Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode
Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects o...
Saved in:
Published in | Carbon energy Vol. 3; no. 5; pp. 784 - 794 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
John Wiley & Sons, Inc
01.10.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kgelectrode−1 and an excellent power density of 4120 W kgelectrode−1 were obtained.
The effects of nanopores and sulfur doping on a functionalized carbon‐based nanoporous host (CNH) electrode were investigated. Sulfur doping of the CNH electrode decreased the lithium metal nucleation overpotential, increased the average Coulombic efficiency in a wide range of current densities, and afforded more stable cycling performance. In addition, in the homogeneously distributed nanopores in the sulfur‐doped CNH fibers, lithium metal nanoparticles were uniformly grown and reversibly removed by a stripping process, resulting in protective lithium metal storage. |
---|---|
AbstractList | Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kgelectrode−1 and an excellent power density of 4120 W kgelectrode−1 were obtained.
The effects of nanopores and sulfur doping on a functionalized carbon‐based nanoporous host (CNH) electrode were investigated. Sulfur doping of the CNH electrode decreased the lithium metal nucleation overpotential, increased the average Coulombic efficiency in a wide range of current densities, and afforded more stable cycling performance. In addition, in the homogeneously distributed nanopores in the sulfur‐doped CNH fibers, lithium metal nanoparticles were uniformly grown and reversibly removed by a stripping process, resulting in protective lithium metal storage. Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kgelectrode−1 and an excellent power density of 4120 W kgelectrode−1 were obtained. Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kgelectrode−1 and an excellent power density of 4120 W kgelectrode−1 were obtained. Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes (LMAs). However, there is still insufficient evidence for a key factor to achieve their high electrochemical performance. Here, the effects of nanopores and sulfur doping on carbon‐based nanoporous host (CNH) electrode materials for LMAs were investigated using natural polymer‐derived CNHs. Homogeneous pore‐filling behaviors of lithium metal in the nanopores of the CNH electrode materials were first observed by ex situ scanning electron microscopy analysis, where the protective lithium metal nucleation and growth process led to significantly high Coulombic efficiency (CE) of ~99.4% and stable 600 cycles. In addition, a comparison study of CNH and sulfur‐doped CNH (S‐CNH) electrodes, which differ only in the presence or absence of sulfur, revealed that sulfur doping can cause lower electrochemical series resistance, higher CE value, and better cycling stability in a wide range of current densities and number of cycles. Moreover, S‐CNH‐based LMAs showed high electrochemical performance in full‐cell Li–S battery tests using a sulfur copolymer cathode, where a high energy density of 1370 W h kg electrode −1 and an excellent power density of 4120 W kg electrode −1 were obtained. |
Author | Yun, Young Soo Jin, Hyoung‐Joon Jung, Ji In Cho, Se Youn Park, Sunwoo Ha, Son |
Author_xml | – sequence: 1 givenname: Ji In surname: Jung fullname: Jung, Ji In organization: Inha University – sequence: 2 givenname: Sunwoo surname: Park fullname: Park, Sunwoo organization: Inha University – sequence: 3 givenname: Son surname: Ha fullname: Ha, Son organization: Korea University – sequence: 4 givenname: Se Youn surname: Cho fullname: Cho, Se Youn organization: Korea Institute of Science and Technology – sequence: 5 givenname: Hyoung‐Joon surname: Jin fullname: Jin, Hyoung‐Joon email: hjjin@inha.ac.kr organization: Inha University – sequence: 6 givenname: Young Soo orcidid: 0000-0002-9643-596X surname: Yun fullname: Yun, Young Soo email: c-ysyun@korea.ac.kr organization: Korea University |
BookMark | eNp1kUFrHCEYhqWk0CQN9CcIvfQyG3VmHD2WZZMGAr20h57kG_3MuszqRmcI--_jdkPpJadPPh8eX3mvyEVMEQn5wtmKMyZuLR7Figv1gVwK2Q6NbqW6-O_8idyUsmMV5QNnQl-S_cZ7tHOhydMIMR1SxkIhOlqWyS-ZunQI8YmmSLcBM2S7DRam6UjHJdotOmohj_XWhxFzoXOih5zmqqRTmLdh2dM9zjBVZXL4mXz0MBW8eZvX5Pfd5tf6R_P48_5h_f2xsa1WqtGdHXvhGLR9DwhqQDl6oUd0rAWntYdWcy-xZ8wNkg_MemASpXAtDB6gvSYPZ69LsDOHHPaQjyZBMH8XKT8ZyHOwExrZexDc6qGaOiZ7PXimhAPejaLvnKiur2dX_dfzgmU2u7TkWOMb0asaRHVKVerbmbI5lZLR_3uVM3Pqxpy6MbWbijZn9CVMeHyXM-vNH3HiXwEfmJI8 |
CitedBy_id | crossref_primary_10_1021_acsapm_2c01704 crossref_primary_10_1016_j_cej_2023_148105 crossref_primary_10_1016_j_cej_2024_150702 crossref_primary_10_1002_bte2_20220006 crossref_primary_10_1002_chem_202304152 crossref_primary_10_1016_j_cej_2023_141478 crossref_primary_10_1016_j_est_2022_105473 crossref_primary_10_1002_aenm_202201493 crossref_primary_10_1007_s10570_023_05170_3 crossref_primary_10_1002_cey2_254 crossref_primary_10_1002_cey2_288 crossref_primary_10_1002_slct_202202055 crossref_primary_10_1016_j_cej_2024_153126 crossref_primary_10_1002_cey2_169 crossref_primary_10_1002_cey2_423 crossref_primary_10_1002_cey2_348 crossref_primary_10_1002_cey2_359 |
Cites_doi | 10.1002/adma.202002193 10.1002/aenm.201802777 10.1016/j.jpowsour.2014.03.084 10.1002/aenm.201802720 10.1016/j.ensm.2020.11.024 10.1038/nchem.1624 10.1002/smll.202004770 10.1002/smll.201901274 10.1016/j.matchemphys.2018.12.047 10.1002/smll.202003918 10.1038/ncomms8145 10.1038/ncomms10992 10.1002/adma.201907079 10.1038/s41560-019-0390-6 10.1039/C3EE40795K 10.1023/A:1003270406759 10.1016/j.nanoen.2021.105847 10.1002/adma.201504117 10.1002/adma.202002325 10.1021/jacs.0c01811 10.1038/nnano.2016.32 10.1126/sciadv.aau7728 10.1021/mz400649w 10.1016/j.carbon.2017.03.035 10.1021/acssuschemeng.0c08572 10.1039/D0TA02486D 10.1002/adfm.201909159 10.1038/am.2016.191 10.1021/acsami.8b15938 10.1038/s41467-017-00132-3 10.1038/nnano.2017.16 10.1038/nmat3191 10.1016/j.cej.2019.01.131 10.1038/s41557-018-0166-9 10.1002/eem2.12103 10.1021/acscentsci.8b00845 10.1039/C8TA07997H 10.1021/jacs.7b01763 10.1016/0008-6223(96)00177-7 10.1038/s41467-019-13774-2 10.1016/S0378-7753(99)00066-X 10.1002/adma.201902785 10.1002/adma.201807131 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 8FE 8FG 8FH ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P P5Z P62 PATMY PIMPY PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.1002/cey2.128 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Free Content CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2637-9368 |
EndPage | 794 |
ExternalDocumentID | oai_doaj_org_article_65fa21c97d76406597f082da14b254d2 10_1002_cey2_128 CEY2128 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2019R1A2C1084836; 2021R1A4A2001403 |
GroupedDBID | 0R~ 1OC 24P AAHHS ACCFJ ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS ATCPS AVUZU BBNVY BENPR BGLVJ BHPHI CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IEP M7P OK1 PATMY PIMPY PYCSY WIN AAYXX CITATION ITC 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ LK8 P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3988-94cb52d0a355aea87e6bf29bed03ad99fa391f6e500d76170cfa06e62d3a7faa3 |
IEDL.DBID | 24P |
ISSN | 2637-9368 |
IngestDate | Tue Oct 22 15:09:48 EDT 2024 Thu Oct 10 19:41:50 EDT 2024 Thu Sep 26 16:06:40 EDT 2024 Sat Aug 24 00:59:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3988-94cb52d0a355aea87e6bf29bed03ad99fa391f6e500d76170cfa06e62d3a7faa3 |
ORCID | 0000-0002-9643-596X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.128 |
PQID | 2583918488 |
PQPubID | 5066174 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_65fa21c97d76406597f082da14b254d2 proquest_journals_2583918488 crossref_primary_10_1002_cey2_128 wiley_primary_10_1002_cey2_128_CEY2128 |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Carbon energy |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 9 1998; 28 2019; 9 2017; 8 2019; 4 2015; 6 2021; 4 2019; 5 2019; 31 2020; 142 2019; 11 2019; 32 2019; 15 2020; 16 2019; 224 2020; 11 2020; 32 1999; 80 2013; 5 2012; 11 2017; 139 1996; 34 2016; 11 2019; 363 2017; 118 2020; 8 2018; 6 2021; 35 2016; 7 2014; 3 2021; 33 2020; 30 2017; 12 2021; 83 2016; 28 2014; 7 2014; 262 2016; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 118 start-page: 120 year: 2017 end-page: 126 article-title: High performance rechargeable Li‐S batteries using binder‐free large sulfur‐loaded three‐dimensional carbon nanotubes publication-title: Carbon – volume: 6 start-page: 7145 year: 2015 article-title: Carbonization of a stable β‐sheet‐rich silk protein into a pseudographitic pyroprotein publication-title: Nat Commun – volume: 7 year: 2016 article-title: Lithium‐coated polymeric matrix as a minimum volume‐change and dendrite‐free lithium metal anode publication-title: Nat Commun – volume: 16 issue: 39 year: 2020 article-title: Hierarchically nanoporous 3D assembly composed of functionalized onion‐like graphitic carbon nanospheres for anode‐minimized Li metal batteries publication-title: Small – volume: 31 issue: 8 year: 2019 article-title: Lithiophilic LiC layers on carbon hosts enabling stable Li metal anode in working batteries publication-title: Adv Mater – volume: 11 start-page: 19 issue: 1 year: 2012 end-page: 29 article-title: Li‐O and Li‐S batteries with high energy storage publication-title: Nat Mater – volume: 11 start-page: 64 issue: 1 year: 2019 end-page: 70 article-title: Prevention of dendrite growth and volume expansion to give high‐performance aprotic bimetallic Li‐Na alloy‐O batteries publication-title: Nat Chem – volume: 5 start-page: 518 issue: 6 year: 2013 end-page: 524 article-title: The use of elemental sulfur as an alternative feedstock for polymeric materials publication-title: Nat Chem – volume: 4 start-page: 103 issue: 1 year: 2021 end-page: 110 article-title: A lightweight, adhesive, dual‐functionalized over‐coating interphase toward ultra‐stable high‐current density lithium metal anodes publication-title: Energy Environ Mater – volume: 32 issue: 7 year: 2019 article-title: Reduced‐graphene‐oxide‐guided directional growth of planar lithium layers publication-title: Adv Mater – volume: 33 issue: 33 year: 2021 article-title: All‐solid‐state batteries with a limited lithium metal anode at room temperature using a garnet‐based electrolyte publication-title: Adv Mater – volume: 4 start-page: 551 issue: 7 year: 2019 end-page: 559 article-title: High‐energy lithium metal pouch cells with limited anode swelling and long stable cycles publication-title: Nat Energy – volume: 224 start-page: 384 year: 2019 end-page: 388 article-title: Sulfur/Cu S hybrid material for Li/S primary battery with improved discharge capacity publication-title: Mater Chem Phys – volume: 5 issue: 2 year: 2019 article-title: Lithiophilicity chemistry of heteroatom‐doped carbon to guide uniform lithium nucleation in lithium metal anodes publication-title: Sci Adv – volume: 5 start-page: 468 issue: 3 year: 2019 end-page: 476 article-title: Self‐assembled monolayer enables slurry‐coating of Li anode publication-title: ACS Cent Sci – volume: 363 start-page: 270 year: 2019 end-page: 277 article-title: Self‐supporting lithiophilic N‐doped carbon rod array for dendrite‐free lithium metal anode publication-title: Chem Eng J – volume: 6 start-page: 19664 issue: 40 year: 2018 end-page: 19671 article-title: Mechanistic insight into dendrite‐SEI interactions for lithium metal electrodes publication-title: J Mater Chem A – volume: 7 start-page: 513 issue: 2 year: 2014 end-page: 537 article-title: Lithium metal anodes for rechargeable batteries publication-title: Energy Environ Sci – volume: 8 year: 2016 article-title: Restoration of thermally reduced graphene oxide by atomic‐level selenium doping publication-title: NPG Asia Mater – volume: 83 year: 2021 article-title: Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition publication-title: Nano Energy – volume: 12 start-page: 194 issue: 3 year: 2017 end-page: 206 article-title: Reviving the lithium metal anode for high‐energy batteries publication-title: Nat Nanotechnol – volume: 34 start-page: 193 issue: 2 year: 1996 end-page: 200 article-title: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins publication-title: Carbon – volume: 15 issue: 37 year: 2019 article-title: Anode‐free sodium metal batteries based on nanohybrid core‐shell templates publication-title: Small – volume: 9 issue: 7 year: 2019 article-title: An interconnected channel‐like framework as host for lithium metal composite anodes publication-title: Adv Energy Mater – volume: 35 start-page: 378 year: 2021 end-page: 387 article-title: Honeycomb inspired lithiophilic scaffold for ultra‐stable, high‐areal‐capacity metallic deposition publication-title: Energy Stor Mater – volume: 32 issue: 51 year: 2020 article-title: Advances in the design of 3D‐structured electrode materials for lithium‐metal anodes publication-title: Adv Mater – volume: 142 start-page: 8818 issue: 19 year: 2020 end-page: 8826 article-title: Solid‐solution‐based metal alloy phase for highly reversible lithium metal anode publication-title: J Am Chem Soc – volume: 16 issue: 44 year: 2020 article-title: High‐capacity, dendrite‐free, and ultrahigh‐rate lithium‐metal anodes based on monodisperse N‐doped hollow carbon nanospheres publication-title: Small – volume: 30 issue: 14 year: 2020 article-title: Regulating lithium nucleation and deposition via MOF‐derived Co@C‐modified carbon cloth for stable Li metal anode publication-title: Adv Funct Mater – volume: 8 start-page: 74 year: 2017 article-title: Ultra strong pyroprotein fibres with long‐range ordering publication-title: Nat Commun – volume: 9 issue: 37 year: 2019 article-title: Electrochemical diagram of an ultrathin lithium metal anode in pouch cells publication-title: Adv Mater – volume: 9 issue: 1 year: 2019 article-title: Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes publication-title: Adv Energy Mater – volume: 9 start-page: 2326 issue: 5 year: 2021 end-page: 2337 article-title: Self‐standing N‐doped carbonized cellulose fiber as a dual‐functional host for lithium metal anodes publication-title: ACS sustainable Chem Eng – volume: 139 start-page: 5916 issue: 16 year: 2017 end-page: 5922 article-title: Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons publication-title: J Am Chem Soc – volume: 8 start-page: 9331 issue: 18 year: 2020 end-page: 9344 article-title: A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode publication-title: J Mater Chem A – volume: 11 year: 2020 article-title: Fluorinated hybrid solid‐electrolyte‐interphase for dendrite‐free lithium deposition publication-title: Nat Commun – volume: 28 start-page: 2155 issue: 11 year: 2016 end-page: 2162 article-title: Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth publication-title: Adv Mater – volume: 11 start-page: 12401 issue: 13 year: 2019 end-page: 12407 article-title: Catalytic pyroprotein seed layers for sodium metal anodes publication-title: ACS Appl Mater Interfaces – volume: 80 start-page: 103 issue: 1‐2 year: 1999 end-page: 106 article-title: Lithium metal rechargeable cells using Li MnO as the positive electrode publication-title: J Power Sources – volume: 28 start-page: 135 year: 1998 end-page: 140 article-title: Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V O cathodes publication-title: J Appl Electrochem – volume: 11 start-page: 626 issue: 7 year: 2016 end-page: 632 article-title: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes publication-title: Nat Nanotechnol – volume: 262 start-page: 79 year: 2014 end-page: 85 article-title: Effects of sulfur doping on graphene‐based nanosheets for use as anode materials in lithium‐ion batteries publication-title: J Power Sources – volume: 3 start-page: 229 issue: 3 year: 2014 end-page: 232 article-title: Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li–S batteries publication-title: ACS Macro Lett – ident: e_1_2_7_23_1 doi: 10.1002/adma.202002193 – ident: e_1_2_7_33_1 doi: 10.1002/aenm.201802777 – ident: e_1_2_7_35_1 doi: 10.1016/j.jpowsour.2014.03.084 – ident: e_1_2_7_21_1 doi: 10.1002/aenm.201802720 – ident: e_1_2_7_40_1 doi: 10.1016/j.ensm.2020.11.024 – ident: e_1_2_7_38_1 doi: 10.1038/nchem.1624 – ident: e_1_2_7_16_1 doi: 10.1002/smll.202004770 – ident: e_1_2_7_32_1 doi: 10.1002/smll.201901274 – ident: e_1_2_7_44_1 doi: 10.1016/j.matchemphys.2018.12.047 – ident: e_1_2_7_20_1 doi: 10.1002/smll.202003918 – ident: e_1_2_7_30_1 doi: 10.1038/ncomms8145 – ident: e_1_2_7_6_1 doi: 10.1038/ncomms10992 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201907079 – ident: e_1_2_7_13_1 doi: 10.1038/s41560-019-0390-6 – ident: e_1_2_7_3_1 doi: 10.1039/C3EE40795K – ident: e_1_2_7_8_1 doi: 10.1023/A:1003270406759 – ident: e_1_2_7_11_1 doi: 10.1016/j.nanoen.2021.105847 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201504117 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202002325 – ident: e_1_2_7_5_1 doi: 10.1021/jacs.0c01811 – ident: e_1_2_7_15_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_7_34_1 doi: 10.1126/sciadv.aau7728 – ident: e_1_2_7_37_1 doi: 10.1021/mz400649w – ident: e_1_2_7_39_1 doi: 10.1016/j.carbon.2017.03.035 – ident: e_1_2_7_24_1 doi: 10.1021/acssuschemeng.0c08572 – ident: e_1_2_7_41_1 doi: 10.1039/D0TA02486D – ident: e_1_2_7_18_1 doi: 10.1002/adfm.201909159 – ident: e_1_2_7_36_1 doi: 10.1038/am.2016.191 – ident: e_1_2_7_26_1 doi: 10.1021/acsami.8b15938 – ident: e_1_2_7_31_1 doi: 10.1038/s41467-017-00132-3 – ident: e_1_2_7_22_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_2_1 doi: 10.1038/nmat3191 – ident: e_1_2_7_25_1 doi: 10.1016/j.cej.2019.01.131 – ident: e_1_2_7_27_1 doi: 10.1038/s41557-018-0166-9 – ident: e_1_2_7_43_1 doi: 10.1002/eem2.12103 – ident: e_1_2_7_12_1 doi: 10.1021/acscentsci.8b00845 – ident: e_1_2_7_28_1 doi: 10.1039/C8TA07997H – ident: e_1_2_7_19_1 doi: 10.1021/jacs.7b01763 – ident: e_1_2_7_29_1 doi: 10.1016/0008-6223(96)00177-7 – ident: e_1_2_7_4_1 doi: 10.1038/s41467-019-13774-2 – ident: e_1_2_7_7_1 doi: 10.1016/S0378-7753(99)00066-X – ident: e_1_2_7_9_1 doi: 10.1002/adma.201902785 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201807131 |
SSID | ssj0002171029 |
Score | 2.3301384 |
Snippet | Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium metal anodes... Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium... Abstract Studies on three‐dimensional structured carbon templates have focused on how to guide homogeneous lithium metal nucleation and growth for lithium... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 784 |
SubjectTerms | Anodes Anodic protection By products Carbon Carbon fibers carbon template Copolymers Doping Electrochemical analysis Electrochemistry Electrode materials Electrodes Electrolytes Flux density Lithium lithium metal anode lithium metal batteries Lithium sulfur batteries Li–S batteries Metals Morphology nanoporous carbon Natural polymers Nucleation Polymers Radiation Scanning electron microscopy Spectrum analysis Sulfur sulfur doping |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iSQ_iJ65fRBBv1TRp0-ao4rIIenJhPYVJk6DgtrLdHvz3Ttqu1IN48dpAG2bSvPfI5A0hF1bmwieJiLhwDgUKsCjPQzd3QLRU0mc8DRecH5_kZJo8zNLZoNVXqAnr7IG7wF3L1AOPC5XZTCbhEDDziFoW4sSgtrHd7svUQEyFPRiJNiKnWrnNMn5duE9-FYem6wP8aW36f3DLIUNtIWa8TbZ6bkhvujntkDVX7pLNgWPgHpl3bsM1rTwtoayQPbuaQmlp3bz7ZkFtewGKViUNTa7bYwLMwvsnNQhgr87SAhYGR32oFKnpsqK9UwNFPv761szp3CEfx1dW1u2T6fj--W4S9R0TokIoXPIqKUzKLQNkEeAgz5w0nivjLBNglfIgVOylSxnDcMYZKzww6SS3AjIPIA7IelmV7pBQizySy8Irn5kEmDCovDyXxqKM9YngI3K-iqP-6IwxdGeBzHWItcZYj8htCPD3eLCybh9ggnWfYP1XgkfkZJUe3f9fteYpEjsUpzl-47JN2a-T0Hf3L4jP-dF_TOaYbPBQ1NJW852Q9eWicafISpbmrF2AX12C3tw priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46L3oQf-J0SgTxVu2SNm1O4mQigiKioKfw0iQqbK2u28H_3pcu03nQawNpeC_J973k5XuEHBmRc5ckPGLcWgxQII7y3FdzB0RLKVzGUv_A-eZWXD0m10_pUzhwq0Na5WxPbDZqUxX-jPyUpQjlGI7k-dn7R-SrRvnb1VBCY5EsMYwUWIss9fq3d_ffpyxIuBFB5Ux1Nmanhf1kJ11ffH0Ohxq5_l8cc56pNlBzuUZWA0ek51OnrpMFW26QlTnlwE0ynKoO17RytISyQhZtawqlofVk4CYjapqHULQqqS923VwXoDcGn1QjkL1aQwsYaWx1PmOkpuOKBsUGirz89W0ypEOLvBy7rIzdIo-X_YeLqyhUTogKLnHqy6TQKTMxIJsAC3lmhXZMamtiDkZKB2hLJ2waxybzkuyFg1hYwQyHzAHwbdIqq9LuEGqQTzJROOkynUDMNUZgjgltMJx1CWdtcjizo3qfCmSoqRQyU97WCm3dJj1v4O92L2ndfKhGLyqsECVSB6xbyAxHlPjb3swhPTHQTTQGsQZ_1Jm5R4V1VqufWdEmx43L_hyEuug_I07nu__3s0eWmU9bafL1OqQ1Hk3sPvKOsT4Ik-sLKEzY1A priority: 102 providerName: ProQuest |
Title | Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.128 https://www.proquest.com/docview/2583918488 https://doaj.org/article/65fa21c97d76406597f082da14b254d2 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELbYctk9IF6r5VUZCe0tkNqOEx8pakFIIIQWCU7WOLYXJJqgpj3w7xk7aYEDEpccYie2Zjyeb-zxZ0KOrCy4F4InjDuHAQqkSVGE29wBvaWSPmdZOOB8dS0v7sTlfXbfZVWGszAtP8RywS1YRpyvg4GDaU7eSUNL98qOcXb9QVYDYUwY3UzcLNdXEGqj7wzol0meJ4rLYsE9m7KTxcefvFEk7f-END_i1ehwxutkrUOK9LRV7QZZcdUm-fWBP3CLTFru4YbWnlZQ1YilXUOhsrSZP_v5lNp4HIrWFQ1XXsdNA9TJ8ys16M4enaUlTA2W-pA30tBZTTveBoro_PFpPqETh-gcf1lbt03uxqN_ZxdJd39CUnKFBqBEaTJmU0BMAQ6K3EnjmTLOphysUh64GnjpsjS1eSBmLz2k0klmOeQegP8mvaqu3B9CLaJKJkuvfG4EpNxgHOaZNBaDWi842yGHCznql5YmQ7eEyEwHWWuU9Q4ZBgEvywOxdXxRT__rzk60zDywQaly7JEIe765R5BiYSAMhrIWG9pfqEd31tZoliHMw1C1wDb-RpV92Ql9NnpAb13sfrfiHvnJQhpLzN_bJ73ZdO4OEIfMTD8OOHwW4_M-WR2Orm9u-zGmfwMzxdwt |
link.rule.ids | 315,783,787,867,2109,11576,12779,21402,27938,27939,33387,33758,43614,43819,46066,46490,50828,50937,74371,74638 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxELVKeoAeKsqHSAutkRC3hY3t9a5PVUGEtHycQIKTNV7bBIns0mxyyL_v2NlAOJTrWvJaM7bfG3v8hpADKwvuheAJ485hgAJpUhShmjsgWirpc5aFB85X13JwK_7cZXftgVvTplUu9sS4Udu6DGfkxyxDKMdwpCh-Pv9NQtWocLvaltBYIR8FR6AJL8X75y9nLEi3ET_VQnM2Zcelm7GjXii9voRCUaz_DcNc5qkRaPrr5HPLEOmvuUu_kA-u2iCflnQDN8lorjnc0NrTCqoaObRrKFSWNtMnPx1TG59B0bqiodR1vCxAXzzNqEEYGzpLSxgbbPUhX6Shk5q2eg0UWfnwcTqiI4esHLusrdsit_2zm9NB0tZNSEqucOIrUZqM2RSQS4CDInfSeKaMsykHq5QHtKSXLktTmwdB9tJDKp1klkPuAfg26VR15XYItcgmmSy98rkRkHKD8Zdn0lgMZr3grEv2F3bUz3N5DD0XQmY62FqjrbvkJBj4pT0IWscP9fhBt-tDy8wD65UqxxGJcNebeyQnFnrCYAhr8Ue7C_fodpU1-nVOdMlhdNl_B6FPz-4RpYuv7_fzg6wObq4u9eXv64tvZI2FBJaYubdLOpPx1O0hA5mY73Ga_QPXFdpf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYglRA9IJ5qSilGQtyWbmyvd32q-khUXlGFqFRO1njtoUjNbskmh_57xhunhANc15LXmofnG3v8DWNvva4kKiUzIUOgBAXyrKpiN3egaGk0lqKID5y_TPXZhfp4WVym-qculVWu98R-o_ZtHc_ID0RBoZzSEUrYMJVFnJ9ODm9-ZbGDVLxpTe007rOtUpFVDdjW8Xh6_vXuxIXAN0VTs2agzcVBHW7F-1FsxL4Rk3rq_r_w5iZq7cPO5DF7lPAiP1op-Am7F5qnbHuDRfAZm60YiDveIm-gaQlRh45D43m3vMblnPv-URRvGx4bX_dXB6SZ61vuKKhdBc9rmDsaxVg90vFFyxN7AyeMfvVzOeOzQBidpmx9eM4uJuNvJ2dZ6qKQ1dKQGxhVu0L4HAhZQICqDNqhMC74XII3BoHkijoUee7LSM9eI-Q6aOEllAggX7BB0zZhh3FP2FLoGg2WTkEuHWVjKLTzlNqikmLI3qzlaG9WZBl2RYssbJS1JVkP2XEU8N14pLfuP7TzHzZ5i9UFghjVpqQVqXjzWyJBFQ8j5Sih9fSjvbV6bPK5zv6xkCF716vsn4uwJ-PvFLOr3f_P85o9IBuznz9MP71kD0WsZunL-PbYYDFfhlcERxZuP9nZb7Pt4AI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+nanopores+and+sulfur+doping+on+hierarchically+bunched+carbon+fibers+to+protect+lithium+metal+anode&rft.jtitle=Carbon+energy&rft.au=Jung%2C+Ji+In&rft.au=Park%2C+Sunwoo&rft.au=Ha%2C+Son&rft.au=Cho%2C+Se+Youn&rft.date=2021-10-01&rft.issn=2637-9368&rft.eissn=2637-9368&rft.volume=3&rft.issue=5&rft.spage=784&rft.epage=794&rft_id=info:doi/10.1002%2Fcey2.128&rft.externalDBID=10.1002%252Fcey2.128&rft.externalDocID=CEY2128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon |