Interconnected Lamellar 3D Semiconductive PCP for Rechargeable Aqueous Zinc Battery Cathodes

2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the c...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 10; pp. e2411386 - n/a
Main Authors Lin, Zirui, Otake, Ken‐ichi, Kajiwara, Takashi, Hiraide, Shotaro, Nurhuda, Maryam, Packwood, Daniel, Kadota, Kentaro, Sakamoto, Hirotoshi, Kawaguchi, Shogo, Kubota, Yoshiki, Yao, Ming‐Shui, Horike, Satoshi, Sun, Xiaoqi, Kitagawa, Susumu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g−1) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g−1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π‐conjugated EC‐MOFs and the study of cathode materials for RAZBs. VO‐HHTP, a 2D electronically conductive metal–organic framework (EC‐MOF) featuring vanadyl oxide (VO2+) centers and 2,3,6,7,10,11‐hexahydroxytriphenylene (HHTP) ligands, achieves robust interlayer interactions and organized stacking. This innovative structure significantly boosts its performance as a cathode for rechargeable aqueous zinc batteries, delivering higher capacity, superior rate capability, and enhanced cycling stability, surpassing existing materials.
AbstractList 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO) 3 (HHTP) 2 , hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO 6 chains and exhibits a relatively high specific surface area (ca. 590 m 2  g −1 ) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g −1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π ‐conjugated EC‐MOFs and the study of cathode materials for RAZBs.
2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g−1) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g−1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π‐conjugated EC‐MOFs and the study of cathode materials for RAZBs.
2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g−1) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g−1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π‐conjugated EC‐MOFs and the study of cathode materials for RAZBs. VO‐HHTP, a 2D electronically conductive metal–organic framework (EC‐MOF) featuring vanadyl oxide (VO2+) centers and 2,3,6,7,10,11‐hexahydroxytriphenylene (HHTP) ligands, achieves robust interlayer interactions and organized stacking. This innovative structure significantly boosts its performance as a cathode for rechargeable aqueous zinc batteries, delivering higher capacity, superior rate capability, and enhanced cycling stability, surpassing existing materials.
2D electronically conductive porous coordination polymers/metal-organic frameworks (2D EC-MOFs) of M-HHTPs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal-ion bridge strategy is newly adopted and a vanadyl counterpart of M-HHTP is synthesized with a chemical formula of (VO) (HHTP) , hereafter referred to as VO-HHTP. The semiconductor VO-HHTP has a vertical interconnection by octahedral VO chains and exhibits a relatively high specific surface area (ca. 590 m  g ) compared to other 2D EC-MOFs. Motivated by its redox activity and porous nature, VO-HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO-HHTP demonstrates a high capacity of 240 mAh g and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC-MOFs. Furthermore, its stable structure ensures long-term cycling stability, addressing a common issue in previous EC-MOFs. The work contributes to the development of new concepts in both the design of π-conjugated EC-MOFs and the study of cathode materials for RAZBs.
2D electronically conductive porous coordination polymers/metal-organic frameworks (2D EC-MOFs) of M-HHTPs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal-ion bridge strategy is newly adopted and a vanadyl counterpart of M-HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO-HHTP. The semiconductor VO-HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g-1) compared to other 2D EC-MOFs. Motivated by its redox activity and porous nature, VO-HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO-HHTP demonstrates a high capacity of 240 mAh g-1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC-MOFs. Furthermore, its stable structure ensures long-term cycling stability, addressing a common issue in previous EC-MOFs. The work contributes to the development of new concepts in both the design of π-conjugated EC-MOFs and the study of cathode materials for RAZBs.2D electronically conductive porous coordination polymers/metal-organic frameworks (2D EC-MOFs) of M-HHTPs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal-ion bridge strategy is newly adopted and a vanadyl counterpart of M-HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO-HHTP. The semiconductor VO-HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g-1) compared to other 2D EC-MOFs. Motivated by its redox activity and porous nature, VO-HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO-HHTP demonstrates a high capacity of 240 mAh g-1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC-MOFs. Furthermore, its stable structure ensures long-term cycling stability, addressing a common issue in previous EC-MOFs. The work contributes to the development of new concepts in both the design of π-conjugated EC-MOFs and the study of cathode materials for RAZBs.
Author Lin, Zirui
Sakamoto, Hirotoshi
Kawaguchi, Shogo
Hiraide, Shotaro
Kajiwara, Takashi
Otake, Ken‐ichi
Kadota, Kentaro
Horike, Satoshi
Sun, Xiaoqi
Kubota, Yoshiki
Yao, Ming‐Shui
Packwood, Daniel
Kitagawa, Susumu
Nurhuda, Maryam
Author_xml – sequence: 1
  givenname: Zirui
  surname: Lin
  fullname: Lin, Zirui
  organization: China University of Mining and Technology
– sequence: 2
  givenname: Ken‐ichi
  orcidid: 0000-0002-7904-5003
  surname: Otake
  fullname: Otake, Ken‐ichi
  email: ootake.kenichi.8a@kyoto-u.ac.jp
  organization: Kyoto University
– sequence: 3
  givenname: Takashi
  orcidid: 0000-0003-2604-8195
  surname: Kajiwara
  fullname: Kajiwara, Takashi
  organization: Kyoto University
– sequence: 4
  givenname: Shotaro
  orcidid: 0000-0001-7853-1619
  surname: Hiraide
  fullname: Hiraide, Shotaro
  organization: Kyoto University
– sequence: 5
  givenname: Maryam
  surname: Nurhuda
  fullname: Nurhuda, Maryam
  organization: Kyoto University
– sequence: 6
  givenname: Daniel
  orcidid: 0000-0001-9387-728X
  surname: Packwood
  fullname: Packwood, Daniel
  organization: Kyoto University
– sequence: 7
  givenname: Kentaro
  orcidid: 0000-0002-6382-5101
  surname: Kadota
  fullname: Kadota, Kentaro
  organization: Kyoto University
– sequence: 8
  givenname: Hirotoshi
  orcidid: 0000-0002-0873-1321
  surname: Sakamoto
  fullname: Sakamoto, Hirotoshi
  organization: Kyoto University
– sequence: 9
  givenname: Shogo
  orcidid: 0000-0002-8498-0936
  surname: Kawaguchi
  fullname: Kawaguchi, Shogo
  organization: Japan Synchrotron Radiation Research Institute (JASRI)
– sequence: 10
  givenname: Yoshiki
  surname: Kubota
  fullname: Kubota, Yoshiki
  organization: Osaka Metropolitan University
– sequence: 11
  givenname: Ming‐Shui
  orcidid: 0000-0003-1604-2611
  surname: Yao
  fullname: Yao, Ming‐Shui
  organization: Chinese Academy of Sciences
– sequence: 12
  givenname: Satoshi
  orcidid: 0000-0001-8530-6364
  surname: Horike
  fullname: Horike, Satoshi
  organization: Kyoto University
– sequence: 13
  givenname: Xiaoqi
  surname: Sun
  fullname: Sun, Xiaoqi
  email: sunxiaoqi@mail.neu.edu.cn
  organization: Northeastern University
– sequence: 14
  givenname: Susumu
  orcidid: 0000-0001-6956-9543
  surname: Kitagawa
  fullname: Kitagawa, Susumu
  email: kitagawa@icems.kyoto-u.ac.jp
  organization: Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39887633$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLHEEQxhsx-MzVY2jw4mU3_Zp-HHV9wgRFk0sQht7u6jgyj7V7Rtn_Pr2sbiAXT1VQv6_4qr59tN31HSB0RMmUEsK-p7ZppowwQSnXcgvtUUn5RGpmtjc9JbtoP6VnQjhlQu2gXW60VpLzPfR40w0QXd914AbwuLQtNI2NmJ_jB2jrPPGjG-pXwHezOxz6iO_BPdn4B-y8AXz6MkI_Jvy77hw-s0NetsQzOzz1HtIh-hJsk-Drez1Avy4vfs6uJ-Xt1c3stJy4bEROjJeBeeZVgILQwgVRmBCs8wooFSHM-VwHZTQ4qoMAESwxQnlBmdK6sI4foJP13kXss580VG2d3OqObmWu4vkRhkpTsIwe_4c-92PssrtMKcm04lJk6ts7Nc5b8NUi1q2Ny-rjbxmYrgEX-5QihA1CSbUKploFU22CyQKzFrzVDSw_oauHH2X5T_sXEQeREA
Cites_doi 10.1021/jacs.0c09379
10.1039/D0SC03048A
10.1038/s41467-018-04949-4
10.1002/anie.201908853
10.1038/nmat4766
10.1038/s41467-022-30687-9
10.1021/acsnano.1c10838
10.1002/anie.202405168
10.1021/ja502765n
10.1021/j100458a023
10.1016/j.ccr.2022.214459
10.1021/jacs.0c09573
10.1002/anie.201709558
10.1039/D0NR06396G
10.1021/cm301194a
10.1038/nenergy.2016.39
10.1021/jacs.7b07234
10.1016/j.chempr.2019.04.013
10.1002/smll.202301578
10.1038/s41467-019-12857-4
10.1021/acsmeasuresciau.2c00070
10.1038/s41560-017-0044-5
10.1002/anie.202405239
10.1016/0926-860X(95)00067-4
10.1021/jacsau.1c00346
10.1002/jrs.1250180606
10.1021/jacs.7b08102
10.1038/s41467-018-04060-8
10.1038/ncomms10942
10.1002/adma.201704291
10.1021/acs.jpcc.2c05979
10.1149/1.1862265
10.1107/S1600577524003539
10.1016/j.ensm.2020.08.027
10.1039/f19888402987
10.1021/acsnano.2c11974
10.1021/jacs.8b06666
10.1016/j.nanoen.2019.103935
10.1021/jacs.8b06020
10.3891/acta.chem.scand.49-0703
10.1002/adma.202305532
10.1002/anie.201807121
10.1021/jp074464w
10.1039/D2TA01621D
10.1021/acs.chemrev.9b00766
10.1021/acs.chemrev.1c00237
10.1016/j.joule.2017.07.018
10.1002/anie.201411854
10.1002/adma.202103617
10.1002/aenm.202102819
10.1021/jacs.7b05742
10.1002/anie.201909096
10.1126/science.aav7911
10.1021/ja312380b
10.1107/S0021889813005190
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202411386
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 39887633
10_1002_smll_202411386
SMLL202411386
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Aichi Synchrotron Radiation Center
  funderid: 202303067
– fundername: KAKENHI Grant‐in‐Aid for Scientific Research
  funderid: JP22H05005
– fundername: Research Fund of State Key Laboratory of Mesoscience and Engineering
  funderid: MESO‐23‐A07; MESO‐23‐T02
– fundername: Japan Society for the Promotion of Science
  funderid: JP22K05128
– fundername: Chinese Scholarship Council
  funderid: 202206080059
– fundername: Japan Synchrotron Radiation Research Institute
  funderid: 2022A2070; 2023A1715; 2023B1653; 2023B1881; 2023B1850
– fundername: Japan Synchrotron Radiation Research Institute
  grantid: 2023A1715
– fundername: Japan Synchrotron Radiation Research Institute
  grantid: 2023B1850
– fundername: Chinese Scholarship Council
  grantid: 202206080059
– fundername: Japan Synchrotron Radiation Research Institute
  grantid: 2023B1881
– fundername: Research Fund of State Key Laboratory of Mesoscience and Engineering
  grantid: MESO-23-A07
– fundername: KAKENHI Grant-in-Aid for Scientific Research
  grantid: JP22H05005
– fundername: Research Fund of State Key Laboratory of Mesoscience and Engineering
  grantid: MESO-23-T02
– fundername: Japan Society for the Promotion of Science
  grantid: JP22K05128
– fundername: Japan Synchrotron Radiation Research Institute
  grantid: 2022A2070
– fundername: Japan Synchrotron Radiation Research Institute
  grantid: 2023B1653
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
31~
53G
AAMMB
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3986-9d6f2d2d7fe5015cf459ffacd7e114ffb3b8f798ec18f4e4fa0947d4127885ac3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 02:14:35 EDT 2025
Fri Jul 25 11:59:53 EDT 2025
Mon Jul 21 05:50:58 EDT 2025
Sun Jul 06 05:04:45 EDT 2025
Wed Mar 12 09:40:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords cathode materials
aqueous zinc batteries
metal–organic frameworks
porous coordination polymers
semiconductors
Language English
License 2025 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3986-9d6f2d2d7fe5015cf459ffacd7e114ffb3b8f798ec18f4e4fa0947d4127885ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7853-1619
0000-0001-6956-9543
0000-0003-2604-8195
0000-0001-9387-728X
0000-0002-7904-5003
0000-0002-0873-1321
0000-0002-6382-5101
0000-0001-8530-6364
0000-0002-8498-0936
0000-0003-1604-2611
PMID 39887633
PQID 3176287364
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_3161916952
proquest_journals_3176287364
pubmed_primary_39887633
crossref_primary_10_1002_smll_202411386
wiley_primary_10_1002_smll_202411386_SMLL202411386
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021 2019 2018; 33 58 57
2020 2014; 59 136
2019 2023; 10 35
1995 2022 2005; 49 126 152
2020; 33
2023; 3
2013 2024; 46 31
2021; 1
2019 2021 2013 2017; 5 11 135 139
2016 2018 2018; 1 9 9
2017 2018 2023 2024 2024; 16 3 19 63 63
2019; 364
2020 2021 2012 2018 2017 2017 2015 2017 2018 2018; 120 13 24 30 139 1 54 139 140 140
2016; 7
2022; 460
2023 2019; 17 64
2020 2020; 142 142
2007; 111
2017; 56
2022; 13
1995; 127
2022 2022 2020; 122 10 11
1988; 84
2022; 16
1980 1987; 84 18
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_5_7
e_1_2_8_5_6
e_1_2_8_9_2
e_1_2_8_5_9
e_1_2_8_5_8
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_5_10
e_1_2_8_3_5
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_5_5
e_1_2_8_9_1
e_1_2_8_5_4
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_15_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_25_3
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_14_3
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_10_3
e_1_2_8_12_1
References_xml – volume: 84
  start-page: 2987
  year: 1988
  publication-title: J. Chem. Soc., Faraday Trans. 1
– volume: 142 142
  year: 2020 2020
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 16
  start-page: 3145
  year: 2022
  publication-title: ACS Nano
– volume: 10 35
  start-page: 4948
  year: 2019 2023
  publication-title: Nat. Commun. Adv. Mater.
– volume: 33
  start-page: 283
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 46 31
  start-page: 560 955
  year: 2013 2024
  publication-title: J. Appl. Crystallogr. J. Synchrotron Rad.
– volume: 120 13 24 30 139 1 54 139 140 140
  start-page: 8536 485 3511 168 4349
  year: 2020 2021 2012 2018 2017 2017 2015 2017 2018 2018
  publication-title: Chem. Rev. Nanoscale Chem. Mater. Adv. Mater. J. Am. Chem. Soc. Joule Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 127
  start-page: 125
  year: 1995
  publication-title: Appl. Catal. A‐G
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 1 9 9
  start-page: 1656 2906
  year: 2016 2018 2018
  publication-title: Nat. Energy Nat. Commun. Nat. Commun.
– volume: 1
  start-page: 2216
  year: 2021
  publication-title: JACS Au
– volume: 33 58 57
  year: 2021 2019 2018
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 49 126 152
  start-page: 703 A721
  year: 1995 2022 2005
  publication-title: Acta Chem. Scand. J. Phys. Chem. C J. Electrochem. Soc.
– volume: 59 136
  start-page: 172 8859
  year: 2020 2014
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 16 3 19 63 63
  start-page: 220 30
  year: 2017 2018 2023 2024 2024
  publication-title: Nat. Mater. Nat. Energy Small Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 3
  start-page: 162
  year: 2023
  publication-title: ACS Meas. Sci. Au.
– volume: 364
  start-page: 475
  year: 2019
  publication-title: Science
– volume: 111
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 17 64
  start-page: 3077
  year: 2023 2019
  publication-title: ACS Nano Nano Energy
– volume: 460
  year: 2022
  publication-title: Coordin. Chem. Rev.
– volume: 84 18
  start-page: 2783 405
  year: 1980 1987
  publication-title: J. Phys. Chem. J. Raman Spectrosc.
– volume: 13
  start-page: 2991
  year: 2022
  publication-title: Nat. Commun.
– volume: 122 10 11
  start-page: 1208
  year: 2022 2022 2020
  publication-title: Chem. Rev. J. Mater. Chem. A Chem. Sci.
– volume: 5 11 135 139
  start-page: 1938 2462
  year: 2019 2021 2013 2017
  publication-title: Chem Adv. Energy Mater. J. Am. Chem. Soc. J. Am. Chem. Soc.
– ident: e_1_2_8_9_1
  doi: 10.1021/jacs.0c09379
– ident: e_1_2_8_14_3
  doi: 10.1039/D0SC03048A
– ident: e_1_2_8_25_3
  doi: 10.1038/s41467-018-04949-4
– ident: e_1_2_8_22_2
  doi: 10.1002/anie.201908853
– ident: e_1_2_8_3_1
  doi: 10.1038/nmat4766
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-022-30687-9
– ident: e_1_2_8_8_1
  doi: 10.1021/acsnano.1c10838
– ident: e_1_2_8_3_4
  doi: 10.1002/anie.202405168
– ident: e_1_2_8_11_2
  doi: 10.1021/ja502765n
– ident: e_1_2_8_12_1
  doi: 10.1021/j100458a023
– ident: e_1_2_8_21_1
  doi: 10.1016/j.ccr.2022.214459
– ident: e_1_2_8_9_2
  doi: 10.1021/jacs.0c09573
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.201709558
– ident: e_1_2_8_5_2
  doi: 10.1039/D0NR06396G
– ident: e_1_2_8_5_3
  doi: 10.1021/cm301194a
– ident: e_1_2_8_25_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_8_5_8
  doi: 10.1021/jacs.7b07234
– ident: e_1_2_8_1_1
  doi: 10.1016/j.chempr.2019.04.013
– ident: e_1_2_8_3_3
  doi: 10.1002/smll.202301578
– ident: e_1_2_8_6_1
  doi: 10.1038/s41467-019-12857-4
– ident: e_1_2_8_20_1
  doi: 10.1021/acsmeasuresciau.2c00070
– ident: e_1_2_8_3_2
  doi: 10.1038/s41560-017-0044-5
– ident: e_1_2_8_3_5
  doi: 10.1002/anie.202405239
– ident: e_1_2_8_16_1
  doi: 10.1016/0926-860X(95)00067-4
– ident: e_1_2_8_18_1
  doi: 10.1021/jacsau.1c00346
– ident: e_1_2_8_12_2
  doi: 10.1002/jrs.1250180606
– ident: e_1_2_8_5_5
  doi: 10.1021/jacs.7b08102
– ident: e_1_2_8_25_2
  doi: 10.1038/s41467-018-04060-8
– ident: e_1_2_8_2_1
  doi: 10.1038/ncomms10942
– ident: e_1_2_8_5_4
  doi: 10.1002/adma.201704291
– ident: e_1_2_8_10_2
  doi: 10.1021/acs.jpcc.2c05979
– ident: e_1_2_8_10_3
  doi: 10.1149/1.1862265
– ident: e_1_2_8_13_2
  doi: 10.1107/S1600577524003539
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ensm.2020.08.027
– ident: e_1_2_8_17_1
  doi: 10.1039/f19888402987
– ident: e_1_2_8_7_1
  doi: 10.1021/acsnano.2c11974
– ident: e_1_2_8_5_10
  doi: 10.1021/jacs.8b06666
– ident: e_1_2_8_7_2
  doi: 10.1016/j.nanoen.2019.103935
– ident: e_1_2_8_5_9
  doi: 10.1021/jacs.8b06020
– ident: e_1_2_8_10_1
  doi: 10.3891/acta.chem.scand.49-0703
– ident: e_1_2_8_6_2
  doi: 10.1002/adma.202305532
– ident: e_1_2_8_22_3
  doi: 10.1002/anie.201807121
– ident: e_1_2_8_24_1
  doi: 10.1021/jp074464w
– ident: e_1_2_8_14_2
  doi: 10.1039/D2TA01621D
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.chemrev.9b00766
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.chemrev.1c00237
– ident: e_1_2_8_5_6
  doi: 10.1016/j.joule.2017.07.018
– ident: e_1_2_8_5_7
  doi: 10.1002/anie.201411854
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.202103617
– ident: e_1_2_8_1_2
  doi: 10.1002/aenm.202102819
– ident: e_1_2_8_1_4
  doi: 10.1021/jacs.7b05742
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.201909096
– ident: e_1_2_8_19_1
  doi: 10.1126/science.aav7911
– ident: e_1_2_8_1_3
  doi: 10.1021/ja312380b
– ident: e_1_2_8_13_1
  doi: 10.1107/S0021889813005190
SSID ssj0031247
Score 2.4650388
Snippet 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M =...
2D electronically conductive porous coordination polymers/metal-organic frameworks (2D EC-MOFs) of M-HHTPs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene; M =...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2411386
SubjectTerms aqueous zinc batteries
cathode materials
Cathodes
Chemical synthesis
Coordination polymers
Electrode materials
Metal-organic frameworks
porous coordination polymers
Rechargeable batteries
semiconductors
Specific surface
Stability
Surface area
Zinc
Title Interconnected Lamellar 3D Semiconductive PCP for Rechargeable Aqueous Zinc Battery Cathodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202411386
https://www.ncbi.nlm.nih.gov/pubmed/39887633
https://www.proquest.com/docview/3176287364
https://www.proquest.com/docview/3161916952
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9Kn9qHrR_78NYVFQZ7chNLtiU_lnYhlKSEpYEyBkaSJShtnVEnD91f3zs7cZP2YdA-GltYp9Ppfifd_QTwvbBJJK1WIYYKtHWjfKgQ94fOKOWksamta6uGF2l_Ep9fJVcrVfwNP0S74UaWUa_XZODaVJ0n0tDq7paODtADRUIR5zYlbBEq-tXyRwl0XvXtKuizQiLeWrI2dnlnvfm6V3oBNdeRa-16eu9BLzvdZJzcHM9n5tj-e8bn-BapduDdApeyk2Yi7cKGK_dge4WtcB_-1LuHljJjLOJUNtB3lDp1z8QZG1OO_bQk8lhcPtnodMQQDTMEpcTE5Kg-i52gtNN5xX5fl5Y1vJ4PjCoQp4WrPsCk9_PytB8uLmcIrchUGmZF6nnBC-ldgpDC-jjJvNe2kA5DLO-NMMrLTDkbKR-72GsMJGURRxyD7kRb8RE2y2npPgPLCiV85NOu1BbxkVAm485I00147DNpA_ixVE7-t-HgyBu2ZZ7TeOXteAVwsNRdvrDFKkeElGJcKNI4gKP2NVoRHY3okiTHbzCQjNIs4QF8anTe_grFJdo-EQCvNfefPuTj4WDQPn15TaOvsMXpmuE61e0ANmf3c_cNsc_MHNbz-xFfH_tP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAO5Q0pBYwE4pR2Yye2c-BQdam2NFtVtJUqVCnEji0haLZqdlWVf8Vf4Rcxk2wCCwckpB44Rnn5MeP5xp75BuBlaZNI2UKH6CrQ1o32oUbcHzqjtVPGStvkVo335OgofnecHC_Bty4XpuWH6DfcSDOa9ZoUnDakN36yhtanX-jsAE1QJLScx1XuussL9NrqNztDnOJXnG-_PdwahfPCAqEVqZZhWkrPS14q7xI0h9bHSep9YUvl0D3w3gijvUq1s5H2sYt9gU6QKuOIo8OYFFbgd6_BdSojTnT9w_c9Y5VAc9nUc0ErGRLVV8cTOeAbi-1dtIN_gNtFrNwYu-3b8L0bpjbG5fP6bGrW7dffGCT_q3G8Aytz6M02W125C0uuuge3fiFkvA8nzQappeAfi1CcZcUpRYedMzFkB5RGMKmIHxctBNvf2mcI-BnibiKbcpSCxjZxeCezmn34VFnWUpdeMkqynJSufgBHV9K9h7BcTSr3GFhaauEjLweqsAgBhTYpd0aZQcJjnyobwOtOGvKzlmYkbwmleU7zk_fzE8BaJyz5fLmpcwSBEl1fIeMAXvS3caGg05-iop7jM-grRzJNeACPWiHrf4XdJWZCEQBvROUvbcgPxlnWX63-y0vP4cbocJzl2c7e7hO4yamqchPZtwbL0_OZe4pQb2qeNcrF4ONVS-EPmWJbXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxRBEC5iBNGD78do1BYUT5PsdM_04-AhZF0SswmLMRAkMM70A0QzGzK7SPxV_hX_kVUzO6OrB0HIweMwr35UdX3VXfUVwHNns0TZQsfoKtDWjQ6xRtwf-1Jrr0orbZNbtbcvtw_TN0fZ0Qp863JhWn6IfsONNKNZr0nBT13Y-EkaWp98pqMDtECJ0HIRVrnrz7-g01a_2hniDL_gfPT63dZ2vKgrEFthtIyNk4E77lTwGVpDG9LMhFBYpzx6ByGUotRBGe1tokPq01CgD6RcmnD0F7PCCvzuJbicyoGhYhHDtz1hlUBr2ZRzQSMZE9NXRxM54BvL7V02g39g22Wo3Ni60Q343o1SG-LyaX0-K9ft198IJP-nYbwJ1xfAm222mnILVnx1G679Qsd4B46b7VFLoT8WgTgbFycUG3bGxJAdUBLBtCJ2XLQPbLI1YQj3GaJuoprylIDGNnF0p_Oavf9YWdYSl54zSrGcOl_fhcML6d49WK2mlX8AzDgtQhLkQBUWAaDQpeG-VOUg42kwykbwshOG_LQlGclbOmme0_zk_fxEsNbJSr5YbOocIaBEx1fINIJn_W1cJujsp6io5_gMesqJNBmP4H4rY_2vsLvESygi4I2k_KUN-cHeeNxfPfyXl57ClclwlI939ncfwVVOJZWbsL41WJ2dzf1jxHmz8kmjWgw-XLQQ_gAR3VoL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interconnected+Lamellar+3D+Semiconductive+PCP+for+Rechargeable+Aqueous+Zinc+Battery+Cathodes&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lin%2C+Zirui&rft.au=Otake%2C+Ken-Ichi&rft.au=Kajiwara%2C+Takashi&rft.au=Hiraide%2C+Shotaro&rft.date=2025-03-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=10&rft.spage=e2411386&rft_id=info:doi/10.1002%2Fsmll.202411386&rft_id=info%3Apmid%2F39887633&rft.externalDocID=39887633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon