Modification of Theoretical models to predict mechanical behavior of PVC/NBR/organoclay nanocomposites

ABSTRACT Organo‐modified nanoclay (Cloisite 30B) was added via direct melt mixing to the acrylonitrile butadiene rubber/poly(vinyl chloride) (PVC/NBR) to fabricate polymer blend/clay nanocomposites. The states of nano‐fillers dispersion were investigated by transmission electron microscopy (TEM) and...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 130; no. 5; pp. 3229 - 3239
Main Authors Esmizadeh, E., Naderi, G., Ghoreishy, Mir Hamid Reza
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Blackwell Publishing Ltd 05.12.2013
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Organo‐modified nanoclay (Cloisite 30B) was added via direct melt mixing to the acrylonitrile butadiene rubber/poly(vinyl chloride) (PVC/NBR) to fabricate polymer blend/clay nanocomposites. The states of nano‐fillers dispersion were investigated by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). From the morphological study of nanocomposites, it is concluded that exfoliated morphology is obtainable by introduction of 2.5 vol % of nanoclay. The effect of nano‐filler volume content on the mechanical properties of PVC/NBR matrix reinforced by Cloisite 30B was investigated by tensile test. Experimental results show that the Young's modulus and tensile strength of composites can significantly improved with a small amount of nanofiller. Moreover, to investigate the stress–strain behavior of NBR/PVC nanocomposites, seven constitutive models such as Arruda–Boyce, Mooney–Rivilen, Marlow, second order of polynomial, Van der Waals, and third order Odgen were studied and compared with experimental data. Results showed that Malow and second order polynomial model can be used for nanoclay‐filled compound whereas the other models show more deviation from experimental data. Three micromechanical models named liner rule of mixtures (LROM) and the inverse rule of mixtures (IROM). Halpin–Tsai theory was applied to evaluate the dependence of Young modulus of nanocomposites on volume fraction of nanofiller. Two modifying factors were proposed to evaluate the Young's modulus of nanocomposites which could greatly improve the theoretical prediction obtained from inverse rule of mixtures (IROM) and Halpin–Tsai equation. The modifying factors were introduced by adopting an exponential, power‐law and linear factors in the equation. In order to verify the suitability of the modified models, the ensuing theoretical predictions are compared to the other experimental data available in the literature. Good predictability of the modified models is demonstrated in the results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3229–3239, 2013
AbstractList Organo-modified nanoclay (Cloisite 30B) was added via direct melt mixing to the acrylonitrile butadiene rubber/poly(vinyl chloride) (PVC/NBR) to fabricate polymer blend/clay nanocomposites. The states of nano-fillers dispersion were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). From the morphological study of nanocomposites, it is concluded that exfoliated morphology is obtainable by introduction of 2.5 vol % of nanoclay. The effect of nano-filler volume content on the mechanical properties of PVC/NBR matrix reinforced by Cloisite 30B was investigated by tensile test. Experimental results show that the Young's modulus and tensile strength of composites can significantly improved with a small amount of nanofiller. Moreover, to investigate the stress-strain behavior of NBR/PVC nanocomposites, seven constitutive models such as Arruda-Boyce, Mooney-Rivilen, Marlow, second order of polynomial, Van der Waals, and third order Odgen were studied and compared with experimental data. Results showed that Malow and second order polynomial model can be used for nanoclay-filled compound whereas the other models show more deviation from experimental data. Three micromechanical models named liner rule of mixtures (LROM) and the inverse rule of mixtures (IROM). Halpin-Tsai theory was applied to evaluate the dependence of Young modulus of nanocomposites on volume fraction of nanofiller. Two modifying factors were proposed to evaluate the Young's modulus of nanocomposites which could greatly improve the theoretical prediction obtained from inverse rule of mixtures (IROM) and Halpin-Tsai equation. The modifying factors were introduced by adopting an exponential, power-law and linear factors in the equation. In order to verify the suitability of the modified models, the ensuing theoretical predictions are compared to the other experimental data available in the literature. Good predictability of the modified models is demonstrated in the results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3229-3239, 2013 [PUBLICATION ABSTRACT]
ABSTRACT Organo‐modified nanoclay (Cloisite 30B) was added via direct melt mixing to the acrylonitrile butadiene rubber/poly(vinyl chloride) (PVC/NBR) to fabricate polymer blend/clay nanocomposites. The states of nano‐fillers dispersion were investigated by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). From the morphological study of nanocomposites, it is concluded that exfoliated morphology is obtainable by introduction of 2.5 vol % of nanoclay. The effect of nano‐filler volume content on the mechanical properties of PVC/NBR matrix reinforced by Cloisite 30B was investigated by tensile test. Experimental results show that the Young's modulus and tensile strength of composites can significantly improved with a small amount of nanofiller. Moreover, to investigate the stress–strain behavior of NBR/PVC nanocomposites, seven constitutive models such as Arruda–Boyce, Mooney–Rivilen, Marlow, second order of polynomial, Van der Waals, and third order Odgen were studied and compared with experimental data. Results showed that Malow and second order polynomial model can be used for nanoclay‐filled compound whereas the other models show more deviation from experimental data. Three micromechanical models named liner rule of mixtures (LROM) and the inverse rule of mixtures (IROM). Halpin–Tsai theory was applied to evaluate the dependence of Young modulus of nanocomposites on volume fraction of nanofiller. Two modifying factors were proposed to evaluate the Young's modulus of nanocomposites which could greatly improve the theoretical prediction obtained from inverse rule of mixtures (IROM) and Halpin–Tsai equation. The modifying factors were introduced by adopting an exponential, power‐law and linear factors in the equation. In order to verify the suitability of the modified models, the ensuing theoretical predictions are compared to the other experimental data available in the literature. Good predictability of the modified models is demonstrated in the results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3229–3239, 2013
Organo-modified nanoclay (Cloisite 30B) was added via direct melt mixing to the acrylonitrile butadiene rubber/poly(vinyl chloride) (PVC/NBR) to fabricate polymer blend/clay nanocomposites. The states of nano-fillers dispersion were investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). From the morphological study of nanocomposites, it is concluded that exfoliated morphology is obtainable by introduction of 2.5 vol % of nanoclay. The effect of nano-filler volume content on the mechanical properties of PVC/NBR matrix reinforced by Cloisite 30B was investigated by tensile test. Experimental results show that the Young's modulus and tensile strength of composites can significantly improved with a small amount of nanofiller. Moreover, to investigate the stress-strain behavior of NBR/PVC nanocomposites, seven constitutive models such as Arruda-Boyce, Mooney-Rivilen, Marlow, second order of polynomial, Van der Waals, and third order Odgen were studied and compared with experimental data. Results showed that Malow and second order polynomial model can be used for nanoclay-filled compound whereas the other models show more deviation from experimental data. Three micromechanical models named liner rule of mixtures (LROM) and the inverse rule of mixtures (IROM). Halpin-Tsai theory was applied to evaluate the dependence of Young modulus of nanocomposites on volume fraction of nanofiller. Two modifying factors were proposed to evaluate the Young's modulus of nanocomposites which could greatly improve the theoretical prediction obtained from inverse rule of mixtures (IROM) and Halpin-Tsai equation. The modifying factors were introduced by adopting an exponential, power-law and linear factors in the equation. In order to verify the suitability of the modified models, the ensuing theoretical predictions are compared to the other experimental data available in the literature. Good predictability of the modified models is demonstrated in the results. [copy 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3229-3239, 2013
Author Esmizadeh, E.
Naderi, G.
Ghoreishy, Mir Hamid Reza
Author_xml – sequence: 1
  givenname: E.
  surname: Esmizadeh
  fullname: Esmizadeh, E.
  email: G.Naderi@ippi.ac.ir
  organization: Iran polymer and Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran
– sequence: 2
  givenname: G.
  surname: Naderi
  fullname: Naderi, G.
  organization: Iran polymer and Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran
– sequence: 3
  givenname: Mir Hamid Reza
  surname: Ghoreishy
  fullname: Ghoreishy, Mir Hamid Reza
  organization: Iran polymer and Petrochemical Institute, P.O. Box: 14965-115, Tehran, Iran
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27745899$$DView record in Pascal Francis
BookMark eNp1kU9v1DAQxS1UJLYtB75BJIQEh3Tt-E-cY1notlIpK1SKxMVynDHrktjBzgL77fF22x6QeprRzO89jd4cogMfPCD0iuATgnE11-N4QhvOxTM0I7ipSyYqeYBmeUdK2TT8BTpM6RZjQjgWM2Q_hc5ZZ_Tkgi-CLa7XECJMedIXQ-igT8UUijFC58xUDGDW2t8tW1jr3y7EnWh1s5hfvf8yD_GH9sH0elv4XROGMSQ3QTpGz63uE7y8r0fo69nH68V5efl5ebE4vSwNbaQoGTctEURSIiuwRmhRC111HQdsgLTUtFYzSRrMTUWlsKQ1WLQCuGAtN4TRI_R27zvG8GsDaVKDSwb6XnsIm6QIY7ImhDCZ0df_obdhE32-LlM0Iwxzmql3e8rEkFIEq8boBh23imC1S1zlxNVd4pl9c--oU07IRu2NS4-Cqq4Zzy_I3HzP_XE9bJ82VKer1YNzuVe4NMHfR4WOP5Woac3Vt6ulwt-XZ-yGnasP9B-V4qAU
CODEN JAPNAB
CitedBy_id crossref_primary_10_3139_217_3515
crossref_primary_10_1002_app_45977
crossref_primary_10_1007_s11831_021_09650_2
crossref_primary_10_1007_s10904_017_0682_x
crossref_primary_10_1007_s12221_014_2376_0
crossref_primary_10_1515_secm_2015_0406
crossref_primary_10_4028_www_scientific_net_AMM_787_632
crossref_primary_10_1002_mame_201700036
crossref_primary_10_1016_j_compositesa_2020_106046
crossref_primary_10_1080_14658011_2016_1212967
crossref_primary_10_1177_00219983221076639
crossref_primary_10_1007_s42558_021_00036_9
crossref_primary_10_1002_app_47550
crossref_primary_10_1007_s12221_019_8941_9
crossref_primary_10_1002_vnl_21830
crossref_primary_10_1002_app_53843
crossref_primary_10_1002_pc_24467
crossref_primary_10_3390_polym15163343
crossref_primary_10_1002_pc_24417
crossref_primary_10_1002_pc_25849
crossref_primary_10_1007_s11837_015_1569_3
crossref_primary_10_1007_s10924_019_01450_x
crossref_primary_10_1002_app_48632
crossref_primary_10_1155_2017_6039192
crossref_primary_10_1002_pc_24055
crossref_primary_10_1134_S1560090417030046
crossref_primary_10_1080_15376494_2023_2266437
crossref_primary_10_1080_10601325_2014_925265
crossref_primary_10_1080_10601325_2019_1673663
Cites_doi 10.1016/j.polymertesting.2004.01.008
10.1016/j.compositesa.2007.07.010
10.1016/j.polymer.2004.06.027
10.1016/j.progpolymsci.2008.07.008
10.1016/S0032-3861(01)00543-2
10.3139/217.2381
10.1080/03602550600553747
10.1016/j.carbon.2005.07.005
10.1016/S1644-9665(12)60061-2
10.1016/S0032-3861(03)00471-3
10.1016/S0008-6223(03)00034-4
10.1021/nn9010472
10.1016/j.compscitech.2004.04.002
10.1021/nl034071i
10.1179/174328908X314307
10.1177/0021998306061322
10.1016/j.carbon.2006.02.038
10.1080/00222348.2011.579868
10.1177/0021998312469242
10.1002/pen.760160512
10.1002/app.37752
10.1016/j.polymer.2007.06.046
10.1002/masy.200750109
10.1016/S0266-3538(02)00129-X
10.1002/app.24918
10.1016/j.polymer.2007.09.025
10.1016/S0266-3538(03)00063-0
10.1016/j.apsusc.2008.07.052
10.1016/j.compositesa.2008.12.008
10.1515/polyeng.2011.024
10.1016/j.polymer.2009.11.046
10.1002/pen.20879
10.1016/j.carbon.2010.05.007
10.1016/j.polymertesting.2004.05.004
10.1016/S0043-1648(01)00855-9
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7SR
8FD
JG9
7U5
L7M
DOI 10.1002/app.39556
DatabaseName Istex
Pascal-Francis
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1097-4628
EndPage 3239
ExternalDocumentID 3067452671
10_1002_app_39556
27745899
APP39556
ark_67375_WNG_0ZGF4V4H_D
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AITYG
HGLYW
OIG
6TJ
6XO
ABDEX
ABEML
ABFLS
ACSCC
AFFNX
AI.
FEDTE
G8K
GYXMG
HF~
HVGLF
H~9
IPNFZ
IQODW
M6T
NEJ
PALCI
RIWAO
RJQFR
SAMSI
VH1
XFK
AAYXX
CITATION
7SR
8FD
JG9
7U5
L7M
ID FETCH-LOGICAL-c3986-45cb16183182efc6a676a2dd5e0ce1b3cbfa481905c2386f1bc06b6e564b5c143
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Aug 16 08:37:58 EDT 2024
Thu Oct 10 19:52:01 EDT 2024
Fri Aug 23 04:06:39 EDT 2024
Tue Sep 20 22:54:21 EDT 2022
Sat Aug 24 01:17:35 EDT 2024
Wed Jan 17 04:59:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Organic clay
Polymer blends
Mechanical model
Stress strain relation
Dispersion degree
Theoretical study
Mechanical properties
Tensile property
Nitrile rubber
Modeling
Composite material
Hyperelasticity
clay
Micromechanics
Young modulus
poly(vinyl chloride)
Morphology
Concentration effect
Numerical simulation
Nanocomposite
Polyvinyl chloride
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3986-45cb16183182efc6a676a2dd5e0ce1b3cbfa481905c2386f1bc06b6e564b5c143
Notes istex:5964A7074F786AE69CB0F3CC0A54EB6CBE272548
ark:/67375/WNG-0ZGF4V4H-D
ArticleID:APP39556
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1431144053
PQPubID 1006379
PageCount 11
ParticipantIDs proquest_miscellaneous_1448711148
proquest_journals_1431144053
crossref_primary_10_1002_app_39556
pascalfrancis_primary_27745899
wiley_primary_10_1002_app_39556_APP39556
istex_primary_ark_67375_WNG_0ZGF4V4H_D
PublicationCentury 2000
PublicationDate December 5, 2013
PublicationDateYYYYMMDD 2013-12-05
PublicationDate_xml – month: 12
  year: 2013
  text: December 5, 2013
  day: 05
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationTitleAlternate J. Appl. Polym. Sci
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Ali, A.; Hosseini, M.; Sahari, B. J. Sci. Ind. Res. India 2010, 69, 495.
Cataldo, F. Macromol. Symp. 2007, 247, 67.
Pavlidou, S.; Papaspyrides, C. Prog. Polym. Sci, 2008, 33, 1119.
Clifford, M. J.; Wan, T. Polymer 2010, 51, 535.
Gojny, F.; Wichmann, M.; Köpke, U.; Fiedler, B.; Schulte, K. Compos. Sci. Technol. 2004, 64, 2363.
Fornes, T.; Paul, D. Polymer 2003, 44, 4993.
Liu, T.; Kumar, S. Nano Lett. 2003, 3, 647-650.
Korochkina, T.; Claypole, T.; Gethin, D. In Constitutive Models for Rubber IV: Proceedings of the Fourth European Conference on Constitutive Models for Rubber, Stockholm, Sweden, June 27-29, 2005.
Termonia, Y. Polymer 2007, 48, 6948.
Yeh, M. K.; Tai, N. H.; Liu, J. H. Carbon 2006, 44, 1.
Esmizadeh, E.; Naderi, G.; Ghoreishy, M.; Bakhshandeh, G. Sci. Technol. Polym. 2010, 23, 293.
Coleman, J. N.; Khan, U.; Blau, W. J.l Gun'ko, Y. K. Carbon 2006, 44, 1624.
Praveen, S.; Chattopadhyay, P. K.; Albert, P.; Dalvi, V. G.; Chakraborty, B. C.; Chattopadhyay, S. Compos. Part A. Appl. Sci. 2009, 40, 309.
Yeh, M. K.; Tai, N. H.; Lin, Y. J. Compos. Part A. Appl. Sci. 2008, 39, 677.
Ghasemi, I.; Karrabi, M.; Ghorieshy, M. Plast. Rubber. Compos. 2008, 37, 305.
Esmizadeh, E.; Naderi, G.; Ghoreishy, M. H. R.; Bakhshandeh, G. R. Iran. Polym. J. 2011, 20, 587.
Ismail, H.; Yusof, A. Polym. Test. 2004, 23, 675.
Hafezi, M.; Khorasani, S. N.; Ziaei, F. J. Appl. Polym. Sci. 2006, 102, 5358.
Brune, D. A.; Bicerano, J. Polymer 2002, 43, 369.
Affdl, J.; Kardos, J. Polym. Eng. Sci. 1976, 16, 344.
Hajibaba, A.; Naderi, G.; Esmizadeh, E.; Ghoreishy, M. H. R. J. Compos. Mater. 2012;, DOI: 10.1177/0021998312469242.
Jalham, I. S.; Maita, I. J. J. Compos. Mater. 2006, 40, 2099.
Esmizadeh, E.; Naderi, G.; Ghoreishy, M. H. R.; Bakhshandeh, G. R. J. Polym. Eng. 2011, 31, 83.
Odegard, G. M.; Gates, T.; Wise, K. E.; Park, C.; Siochi, E. Compos. Sci. Technol, 2003, 63, 1671.
Lu, L.; Zhai, Y.; Zhang, Y.; Ong, C.; Guo, S. Appl. Surf. Sci. 2008, 255, 2162.
Allaoui, A.; Bai, S.; Cheng, H. M.; Bai, J. Compos. Sci. Technol. 2002, 62, 1993.
Ghosh, P.; Saha, A.; Mukhopadhyay, R. Constitutive Models for Rubber III: Proceedings of the Third European Conference on Constitutive Models for Rubber, London, UK, September 15-17, 2003.
Barkoula, N. M.; Karger-Kocsis, J. Wear 2002, 252, 80.
Valavala, P.; Odegard, G. Rev. Adv. Mater. Sci. 2005, 9, 34.
Arasteh, R.; Omidi, M.; Rousta, A.; Kazerooni, H. J. Macromol. Sci. Phys. 2011, 50, 2464.
Mazurkiewicz, D. Arch. Civil. Mech. Eng. 2009, 9, 75.
Kalaitzidou, K.; Fukushima, H.; Miyagawa, H.; Drzal, L. T. Polym. Eng. Sci. 2007, 47, 1796.
Bai, J. B. Carbon 2003, 41, 1325.
Wu, Y. P.; Jia, Q. X.; Yu, D. S.; Zhang, L. Q. Polym. Test. 2004, 23, 903.
Dorfmann, A.; Muhr, A. In Constitutive Models for Rubber: Proceedings of the First European Conference on Constitutive Models for Rubber, Vienna, Austria, September 9-10, 1999.
Omidi, M.; Rokni DT, H.; Milani, A. S.; Seethaler, R. J.; Arasteh, R. Carbon 2010, 48, 3218.
Austrell, P. E.; Kari, L. In Constitutive Models for Rubber IV: Proceedings of the Fourth European Conference on Constitutive Models for Rubber, Stockholm, Sweden, June 27-29, 2005.
Mousa, A.; Halim, N.; Al-Robaidi, A. Polym. Plast. Technol. 2006, 45, 513.
Alipour, A.; Naderi, G.; Bakhshandeh, G.; Vali, H.; Shokoohi, S. Int. Polym. Proc. 2011, 26, 48.
Galgali, G.; Agarwal, S.; Lele, A. Polymer 2004, 45, 6059.
Bokobza, L. Polymer 2007, 48, 4907.
Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. ACS Nano 2009, 3, 3884.
Alipour, A.; Naderi, G.; Ghoreishy, M. H. R. J. Appl. Polym. Sci. 2012, 127, 1275.
2007; 247
2004; 64
2009; 40
2012
2002; 252
2004; 23
2004; 45
2008; 39
2011; 31
2008; 37
2005
2008; 33
2003
2012; 127
1999
2010; 23
2010; 48
2010; 69
2006; 40
2006; 45
2000
2006; 44
2002; 62
2005; 9
2002; 43
2011; 50
2011; 20
2003; 3
2009; 9
2011; 26
2009; 3
2008; 255
1976; 16
2003; 63
2003; 41
2010; 51
2007; 47
2007; 48
2003; 44
2006; 102
e_1_2_6_32_1
Esmizadeh E. (e_1_2_6_40_1) 2011; 20
e_1_2_6_10_1
Ali A. (e_1_2_6_28_1) 2010; 69
e_1_2_6_31_1
Dorfmann A. (e_1_2_6_36_1) 1999
e_1_2_6_30_1
e_1_2_6_19_1
Valavala P. (e_1_2_6_8_1) 2005; 9
e_1_2_6_13_1
e_1_2_6_14_1
Korochkina T. (e_1_2_6_38_1) 2005
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
Ghosh P. (e_1_2_6_39_1) 2003
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
Esmizadeh E. (e_1_2_6_21_1) 2010; 23
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
Austrell P. E. (e_1_2_6_35_1) 2005
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 102
  start-page: 5358
  year: 2006
  publication-title: J. Appl. Polym. Sci.
– year: 2012
  publication-title: J. Compos. Mater.
– volume: 37
  start-page: 305
  year: 2008
  publication-title: Plast. Rubber. Compos.
– volume: 31
  start-page: 83
  year: 2011
  publication-title: J. Polym. Eng.
– volume: 41
  start-page: 1325
  year: 2003
  publication-title: Carbon
– volume: 64
  start-page: 2363
  year: 2004
  publication-title: Compos. Sci. Technol.
– volume: 247
  start-page: 67
  year: 2007
  publication-title: Macromol. Symp.
– year: 2005
– volume: 9
  start-page: 75
  year: 2009
  publication-title: Arch. Civil. Mech. Eng.
– volume: 43
  start-page: 369
  year: 2002
  publication-title: Polymer
– year: 2003
– volume: 45
  start-page: 513
  year: 2006
  publication-title: Polym. Plast. Technol.
– year: 2000
– volume: 62
  start-page: 1993
  year: 2002
  publication-title: Compos. Sci. Technol.
– volume: 51
  start-page: 535
  year: 2010
  publication-title: Polymer
– volume: 23
  start-page: 675
  year: 2004
  publication-title: Polym. Test.
– volume: 50
  start-page: 2464
  year: 2011
  publication-title: J. Macromol. Sci. Phys.
– volume: 255
  start-page: 2162
  year: 2008
  publication-title: Appl. Surf. Sci.
– volume: 69
  start-page: 495
  year: 2010
  publication-title: J. Sci. Ind. Res. India
– volume: 26
  start-page: 48
  year: 2011
  publication-title: Int. Polym. Proc.
– volume: 127
  start-page: 1275
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 20
  start-page: 587
  year: 2011
  publication-title: Iran. Polym. J.
– volume: 47
  start-page: 1796
  year: 2007
  publication-title: Polym. Eng. Sci.
– volume: 16
  start-page: 344
  year: 1976
  publication-title: Polym. Eng. Sci.
– volume: 39
  start-page: 677
  year: 2008
  publication-title: Compos. Part A. Appl. Sci.
– volume: 44
  start-page: 1
  year: 2006
  publication-title: Carbon
– volume: 44
  start-page: 4993
  year: 2003
  publication-title: Polymer
– volume: 44
  start-page: 1624
  year: 2006
  publication-title: Carbon
– volume: 40
  start-page: 309
  year: 2009
  publication-title: Compos. Part A. Appl. Sci.
– volume: 48
  start-page: 4907
  year: 2007
  publication-title: Polymer
– volume: 3
  start-page: 3884
  year: 2009
  publication-title: ACS Nano
– volume: 252
  start-page: 80
  year: 2002
  publication-title: Wear
– volume: 45
  start-page: 6059
  year: 2004
  publication-title: Polymer
– volume: 63
  start-page: 1671
  year: 2003
  publication-title: Compos. Sci. Technol,
– volume: 23
  start-page: 293
  year: 2010
  publication-title: Sci. Technol. Polym.
– volume: 40
  start-page: 2099
  year: 2006
  publication-title: J. Compos. Mater.
– volume: 23
  start-page: 903
  year: 2004
  publication-title: Polym. Test.
– volume: 48
  start-page: 3218
  year: 2010
  publication-title: Carbon
– volume: 9
  start-page: 34
  year: 2005
  publication-title: Rev. Adv. Mater. Sci.
– volume: 3
  start-page: 647
  year: 2003
  end-page: 650
  publication-title: Nano Lett.
– volume: 48
  start-page: 6948
  year: 2007
  publication-title: Polymer
– volume: 33
  start-page: 1119
  year: 2008
  publication-title: Prog. Polym. Sci,
– year: 1999
– ident: e_1_2_6_2_1
  doi: 10.1016/j.polymertesting.2004.01.008
– ident: e_1_2_6_14_1
  doi: 10.1016/j.compositesa.2007.07.010
– ident: e_1_2_6_45_1
  doi: 10.1016/j.polymer.2004.06.027
– ident: e_1_2_6_5_1
  doi: 10.1016/j.progpolymsci.2008.07.008
– volume-title: Constitutive Models for Rubber: Proceedings of the First European Conference on Constitutive Models for Rubber,
  year: 1999
  ident: e_1_2_6_36_1
  contributor:
    fullname: Dorfmann A.
– ident: e_1_2_6_22_1
  doi: 10.1016/S0032-3861(01)00543-2
– ident: e_1_2_6_43_1
  doi: 10.3139/217.2381
– ident: e_1_2_6_42_1
  doi: 10.1080/03602550600553747
– ident: e_1_2_6_6_1
  doi: 10.1016/j.carbon.2005.07.005
– ident: e_1_2_6_34_1
  doi: 10.1016/S1644-9665(12)60061-2
– ident: e_1_2_6_37_1
– ident: e_1_2_6_12_1
  doi: 10.1016/S0032-3861(03)00471-3
– volume: 23
  start-page: 293
  year: 2010
  ident: e_1_2_6_21_1
  publication-title: Sci. Technol. Polym.
  contributor:
    fullname: Esmizadeh E.
– ident: e_1_2_6_16_1
  doi: 10.1016/S0008-6223(03)00034-4
– ident: e_1_2_6_26_1
  doi: 10.1021/nn9010472
– ident: e_1_2_6_27_1
  doi: 10.1016/j.compscitech.2004.04.002
– ident: e_1_2_6_19_1
  doi: 10.1021/nl034071i
– ident: e_1_2_6_30_1
  doi: 10.1179/174328908X314307
– ident: e_1_2_6_32_1
  doi: 10.1177/0021998306061322
– ident: e_1_2_6_4_1
  doi: 10.1016/j.carbon.2006.02.038
– ident: e_1_2_6_24_1
  doi: 10.1080/00222348.2011.579868
– ident: e_1_2_6_23_1
  doi: 10.1177/0021998312469242
– volume: 69
  start-page: 495
  year: 2010
  ident: e_1_2_6_28_1
  publication-title: J. Sci. Ind. Res. India
  contributor:
    fullname: Ali A.
– ident: e_1_2_6_18_1
  doi: 10.1002/pen.760160512
– ident: e_1_2_6_29_1
  doi: 10.1002/app.37752
– ident: e_1_2_6_9_1
  doi: 10.1016/j.polymer.2007.06.046
– ident: e_1_2_6_33_1
  doi: 10.1002/masy.200750109
– ident: e_1_2_6_44_1
  doi: 10.1016/S0266-3538(02)00129-X
– ident: e_1_2_6_3_1
  doi: 10.1002/app.24918
– volume-title: Constitutive Models for Rubber IV: Proceedings of the Fourth European Conference on Constitutive Models for Rubber,
  year: 2005
  ident: e_1_2_6_38_1
  contributor:
    fullname: Korochkina T.
– ident: e_1_2_6_25_1
  doi: 10.1016/j.polymer.2007.09.025
– ident: e_1_2_6_11_1
  doi: 10.1016/S0266-3538(03)00063-0
– ident: e_1_2_6_41_1
  doi: 10.1016/j.apsusc.2008.07.052
– ident: e_1_2_6_10_1
  doi: 10.1016/j.compositesa.2008.12.008
– volume: 20
  start-page: 587
  year: 2011
  ident: e_1_2_6_40_1
  publication-title: Iran. Polym. J.
  contributor:
    fullname: Esmizadeh E.
– ident: e_1_2_6_20_1
  doi: 10.1515/polyeng.2011.024
– ident: e_1_2_6_13_1
  doi: 10.1016/j.polymer.2009.11.046
– ident: e_1_2_6_15_1
  doi: 10.1002/pen.20879
– volume-title: Constitutive Models for Rubber III: Proceedings of the Third European Conference on Constitutive Models for Rubber,
  year: 2003
  ident: e_1_2_6_39_1
  contributor:
    fullname: Ghosh P.
– volume: 9
  start-page: 34
  year: 2005
  ident: e_1_2_6_8_1
  publication-title: Rev. Adv. Mater. Sci.
  contributor:
    fullname: Valavala P.
– ident: e_1_2_6_17_1
  doi: 10.1016/j.carbon.2010.05.007
– ident: e_1_2_6_7_1
  doi: 10.1016/j.polymertesting.2004.05.004
– ident: e_1_2_6_31_1
  doi: 10.1016/S0043-1648(01)00855-9
– volume-title: Constitutive Models for Rubber IV: Proceedings of the Fourth European Conference on Constitutive Models for Rubber,
  year: 2005
  ident: e_1_2_6_35_1
  contributor:
    fullname: Austrell P. E.
SSID ssj0011506
Score 2.2833173
Snippet ABSTRACT Organo‐modified nanoclay (Cloisite 30B) was added via direct melt mixing to the acrylonitrile butadiene rubber/poly(vinyl chloride) (PVC/NBR) to...
Organo-modified nanoclay (Cloisite 30B) was added via direct melt mixing to the acrylonitrile butadiene rubber/poly(vinyl chloride) (PVC/NBR) to fabricate...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3229
SubjectTerms Applied sciences
clay
Composites
Exact sciences and technology
Forms of application and semi-finished materials
Materials science
Mathematical analysis
Mathematical models
mechanical properties
Modulus of elasticity
Nanocomposites
Nanomaterials
Nanostructure
poly(vinyl chloride)
Polymer industry, paints, wood
Polymers
Polynomials
Polyvinyl chlorides
Technology of polymers
Title Modification of Theoretical models to predict mechanical behavior of PVC/NBR/organoclay nanocomposites
URI https://api.istex.fr/ark:/67375/WNG-0ZGF4V4H-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.39556
https://www.proquest.com/docview/1431144053
https://search.proquest.com/docview/1448711148
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9KfdEHa_3AbWuJIuLL9vYruTt8qq3XQ-hxlLYWEUImm32p7pbbPaj-9c5kb7c9QRDfAkkgm8lkfrOZ-Q3AWzR2iPnIkm8yMiGZABdiHqWhQTJ-6TAhi8kJzqczNb3IPl_Jqw340OXCtPwQ_Q831gx_X7OCG6wHd6ShXAYrHUvJdNtMpMeA6KynjmKgo9rwjjgkn0J2rEJRMuhnrtmiB7yttxwbaWranqKta7EGPO_DV29_JlvwrVt5G3ZyfbBs8MD--oPU8T8_7Qk8XuFScdgepG3YcOVTeHSPrfAZFKdVzoFFXpaiKsT5XRKk8BV1atFU4mbBbz-N-OE4qdh3dlwAPGl-eTSYfTwb-HJSlf1ufoqSG3QvcfyYq5_DxeTT-dE0XJVpCG06HqkwkxaZdp9uh8QVVhk1VCbJc-ki62JMLRYmY-AhLeEDVcRoI4XKSZWhtITXXsBmWZXuJYgUxwTXJCIy7WBRGEIoOXuoZGkluiSAN53A9E3LxqFb3uVE06Zpv2kBvPOi7EeYxTWHrw2l_jI70dHXk0l2mU31cQD7a7LuJySEiSUdmgD2OuHrlWrX5CulMb-IyzSA1303KSW_tJjSVUseQ35gzK5mAO-9pP--XH04n_vGzr8P3YWHCZfl4LAauQebzWLpXhE4anDfa8FvUlQKmQ
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB7S5ND2kKYvuk2aKqWUXjbel2QbekmTOM7DxgTnQSAISau9pN0N9hqS_vrOaL2buFAovS1IAq1Go_lGmvkG4LNWpq3TjkHfpKN8NAHW12kQ-0qj8YvbEVpMSnAeDEX_LDm65JdL8K3Ohan4IZoLN9IMd16TgtOFdOuBNZTqYMVdzsUTWEF156SWe6cNeRRBHVEFeIQ-ehW85hUKolYzdMEardDC3lF0pJriAmVVZYsF6PkYwDoL1HsB1_Xcq8CTm-1ZqbfNrz9oHf_359ZgdQ5N2U61l17Cks1fwfNHhIWvIRsUKcUWOXGyImPjhzxI5orqTFlZsNsJPf-U7KelvGLXWNMB0KDR-W5r-P205SpKFeaHumc5feDRRCFkdvoGznr7492-P6_U4Ju42xF-wo0m5n08ICKbGaFEW6goTbkNjA11bHSmEsIe3CBEEFmoTSC0sFwkmhuEbG9hOS9y-w5YrLuI2LjWmpgHs0whSEnJSUVjy7WNPPhUS0zeVoQcsqJejiQumnSL5sEXJ8umh5rcUARbm8uL4YEMrg56yXnSl3sebC4IuxkQISzmuGs82KilL-faPUV3KQ7pUZzHHmw1zaiX9NiiclvMqA-6giF5mx58daL--3TlzmjkPt7_e9eP8LQ_HpzIk8Ph8To8i6hKB0XZ8A1YLicz-wGxUqk3nUr8BvmQDrk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6Fsb6sO6Tems7b4yxFze2ZSkJfeqapdlHQyhtV8ZASLL00s0OiQPb_vreybHbDAZjbwJJIOt0ut9Zd78DeK2V6eq8Z9A36akITYCNdB6zSGk0fqybosWkBOeTsRidZx8v-eUaHDS5MDU_RPvDjTTD39ek4NPcdW5IQ6kMFutzLu7ARiZYSp7X4LTljiKkI-r4jiRCp4I3tEJx2mmnrhijDdrXnxQcqea4P64ubLGCPG_jV2-AhlvwrVl6HXdytb-o9L75_Qer439-2wO4vwSm4WF9kh7Cmi0eweYtusLH4E7KnCKLvDDD0oVnN1mQoS-pMw-rMpzO6PGnCn9Yyir2nQ0ZAE2aXBx1xu9OO76eVGm-q19hQQ28mCiAzM6fwPnw_dnRKFrWaYgM6_dElHGjiXcfr4fUOiOU6AqV5jm3sbGJZkY7lRHy4AYBgnCJNrHQwnKRaW4QsD2F9aIs7DaETPcRr3GtNfEOOqcQouTkoqKp5dqmAbxqBCanNR2HrImXU4mbJv2mBfDGi7IdoWZXFL_W5fLL-FjGX4-H2UU2koMA9lZk3U5IERRzPDQB7DTCl0vdnqOzxBJ6EucsgJdtN2olPbWowpYLGoOOYEK-ZgBvvaT_vlx5OJn4xrN_H_oC7k4GQ_n5w_jTc7iXUokOCrHhO7BezRZ2F4FSpfe8QlwDyFANaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+Theoretical+models+to+predict+mechanical+behavior+of+PVC%2FNBR%2Forganoclay+nanocomposites&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Esmizadeh%2C+E.&rft.au=Naderi%2C+G.&rft.au=Ghoreishy%2C+Mir+Hamid+Reza&rft.date=2013-12-05&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=130&rft.issue=5&rft.spage=3229&rft.epage=3239&rft_id=info:doi/10.1002%2Fapp.39556&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0ZGF4V4H_D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon