Confounding effects of snow cover on remotely sensed vegetation indices of evergreen and deciduous trees: An experimental study

Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflect...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 29; no. 21; pp. 6120 - 6138
Main Authors Wang, Ran, Springer, Kyle R., Gamon, John A.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance‐based remotely sensed optical signals at northern latitude or high‐altitude regions are readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functional groups (evergreen and deciduous) and different vegetation indices were affected differently, indicating contradictory, confounding effects of snow on these indices. In addition to snow effects, we evaluated the contribution of deciduous trees to vegetation indices in mixed stands of evergreen and deciduous species, which contribute to the observed relationship between greenness‐based indices and ecosystem productivity of many evergreen‐dominated forests that contain a deciduous component. Our results demonstrate confounding and interacting effects of snow and vegetation type on vegetation indices and illustrate the importance of explicitly considering snow effects in any global‐scale photosynthesis monitoring efforts using remotely sensed vegetation indices. Optical remote sensing at northern latitude or high‐altitude regions is readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity. Unraveling the effects of snow can be challenging from satellite data. We established an experimental system including six boreal tree species to evaluate the snow effects on three vegetation indices: the normalized difference vegetation index, the photochemical reflectance index, and the chlorophyll/carotenoid index, all used in tracking vegetation productivity. Snow effects varied among species and functional groups (evergreen and deciduous) and among different vegetation indices.
AbstractList Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance-based remotely sensed optical signals at northern latitude or high-altitude regions are readily confounded by snow coverage, hampering applications of satellite-based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functional groups (evergreen and deciduous) and different vegetation indices were affected differently, indicating contradictory, confounding effects of snow on these indices. In addition to snow effects, we evaluated the contribution of deciduous trees to vegetation indices in mixed stands of evergreen and deciduous species, which contribute to the observed relationship between greenness-based indices and ecosystem productivity of many evergreen-dominated forests that contain a deciduous component. Our results demonstrate confounding and interacting effects of snow and vegetation type on vegetation indices and illustrate the importance of explicitly considering snow effects in any global-scale photosynthesis monitoring efforts using remotely sensed vegetation indices.Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance-based remotely sensed optical signals at northern latitude or high-altitude regions are readily confounded by snow coverage, hampering applications of satellite-based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functional groups (evergreen and deciduous) and different vegetation indices were affected differently, indicating contradictory, confounding effects of snow on these indices. In addition to snow effects, we evaluated the contribution of deciduous trees to vegetation indices in mixed stands of evergreen and deciduous species, which contribute to the observed relationship between greenness-based indices and ecosystem productivity of many evergreen-dominated forests that contain a deciduous component. Our results demonstrate confounding and interacting effects of snow and vegetation type on vegetation indices and illustrate the importance of explicitly considering snow effects in any global-scale photosynthesis monitoring efforts using remotely sensed vegetation indices.
Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance‐based remotely sensed optical signals at northern latitude or high‐altitude regions are readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functional groups (evergreen and deciduous) and different vegetation indices were affected differently, indicating contradictory, confounding effects of snow on these indices. In addition to snow effects, we evaluated the contribution of deciduous trees to vegetation indices in mixed stands of evergreen and deciduous species, which contribute to the observed relationship between greenness‐based indices and ecosystem productivity of many evergreen‐dominated forests that contain a deciduous component. Our results demonstrate confounding and interacting effects of snow and vegetation type on vegetation indices and illustrate the importance of explicitly considering snow effects in any global‐scale photosynthesis monitoring efforts using remotely sensed vegetation indices.
Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for both increasing and decreasing productivity, depending upon conditions. Optical remote sensing of vegetation indices based on spectral reflectance offers a means of monitoring vegetation photosynthetic activity and provides a powerful tool for observing how boreal forests respond to changing environmental conditions. Reflectance‐based remotely sensed optical signals at northern latitude or high‐altitude regions are readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity at large scales. Unraveling the effects of snow can be challenging from satellite data, particularly when validation data are lacking. In this study, we established an experimental system in Alberta, Canada including six boreal tree species, both evergreen and deciduous, to evaluate the confounding effects of snow on three vegetation indices: the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), and the chlorophyll/carotenoid index (CCI), all used in tracking vegetation productivity for boreal forests. Our results revealed substantial impacts of snow on canopy reflectance and vegetation indices, expressed as increased albedo, decreased NDVI values and increased PRI and CCI values. These effects varied among species and functional groups (evergreen and deciduous) and different vegetation indices were affected differently, indicating contradictory, confounding effects of snow on these indices. In addition to snow effects, we evaluated the contribution of deciduous trees to vegetation indices in mixed stands of evergreen and deciduous species, which contribute to the observed relationship between greenness‐based indices and ecosystem productivity of many evergreen‐dominated forests that contain a deciduous component. Our results demonstrate confounding and interacting effects of snow and vegetation type on vegetation indices and illustrate the importance of explicitly considering snow effects in any global‐scale photosynthesis monitoring efforts using remotely sensed vegetation indices. Optical remote sensing at northern latitude or high‐altitude regions is readily confounded by snow coverage, hampering applications of satellite‐based vegetation indices in tracking vegetation productivity. Unraveling the effects of snow can be challenging from satellite data. We established an experimental system including six boreal tree species to evaluate the snow effects on three vegetation indices: the normalized difference vegetation index, the photochemical reflectance index, and the chlorophyll/carotenoid index, all used in tracking vegetation productivity. Snow effects varied among species and functional groups (evergreen and deciduous) and among different vegetation indices.
Author Wang, Ran
Springer, Kyle R.
Gamon, John A.
Author_xml – sequence: 1
  givenname: Ran
  orcidid: 0000-0002-3810-9103
  surname: Wang
  fullname: Wang, Ran
  email: ranwangrs@gmail.com
  organization: University of Nebraska‐Lincoln
– sequence: 2
  givenname: Kyle R.
  surname: Springer
  fullname: Springer, Kyle R.
  organization: Concordia University of Edmonton
– sequence: 3
  givenname: John A.
  orcidid: 0000-0002-8269-7723
  surname: Gamon
  fullname: Gamon, John A.
  email: jgamon@gmail.com
  organization: University of Nebraska‐Lincoln
BookMark eNqFkT1vHCEQhleRI8VfRf4BUpqkWHv4WHZJ55wSJ5IlN3G9YmE4Ye3BBVjbV-Wvh_O5shKFBgTPMxrmPWmOQgzYNO8pXNC6LtdmuqBSUfmmOaZcdi0TgzzanzvRUqD8XXOS8z0AcAbyuPm9isHFJVgf1gSdQ1MyiY7kEB-JiQ-YSAwk4SYWnHckY8hoyQOuseji65OvqsFnByu9ToiB6GCJRePtEpdMSr3Ln8lVIPi0xeQ3GIqeSS6L3Z01b52eM56_7KfN3bevP1ff25vb6x-rq5vWcDXIdnI91YxPkoNWxkxgaW-5ccrIHmCCiQmrxCRYj0o4zQateuDDZF0vwHacnzYfD3W3Kf5aMJdx47PBedYBa48jBwFcMjmI_6Js6FjtQ_E9-uEVeh-XFOpHKtUzYKC6vlKXB8qkmHNCNxp_mF5J2s8jhXGf3VizG5-zq8anV8a2jk2n3V_Zl-qPfsbdv8HxevXlYPwBFTiroA
CitedBy_id crossref_primary_10_1002_ecy_4402
crossref_primary_10_1016_j_srs_2024_100148
crossref_primary_10_1016_j_agrformet_2023_109600
crossref_primary_10_1016_j_agrformet_2025_110427
crossref_primary_10_1080_17583004_2025_2465361
crossref_primary_10_1093_jxb_erae407
crossref_primary_10_1016_j_ecoinf_2025_103108
crossref_primary_10_1016_j_rse_2024_114013
crossref_primary_10_1016_j_rse_2024_114210
Cites_doi 10.1016/j.bbabio.2011.04.012
10.1073/pnas.0506179102
10.1111/nph.15934
10.1016/j.agrformet.2022.108977
10.1016/j.agrformet.2023.109600
10.1002/hyp.9582
10.1016/j.rse.2017.03.035
10.1109/TMM.2016.2535356
10.1002/hyp.6124
10.1126/sciadv.abc7447
10.1890/14‐0005.1
10.1016/0034‐4257(79)90013‐0
10.1016/S1360‐1385(96)80019‐7
10.5194/bg‐12‐4149‐2015
10.1016/j.rse.2013.01.010
10.1055/s-2002-35434
10.1016/j.rse.2019.01.016
10.1088/1748‐9326/9/6/064016
10.1016/j.agrformet.2022.108904
10.1016/j.rse.2015.12.017
10.1111/nph.16479
10.1073/pnas.94.25.14162
10.2307/1942049
10.1016/j.agrformet.2015.08.247
10.1088/1748‐9326/aca5a0
10.1111/gcb.12804
10.1111/gcb.15958
10.1146/annurev.arplant.54.072402.115741
10.1560/IJPS.60.1‐2.85
10.1029/2021JG006588
10.1016/j.rse.2019.111383
10.1088/1748‐9326/ac9dae
10.1111/j.1365‐2486.2006.01221.x
10.3390/rs14143409
10.1093/pnasnexus/pgac131
10.1002/fee.1222
10.3189/172756410791386535
10.1038/s41586‐022‐05093‐2
10.1111/nph.13159
10.1126/science.1155121
10.1016/j.agrformet.2010.08.002
10.1111/gcb.12822
10.1109/LGRS.2011.2180505
10.3390/s110807678
10.1029/2020JG006191
10.1139/Er‐2013‐0040
10.3389/ffgc.2020.613523
10.1029/2019JG005624
10.1002/ece3.710
10.1111/j.1365‐2486.2012.02678.x
10.1111/nph.13251
10.1016/0034‐4257(92)90059‐S
10.1016/j.cageo.2004.05.006
10.1029/2007EO340001
10.1080/01431169408954345
10.1016/j.rse.2010.08.023
10.3390/rs13051036
10.1007/s13280‐016‐0770‐0
10.1002/hyp.1228
10.1016/j.rse.2021.112399
10.1038/s43017‐022‐00298‐5
10.1016/S0034‐4257(02)00096‐2
10.1080/19479832.2019.1582561
10.1038/386698a0
10.1126/sciadv.1602244
10.1111/j.1365-2486.2011.02562.x
10.1641/0006‐3568(2004)054[0547:ACSMOG]2.0.CO;2
10.1111/pce.12171
10.1111/gcb.14729
10.1016/j.rse.2019.111222
10.1016/j.rse.2012.10.030
10.3390/rs9070691
10.1080/01431160110113881
10.1093/treephys/tpq015
10.1016/j.rse.2014.03.001
10.5194/bgd‐12‐4973‐2015
10.1016/j.rse.2006.04.006
10.1073/pnas.1606162113
10.1111/pce.12527
10.1038/s41558‐019‐0688‐1
10.1002/hyp.7786
10.1109/JSTARS.2018.2810094
10.1016/j.rse.2017.06.015
10.1016/j.rse.2019.111407
10.1016/j.rse.2014.07.010
10.1029/2012JG001960
10.1007/s004420050337
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.16916
DatabaseName Wiley Open Access Collection
CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 6138
ExternalDocumentID 10_1111_gcb_16916
GCB16916
Genre article
GeographicLocations Alberta
GeographicLocations_xml – name: Alberta
GrantInformation_xml – fundername: National Aeronautics and Space Administration
  funderid: NNX15AT78A
– fundername: National Science Foundation
  funderid: 1925860
– fundername: National Sciences and Engineering Research Council of Canada
  funderid: RGPIN‐2015‐05129
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c3986-bf71a23b630a9ccb0d17d3cf9c6700b0b24d94b427e94fa28a97038bdf740d533
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:40:06 EDT 2025
Fri Jul 11 10:39:53 EDT 2025
Sun Jul 13 04:25:14 EDT 2025
Tue Jul 01 03:53:12 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Wed Jan 22 16:16:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3986-bf71a23b630a9ccb0d17d3cf9c6700b0b24d94b427e94fa28a97038bdf740d533
Notes Ran Wang and Kyle R. Springer should be considered joint first authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8269-7723
0000-0002-3810-9103
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16916
PQID 2872020957
PQPubID 30327
PageCount 19
ParticipantIDs proquest_miscellaneous_3040362684
proquest_miscellaneous_2852630934
proquest_journals_2872020957
crossref_citationtrail_10_1111_gcb_16916
crossref_primary_10_1111_gcb_16916
wiley_primary_10_1111_gcb_16916_GCB16916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2002; 16
2012; 60
2011; 115
2013; 3
2015; 38
2017; 3
2023; 340
2016b
2016a
2021; 126
2019; 10
2013; 129
1997; 112
2011; 11
2017; 194
2012; 18
2017; 198
2014; 28
2020; 10
2020; 125
2017; 9
2003; 54
2022; 28
2022; 321
2004; 30
2020; 3
1997; 94
2006; 20
2010; 24
2002; 83
2005; 102
1997; 386
2019; 25
2016; 113
2015a; 206
2010; 150
1996; 1
2022; 608
2012; 1817
2014; 9
2010; 30
2022; 127
2019; 233
2016; 45
1979; 8
1992; 41
2019; 231
2015; 12
2021; 7
2013; 226
2009
2020; 226
2007
2019; 223
2002; 4
2019; 224
2016; 18
2022; 317
2008; 320
2014; 152
2016; 14
2007; 13
1995; 5
2004; 54
2021; 13
2015; 214–215
2015; 25
2022; 3
2022
2015b; 206
2021; 258
2002; 23
2015; 21
2014; 37
2022; 14
2018
2016
1994; 15
2013; 132
2022; 1
2018; 11
2007; 88
2012; 117
2014; 147
2016; 174
2022; 17
2010; 51
2006; 103
2012; 9
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_91_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_76_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
Intergovernmental Panel on Climate Change (e_1_2_10_39_1) 2007
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Negi H. S. (e_1_2_10_55_1) 2009
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
MATLAB (e_1_2_10_49_1) 2022
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – year: 2016b
– volume: 5
  start-page: 28
  issue: 1
  year: 1995
  end-page: 41
  article-title: Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types
  publication-title: Ecological Applications
– volume: 88
  start-page: 333
  issue: 34
  year: 2007
  end-page: 335
  article-title: Northern high‐latitude ecosystems respond to climate change
  publication-title: Eos
– volume: 3
  start-page: 3683
  issue: 11
  year: 2013
  end-page: 3700
  article-title: Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow‐shrub interactions
  publication-title: Ecology and Evolution
– volume: 3
  start-page: 1
  issue: December
  year: 2020
  end-page: 14
  article-title: Impacts of climatic variation on the growth of black spruce across the forest‐tundra ecotone: Positive effects of warm growing seasons and heat waves are offset by late spring frosts
  publication-title: Frontiers in Forests and Global Change
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
– volume: 126
  start-page: 1
  year: 2021
  end-page: 20
  article-title: Tower‐based remote sensing reveals mechanisms behind a two‐phased spring transition in a mixed‐species boreal forest
  publication-title: Journal of Geophysical Research – Biogeosciences
– volume: 117
  issue: G3
  year: 2012
  article-title: A model‐data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis
  publication-title: Journal of Geophysical Research – Biogeosciences
– volume: 233
  issue: January
  year: 2019
  article-title: Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years
  publication-title: Remote Sensing of Environment
– volume: 226
  start-page: 207
  issue: December
  year: 2013
  end-page: 226
  article-title: An introduction to Canada's boreal zone: Ecosystem processes, health, sustainability, and environmental issues
  publication-title: Environmental Reviews
– volume: 132
  start-page: 145
  year: 2013
  end-page: 158
  article-title: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground‐based NDVI measurements
  publication-title: Remote Sensing of Environment
– volume: 41
  start-page: 35
  year: 1992
  end-page: 44
  article-title: A narrow‐waveband spectral index that tracks diurnal changes in photosynthetic efficiency
  publication-title: Remote Sensing of Environment
– volume: 4
  start-page: 545
  year: 2002
  end-page: 557
  article-title: The employment of zeaxanthin‐dependent photoprotective
  publication-title: Plant Biology
– year: 2018
– volume: 224
  start-page: 570
  issue: 2
  year: 2019
  end-page: 584
  article-title: Flux towers in the sky: Global ecology from space
  publication-title: New Phytologist
– volume: 60
  start-page: 85
  year: 2012
  end-page: 95
  article-title: Facultative and constitutive pigment effects on the photochemical reflectance index (PRI) in sun and shade conifer needles
  publication-title: Israel Journal of Plant Sciences
– volume: 320
  start-page: 1444
  year: 2008
  end-page: 1449
  article-title: Forest and climate change: Forcings, feedbacks, and the climate benefits of forests
  publication-title: Science
– volume: 125
  start-page: 1
  issue: 11
  year: 2020
  end-page: 18
  article-title: The photochemical reflectance index (PRI) captures the ecohydrologic sensitivity of a semiarid mixed conifer forest
  publication-title: Journal of Geophysical Research – Biogeosciences
– year: 2016a
– volume: 28
  start-page: 341
  issue: 2
  year: 2014
  end-page: 351
  article-title: A shrub bending model to calculate the albedo of shrub‐tundra
  publication-title: Hydrological Processes
– volume: 102
  start-page: 13521
  issue: 38
  year: 2005
  end-page: 13525
  article-title: Satellite‐observed photosynthetic trends across boreal North America associated with climate and fire disturbance
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 16
  start-page: 3543
  issue: 18
  year: 2002
  end-page: 3558
  article-title: Prediction of seasonal snow accumulation in cold climate forests
  publication-title: Hydrological Processes
– volume: 23
  start-page: 4669
  issue: 21
  year: 2002
  end-page: 4682
  article-title: Automatic snow cover monitoring at high temporal and spatial resolution, using images taken by a standard digital camera
  publication-title: International Journal of Remote Sensing
– volume: 1
  start-page: 21
  year: 1996
  end-page: 26
  article-title: The role of xanthophyll cycle carotenoids in the protection of photosynthesis
  publication-title: Trends in Plant Science
– volume: 7
  start-page: 1
  issue: 9
  year: 2021
  end-page: 11
  article-title: A unified vegetation index for quantifying the terrestrial biosphere
  publication-title: Science Advances
– volume: 206
  start-page: 187
  year: 2015b
  end-page: 195
  article-title: Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers
  publication-title: New Phytologist
– volume: 18
  start-page: 1187
  issue: 6
  year: 2016
  end-page: 1200
  article-title: Estimating snow cover from publicly available images
  publication-title: IEEE Transactions on Multimedia
– volume: 30
  start-page: 833
  issue: 8
  year: 2004
  end-page: 845
  article-title: TIMESAT—A program for analyzing time‐series of satellite sensor data
  publication-title: Computers and Geosciences
– year: 2022
– volume: 28
  start-page: 1222
  issue: 4
  year: 2022
  end-page: 1247
  article-title: Reducing model uncertainty of climate change impacts on high latitude carbon assimilation
  publication-title: Global Change Biology
– volume: 340
  year: 2023
  article-title: Snow‐corrected vegetation indices for improved gross primary productivity assessment in North American evergreen forests
  publication-title: Agricultural and Forest Meteorology
– volume: 15
  start-page: 3567
  issue: 17
  year: 1994
  end-page: 3586
  article-title: NDVI‐derived land cover classifications at a global scale
  publication-title: International Journal of Remote Sensing
– volume: 21
  start-page: 1762
  issue: 5
  year: 2015
  end-page: 1776
  article-title: Observing terrestrial ecosystems and the carbon cycle from space
  publication-title: Global Change Biology
– volume: 30
  start-page: 669
  issue: 6
  year: 2010
  end-page: 688
  article-title: Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data
  publication-title: Tree Physiology
– volume: 608
  start-page: 546
  issue: 7923
  year: 2022
  end-page: 551
  article-title: Sufficient conditions for rapid range expansion of a boreal conifer
  publication-title: Nature
– volume: 51
  start-page: 83
  year: 2010
  end-page: 88
  article-title: Hyperspectral analysis of snow reflectance to understand the effects of contamination and grain size
  publication-title: Annals of Glaciology
– volume: 198
  start-page: 203
  year: 2017
  end-page: 212
  article-title: Disentangling remotely‐sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index
  publication-title: Remote Sensing of Environment
– volume: 14
  start-page: 84
  issue: 2
  year: 2016
  end-page: 93
  article-title: Using phenocams to monitor our changing earth: Toward a global phenocam network
  publication-title: Frontiers in Ecology and the Environment
– volume: 9
  start-page: 740
  issue: 4
  year: 2012
  end-page: 743
  article-title: Increasing the accuracy of MODIS/aqua snow product using quantitative image restoration technique
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 150
  start-page: 1485
  year: 2010
  end-page: 1490
  article-title: Retrieval of leaf area index from top‐of‐canopy digital photography over agricultural crops
  publication-title: Agricultural and Forest Meteorology
– volume: 17
  year: 2022
  article-title: Forests for forests: Combining vegetation indices with solar‐induced chlorophyll fluorescence in random forest models improves gross primary productivity prediction in the boreal forest
  publication-title: Environmental Research Letters
– volume: 231
  issue: March
  year: 2019
  article-title: Detecting intercepted snow on mountain needleleaf forest canopies using satellite remote sensing
  publication-title: Remote Sensing of Environment
– volume: 18
  start-page: 1971
  issue: 6
  year: 2012
  end-page: 1987
  article-title: Terrestrial biosphere model performance for inter‐annual variability of land‐atmosphere CO exchange
  publication-title: Global Change Biology
– volume: 13
  issue: 5
  year: 2021
  article-title: UAV‐based estimate of snow cover dynamics: Optimizing semi‐arid forest structure for snow persistence
  publication-title: Remote Sensing
– volume: 20
  start-page: 923
  issue: 4
  year: 2006
  end-page: 941
  article-title: Shrub tundra snowmelt
  publication-title: Hydrological Processes
– volume: 9
  issue: 6
  year: 2014
  article-title: Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest
  publication-title: Environmental Research Letters
– volume: 11
  start-page: 7678
  year: 2011
  end-page: 7709
  article-title: An optical sensor network for vegetation phenology monitoring and satellite data calibration
  publication-title: Sensors
– volume: 152
  start-page: 512
  year: 2014
  end-page: 525
  article-title: A physically based vegetation index for improved monitoring of plant phenology
  publication-title: Remote Sensing of Environment
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sensing of Environment
– volume: 3
  start-page: 477
  issue: 7
  year: 2022
  end-page: 493
  article-title: Optical vegetation indices for monitoring terrestrial ecosystems globally
  publication-title: Nature Reviews Earth and Environment
– year: 2007
– volume: 25
  start-page: 3731
  year: 2019
  end-page: 3740
  article-title: Terrestrial gross primary production: Using NIRv to scale from site to globe
  publication-title: Global Change Biology
– volume: 174
  start-page: 290
  year: 2016
  end-page: 300
  article-title: Matching the phenology of Net Ecosystem Exchange and vegetation indices estimated with MODIS and FLUXNET in‐situ observations
  publication-title: Remote Sensing of Environment
– volume: 194
  start-page: 303
  year: 2017
  end-page: 321
  article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
  publication-title: Remote Sensing of Environment
– volume: 321
  issue: October 2021
  year: 2022
  article-title: Remotely sensed carotenoid dynamics improve modelling photosynthetic phenology in conifer and deciduous forests
  publication-title: Agricultural and Forest Meteorology
– volume: 45
  start-page: 516
  issue: 5
  year: 2016
  end-page: 537
  article-title: Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts
  publication-title: Ambio
– volume: 258
  issue: July 2020
  year: 2021
  article-title: High‐resolution CubeSat imagery and machine learning for detailed snow‐covered area
  publication-title: Remote Sensing of Environment
– year: 2016
– volume: 37
  start-page: 473
  year: 2014
  end-page: 487
  article-title: Relationship between photochemical reflectance index and leaf ecophysiological and biochemical parameters under two different water statuses: Towards a rapid and efficient correction method using real‐time measurements
  publication-title: Plant, Cell & Environment
– volume: 386
  start-page: 698
  issue: April
  year: 1997
  end-page: 702
  article-title: Increased plant growth in the northern high latitudes from 1981 to 1991
  publication-title: Nature
– volume: 54
  start-page: 329
  year: 2003
  end-page: 355
  article-title: Photosynthesis of overwintering evergreen plants
  publication-title: Annual Review of Plant Biology
– volume: 127
  issue: 2
  year: 2022
  article-title: Diurnal and seasonal dynamics of solar‐induced chlorophyll fluorescence, vegetation indices, and gross primary productivity in the boreal forest
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 233
  issue: November
  year: 2019
  article-title: Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf‐scale in deciduous and evergreen trees
  publication-title: Remote Sensing of Environment
– volume: 147
  start-page: 79
  year: 2014
  end-page: 88
  article-title: Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS
  publication-title: Remote Sensing of Environment
– volume: 3
  issue: 3
  year: 2017
  article-title: Canopy near‐infrared reflectance and terrestrial photosynthesis
  publication-title: Science Advances
– volume: 115
  start-page: 281
  issue: 2
  year: 2011
  end-page: 297
  article-title: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta‐analysis
  publication-title: Remote Sensing of Environment
– volume: 21
  start-page: 1005
  issue: 3
  year: 2015
  end-page: 1017
  article-title: Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: Effects on nutrient proficiency
  publication-title: Global Change Biology
– volume: 9
  start-page: 1
  issue: 7
  year: 2017
  end-page: 18
  article-title: Parallel seasonal patterns of photosynthesis, fluorescence, and reflectance indices in boreal trees
  publication-title: Remote Sensing
– volume: 113
  start-page: 13087
  issue: 46
  year: 2016
  end-page: 13092
  article-title: A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 17
  issue: 11
  year: 2022
  article-title: Evaluating photosynthetic activity across Arctic‐Boreal land cover types using solar‐induced fluorescence
  publication-title: Environmental Research Letters
– volume: 18
  start-page: 566
  issue: 2
  year: 2012
  end-page: 584
  article-title: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American carbon program site synthesis
  publication-title: Global Change Biology
– volume: 25
  start-page: 99
  issue: 1
  year: 2015
  end-page: 115
  article-title: Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy‐scale photosynthesis
  publication-title: Ecological Applications
– volume: 11
  start-page: 1433
  issue: 5
  year: 2018
  end-page: 1441
  article-title: Snow cover mapping for complex mountainous forested environments based on a multi‐index technique
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 103
  start-page: 246
  year: 2006
  end-page: 254
  article-title: A mobile tram system for systematic sampling of ecosystem optical properties
  publication-title: Remote Sensing of Environment
– volume: 14
  start-page: 1
  issue: 14
  year: 2022
  end-page: 24
  article-title: High‐resolution snow‐covered area mapping in forested mountain ecosystems using PlanetScope imagery
  publication-title: Remote Sensing
– volume: 206
  start-page: 196
  year: 2015a
  end-page: 208
  article-title: The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers
  publication-title: New Phytologist
– volume: 1
  issue: 4
  year: 2022
  article-title: Cryocampsis: A biophysical freeze‐bending response of shrubs and trees under snow loads
  publication-title: PNAS Nexus
– volume: 13
  start-page: 577
  issue: 3
  year: 2007
  end-page: 590
  article-title: A long‐term record of carbon exchange in a boreal black spruce forest: Means, responses to interannual variability, and decadal trends
  publication-title: Global Change Biology
– volume: 214–215
  start-page: 80
  year: 2015
  end-page: 90
  article-title: Understory CO , sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska
  publication-title: Agricultural and Forest Meteorology
– volume: 10
  start-page: 107
  year: 2019
  end-page: 130
  article-title: The effect of contaminated snow reflectance using hyperspectral remote sensing—A review
  publication-title: International Journal of Image and Data Fusion
– start-page: 109
  year: 2009
  end-page: 120
– volume: 129
  start-page: 144
  year: 2013
  end-page: 153
  article-title: Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt
  publication-title: Remote Sensing of Environment
– volume: 54
  start-page: 547
  issue: 6
  year: 2004
  end-page: 560
  article-title: A continuous satellite‐derived measure of global terrestrial primary production
  publication-title: BioScience
– volume: 24
  start-page: 3603
  issue: 25
  year: 2010
  end-page: 3620
  article-title: Snowmelt energetics at a shrub tundra site in the western Canadian Arctic
  publication-title: Hydrological Processes
– volume: 223
  start-page: 95
  issue: January
  year: 2019
  end-page: 114
  article-title: What is global photosynthesis? History, uncertainties and opportunities
  publication-title: Remote Sensing of Environment
– volume: 317
  issue: June 2021
  year: 2022
  article-title: Gross primary production (GPP) and red solar induced fluorescence (SIF) respond differently to light and seasonal environmental conditions in a subalpine conifer forest
  publication-title: Agricultural and Forest Meteorology
– volume: 12
  start-page: 4973
  issue: 6
  year: 2015
  end-page: 5014
  article-title: Optical sampling of the flux tower footprint
  publication-title: Biogeosciences Discussions
– volume: 1817
  start-page: 182
  year: 2012
  end-page: 193
  article-title: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II
  publication-title: Biochimica et Biophysica Acta, Bioenergetics
– volume: 10
  start-page: 106
  issue: 2
  year: 2020
  end-page: 117
  article-title: Complexity revealed in the greening of the Arctic
  publication-title: Nature Climate Change
– volume: 38
  start-page: 991
  issue: 6
  year: 2015
  end-page: 1007
  article-title: The space‐time continuum: The effects of elevated CO and temperature on trees and the importance of scaling
  publication-title: Plant, Cell & Environment
– volume: 94
  start-page: 14162
  year: 1997
  end-page: 14167
  article-title: The roles of specific xanthophylls in photoprotection
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  start-page: 4149
  issue: 13
  year: 2015
  end-page: 4159
  article-title: Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors
  publication-title: Biogeosciences
– volume: 226
  start-page: 1682
  issue: 6
  year: 2020
  end-page: 1695
  article-title: Tracking the phenology of photosynthesis using carotenoid‐sensitive and near‐infrared reflectance vegetation indices in a temperate evergreen and mixed deciduous forest
  publication-title: New Phytologist
– volume: 112
  start-page: 492
  year: 1997
  end-page: 501
  article-title: The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels
  publication-title: Oecologia
– ident: e_1_2_10_40_1
  doi: 10.1016/j.bbabio.2011.04.012
– ident: e_1_2_10_33_1
  doi: 10.1073/pnas.0506179102
– ident: e_1_2_10_72_1
  doi: 10.1111/nph.15934
– ident: e_1_2_10_90_1
  doi: 10.1016/j.agrformet.2022.108977
– ident: e_1_2_10_79_1
  doi: 10.1016/j.agrformet.2023.109600
– ident: e_1_2_10_50_1
  doi: 10.1002/hyp.9582
– ident: e_1_2_10_85_1
  doi: 10.1016/j.rse.2017.03.035
– ident: e_1_2_10_21_1
  doi: 10.1109/TMM.2016.2535356
– ident: e_1_2_10_61_1
  doi: 10.1002/hyp.6124
– ident: e_1_2_10_12_1
  doi: 10.1126/sciadv.abc7447
– ident: e_1_2_10_76_1
  doi: 10.1890/14‐0005.1
– ident: e_1_2_10_77_1
  doi: 10.1016/0034‐4257(79)90013‐0
– ident: e_1_2_10_16_1
  doi: 10.1016/S1360‐1385(96)80019‐7
– ident: e_1_2_10_28_1
  doi: 10.5194/bg‐12‐4149‐2015
– ident: e_1_2_10_74_1
– ident: e_1_2_10_35_1
  doi: 10.1016/j.rse.2013.01.010
– ident: e_1_2_10_2_1
  doi: 10.1055/s-2002-35434
– ident: e_1_2_10_68_1
  doi: 10.1016/j.rse.2019.01.016
– ident: e_1_2_10_78_1
  doi: 10.1088/1748‐9326/9/6/064016
– ident: e_1_2_10_93_1
  doi: 10.1016/j.agrformet.2022.108904
– ident: e_1_2_10_5_1
  doi: 10.1016/j.rse.2015.12.017
– ident: e_1_2_10_86_1
  doi: 10.1111/nph.16479
– ident: e_1_2_10_56_1
  doi: 10.1073/pnas.94.25.14162
– ident: e_1_2_10_25_1
  doi: 10.2307/1942049
– ident: e_1_2_10_38_1
  doi: 10.1016/j.agrformet.2015.08.247
– ident: e_1_2_10_60_1
  doi: 10.1088/1748‐9326/aca5a0
– ident: e_1_2_10_20_1
  doi: 10.1111/gcb.12804
– ident: e_1_2_10_66_1
  doi: 10.1111/gcb.15958
– ident: e_1_2_10_57_1
  doi: 10.1146/annurev.arplant.54.072402.115741
– ident: e_1_2_10_23_1
  doi: 10.1560/IJPS.60.1‐2.85
– ident: e_1_2_10_58_1
  doi: 10.1029/2021JG006588
– ident: e_1_2_10_92_1
  doi: 10.1016/j.rse.2019.111383
– ident: e_1_2_10_14_1
  doi: 10.1088/1748‐9326/ac9dae
– ident: e_1_2_10_18_1
  doi: 10.1111/j.1365‐2486.2006.01221.x
– start-page: 109
  volume-title: Hyperspectral remote sensing and spectral signature applications
  year: 2009
  ident: e_1_2_10_55_1
– ident: e_1_2_10_43_1
  doi: 10.3390/rs14143409
– volume-title: Version R2022b
  year: 2022
  ident: e_1_2_10_49_1
– ident: e_1_2_10_63_1
  doi: 10.1093/pnasnexus/pgac131
– ident: e_1_2_10_10_1
  doi: 10.1002/fee.1222
– ident: e_1_2_10_73_1
  doi: 10.3189/172756410791386535
– ident: e_1_2_10_17_1
  doi: 10.1038/s41586‐022‐05093‐2
– ident: e_1_2_10_89_1
  doi: 10.1111/nph.13159
– ident: e_1_2_10_8_1
  doi: 10.1126/science.1155121
– ident: e_1_2_10_46_1
  doi: 10.1016/j.agrformet.2010.08.002
– ident: e_1_2_10_71_1
  doi: 10.1111/gcb.12822
– ident: e_1_2_10_32_1
  doi: 10.1109/LGRS.2011.2180505
– ident: e_1_2_10_19_1
  doi: 10.3390/s110807678
– ident: e_1_2_10_59_1
  doi: 10.1029/2020JG006191
– ident: e_1_2_10_9_1
  doi: 10.1139/Er‐2013‐0040
– volume-title: Fourth assessment report
  year: 2007
  ident: e_1_2_10_39_1
– ident: e_1_2_10_51_1
  doi: 10.3389/ffgc.2020.613523
– ident: e_1_2_10_94_1
  doi: 10.1029/2019JG005624
– ident: e_1_2_10_52_1
  doi: 10.1002/ece3.710
– ident: e_1_2_10_45_1
  doi: 10.1111/j.1365‐2486.2012.02678.x
– ident: e_1_2_10_80_1
– ident: e_1_2_10_88_1
  doi: 10.1111/nph.13251
– ident: e_1_2_10_29_1
  doi: 10.1016/0034‐4257(92)90059‐S
– ident: e_1_2_10_44_1
  doi: 10.1016/j.cageo.2004.05.006
– ident: e_1_2_10_11_1
  doi: 10.1029/2007EO340001
– ident: e_1_2_10_15_1
  doi: 10.1080/01431169408954345
– ident: e_1_2_10_31_1
  doi: 10.1016/j.rse.2010.08.023
– ident: e_1_2_10_6_1
  doi: 10.3390/rs13051036
– ident: e_1_2_10_7_1
  doi: 10.1007/s13280‐016‐0770‐0
– ident: e_1_2_10_62_1
  doi: 10.1002/hyp.1228
– ident: e_1_2_10_13_1
  doi: 10.1016/j.rse.2021.112399
– ident: e_1_2_10_95_1
  doi: 10.1038/s43017‐022‐00298‐5
– ident: e_1_2_10_37_1
  doi: 10.1016/S0034‐4257(02)00096‐2
– ident: e_1_2_10_69_1
  doi: 10.1080/19479832.2019.1582561
– ident: e_1_2_10_54_1
  doi: 10.1038/386698a0
– ident: e_1_2_10_4_1
  doi: 10.1126/sciadv.1602244
– ident: e_1_2_10_64_1
  doi: 10.1111/j.1365-2486.2011.02562.x
– ident: e_1_2_10_67_1
  doi: 10.1641/0006‐3568(2004)054[0547:ACSMOG]2.0.CO;2
– ident: e_1_2_10_36_1
  doi: 10.1111/pce.12171
– ident: e_1_2_10_65_1
– ident: e_1_2_10_3_1
  doi: 10.1111/gcb.14729
– ident: e_1_2_10_47_1
  doi: 10.1016/j.rse.2019.111222
– ident: e_1_2_10_26_1
  doi: 10.1016/j.rse.2012.10.030
– ident: e_1_2_10_75_1
  doi: 10.3390/rs9070691
– ident: e_1_2_10_34_1
  doi: 10.1080/01431160110113881
– ident: e_1_2_10_83_1
  doi: 10.1093/treephys/tpq015
– ident: e_1_2_10_91_1
  doi: 10.1016/j.rse.2014.03.001
– ident: e_1_2_10_22_1
  doi: 10.5194/bgd‐12‐4973‐2015
– ident: e_1_2_10_24_1
  doi: 10.1016/j.rse.2006.04.006
– ident: e_1_2_10_27_1
  doi: 10.1073/pnas.1606162113
– ident: e_1_2_10_84_1
  doi: 10.1111/pce.12527
– ident: e_1_2_10_53_1
  doi: 10.1038/s41558‐019‐0688‐1
– ident: e_1_2_10_81_1
– ident: e_1_2_10_48_1
  doi: 10.1002/hyp.7786
– ident: e_1_2_10_82_1
  doi: 10.1109/JSTARS.2018.2810094
– ident: e_1_2_10_42_1
  doi: 10.1016/j.rse.2017.06.015
– ident: e_1_2_10_87_1
  doi: 10.1016/j.rse.2019.111407
– ident: e_1_2_10_41_1
  doi: 10.1016/j.rse.2014.07.010
– ident: e_1_2_10_70_1
  doi: 10.1029/2012JG001960
– ident: e_1_2_10_30_1
  doi: 10.1007/s004420050337
SSID ssj0003206
Score 2.4983447
Snippet Located at northern latitudes and subject to large seasonal temperature fluctuations, boreal forests are sensitive to the changing climate, with evidence for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6120
SubjectTerms Albedo
Alberta
altitude
Biological Sciences
Boreal forests
Carotenoids
Chlorophyll
chlorophyll/carotenoid index (CCI)
Chlorophylls
climate
Climate change
Coniferous forests
deciduous
Deciduous forests
Deciduous trees
ecosystems
Environmental changes
Environmental conditions
evergreen
Evergreen trees
Forests
Functional groups
global change
Latitude
leaf reflectance
Monitoring
NDVI
normalized difference vegetation index
Normalized difference vegetative index
Optical communication
photochemical reflectance index (PRI)
Photochemicals
Photochemistry
Photosynthesis
Plant species
Productivity
Reflectance
Remote observing
Remote sensing
Satellites
Snow
Snow cover
snowpack
Spectral reflectance
Taiga
temperature
Tracking
Trees
Vegetation
Vegetation type
vegetation types
Title Confounding effects of snow cover on remotely sensed vegetation indices of evergreen and deciduous trees: An experimental study
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16916
https://www.proquest.com/docview/2872020957
https://www.proquest.com/docview/2852630934
https://www.proquest.com/docview/3040362684
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qQfDFH6fF01pGEelLjiS7yW70qR6tRaiIWOiDEPZXjtIjkcudUl_8153ZJHenWBDfEvKFbLIzu99mZ75h7KWSSnilRCSV5RHVuIq05jLK0KDj1HlckVG-89mH_PRcvL_ILnbYmyEXptOHWP9wI88I4zU5uDbtlpPPrJmQ0gvJbVOsFhGiTxvpKJ6GupoJzwQONQnvVYUoimd95-9z0YZgbtPUMM-c3GNfhhZ24SVXk9XSTOyPP8Qb__MV7rO7Pf-Eo85gHrAdX4_Y7a4i5fWI7R1vEt8Q1nt-O2LjM2TXzSLA4BVM55dIdcPZQ_aT0gapPBNOg9AHiEBTQVs338FSjCg0NSw8WoWfX0OLK2fv4Juf9aGOQPvm-BS6xyN6RrFAoGsHzttLt2pWLdDmefsajmrYrkkAQR33ETs_Of48PY36wg6R5YXKI1PJRKfc5DzWhbUmdol03FaFpaQhE5tUuEIYkUpfiEqnShc4MCnjKilihwR1j-3WTe0fM9BJZpA1Oit5LpQpFK-stZlFWiulSd2YHQ5dXNpe9ZyKb8zLYfWDnVCGThizF2vo107q42-g_cFOyt7b2xJXnSnS7iKTY_Z8fRn9lDZfdO3xMyEmS3PadhY3YziOqCQPpBBzGAzn5oaU76Zvw8GTf4c-ZXewnbxLpdxnu8vFyj9DTrU0B-xWKj4eBBf6BbTTH2U
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VIgSXAoGKlAILQqgXR7Z37V0jLiVqCdD0gFqpF2R5PxxVRDaKE1C58NeZWTsfICohbrHyLG-yM7tvvDNvAF4qqYRTSgRSGR5Qj6ugKLgMEjToMLYOIzKqdx6fpqNz8eEiudiCN8tamFYfYvXCjTzDr9fk4PRCesPLJ0YPSOolvQE3qaO3D6g-rcWjeOw7a0Y8EbjYRLzTFaI8ntWtv-9Ga4q5SVT9TnN8Fz4vx9gmmHwZLOZ6YH78Id_4vz_iHux0FJQdtjZzH7Zc1YNbbVPKqx7sHq1r3xDWOX_Tg_4YCXY98zD2ig2nl8h2_dUD-EmVg9ShCXdC1uWIsLpkTVV_Z4bSRFldsZlDw3DTK9Zg8Ows--YmXbYjo6NzfArd4xA9oXQgVlSWWWcu7aJeNIzOz5vX7LBim20JmBfIfQjnx0dnw1HQ9XYIDM9UGuhSRkXMdcrDIjNGhzaSlpsyM1Q3pEMdC5sJLWLpMlEWsSoyXJuUtqUUoUWOugvbVV25R8CKKNFIHK2RPBVKZ4qXxpjEILOVUse2DwfLOc5NJ3xO_Tem-TIAwknI_ST04cUK-rVV-_gbaH9pKHnn8E2OgWeMzDtLZB-er75GV6Xzl6Jy-DchJolTOnkW12M4LqqkEKQQc-At5_qB5O-Gb_2HvX-HPoPbo7PxSX7y_vTjY7iDY-ZtZeU-bM9nC_cEKdZcP_We9AvFtiKp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRfGl6mnxatVVRPqSI8lusht9qtee9aNFxEIfhJD9yFE8knK5U-qL_7ozm9yHYkF8S8gvZJOd2f1tduY3AM-VVMIpJQKpDA-oxlVQFFwGCRp0GFuHKzLKdz4-SY9Oxbuz5GwDXi1yYVp9iOUPN_IMP16Tg1_Ycs3Jx0YPSOklvQbXRRoqMumDTyvtKB77wpoRTwSONRHvZIUojGd56--T0YphrvNUP9GMbsOXRRPb-JKvg_lMD8yPP9Qb__Md7sBWR0DZfmsxd2HDVT240ZakvOzB9uEq8w1hnes3PegfI72upx7GXrDh5By5rj-7Bz8pb5DqM-E8yLoIEVaXrKnq78xQkCirKzZ1aBZucskaXDo7y765cRfryGjjHJ9C9zhEjykYiBWVZdaZczuv5w2j3fPmJduv2HpRAublce_D6ejw8_Ao6Co7BIZnKg10KaMi5jrlYZEZo0MbSctNmRnKGtKhjoXNhBaxdJkoi1gVGY5MSttSitAiQ92Gzaqu3ANgRZRopI3WSJ4KpTPFS2NMYpDXSqlj24e9RRfnppM9p-obk3yx_MFOyH0n9OHZEnrRan38DbS7sJO8c_cmx2VnjLw7S2Qfni4vo6PS7ktROfxMiEnilPadxdUYjkMq6QMpxOx5w7m6Ifmb4Wt_sPPv0Cdw8-PBKP_w9uT9Q7iFTeZtWuUubM6mc_cI-dVMP_Z-9AtoISFh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confounding+effects+of+snow+cover+on+remotely+sensed+vegetation+indices+of+evergreen+and+deciduous+trees%3A+An+experimental+study&rft.jtitle=Global+change+biology&rft.au=Wang%2C+Ran&rft.au=Springer%2C+Kyle+R&rft.au=Gamon%2C+John+A&rft.date=2023-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=29&rft.issue=21&rft.spage=6120&rft.epage=6138&rft_id=info:doi/10.1111%2Fgcb.16916&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon