Interconnected Lamellar 3D Semiconductive PCP for Rechargeable Aqueous Zinc Battery Cathodes
2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the c...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 21; no. 10; pp. e2411386 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g−1) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g−1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π‐conjugated EC‐MOFs and the study of cathode materials for RAZBs.
VO‐HHTP, a 2D electronically conductive metal–organic framework (EC‐MOF) featuring vanadyl oxide (VO2+) centers and 2,3,6,7,10,11‐hexahydroxytriphenylene (HHTP) ligands, achieves robust interlayer interactions and organized stacking. This innovative structure significantly boosts its performance as a cathode for rechargeable aqueous zinc batteries, delivering higher capacity, superior rate capability, and enhanced cycling stability, surpassing existing materials. |
---|---|
AbstractList | 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO) 3 (HHTP) 2 , hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO 6 chains and exhibits a relatively high specific surface area (ca. 590 m 2 g −1 ) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g −1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π ‐conjugated EC‐MOFs and the study of cathode materials for RAZBs. 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g−1) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g−1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π‐conjugated EC‐MOFs and the study of cathode materials for RAZBs. 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g−1) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g−1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π‐conjugated EC‐MOFs and the study of cathode materials for RAZBs. VO‐HHTP, a 2D electronically conductive metal–organic framework (EC‐MOF) featuring vanadyl oxide (VO2+) centers and 2,3,6,7,10,11‐hexahydroxytriphenylene (HHTP) ligands, achieves robust interlayer interactions and organized stacking. This innovative structure significantly boosts its performance as a cathode for rechargeable aqueous zinc batteries, delivering higher capacity, superior rate capability, and enhanced cycling stability, surpassing existing materials. 2D electronically conductive porous coordination polymers/metal-organic frameworks (2D EC-MOFs) of M-HHTPs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal-ion bridge strategy is newly adopted and a vanadyl counterpart of M-HHTP is synthesized with a chemical formula of (VO) (HHTP) , hereafter referred to as VO-HHTP. The semiconductor VO-HHTP has a vertical interconnection by octahedral VO chains and exhibits a relatively high specific surface area (ca. 590 m g ) compared to other 2D EC-MOFs. Motivated by its redox activity and porous nature, VO-HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO-HHTP demonstrates a high capacity of 240 mAh g and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC-MOFs. Furthermore, its stable structure ensures long-term cycling stability, addressing a common issue in previous EC-MOFs. The work contributes to the development of new concepts in both the design of π-conjugated EC-MOFs and the study of cathode materials for RAZBs. 2D electronically conductive porous coordination polymers/metal-organic frameworks (2D EC-MOFs) of M-HHTPs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal-ion bridge strategy is newly adopted and a vanadyl counterpart of M-HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO-HHTP. The semiconductor VO-HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g-1) compared to other 2D EC-MOFs. Motivated by its redox activity and porous nature, VO-HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO-HHTP demonstrates a high capacity of 240 mAh g-1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC-MOFs. Furthermore, its stable structure ensures long-term cycling stability, addressing a common issue in previous EC-MOFs. The work contributes to the development of new concepts in both the design of π-conjugated EC-MOFs and the study of cathode materials for RAZBs.2D electronically conductive porous coordination polymers/metal-organic frameworks (2D EC-MOFs) of M-HHTPs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal-ion bridge strategy is newly adopted and a vanadyl counterpart of M-HHTP is synthesized with a chemical formula of (VO)3(HHTP)2, hereafter referred to as VO-HHTP. The semiconductor VO-HHTP has a vertical interconnection by octahedral VO6 chains and exhibits a relatively high specific surface area (ca. 590 m2 g-1) compared to other 2D EC-MOFs. Motivated by its redox activity and porous nature, VO-HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO-HHTP demonstrates a high capacity of 240 mAh g-1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC-MOFs. Furthermore, its stable structure ensures long-term cycling stability, addressing a common issue in previous EC-MOFs. The work contributes to the development of new concepts in both the design of π-conjugated EC-MOFs and the study of cathode materials for RAZBs. |
Author | Lin, Zirui Sakamoto, Hirotoshi Kawaguchi, Shogo Hiraide, Shotaro Kajiwara, Takashi Otake, Ken‐ichi Kadota, Kentaro Horike, Satoshi Sun, Xiaoqi Kubota, Yoshiki Yao, Ming‐Shui Packwood, Daniel Kitagawa, Susumu Nurhuda, Maryam |
Author_xml | – sequence: 1 givenname: Zirui surname: Lin fullname: Lin, Zirui organization: China University of Mining and Technology – sequence: 2 givenname: Ken‐ichi orcidid: 0000-0002-7904-5003 surname: Otake fullname: Otake, Ken‐ichi email: ootake.kenichi.8a@kyoto-u.ac.jp organization: Kyoto University – sequence: 3 givenname: Takashi orcidid: 0000-0003-2604-8195 surname: Kajiwara fullname: Kajiwara, Takashi organization: Kyoto University – sequence: 4 givenname: Shotaro orcidid: 0000-0001-7853-1619 surname: Hiraide fullname: Hiraide, Shotaro organization: Kyoto University – sequence: 5 givenname: Maryam surname: Nurhuda fullname: Nurhuda, Maryam organization: Kyoto University – sequence: 6 givenname: Daniel orcidid: 0000-0001-9387-728X surname: Packwood fullname: Packwood, Daniel organization: Kyoto University – sequence: 7 givenname: Kentaro orcidid: 0000-0002-6382-5101 surname: Kadota fullname: Kadota, Kentaro organization: Kyoto University – sequence: 8 givenname: Hirotoshi orcidid: 0000-0002-0873-1321 surname: Sakamoto fullname: Sakamoto, Hirotoshi organization: Kyoto University – sequence: 9 givenname: Shogo orcidid: 0000-0002-8498-0936 surname: Kawaguchi fullname: Kawaguchi, Shogo organization: Japan Synchrotron Radiation Research Institute (JASRI) – sequence: 10 givenname: Yoshiki surname: Kubota fullname: Kubota, Yoshiki organization: Osaka Metropolitan University – sequence: 11 givenname: Ming‐Shui orcidid: 0000-0003-1604-2611 surname: Yao fullname: Yao, Ming‐Shui organization: Chinese Academy of Sciences – sequence: 12 givenname: Satoshi orcidid: 0000-0001-8530-6364 surname: Horike fullname: Horike, Satoshi organization: Kyoto University – sequence: 13 givenname: Xiaoqi surname: Sun fullname: Sun, Xiaoqi email: sunxiaoqi@mail.neu.edu.cn organization: Northeastern University – sequence: 14 givenname: Susumu orcidid: 0000-0001-6956-9543 surname: Kitagawa fullname: Kitagawa, Susumu email: kitagawa@icems.kyoto-u.ac.jp organization: Kyoto University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39887633$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLHEEQxhsx-MzVY2jw4mU3_Zp-HHV9wgRFk0sQht7u6jgyj7V7Rtn_Pr2sbiAXT1VQv6_4qr59tN31HSB0RMmUEsK-p7ZppowwQSnXcgvtUUn5RGpmtjc9JbtoP6VnQjhlQu2gXW60VpLzPfR40w0QXd914AbwuLQtNI2NmJ_jB2jrPPGjG-pXwHezOxz6iO_BPdn4B-y8AXz6MkI_Jvy77hw-s0NetsQzOzz1HtIh-hJsk-Drez1Avy4vfs6uJ-Xt1c3stJy4bEROjJeBeeZVgILQwgVRmBCs8wooFSHM-VwHZTQ4qoMAESwxQnlBmdK6sI4foJP13kXss580VG2d3OqObmWu4vkRhkpTsIwe_4c-92PssrtMKcm04lJk6ts7Nc5b8NUi1q2Ny-rjbxmYrgEX-5QihA1CSbUKploFU22CyQKzFrzVDSw_oauHH2X5T_sXEQeREA |
Cites_doi | 10.1021/jacs.0c09379 10.1039/D0SC03048A 10.1038/s41467-018-04949-4 10.1002/anie.201908853 10.1038/nmat4766 10.1038/s41467-022-30687-9 10.1021/acsnano.1c10838 10.1002/anie.202405168 10.1021/ja502765n 10.1021/j100458a023 10.1016/j.ccr.2022.214459 10.1021/jacs.0c09573 10.1002/anie.201709558 10.1039/D0NR06396G 10.1021/cm301194a 10.1038/nenergy.2016.39 10.1021/jacs.7b07234 10.1016/j.chempr.2019.04.013 10.1002/smll.202301578 10.1038/s41467-019-12857-4 10.1021/acsmeasuresciau.2c00070 10.1038/s41560-017-0044-5 10.1002/anie.202405239 10.1016/0926-860X(95)00067-4 10.1021/jacsau.1c00346 10.1002/jrs.1250180606 10.1021/jacs.7b08102 10.1038/s41467-018-04060-8 10.1038/ncomms10942 10.1002/adma.201704291 10.1021/acs.jpcc.2c05979 10.1149/1.1862265 10.1107/S1600577524003539 10.1016/j.ensm.2020.08.027 10.1039/f19888402987 10.1021/acsnano.2c11974 10.1021/jacs.8b06666 10.1016/j.nanoen.2019.103935 10.1021/jacs.8b06020 10.3891/acta.chem.scand.49-0703 10.1002/adma.202305532 10.1002/anie.201807121 10.1021/jp074464w 10.1039/D2TA01621D 10.1021/acs.chemrev.9b00766 10.1021/acs.chemrev.1c00237 10.1016/j.joule.2017.07.018 10.1002/anie.201411854 10.1002/adma.202103617 10.1002/aenm.202102819 10.1021/jacs.7b05742 10.1002/anie.201909096 10.1126/science.aav7911 10.1021/ja312380b 10.1107/S0021889813005190 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202411386 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 39887633 10_1002_smll_202411386 SMLL202411386 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Aichi Synchrotron Radiation Center funderid: 202303067 – fundername: KAKENHI Grant‐in‐Aid for Scientific Research funderid: JP22H05005 – fundername: Research Fund of State Key Laboratory of Mesoscience and Engineering funderid: MESO‐23‐A07; MESO‐23‐T02 – fundername: Japan Society for the Promotion of Science funderid: JP22K05128 – fundername: Chinese Scholarship Council funderid: 202206080059 – fundername: Japan Synchrotron Radiation Research Institute funderid: 2022A2070; 2023A1715; 2023B1653; 2023B1881; 2023B1850 – fundername: Japan Synchrotron Radiation Research Institute grantid: 2023A1715 – fundername: Japan Synchrotron Radiation Research Institute grantid: 2023B1850 – fundername: Chinese Scholarship Council grantid: 202206080059 – fundername: Japan Synchrotron Radiation Research Institute grantid: 2023B1881 – fundername: Research Fund of State Key Laboratory of Mesoscience and Engineering grantid: MESO-23-A07 – fundername: KAKENHI Grant-in-Aid for Scientific Research grantid: JP22H05005 – fundername: Research Fund of State Key Laboratory of Mesoscience and Engineering grantid: MESO-23-T02 – fundername: Japan Society for the Promotion of Science grantid: JP22K05128 – fundername: Japan Synchrotron Radiation Research Institute grantid: 2022A2070 – fundername: Japan Synchrotron Radiation Research Institute grantid: 2023B1653 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ 53G AAMMB AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c3986-9d6f2d2d7fe5015cf459ffacd7e114ffb3b8f798ec18f4e4fa0947d4127885ac3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 02:14:35 EDT 2025 Fri Jul 25 11:59:53 EDT 2025 Mon Jul 21 05:50:58 EDT 2025 Sun Jul 06 05:04:45 EDT 2025 Wed Mar 12 09:40:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | cathode materials aqueous zinc batteries metal–organic frameworks porous coordination polymers semiconductors |
Language | English |
License | 2025 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3986-9d6f2d2d7fe5015cf459ffacd7e114ffb3b8f798ec18f4e4fa0947d4127885ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7853-1619 0000-0001-6956-9543 0000-0003-2604-8195 0000-0001-9387-728X 0000-0002-7904-5003 0000-0002-0873-1321 0000-0002-6382-5101 0000-0001-8530-6364 0000-0002-8498-0936 0000-0003-1604-2611 |
PMID | 39887633 |
PQID | 3176287364 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_3161916952 proquest_journals_3176287364 pubmed_primary_39887633 crossref_primary_10_1002_smll_202411386 wiley_primary_10_1002_smll_202411386_SMLL202411386 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021 2019 2018; 33 58 57 2020 2014; 59 136 2019 2023; 10 35 1995 2022 2005; 49 126 152 2020; 33 2023; 3 2013 2024; 46 31 2021; 1 2019 2021 2013 2017; 5 11 135 139 2016 2018 2018; 1 9 9 2017 2018 2023 2024 2024; 16 3 19 63 63 2019; 364 2020 2021 2012 2018 2017 2017 2015 2017 2018 2018; 120 13 24 30 139 1 54 139 140 140 2016; 7 2022; 460 2023 2019; 17 64 2020 2020; 142 142 2007; 111 2017; 56 2022; 13 1995; 127 2022 2022 2020; 122 10 11 1988; 84 2022; 16 1980 1987; 84 18 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_5_7 e_1_2_8_5_6 e_1_2_8_9_2 e_1_2_8_5_9 e_1_2_8_5_8 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_5_10 e_1_2_8_3_5 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_5_5 e_1_2_8_9_1 e_1_2_8_5_4 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_13_2 e_1_2_8_15_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_25_3 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_14_3 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_10_3 e_1_2_8_12_1 |
References_xml | – volume: 84 start-page: 2987 year: 1988 publication-title: J. Chem. Soc., Faraday Trans. 1 – volume: 142 142 year: 2020 2020 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 16 start-page: 3145 year: 2022 publication-title: ACS Nano – volume: 10 35 start-page: 4948 year: 2019 2023 publication-title: Nat. Commun. Adv. Mater. – volume: 33 start-page: 283 year: 2020 publication-title: Energy Storage Mater. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 46 31 start-page: 560 955 year: 2013 2024 publication-title: J. Appl. Crystallogr. J. Synchrotron Rad. – volume: 120 13 24 30 139 1 54 139 140 140 start-page: 8536 485 3511 168 4349 year: 2020 2021 2012 2018 2017 2017 2015 2017 2018 2018 publication-title: Chem. Rev. Nanoscale Chem. Mater. Adv. Mater. J. Am. Chem. Soc. Joule Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 127 start-page: 125 year: 1995 publication-title: Appl. Catal. A‐G – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 1 9 9 start-page: 1656 2906 year: 2016 2018 2018 publication-title: Nat. Energy Nat. Commun. Nat. Commun. – volume: 1 start-page: 2216 year: 2021 publication-title: JACS Au – volume: 33 58 57 year: 2021 2019 2018 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 49 126 152 start-page: 703 A721 year: 1995 2022 2005 publication-title: Acta Chem. Scand. J. Phys. Chem. C J. Electrochem. Soc. – volume: 59 136 start-page: 172 8859 year: 2020 2014 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 16 3 19 63 63 start-page: 220 30 year: 2017 2018 2023 2024 2024 publication-title: Nat. Mater. Nat. Energy Small Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 3 start-page: 162 year: 2023 publication-title: ACS Meas. Sci. Au. – volume: 364 start-page: 475 year: 2019 publication-title: Science – volume: 111 year: 2007 publication-title: J. Phys. Chem. C – volume: 17 64 start-page: 3077 year: 2023 2019 publication-title: ACS Nano Nano Energy – volume: 460 year: 2022 publication-title: Coordin. Chem. Rev. – volume: 84 18 start-page: 2783 405 year: 1980 1987 publication-title: J. Phys. Chem. J. Raman Spectrosc. – volume: 13 start-page: 2991 year: 2022 publication-title: Nat. Commun. – volume: 122 10 11 start-page: 1208 year: 2022 2022 2020 publication-title: Chem. Rev. J. Mater. Chem. A Chem. Sci. – volume: 5 11 135 139 start-page: 1938 2462 year: 2019 2021 2013 2017 publication-title: Chem Adv. Energy Mater. J. Am. Chem. Soc. J. Am. Chem. Soc. – ident: e_1_2_8_9_1 doi: 10.1021/jacs.0c09379 – ident: e_1_2_8_14_3 doi: 10.1039/D0SC03048A – ident: e_1_2_8_25_3 doi: 10.1038/s41467-018-04949-4 – ident: e_1_2_8_22_2 doi: 10.1002/anie.201908853 – ident: e_1_2_8_3_1 doi: 10.1038/nmat4766 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-022-30687-9 – ident: e_1_2_8_8_1 doi: 10.1021/acsnano.1c10838 – ident: e_1_2_8_3_4 doi: 10.1002/anie.202405168 – ident: e_1_2_8_11_2 doi: 10.1021/ja502765n – ident: e_1_2_8_12_1 doi: 10.1021/j100458a023 – ident: e_1_2_8_21_1 doi: 10.1016/j.ccr.2022.214459 – ident: e_1_2_8_9_2 doi: 10.1021/jacs.0c09573 – ident: e_1_2_8_4_1 doi: 10.1002/anie.201709558 – ident: e_1_2_8_5_2 doi: 10.1039/D0NR06396G – ident: e_1_2_8_5_3 doi: 10.1021/cm301194a – ident: e_1_2_8_25_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_8_5_8 doi: 10.1021/jacs.7b07234 – ident: e_1_2_8_1_1 doi: 10.1016/j.chempr.2019.04.013 – ident: e_1_2_8_3_3 doi: 10.1002/smll.202301578 – ident: e_1_2_8_6_1 doi: 10.1038/s41467-019-12857-4 – ident: e_1_2_8_20_1 doi: 10.1021/acsmeasuresciau.2c00070 – ident: e_1_2_8_3_2 doi: 10.1038/s41560-017-0044-5 – ident: e_1_2_8_3_5 doi: 10.1002/anie.202405239 – ident: e_1_2_8_16_1 doi: 10.1016/0926-860X(95)00067-4 – ident: e_1_2_8_18_1 doi: 10.1021/jacsau.1c00346 – ident: e_1_2_8_12_2 doi: 10.1002/jrs.1250180606 – ident: e_1_2_8_5_5 doi: 10.1021/jacs.7b08102 – ident: e_1_2_8_25_2 doi: 10.1038/s41467-018-04060-8 – ident: e_1_2_8_2_1 doi: 10.1038/ncomms10942 – ident: e_1_2_8_5_4 doi: 10.1002/adma.201704291 – ident: e_1_2_8_10_2 doi: 10.1021/acs.jpcc.2c05979 – ident: e_1_2_8_10_3 doi: 10.1149/1.1862265 – ident: e_1_2_8_13_2 doi: 10.1107/S1600577524003539 – ident: e_1_2_8_23_1 doi: 10.1016/j.ensm.2020.08.027 – ident: e_1_2_8_17_1 doi: 10.1039/f19888402987 – ident: e_1_2_8_7_1 doi: 10.1021/acsnano.2c11974 – ident: e_1_2_8_5_10 doi: 10.1021/jacs.8b06666 – ident: e_1_2_8_7_2 doi: 10.1016/j.nanoen.2019.103935 – ident: e_1_2_8_5_9 doi: 10.1021/jacs.8b06020 – ident: e_1_2_8_10_1 doi: 10.3891/acta.chem.scand.49-0703 – ident: e_1_2_8_6_2 doi: 10.1002/adma.202305532 – ident: e_1_2_8_22_3 doi: 10.1002/anie.201807121 – ident: e_1_2_8_24_1 doi: 10.1021/jp074464w – ident: e_1_2_8_14_2 doi: 10.1039/D2TA01621D – ident: e_1_2_8_5_1 doi: 10.1021/acs.chemrev.9b00766 – ident: e_1_2_8_14_1 doi: 10.1021/acs.chemrev.1c00237 – ident: e_1_2_8_5_6 doi: 10.1016/j.joule.2017.07.018 – ident: e_1_2_8_5_7 doi: 10.1002/anie.201411854 – ident: e_1_2_8_22_1 doi: 10.1002/adma.202103617 – ident: e_1_2_8_1_2 doi: 10.1002/aenm.202102819 – ident: e_1_2_8_1_4 doi: 10.1021/jacs.7b05742 – ident: e_1_2_8_11_1 doi: 10.1002/anie.201909096 – ident: e_1_2_8_19_1 doi: 10.1126/science.aav7911 – ident: e_1_2_8_1_3 doi: 10.1021/ja312380b – ident: e_1_2_8_13_1 doi: 10.1107/S0021889813005190 |
SSID | ssj0031247 |
Score | 2.4650388 |
Snippet | 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M =... 2D electronically conductive porous coordination polymers/metal-organic frameworks (2D EC-MOFs) of M-HHTPs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene; M =... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2411386 |
SubjectTerms | aqueous zinc batteries cathode materials Cathodes Chemical synthesis Coordination polymers Electrode materials Metal-organic frameworks porous coordination polymers Rechargeable batteries semiconductors Specific surface Stability Surface area Zinc |
Title | Interconnected Lamellar 3D Semiconductive PCP for Rechargeable Aqueous Zinc Battery Cathodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202411386 https://www.ncbi.nlm.nih.gov/pubmed/39887633 https://www.proquest.com/docview/3176287364 https://www.proquest.com/docview/3161916952 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9Kn9qHrR_78NYVFQZ7chNLtiU_lnYhlKSEpYEyBkaSJShtnVEnD91f3zs7cZP2YdA-GltYp9Ppfifd_QTwvbBJJK1WIYYKtHWjfKgQ94fOKOWksamta6uGF2l_Ep9fJVcrVfwNP0S74UaWUa_XZODaVJ0n0tDq7paODtADRUIR5zYlbBEq-tXyRwl0XvXtKuizQiLeWrI2dnlnvfm6V3oBNdeRa-16eu9BLzvdZJzcHM9n5tj-e8bn-BapduDdApeyk2Yi7cKGK_dge4WtcB_-1LuHljJjLOJUNtB3lDp1z8QZG1OO_bQk8lhcPtnodMQQDTMEpcTE5Kg-i52gtNN5xX5fl5Y1vJ4PjCoQp4WrPsCk9_PytB8uLmcIrchUGmZF6nnBC-ldgpDC-jjJvNe2kA5DLO-NMMrLTDkbKR-72GsMJGURRxyD7kRb8RE2y2npPgPLCiV85NOu1BbxkVAm485I00147DNpA_ixVE7-t-HgyBu2ZZ7TeOXteAVwsNRdvrDFKkeElGJcKNI4gKP2NVoRHY3okiTHbzCQjNIs4QF8anTe_grFJdo-EQCvNfefPuTj4WDQPn15TaOvsMXpmuE61e0ANmf3c_cNsc_MHNbz-xFfH_tP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcgAO5Q0pBYwE4pR2Yye2c-BQdam2NFtVtJUqVCnEji0haLZqdlWVf8Vf4Rcxk2wCCwckpB44Rnn5MeP5xp75BuBlaZNI2UKH6CrQ1o32oUbcHzqjtVPGStvkVo335OgofnecHC_Bty4XpuWH6DfcSDOa9ZoUnDakN36yhtanX-jsAE1QJLScx1XuussL9NrqNztDnOJXnG-_PdwahfPCAqEVqZZhWkrPS14q7xI0h9bHSep9YUvl0D3w3gijvUq1s5H2sYt9gU6QKuOIo8OYFFbgd6_BdSojTnT9w_c9Y5VAc9nUc0ErGRLVV8cTOeAbi-1dtIN_gNtFrNwYu-3b8L0bpjbG5fP6bGrW7dffGCT_q3G8Aytz6M02W125C0uuuge3fiFkvA8nzQappeAfi1CcZcUpRYedMzFkB5RGMKmIHxctBNvf2mcI-BnibiKbcpSCxjZxeCezmn34VFnWUpdeMkqynJSufgBHV9K9h7BcTSr3GFhaauEjLweqsAgBhTYpd0aZQcJjnyobwOtOGvKzlmYkbwmleU7zk_fzE8BaJyz5fLmpcwSBEl1fIeMAXvS3caGg05-iop7jM-grRzJNeACPWiHrf4XdJWZCEQBvROUvbcgPxlnWX63-y0vP4cbocJzl2c7e7hO4yamqchPZtwbL0_OZe4pQb2qeNcrF4ONVS-EPmWJbXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxRBEC5iBNGD78do1BYUT5PsdM_04-AhZF0SswmLMRAkMM70A0QzGzK7SPxV_hX_kVUzO6OrB0HIweMwr35UdX3VXfUVwHNns0TZQsfoKtDWjQ6xRtwf-1Jrr0orbZNbtbcvtw_TN0fZ0Qp863JhWn6IfsONNKNZr0nBT13Y-EkaWp98pqMDtECJ0HIRVrnrz7-g01a_2hniDL_gfPT63dZ2vKgrEFthtIyNk4E77lTwGVpDG9LMhFBYpzx6ByGUotRBGe1tokPq01CgD6RcmnD0F7PCCvzuJbicyoGhYhHDtz1hlUBr2ZRzQSMZE9NXRxM54BvL7V02g39g22Wo3Ni60Q343o1SG-LyaX0-K9ft198IJP-nYbwJ1xfAm222mnILVnx1G679Qsd4B46b7VFLoT8WgTgbFycUG3bGxJAdUBLBtCJ2XLQPbLI1YQj3GaJuoprylIDGNnF0p_Oavf9YWdYSl54zSrGcOl_fhcML6d49WK2mlX8AzDgtQhLkQBUWAaDQpeG-VOUg42kwykbwshOG_LQlGclbOmme0_zk_fxEsNbJSr5YbOocIaBEx1fINIJn_W1cJujsp6io5_gMesqJNBmP4H4rY_2vsLvESygi4I2k_KUN-cHeeNxfPfyXl57ClclwlI939ncfwVVOJZWbsL41WJ2dzf1jxHmz8kmjWgw-XLQQ_gAR3VoL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interconnected+Lamellar+3D+Semiconductive+PCP+for+Rechargeable+Aqueous+Zinc+Battery+Cathodes&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lin%2C+Zirui&rft.au=Otake%2C+Ken-Ichi&rft.au=Kajiwara%2C+Takashi&rft.au=Hiraide%2C+Shotaro&rft.date=2025-03-01&rft.eissn=1613-6829&rft.volume=21&rft.issue=10&rft.spage=e2411386&rft_id=info:doi/10.1002%2Fsmll.202411386&rft_id=info%3Apmid%2F39887633&rft.externalDocID=39887633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |