Explainable artificial intelligence: an analytical review
This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the...
Saved in:
Published in | Wiley interdisciplinary reviews. Data mining and knowledge discovery Vol. 11; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
Wiley Periodicals, Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the main challenges in terms of explainability building on the recently formulated National Institute of Standards four principles of explainability. Recently published methods related to the topic are then critically reviewed and analyzed. Finally, future directions for research are suggested.
This article is categorized under:
Technologies > Artificial Intelligence
Fundamental Concepts of Data and Knowledge > Explainable AI
Accuracy versus interpretability for different machine learning models. |
---|---|
AbstractList | This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the main challenges in terms of explainability building on the recently formulated National Institute of Standards four principles of explainability. Recently published methods related to the topic are then critically reviewed and analyzed. Finally, future directions for research are suggested.
This article is categorized under:
Technologies > Artificial Intelligence
Fundamental Concepts of Data and Knowledge > Explainable AI
Accuracy versus interpretability for different machine learning models. |
Author | Angelov, Plamen P. Soares, Eduardo A. Jiang, Richard Arnold, Nicholas I. Atkinson, Peter M. |
Author_xml | – sequence: 1 givenname: Plamen P. orcidid: 0000-0002-5770-934X surname: Angelov fullname: Angelov, Plamen P. email: p.angelov@lancaster.ac.uk organization: Robotic and Autonomous Systems (LIRA) Research Centre – sequence: 2 givenname: Eduardo A. orcidid: 0000-0002-2634-8270 surname: Soares fullname: Soares, Eduardo A. email: e.almeidasoares@lancaster.ac.uk organization: Robotic and Autonomous Systems (LIRA) Research Centre – sequence: 3 givenname: Richard orcidid: 0000-0003-1721-9474 surname: Jiang fullname: Jiang, Richard organization: Robotic and Autonomous Systems (LIRA) Research Centre – sequence: 4 givenname: Nicholas I. orcidid: 0000-0003-3968-6233 surname: Arnold fullname: Arnold, Nicholas I. organization: Lancaster University – sequence: 5 givenname: Peter M. orcidid: 0000-0002-5489-6880 surname: Atkinson fullname: Atkinson, Peter M. organization: Lancaster University |
BookMark | eNo9j99KwzAYxYNMcM5d-AZ9gW751ybxTubUwcQbxcvw7UsikSyOtlj79rYoHg6cAwcO_C7JLH9mT8g1oytGKV_30R1XTHJ5RubMSF5KZarZf9fqgizb9oOOElxrzefEbL9PCWKGQ_IFNF0MESOkIubOpxTffUZ_U0AeDWnoIo5b47-i76_IeYDU-uVfLsjr_fZl81junx92m9t9icJoWQJzKoCqGYALNXIMzHFFVWCVcQhUG0RfKeEAmREoD0bVPMhK1AKNAy0WZP3728fkB3tq4hGawTJqJ2Y7MduJ2b7t7p6mIn4AQitOdw |
CitedBy_id | crossref_primary_10_1109_TG_2022_3159704 crossref_primary_10_3390_machines12060399 crossref_primary_10_1016_j_inffus_2025_102996 crossref_primary_10_3346_jkms_2025_40_e26 crossref_primary_10_1038_s41598_023_30064_6 crossref_primary_10_1016_j_knosys_2023_111107 crossref_primary_10_1016_j_dss_2021_113715 crossref_primary_10_1016_j_foodres_2024_114836 crossref_primary_10_3390_w15234122 crossref_primary_10_1007_s10343_025_01109_9 crossref_primary_10_1007_s10472_023_09895_6 crossref_primary_10_1109_ACCESS_2022_3197671 crossref_primary_10_1109_ACCESS_2022_3204171 crossref_primary_10_1109_TAI_2022_3227225 crossref_primary_10_2166_nh_2024_003 crossref_primary_10_1109_TBME_2024_3443635 crossref_primary_10_1016_j_imed_2024_09_005 crossref_primary_10_1136_bmjgh_2021_007811 crossref_primary_10_1145_3649459 crossref_primary_10_1145_3527152 crossref_primary_10_3390_app12010168 crossref_primary_10_1002_widm_1479 crossref_primary_10_1016_j_jfoodeng_2025_112515 crossref_primary_10_1016_j_envpol_2024_124389 crossref_primary_10_1007_s11229_024_04716_7 crossref_primary_10_1109_TEM_2023_3325951 crossref_primary_10_1109_JETCAS_2022_3231708 crossref_primary_10_1002_hpm_3864 crossref_primary_10_1145_3708520 crossref_primary_10_1016_j_ejdp_2023_100040 crossref_primary_10_1145_3696456 crossref_primary_10_1016_j_rse_2024_114321 crossref_primary_10_1007_s42452_024_06324_z crossref_primary_10_3390_pharmaceutics14040832 crossref_primary_10_4103_aiao_aiao_9_23 crossref_primary_10_1109_ACCESS_2023_3347038 crossref_primary_10_3390_s23218824 crossref_primary_10_3390_bdcc7030136 crossref_primary_10_1007_s10845_023_02266_2 crossref_primary_10_1063_5_0156620 crossref_primary_10_3389_fphy_2024_1359656 crossref_primary_10_3390_s23187876 crossref_primary_10_3390_rs14225733 crossref_primary_10_1007_s10462_024_10890_4 crossref_primary_10_1016_j_ins_2024_121670 crossref_primary_10_1088_1742_6596_2650_1_012025 crossref_primary_10_1108_BIJ_02_2022_0112 crossref_primary_10_3390_fermentation10050234 crossref_primary_10_1109_MIC_2022_3219263 crossref_primary_10_1177_15553434221103718 crossref_primary_10_1186_s12884_024_07095_6 crossref_primary_10_1016_j_ins_2023_01_009 crossref_primary_10_1021_acssuschemeng_4c00448 crossref_primary_10_1109_ACCESS_2023_3347028 crossref_primary_10_3390_make5010006 crossref_primary_10_5604_01_3001_0053_7217 crossref_primary_10_1007_s11042_024_20392_8 crossref_primary_10_1016_j_caeo_2021_100060 crossref_primary_10_51583_IJLTEMAS_2025_14020019 crossref_primary_10_1109_ACCESS_2025_3546681 crossref_primary_10_33847_2712_8148_4_1_4 crossref_primary_10_3390_app12031427 crossref_primary_10_1007_s43681_022_00190_4 crossref_primary_10_1016_j_xcrp_2024_102110 crossref_primary_10_3390_eng5030068 crossref_primary_10_1002_adfm_202214271 crossref_primary_10_1016_j_jnlest_2023_100231 crossref_primary_10_1109_COMST_2023_3273121 crossref_primary_10_1016_j_knosys_2024_111741 crossref_primary_10_1016_j_ins_2023_119078 crossref_primary_10_1016_j_jclepro_2024_143927 crossref_primary_10_1109_ACCESS_2024_3431691 crossref_primary_10_4108_eetsis_3489 crossref_primary_10_3390_jcm11113203 crossref_primary_10_1109_EMR_2023_3342200 crossref_primary_10_1016_j_chempr_2024_07_018 crossref_primary_10_1088_1741_2552_ad6593 crossref_primary_10_1016_j_enganabound_2023_12_024 crossref_primary_10_1111_cgf_15109 crossref_primary_10_3390_ijerph20010136 crossref_primary_10_3390_gels10060403 crossref_primary_10_1016_j_jss_2024_112244 crossref_primary_10_1145_3709367 crossref_primary_10_3390_machines11030322 crossref_primary_10_1080_17445760_2023_2225854 crossref_primary_10_1186_s41239_022_00362_6 crossref_primary_10_1007_s44230_023_00058_8 crossref_primary_10_1177_00936502231191832 crossref_primary_10_1109_JBHI_2022_3146369 crossref_primary_10_3389_feduc_2024_1392091 crossref_primary_10_3389_fenrg_2022_1028423 crossref_primary_10_3390_w15193369 crossref_primary_10_1038_s41598_022_27079_w crossref_primary_10_1109_TEM_2024_3369231 crossref_primary_10_1016_j_annemergmed_2024_01_031 crossref_primary_10_1002_minf_202500067 crossref_primary_10_1088_1361_6501_ad774b crossref_primary_10_1007_s41347_023_00343_0 crossref_primary_10_1016_j_catena_2021_105967 crossref_primary_10_3390_rs17040702 crossref_primary_10_1007_s40815_023_01544_8 crossref_primary_10_12677_AP_2023_1311686 crossref_primary_10_1364_OE_533183 crossref_primary_10_1080_17517575_2022_2098537 crossref_primary_10_56294_dm2025500 crossref_primary_10_1016_j_neucom_2024_127798 crossref_primary_10_1007_s11036_022_02021_6 crossref_primary_10_1007_s42803_023_00080_z crossref_primary_10_1051_shsconf_202419703001 crossref_primary_10_1039_D4CS00844H crossref_primary_10_1007_s12559_023_10179_8 crossref_primary_10_1109_TITS_2023_3316455 crossref_primary_10_3390_s22145346 crossref_primary_10_7769_gesec_v15i6_3922 crossref_primary_10_53730_ijhs_v6nS10_15238 crossref_primary_10_1007_s10676_025_09821_w crossref_primary_10_1080_00207543_2022_2138611 crossref_primary_10_3390_e26060484 crossref_primary_10_1109_TFUZZ_2022_3218426 crossref_primary_10_4000_11wa6 crossref_primary_10_1007_s10676_022_09650_1 crossref_primary_10_1038_s44184_024_00056_z crossref_primary_10_1021_acs_jcim_4c02153 crossref_primary_10_1016_j_neuroimage_2022_119737 crossref_primary_10_1109_ACCESS_2023_3274851 crossref_primary_10_1016_j_eswa_2023_120655 crossref_primary_10_1109_ACCESS_2024_3418967 crossref_primary_10_3390_s24247943 crossref_primary_10_1016_j_artmed_2024_103061 crossref_primary_10_1088_1402_4896_ad6fde crossref_primary_10_1007_s00477_023_02560_8 crossref_primary_10_1007_s11761_023_00370_y crossref_primary_10_1016_j_dss_2024_114253 crossref_primary_10_3389_fpace_2024_1475139 crossref_primary_10_3390_s25051401 crossref_primary_10_1007_s40860_024_00240_0 crossref_primary_10_1016_j_asoc_2023_110285 crossref_primary_10_1371_journal_pcbi_1011589 crossref_primary_10_1109_ACCESS_2025_3547343 crossref_primary_10_1021_acs_jctc_4c00753 crossref_primary_10_3233_THC_220563 crossref_primary_10_1016_j_isprsjprs_2023_05_025 crossref_primary_10_3390_life14070783 crossref_primary_10_2166_wst_2022_115 crossref_primary_10_1007_s44230_023_00038_y crossref_primary_10_1142_S1793351X23630011 crossref_primary_10_1007_s11560_022_00598_3 crossref_primary_10_1051_0004_6361_202450381 crossref_primary_10_3390_en17164132 crossref_primary_10_3390_electronics13142842 crossref_primary_10_1155_2023_9922475 crossref_primary_10_3390_jcm13175002 crossref_primary_10_1080_17512549_2023_2261020 crossref_primary_10_4018_JOEUC_308814 crossref_primary_10_3390_jimaging9090177 crossref_primary_10_1038_s41598_024_54186_7 crossref_primary_10_1016_j_inffus_2023_101805 crossref_primary_10_21595_mme_2024_24454 crossref_primary_10_1007_JHEP11_2024_007 crossref_primary_10_1145_3679012 crossref_primary_10_1016_j_heliyon_2024_e34262 crossref_primary_10_1109_ACCESS_2023_3296792 crossref_primary_10_1029_2024EA003753 crossref_primary_10_3390_info14050265 crossref_primary_10_1016_j_mtphys_2024_101359 crossref_primary_10_1111_exsy_13710 crossref_primary_10_1371_journal_pone_0302197 crossref_primary_10_21105_joss_06711 crossref_primary_10_3389_frai_2024_1479855 crossref_primary_10_3390_app13064040 crossref_primary_10_1016_j_apenergy_2023_121077 crossref_primary_10_18705_2782_3806_2022_2_6_23_32 crossref_primary_10_1016_j_scs_2025_106257 crossref_primary_10_1080_15391523_2022_2121343 crossref_primary_10_1371_journal_pcbi_1010718 crossref_primary_10_1080_00207543_2023_2216310 crossref_primary_10_1109_TSG_2023_3337392 crossref_primary_10_1186_s42492_023_00138_3 crossref_primary_10_1007_s44230_023_00054_y crossref_primary_10_1002_env_70000 crossref_primary_10_1109_JBHI_2023_3348334 crossref_primary_10_48175_IJARSCT_17257 crossref_primary_10_3390_app15020863 crossref_primary_10_1016_j_gpb_2022_07_003 crossref_primary_10_3390_su151914512 crossref_primary_10_3390_diagnostics14151691 crossref_primary_10_1186_s12984_024_01310_3 crossref_primary_10_1016_j_phro_2024_100694 crossref_primary_10_1016_j_cmpb_2024_108238 crossref_primary_10_1109_TITS_2024_3474469 crossref_primary_10_61961_injei_v1i1_7 crossref_primary_10_1109_TNSM_2023_3282740 crossref_primary_10_1038_s41467_024_51970_x crossref_primary_10_3390_app13137602 crossref_primary_10_1109_MGRS_2023_3272825 crossref_primary_10_1038_s41598_023_38459_1 crossref_primary_10_3389_fradi_2022_991683 crossref_primary_10_1016_j_engappai_2022_105596 crossref_primary_10_1016_j_jobe_2022_105144 crossref_primary_10_52836_sayistay_1554497 crossref_primary_10_1097_PR9_0000000000001112 crossref_primary_10_1016_j_jcrimjus_2022_101898 crossref_primary_10_3390_buildings13122944 crossref_primary_10_1007_s44196_024_00527_3 crossref_primary_10_1007_s10614_024_10700_7 crossref_primary_10_1061_JCCEE5_CPENG_5990 crossref_primary_10_3390_electronics11172706 crossref_primary_10_3389_frai_2024_1391745 crossref_primary_10_1016_j_aap_2024_107747 crossref_primary_10_1093_braincomms_fcae265 crossref_primary_10_21603_2542_1840_2023_7_3_267_280 crossref_primary_10_1007_s11356_023_30077_8 crossref_primary_10_3390_s23041963 crossref_primary_10_1007_s10462_023_10525_0 crossref_primary_10_2196_36055 crossref_primary_10_1039_D3DD00093A crossref_primary_10_1371_journal_pone_0275814 crossref_primary_10_3389_fneph_2023_1266967 crossref_primary_10_1109_TFUZZ_2024_3485212 crossref_primary_10_3390_a18010007 crossref_primary_10_4467_16891716AMSIK_24_005_19650 crossref_primary_10_1007_s12530_023_09511_2 crossref_primary_10_1007_s44217_024_00209_4 crossref_primary_10_1089_crispr_2023_0019 crossref_primary_10_1073_pnas_2408125122 crossref_primary_10_1002_cpe_8372 crossref_primary_10_1109_TFUZZ_2023_3276263 crossref_primary_10_1111_acps_13795 crossref_primary_10_1007_s12559_024_10294_0 crossref_primary_10_1109_TAI_2023_3333310 crossref_primary_10_3390_app142411612 crossref_primary_10_1016_j_ins_2024_120667 crossref_primary_10_3390_jmse11112165 crossref_primary_10_1108_JEBDE_07_2024_0019 crossref_primary_10_3389_fpsyg_2023_1069426 crossref_primary_10_3390_info15120819 crossref_primary_10_1109_ACCESS_2024_3421282 crossref_primary_10_1007_s00521_024_10437_2 crossref_primary_10_3390_su162411145 crossref_primary_10_1002_widm_1461 crossref_primary_10_1016_j_atech_2023_100350 crossref_primary_10_1088_1758_5090_ac94a1 crossref_primary_10_47992_IJAEML_2581_7000_0119 crossref_primary_10_1145_3675392 crossref_primary_10_1109_OJCOMS_2022_3215676 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. |
DBID | 24P |
DOI | 10.1002/widm.1424 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1942-4795 |
EndPage | n/a |
ExternalDocumentID | WIDM1424 |
Genre | reviewArticle |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BHBCM BMNLL BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W PQQKQ ROL SUPJJ WBKPD WIH WIK WMRSR WOHZO WSUWO WXSBR WYJ ZZTAW |
ID | FETCH-LOGICAL-c3984-a1d7fa761aadf6c2cf1d2707f159dca089cce573dac193c4b9762f45363c9da83 |
IEDL.DBID | 24P |
ISSN | 1942-4787 |
IngestDate | Wed Jan 22 16:28:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3984-a1d7fa761aadf6c2cf1d2707f159dca089cce573dac193c4b9762f45363c9da83 |
Notes | Sushmita Mitra, Associate Editor and Witold Pedrycz, Editor‐in‐Chief Edited by |
ORCID | 0000-0003-1721-9474 0000-0003-3968-6233 0000-0002-5489-6880 0000-0002-5770-934X 0000-0002-2634-8270 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1424 |
PageCount | 13 |
ParticipantIDs | wiley_primary_10_1002_widm_1424_WIDM1424 |
PublicationCentury | 2000 |
PublicationDate | September/October 2021 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September/October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | Wiley interdisciplinary reviews. Data mining and knowledge discovery |
PublicationYear | 2021 |
Publisher | Wiley Periodicals, Inc |
Publisher_xml | – name: Wiley Periodicals, Inc |
References | 2019; 7 1987; 1 1990; 78 2015; 521 2019; 1 2015; 10 2002; 134 2006; 18 2020; 58 2006 2020; 13 2001; 45 1959; 3 2011; 5 1990; 3 2018; 6 1990; 20 2018; 18 2017; 30 1996; 28 2014; 3 2018; 4 2020; 1 2001 2020; 130 2021 2020 2017; 38 2016; 43 2020; 28 2019 2018 2015; 518 2017 2016 2018; 51 2015 2014 2001; 1 2009; 4 2013 2012; 5 1998; 13 2018; 13 |
References_xml | – volume: 4 year: 2018 article-title: The accuracy, fairness, and limits of predicting recidivism publication-title: Science Advances – volume: 58 start-page: 82 year: 2020 end-page: 115 article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Information Fusion – volume: 28 start-page: 71 year: 1996 end-page: 72 article-title: Learning decision tree classifiers publication-title: ACM Computing Surveys (CSUR) – volume: 6 start-page: 52138 year: 2018 end-page: 52160 article-title: Peeking inside the black‐box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access – volume: 38 start-page: 50 year: 2017 end-page: 57 article-title: European union regulations on algorithmic decision‐making and a “right to explanation publication-title: AI Magazine – volume: 78 start-page: 1550 year: 1990 end-page: 1560 article-title: Backpropagation through time: What it does and how to do it publication-title: Proceedings of the IEEE – volume: 43 start-page: 24 year: 2016 end-page: 29 article-title: Google deep mind's alphago publication-title: OR/MS Today – volume: 3 start-page: 2672 year: 2014 end-page: 2680 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – volume: 5 start-page: 35 year: 2012 end-page: 43 article-title: Alan turing's unorganized machines and artificial neural networks: His remarkable early work and future possibilities publication-title: Evolutionary Intelligence – volume: 20 start-page: 339 year: 1990 end-page: 346 article-title: Decision trees and decision‐making publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 130 start-page: 185 year: 2020 end-page: 194 article-title: Towards explainable deep neural networks (xDNN) publication-title: Neural Networks – year: 2001 – year: 2021 – volume: 1 year: 2001 – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – start-page: 1269 year: 2019 end-page: 1292 – volume: 18 start-page: 1601 year: 2018 end-page: 1607 article-title: A shared vision for machine learning in neuroscience publication-title: Journal Neuroscience – year: 2016 – year: 2018 – volume: 1 start-page: 95 year: 1987 end-page: 109 article-title: Connectionist AI, symbolic AI, and the brain publication-title: Artificial Intelligence Review – year: 2014 – volume: 7 start-page: 152701 year: 2019 end-page: 152714 article-title: Shallow unorganized neural networks using smart neuron model for visual perception publication-title: IEEE Access – volume: 28 start-page: 6276 year: 2020 end-page: 6282 article-title: Artificial cognition: How experimental psychology can help generate explainable artificial intelligence publication-title: Psychonomic Bulletin and Review – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 1 start-page: 206 year: 2019 end-page: 215 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nature Machine Intelligence – volume: 4 start-page: 1883 year: 2009 article-title: K‐nearest neighbor publication-title: Scholarpedia – volume: 10 year: 2015 article-title: On pixel‐wise explanations for non‐linear classifier decisions by layer‐wise relevance propagation publication-title: PLoS One – volume: 5 start-page: 2403 year: 2011 end-page: 2424 article-title: Prototype selection for interpretable classification publication-title: The Annals of Applied Statistics – volume: 18 start-page: 1527 year: 2006 end-page: 1554 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – start-page: 422 year: 2020 end-page: 430 – volume: 518 start-page: 529 year: 2015 end-page: 533 article-title: Human‐level control through deep reinforcement learning publication-title: Nature – start-page: 56 year: 2019 end-page: 63 – volume: 30 start-page: 4765 year: 2017 end-page: 4774 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – volume: 51 start-page: 18 year: 2018 end-page: 27 article-title: Toward anthropomorphic machine learning publication-title: Computer – year: 2006 – year: 2020 – volume: 13 start-page: 1346 year: 2020 article-title: Explainable artificial intelligence for neuroscience: Behavioral neurostimulation publication-title: Frontiers in Neuroscience – volume: 13 start-page: 55 year: 2018 end-page: 75 article-title: Recent trends in deep learning based natural language processing publication-title: IEEE Computational Intelligence Magazine – volume: 3 start-page: 210 year: 1959 end-page: 229 article-title: Some studies in machine learning using the game of checkers publication-title: IBM Journal of Research and Development – volume: 13 start-page: 18 year: 1998 end-page: 28 article-title: Support vector machines publication-title: IEEE Intelligent Systems and their Applications – volume: 1 start-page: 1 year: 2020 end-page: 10 article-title: Explaining deep learning models through rule‐based approximation and visualization publication-title: IEEE Transactions on Fuzzy Systems – year: 2017 – start-page: 1 year: 2020 end-page: 6 – year: 2019 – volume: 134 start-page: 57 year: 2002 end-page: 83 article-title: Deep blue publication-title: Artificial Intelligence – volume: 3 start-page: 551 year: 1990 end-page: 560 article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks publication-title: Neural Networks – year: 2015 – year: 2013 |
SSID | ssj0000328882 |
Score | 2.6462405 |
Snippet | This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | black‐box models deep learning explainable AI machine learning prototype‐based models surrogate models |
Title | Explainable artificial intelligence: an analytical review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1424 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8NADICtUhYW3oi3bmBgOZpc0lwCEwKqggRioKJb5NxDqgQBQRHi32Nf0gIbUoYMuSG2fH7I_gxwFFvnY4y8dD6hBMUolOT0UEYm02g9L98LDbJ32XCU3oz74w6czWZhGj7EvODGlhHuazZwrN57P9DQz4l9PuE5rQVY5NFaBuer9H5eYGFQXB6WRVGeriRDaGZkoUj15qf_BqXBqwxWYbkNB8V5o7816Lh6HVZmqxZEa3kbUHCvXDvoJFjbDfhBTH4RNU8F1vTg01eoT4tmKmUTRoOrh4uhbLceSJMUeSoxttqjzmJkWRllfGyVjrSnwMMajPLCGNfXiUVDwZdJK5Kt8mk_yRJTWMyTLejWL7XbBkG5FqaGvLDWZKhVUWhHxyjDiJ3x2qkdOA7_Xr42ZIuyYRirkqVTsnTKx-vLW37Z_f-ne7CkuPEjNGLtQ3f69uEOyHNPq8OgoW_e4JVl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsDCG_HGAwOLaeI4cYJYEFCl0FYMregWuX5IlSAgVIT49_icNMCG5MGDPfhOn--hu-8AzkJtbCgDS42NXICimKTO6EkaqERIbXH4ni-QHSb5mN9P4kkLrha9MBU_RJNwQ2T4_xoBjgnpzg9r6OdMv1xgo9YSLPOECYQl449NhgWZ4lI_LcoF6owiC82CWihgneb2X6_Um5XuBqzV_iC5rhS4CS1TbsH6YtYCqaG3DRkWy9WdTgTVXTE_kNkvSs1LIku35POXT1CTqi1lB8bdu9FNTuuxB1RFWcqpDLWwUiShRGEppmyomQiEdZ6HVjJIM6VMLCItlfO-FJ864TLL4yiJVKZlGu1Cu3wtzR4QF2xJrpwZFsIhdZplwrhrLsQIjbLCsH04928v3ipqi6IiMWYFSqdA6RRPvdsBbg7-f_QUVvLRoF_0e8OHQ1hlWAXiq7KOoD1__zDHzozPpydeW98K05jR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8NADICtUiTEwhvx5gYGlqPJ5XEJTIhStTyqDlR0i673kCpBqFAR4t9jX9ICG1KGDLkhthw_Yn8GOAuNdaEKHLcuwgRFC8XR6Ske6FQq42j5nm-Q7afdYXw3SkYNuJrPwlR8iEXBjSzDf6_JwKfGtX6goZ8T83pBc1pLsOx_9hHWOR4sCiwEisv8sijM0wUnCM2cLBSI1uL036DUe5XOBqzV4SC7rvS3CQ1bbsH6fNUCqy1vG3LqlasHnRhpuwI_sMkvouYlUyVe6uXL16dZNZWyA8PO7dNNl9dbD7iO8izmKjTSKZmGimSlhXahETKQDgMPo1WQ5VrbREZGaQy-dDxG2QoXJ1Ea6dyoLNqFZvlW2j1gmGupWKMXlhINdZzn0uIxzDBCq520Yh_O_bsX04psUVQMY1GQdAqSTvHcaz_SzcH_Hz2FlUG7Uzz0-veHsCqoB8T3ZB1Bc_b-YY_Ric_GJ15Z34ComAM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+artificial+intelligence%3A+an+analytical+review&rft.jtitle=Wiley+interdisciplinary+reviews.+Data+mining+and+knowledge+discovery&rft.au=Angelov%2C+Plamen+P.&rft.au=Soares%2C+Eduardo+A.&rft.au=Jiang%2C+Richard&rft.au=Arnold%2C+Nicholas+I.&rft.date=2021-09-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1942-4787&rft.eissn=1942-4795&rft.volume=11&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwidm.1424&rft.externalDBID=10.1002%252Fwidm.1424&rft.externalDocID=WIDM1424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-4787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-4787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-4787&client=summon |