCe0tkNqOEx8pakFIIIQWCU7WOLYXJJqgpj3w7xk7aYEDEpccYie2Zjyeb-zxZ0KOrCy4F4InjDuHAQqkSVGE29wBvaWSPmdZOOB8dS0v7sTlfXbfZVWGszAtP8RywS1YRpyvg4GDaU7eSUNL98qOcXb9QVYDYUwY3UzcLNdXEGqj7wzol0meJ4rLYsE9m7KTxcefvFEk7f-END_i1ehwxutkrUOK9LRV7QZZcdUm-fWBP3CLTFru4YbWnlZQ1YilXUOhsrSZP_v5lNp4HIrWFQ1XXsdNA9TJ8ys16M4enaUlTA2W-pA30tBZTTveBoro_PFpPqETh-gcf1lbt03uxqN_ZxdJd39CUnKFBqBEaTJmU0BMAQ6K3EnjmTLOphysUh64GnjpsjS1eSBmLz2k0klmOeQegP8mvaqu3B9CLaJKJkuvfG4EpNxgHOaZNBaDWi842yGHCznql5YmQ7eEyEwHWWuU9Q4ZBgEvywOxdXxRT__rzk60zDywQaly7JEIe765R5BiYSAMhrIWG9pfqEd31tZoliHMw1C1wDb-RpV92Ql9NnpAb13sfrfiHvnJQhpLzN_bJ73ZdO4OEIfMTD8OOHwW4_M-WR2Orm9u-zGmfwMzxdwt
link.rule.ids 315,783,787,867,2109,11576,12779,21402,27938,27939,33387,33758,43614,43819,46066,46490,50828,50937,74371,74638
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxELVKeoAeKsqHSAutkRC3hY3t9a5PVUGEtHycQIKTNV7bBIns0mxyyL_v2NlAOJTrWvJaM7bfG3v8hpADKwvuheAJ485hgAJpUhShmjsgWirpc5aFB85X13JwK_7cZXftgVvTplUu9sS4Udu6DGfkxyxDKMdwpCh-Pv9NQtWocLvaltBYIR8FR6AJL8X75y9nLEi3ET_VQnM2Zcelm7GjXii9voRCUaz_DcNc5qkRaPrr5HPLEOmvuUu_kA-u2iCflnQDN8lorjnc0NrTCqoaObRrKFSWNtMnPx1TG59B0bqiodR1vCxAXzzNqEEYGzpLSxgbbPUhX6Shk5q2eg0UWfnwcTqiI4esHLusrdsit_2zm9NB0tZNSEqucOIrUZqM2RSQS4CDInfSeKaMsykHq5QHtKSXLktTmwdB9tJDKp1klkPuAfg26VR15XYItcgmmSy98rkRkHKD8Zdn0lgMZr3grEv2F3bUz3N5DD0XQmY62FqjrbvkJBj4pT0IWscP9fhBt-tDy8wD65UqxxGJcNebeyQnFnrCYAhr8Ue7C_fodpU1-nVOdMlhdNl_B6FPz-4RpYuv7_fzg6wObq4u9eXv64tvZI2FBJaYubdLOpPx1O0hA5mY73Ga_QPXFdpf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYglRA9IJ5qSilGQtyWbmyvd32q-khUXlGFqFRO1njtoUjNbskmh_57xhunhANc15LXmofnG3v8DWNvva4kKiUzIUOgBAXyrKpiN3egaGk0lqKID5y_TPXZhfp4WVym-qculVWu98R-o_ZtHc_ID0RBoZzSEUrYMJVFnJ9ODm9-ZbGDVLxpTe007rOtUpFVDdjW8Xh6_vXuxIXAN0VTs2agzcVBHW7F-1FsxL4Rk3rq_r_w5iZq7cPO5DF7lPAiP1op-Am7F5qnbHuDRfAZm60YiDveIm-gaQlRh45D43m3vMblnPv-URRvGx4bX_dXB6SZ61vuKKhdBc9rmDsaxVg90vFFyxN7AyeMfvVzOeOzQBidpmx9eM4uJuNvJ2dZ6qKQ1dKQGxhVu0L4HAhZQICqDNqhMC74XII3BoHkijoUee7LSM9eI-Q6aOEllAggX7BB0zZhh3FP2FLoGg2WTkEuHWVjKLTzlNqikmLI3qzlaG9WZBl2RYssbJS1JVkP2XEU8N14pLfuP7TzHzZ5i9UFghjVpqQVqXjzWyJBFQ8j5Sih9fSjvbV6bPK5zv6xkCF716vsn4uwJ-PvFLOr3f_P85o9IBuznz9MP71kD0WsZunL-PbYYDFfhlcERxZuP9nZb7Pt4AI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+nanopores+and+sulfur+doping+on+hierarchically+bunched+carbon+fibers+to+protect+lithium+metal+anode&rft.jtitle=Carbon+energy&rft.au=Jung%2C+Ji+In&rft.au=Park%2C+Sunwoo&rft.au=Ha%2C+Son&rft.au=Cho%2C+Se+Youn&rft.date=2021-10-01&rft.issn=2637-9368&rft.eissn=2637-9368&rft.volume=3&rft.issue=5&rft.spage=784&rft.epage=794&rft_id=info:doi/10.1002%2Fcey2.128&rft.externalDBID=10.1002%252Fcey2.128&rft.externalDocID=CEY2128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon