Explainable artificial intelligence: an analytical review

This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Data mining and knowledge discovery Vol. 11; no. 5
Main Authors Angelov, Plamen P., Soares, Eduardo A., Jiang, Richard, Arnold, Nicholas I., Atkinson, Peter M.
Format Journal Article
LanguageEnglish
Published Hoboken, USA Wiley Periodicals, Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the main challenges in terms of explainability building on the recently formulated National Institute of Standards four principles of explainability. Recently published methods related to the topic are then critically reviewed and analyzed. Finally, future directions for research are suggested. This article is categorized under: Technologies > Artificial Intelligence Fundamental Concepts of Data and Knowledge > Explainable AI Accuracy versus interpretability for different machine learning models.
AbstractList This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the main challenges in terms of explainability building on the recently formulated National Institute of Standards four principles of explainability. Recently published methods related to the topic are then critically reviewed and analyzed. Finally, future directions for research are suggested. This article is categorized under: Technologies > Artificial Intelligence Fundamental Concepts of Data and Knowledge > Explainable AI Accuracy versus interpretability for different machine learning models.
Author Angelov, Plamen P.
Soares, Eduardo A.
Jiang, Richard
Arnold, Nicholas I.
Atkinson, Peter M.
Author_xml – sequence: 1
  givenname: Plamen P.
  orcidid: 0000-0002-5770-934X
  surname: Angelov
  fullname: Angelov, Plamen P.
  email: p.angelov@lancaster.ac.uk
  organization: Robotic and Autonomous Systems (LIRA) Research Centre
– sequence: 2
  givenname: Eduardo A.
  orcidid: 0000-0002-2634-8270
  surname: Soares
  fullname: Soares, Eduardo A.
  email: e.almeidasoares@lancaster.ac.uk
  organization: Robotic and Autonomous Systems (LIRA) Research Centre
– sequence: 3
  givenname: Richard
  orcidid: 0000-0003-1721-9474
  surname: Jiang
  fullname: Jiang, Richard
  organization: Robotic and Autonomous Systems (LIRA) Research Centre
– sequence: 4
  givenname: Nicholas I.
  orcidid: 0000-0003-3968-6233
  surname: Arnold
  fullname: Arnold, Nicholas I.
  organization: Lancaster University
– sequence: 5
  givenname: Peter M.
  orcidid: 0000-0002-5489-6880
  surname: Atkinson
  fullname: Atkinson, Peter M.
  organization: Lancaster University
BookMark eNo9j99KwzAYxYNMcM5d-AZ9gW751ybxTubUwcQbxcvw7UsikSyOtlj79rYoHg6cAwcO_C7JLH9mT8g1oytGKV_30R1XTHJ5RubMSF5KZarZf9fqgizb9oOOElxrzefEbL9PCWKGQ_IFNF0MESOkIubOpxTffUZ_U0AeDWnoIo5b47-i76_IeYDU-uVfLsjr_fZl81junx92m9t9icJoWQJzKoCqGYALNXIMzHFFVWCVcQhUG0RfKeEAmREoD0bVPMhK1AKNAy0WZP3728fkB3tq4hGawTJqJ2Y7MduJ2b7t7p6mIn4AQitOdw
CitedBy_id crossref_primary_10_1109_TG_2022_3159704
crossref_primary_10_3390_machines12060399
crossref_primary_10_1016_j_inffus_2025_102996
crossref_primary_10_3346_jkms_2025_40_e26
crossref_primary_10_1038_s41598_023_30064_6
crossref_primary_10_1016_j_knosys_2023_111107
crossref_primary_10_1016_j_dss_2021_113715
crossref_primary_10_1016_j_foodres_2024_114836
crossref_primary_10_3390_w15234122
crossref_primary_10_1007_s10343_025_01109_9
crossref_primary_10_1007_s10472_023_09895_6
crossref_primary_10_1109_ACCESS_2022_3197671
crossref_primary_10_1109_ACCESS_2022_3204171
crossref_primary_10_1109_TAI_2022_3227225
crossref_primary_10_2166_nh_2024_003
crossref_primary_10_1109_TBME_2024_3443635
crossref_primary_10_1016_j_imed_2024_09_005
crossref_primary_10_1136_bmjgh_2021_007811
crossref_primary_10_1145_3649459
crossref_primary_10_1145_3527152
crossref_primary_10_3390_app12010168
crossref_primary_10_1002_widm_1479
crossref_primary_10_1016_j_jfoodeng_2025_112515
crossref_primary_10_1016_j_envpol_2024_124389
crossref_primary_10_1007_s11229_024_04716_7
crossref_primary_10_1109_TEM_2023_3325951
crossref_primary_10_1109_JETCAS_2022_3231708
crossref_primary_10_1002_hpm_3864
crossref_primary_10_1145_3708520
crossref_primary_10_1016_j_ejdp_2023_100040
crossref_primary_10_1145_3696456
crossref_primary_10_1016_j_rse_2024_114321
crossref_primary_10_1007_s42452_024_06324_z
crossref_primary_10_3390_pharmaceutics14040832
crossref_primary_10_4103_aiao_aiao_9_23
crossref_primary_10_1109_ACCESS_2023_3347038
crossref_primary_10_3390_s23218824
crossref_primary_10_3390_bdcc7030136
crossref_primary_10_1007_s10845_023_02266_2
crossref_primary_10_1063_5_0156620
crossref_primary_10_3389_fphy_2024_1359656
crossref_primary_10_3390_s23187876
crossref_primary_10_3390_rs14225733
crossref_primary_10_1007_s10462_024_10890_4
crossref_primary_10_1016_j_ins_2024_121670
crossref_primary_10_1088_1742_6596_2650_1_012025
crossref_primary_10_1108_BIJ_02_2022_0112
crossref_primary_10_3390_fermentation10050234
crossref_primary_10_1109_MIC_2022_3219263
crossref_primary_10_1177_15553434221103718
crossref_primary_10_1186_s12884_024_07095_6
crossref_primary_10_1016_j_ins_2023_01_009
crossref_primary_10_1021_acssuschemeng_4c00448
crossref_primary_10_1109_ACCESS_2023_3347028
crossref_primary_10_3390_make5010006
crossref_primary_10_5604_01_3001_0053_7217
crossref_primary_10_1007_s11042_024_20392_8
crossref_primary_10_1016_j_caeo_2021_100060
crossref_primary_10_51583_IJLTEMAS_2025_14020019
crossref_primary_10_1109_ACCESS_2025_3546681
crossref_primary_10_33847_2712_8148_4_1_4
crossref_primary_10_3390_app12031427
crossref_primary_10_1007_s43681_022_00190_4
crossref_primary_10_1016_j_xcrp_2024_102110
crossref_primary_10_3390_eng5030068
crossref_primary_10_1002_adfm_202214271
crossref_primary_10_1016_j_jnlest_2023_100231
crossref_primary_10_1109_COMST_2023_3273121
crossref_primary_10_1016_j_knosys_2024_111741
crossref_primary_10_1016_j_ins_2023_119078
crossref_primary_10_1016_j_jclepro_2024_143927
crossref_primary_10_1109_ACCESS_2024_3431691
crossref_primary_10_4108_eetsis_3489
crossref_primary_10_3390_jcm11113203
crossref_primary_10_1109_EMR_2023_3342200
crossref_primary_10_1016_j_chempr_2024_07_018
crossref_primary_10_1088_1741_2552_ad6593
crossref_primary_10_1016_j_enganabound_2023_12_024
crossref_primary_10_1111_cgf_15109
crossref_primary_10_3390_ijerph20010136
crossref_primary_10_3390_gels10060403
crossref_primary_10_1016_j_jss_2024_112244
crossref_primary_10_1145_3709367
crossref_primary_10_3390_machines11030322
crossref_primary_10_1080_17445760_2023_2225854
crossref_primary_10_1186_s41239_022_00362_6
crossref_primary_10_1007_s44230_023_00058_8
crossref_primary_10_1177_00936502231191832
crossref_primary_10_1109_JBHI_2022_3146369
crossref_primary_10_3389_feduc_2024_1392091
crossref_primary_10_3389_fenrg_2022_1028423
crossref_primary_10_3390_w15193369
crossref_primary_10_1038_s41598_022_27079_w
crossref_primary_10_1109_TEM_2024_3369231
crossref_primary_10_1016_j_annemergmed_2024_01_031
crossref_primary_10_1002_minf_202500067
crossref_primary_10_1088_1361_6501_ad774b
crossref_primary_10_1007_s41347_023_00343_0
crossref_primary_10_1016_j_catena_2021_105967
crossref_primary_10_3390_rs17040702
crossref_primary_10_1007_s40815_023_01544_8
crossref_primary_10_12677_AP_2023_1311686
crossref_primary_10_1364_OE_533183
crossref_primary_10_1080_17517575_2022_2098537
crossref_primary_10_56294_dm2025500
crossref_primary_10_1016_j_neucom_2024_127798
crossref_primary_10_1007_s11036_022_02021_6
crossref_primary_10_1007_s42803_023_00080_z
crossref_primary_10_1051_shsconf_202419703001
crossref_primary_10_1039_D4CS00844H
crossref_primary_10_1007_s12559_023_10179_8
crossref_primary_10_1109_TITS_2023_3316455
crossref_primary_10_3390_s22145346
crossref_primary_10_7769_gesec_v15i6_3922
crossref_primary_10_53730_ijhs_v6nS10_15238
crossref_primary_10_1007_s10676_025_09821_w
crossref_primary_10_1080_00207543_2022_2138611
crossref_primary_10_3390_e26060484
crossref_primary_10_1109_TFUZZ_2022_3218426
crossref_primary_10_4000_11wa6
crossref_primary_10_1007_s10676_022_09650_1
crossref_primary_10_1038_s44184_024_00056_z
crossref_primary_10_1021_acs_jcim_4c02153
crossref_primary_10_1016_j_neuroimage_2022_119737
crossref_primary_10_1109_ACCESS_2023_3274851
crossref_primary_10_1016_j_eswa_2023_120655
crossref_primary_10_1109_ACCESS_2024_3418967
crossref_primary_10_3390_s24247943
crossref_primary_10_1016_j_artmed_2024_103061
crossref_primary_10_1088_1402_4896_ad6fde
crossref_primary_10_1007_s00477_023_02560_8
crossref_primary_10_1007_s11761_023_00370_y
crossref_primary_10_1016_j_dss_2024_114253
crossref_primary_10_3389_fpace_2024_1475139
crossref_primary_10_3390_s25051401
crossref_primary_10_1007_s40860_024_00240_0
crossref_primary_10_1016_j_asoc_2023_110285
crossref_primary_10_1371_journal_pcbi_1011589
crossref_primary_10_1109_ACCESS_2025_3547343
crossref_primary_10_1021_acs_jctc_4c00753
crossref_primary_10_3233_THC_220563
crossref_primary_10_1016_j_isprsjprs_2023_05_025
crossref_primary_10_3390_life14070783
crossref_primary_10_2166_wst_2022_115
crossref_primary_10_1007_s44230_023_00038_y
crossref_primary_10_1142_S1793351X23630011
crossref_primary_10_1007_s11560_022_00598_3
crossref_primary_10_1051_0004_6361_202450381
crossref_primary_10_3390_en17164132
crossref_primary_10_3390_electronics13142842
crossref_primary_10_1155_2023_9922475
crossref_primary_10_3390_jcm13175002
crossref_primary_10_1080_17512549_2023_2261020
crossref_primary_10_4018_JOEUC_308814
crossref_primary_10_3390_jimaging9090177
crossref_primary_10_1038_s41598_024_54186_7
crossref_primary_10_1016_j_inffus_2023_101805
crossref_primary_10_21595_mme_2024_24454
crossref_primary_10_1007_JHEP11_2024_007
crossref_primary_10_1145_3679012
crossref_primary_10_1016_j_heliyon_2024_e34262
crossref_primary_10_1109_ACCESS_2023_3296792
crossref_primary_10_1029_2024EA003753
crossref_primary_10_3390_info14050265
crossref_primary_10_1016_j_mtphys_2024_101359
crossref_primary_10_1111_exsy_13710
crossref_primary_10_1371_journal_pone_0302197
crossref_primary_10_21105_joss_06711
crossref_primary_10_3389_frai_2024_1479855
crossref_primary_10_3390_app13064040
crossref_primary_10_1016_j_apenergy_2023_121077
crossref_primary_10_18705_2782_3806_2022_2_6_23_32
crossref_primary_10_1016_j_scs_2025_106257
crossref_primary_10_1080_15391523_2022_2121343
crossref_primary_10_1371_journal_pcbi_1010718
crossref_primary_10_1080_00207543_2023_2216310
crossref_primary_10_1109_TSG_2023_3337392
crossref_primary_10_1186_s42492_023_00138_3
crossref_primary_10_1007_s44230_023_00054_y
crossref_primary_10_1002_env_70000
crossref_primary_10_1109_JBHI_2023_3348334
crossref_primary_10_48175_IJARSCT_17257
crossref_primary_10_3390_app15020863
crossref_primary_10_1016_j_gpb_2022_07_003
crossref_primary_10_3390_su151914512
crossref_primary_10_3390_diagnostics14151691
crossref_primary_10_1186_s12984_024_01310_3
crossref_primary_10_1016_j_phro_2024_100694
crossref_primary_10_1016_j_cmpb_2024_108238
crossref_primary_10_1109_TITS_2024_3474469
crossref_primary_10_61961_injei_v1i1_7
crossref_primary_10_1109_TNSM_2023_3282740
crossref_primary_10_1038_s41467_024_51970_x
crossref_primary_10_3390_app13137602
crossref_primary_10_1109_MGRS_2023_3272825
crossref_primary_10_1038_s41598_023_38459_1
crossref_primary_10_3389_fradi_2022_991683
crossref_primary_10_1016_j_engappai_2022_105596
crossref_primary_10_1016_j_jobe_2022_105144
crossref_primary_10_52836_sayistay_1554497
crossref_primary_10_1097_PR9_0000000000001112
crossref_primary_10_1016_j_jcrimjus_2022_101898
crossref_primary_10_3390_buildings13122944
crossref_primary_10_1007_s44196_024_00527_3
crossref_primary_10_1007_s10614_024_10700_7
crossref_primary_10_1061_JCCEE5_CPENG_5990
crossref_primary_10_3390_electronics11172706
crossref_primary_10_3389_frai_2024_1391745
crossref_primary_10_1016_j_aap_2024_107747
crossref_primary_10_1093_braincomms_fcae265
crossref_primary_10_21603_2542_1840_2023_7_3_267_280
crossref_primary_10_1007_s11356_023_30077_8
crossref_primary_10_3390_s23041963
crossref_primary_10_1007_s10462_023_10525_0
crossref_primary_10_2196_36055
crossref_primary_10_1039_D3DD00093A
crossref_primary_10_1371_journal_pone_0275814
crossref_primary_10_3389_fneph_2023_1266967
crossref_primary_10_1109_TFUZZ_2024_3485212
crossref_primary_10_3390_a18010007
crossref_primary_10_4467_16891716AMSIK_24_005_19650
crossref_primary_10_1007_s12530_023_09511_2
crossref_primary_10_1007_s44217_024_00209_4
crossref_primary_10_1089_crispr_2023_0019
crossref_primary_10_1073_pnas_2408125122
crossref_primary_10_1002_cpe_8372
crossref_primary_10_1109_TFUZZ_2023_3276263
crossref_primary_10_1111_acps_13795
crossref_primary_10_1007_s12559_024_10294_0
crossref_primary_10_1109_TAI_2023_3333310
crossref_primary_10_3390_app142411612
crossref_primary_10_1016_j_ins_2024_120667
crossref_primary_10_3390_jmse11112165
crossref_primary_10_1108_JEBDE_07_2024_0019
crossref_primary_10_3389_fpsyg_2023_1069426
crossref_primary_10_3390_info15120819
crossref_primary_10_1109_ACCESS_2024_3421282
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_3390_su162411145
crossref_primary_10_1002_widm_1461
crossref_primary_10_1016_j_atech_2023_100350
crossref_primary_10_1088_1758_5090_ac94a1
crossref_primary_10_47992_IJAEML_2581_7000_0119
crossref_primary_10_1145_3675392
crossref_primary_10_1109_OJCOMS_2022_3215676
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
DBID 24P
DOI 10.1002/widm.1424
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1942-4795
EndPage n/a
ExternalDocumentID WIDM1424
Genre reviewArticle
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BHBCM
BMNLL
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
PQQKQ
ROL
SUPJJ
WBKPD
WIH
WIK
WMRSR
WOHZO
WSUWO
WXSBR
WYJ
ZZTAW
ID FETCH-LOGICAL-c3984-a1d7fa761aadf6c2cf1d2707f159dca089cce573dac193c4b9762f45363c9da83
IEDL.DBID 24P
ISSN 1942-4787
IngestDate Wed Jan 22 16:28:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3984-a1d7fa761aadf6c2cf1d2707f159dca089cce573dac193c4b9762f45363c9da83
Notes Sushmita Mitra, Associate Editor and Witold Pedrycz, Editor‐in‐Chief
Edited by
ORCID 0000-0003-1721-9474
0000-0003-3968-6233
0000-0002-5489-6880
0000-0002-5770-934X
0000-0002-2634-8270
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1424
PageCount 13
ParticipantIDs wiley_primary_10_1002_widm_1424_WIDM1424
PublicationCentury 2000
PublicationDate September/October 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September/October 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Wiley interdisciplinary reviews. Data mining and knowledge discovery
PublicationYear 2021
Publisher Wiley Periodicals, Inc
Publisher_xml – name: Wiley Periodicals, Inc
References 2019; 7
1987; 1
1990; 78
2015; 521
2019; 1
2015; 10
2002; 134
2006; 18
2020; 58
2006
2020; 13
2001; 45
1959; 3
2011; 5
1990; 3
2018; 6
1990; 20
2018; 18
2017; 30
1996; 28
2014; 3
2018; 4
2020; 1
2001
2020; 130
2021
2020
2017; 38
2016; 43
2020; 28
2019
2018
2015; 518
2017
2016
2018; 51
2015
2014
2001; 1
2009; 4
2013
2012; 5
1998; 13
2018; 13
References_xml – volume: 4
  year: 2018
  article-title: The accuracy, fairness, and limits of predicting recidivism
  publication-title: Science Advances
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
  publication-title: Information Fusion
– volume: 28
  start-page: 71
  year: 1996
  end-page: 72
  article-title: Learning decision tree classifiers
  publication-title: ACM Computing Surveys (CSUR)
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  article-title: Peeking inside the black‐box: A survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
– volume: 38
  start-page: 50
  year: 2017
  end-page: 57
  article-title: European union regulations on algorithmic decision‐making and a “right to explanation
  publication-title: AI Magazine
– volume: 78
  start-page: 1550
  year: 1990
  end-page: 1560
  article-title: Backpropagation through time: What it does and how to do it
  publication-title: Proceedings of the IEEE
– volume: 43
  start-page: 24
  year: 2016
  end-page: 29
  article-title: Google deep mind's alphago
  publication-title: OR/MS Today
– volume: 3
  start-page: 2672
  year: 2014
  end-page: 2680
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 5
  start-page: 35
  year: 2012
  end-page: 43
  article-title: Alan turing's unorganized machines and artificial neural networks: His remarkable early work and future possibilities
  publication-title: Evolutionary Intelligence
– volume: 20
  start-page: 339
  year: 1990
  end-page: 346
  article-title: Decision trees and decision‐making
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 130
  start-page: 185
  year: 2020
  end-page: 194
  article-title: Towards explainable deep neural networks (xDNN)
  publication-title: Neural Networks
– year: 2001
– year: 2021
– volume: 1
  year: 2001
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– start-page: 1269
  year: 2019
  end-page: 1292
– volume: 18
  start-page: 1601
  year: 2018
  end-page: 1607
  article-title: A shared vision for machine learning in neuroscience
  publication-title: Journal Neuroscience
– year: 2016
– year: 2018
– volume: 1
  start-page: 95
  year: 1987
  end-page: 109
  article-title: Connectionist AI, symbolic AI, and the brain
  publication-title: Artificial Intelligence Review
– year: 2014
– volume: 7
  start-page: 152701
  year: 2019
  end-page: 152714
  article-title: Shallow unorganized neural networks using smart neuron model for visual perception
  publication-title: IEEE Access
– volume: 28
  start-page: 6276
  year: 2020
  end-page: 6282
  article-title: Artificial cognition: How experimental psychology can help generate explainable artificial intelligence
  publication-title: Psychonomic Bulletin and Review
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nature Machine Intelligence
– volume: 4
  start-page: 1883
  year: 2009
  article-title: K‐nearest neighbor
  publication-title: Scholarpedia
– volume: 10
  year: 2015
  article-title: On pixel‐wise explanations for non‐linear classifier decisions by layer‐wise relevance propagation
  publication-title: PLoS One
– volume: 5
  start-page: 2403
  year: 2011
  end-page: 2424
  article-title: Prototype selection for interpretable classification
  publication-title: The Annals of Applied Statistics
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– start-page: 422
  year: 2020
  end-page: 430
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  article-title: Human‐level control through deep reinforcement learning
  publication-title: Nature
– start-page: 56
  year: 2019
  end-page: 63
– volume: 30
  start-page: 4765
  year: 2017
  end-page: 4774
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems
– volume: 51
  start-page: 18
  year: 2018
  end-page: 27
  article-title: Toward anthropomorphic machine learning
  publication-title: Computer
– year: 2006
– year: 2020
– volume: 13
  start-page: 1346
  year: 2020
  article-title: Explainable artificial intelligence for neuroscience: Behavioral neurostimulation
  publication-title: Frontiers in Neuroscience
– volume: 13
  start-page: 55
  year: 2018
  end-page: 75
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computational Intelligence Magazine
– volume: 3
  start-page: 210
  year: 1959
  end-page: 229
  article-title: Some studies in machine learning using the game of checkers
  publication-title: IBM Journal of Research and Development
– volume: 13
  start-page: 18
  year: 1998
  end-page: 28
  article-title: Support vector machines
  publication-title: IEEE Intelligent Systems and their Applications
– volume: 1
  start-page: 1
  year: 2020
  end-page: 10
  article-title: Explaining deep learning models through rule‐based approximation and visualization
  publication-title: IEEE Transactions on Fuzzy Systems
– year: 2017
– start-page: 1
  year: 2020
  end-page: 6
– year: 2019
– volume: 134
  start-page: 57
  year: 2002
  end-page: 83
  article-title: Deep blue
  publication-title: Artificial Intelligence
– volume: 3
  start-page: 551
  year: 1990
  end-page: 560
  article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
  publication-title: Neural Networks
– year: 2015
– year: 2013
SSID ssj0000328882
Score 2.6462405
Snippet This paper provides a brief analytical review of the current state‐of‐the‐art in relation to the explainability of artificial intelligence in the context of...
SourceID wiley
SourceType Publisher
SubjectTerms black‐box models
deep learning
explainable AI
machine learning
prototype‐based models
surrogate models
Title Explainable artificial intelligence: an analytical review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1424
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8NADICtUhYW3oi3bmBgOZpc0lwCEwKqggRioKJb5NxDqgQBQRHi32Nf0gIbUoYMuSG2fH7I_gxwFFvnY4y8dD6hBMUolOT0UEYm02g9L98LDbJ32XCU3oz74w6czWZhGj7EvODGlhHuazZwrN57P9DQz4l9PuE5rQVY5NFaBuer9H5eYGFQXB6WRVGeriRDaGZkoUj15qf_BqXBqwxWYbkNB8V5o7816Lh6HVZmqxZEa3kbUHCvXDvoJFjbDfhBTH4RNU8F1vTg01eoT4tmKmUTRoOrh4uhbLceSJMUeSoxttqjzmJkWRllfGyVjrSnwMMajPLCGNfXiUVDwZdJK5Kt8mk_yRJTWMyTLejWL7XbBkG5FqaGvLDWZKhVUWhHxyjDiJ3x2qkdOA7_Xr42ZIuyYRirkqVTsnTKx-vLW37Z_f-ne7CkuPEjNGLtQ3f69uEOyHNPq8OgoW_e4JVl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsDCG_HGAwOLaeI4cYJYEFCl0FYMregWuX5IlSAgVIT49_icNMCG5MGDPfhOn--hu-8AzkJtbCgDS42NXICimKTO6EkaqERIbXH4ni-QHSb5mN9P4kkLrha9MBU_RJNwQ2T4_xoBjgnpzg9r6OdMv1xgo9YSLPOECYQl449NhgWZ4lI_LcoF6owiC82CWihgneb2X6_Um5XuBqzV_iC5rhS4CS1TbsH6YtYCqaG3DRkWy9WdTgTVXTE_kNkvSs1LIku35POXT1CTqi1lB8bdu9FNTuuxB1RFWcqpDLWwUiShRGEppmyomQiEdZ6HVjJIM6VMLCItlfO-FJ864TLL4yiJVKZlGu1Cu3wtzR4QF2xJrpwZFsIhdZplwrhrLsQIjbLCsH04928v3ipqi6IiMWYFSqdA6RRPvdsBbg7-f_QUVvLRoF_0e8OHQ1hlWAXiq7KOoD1__zDHzozPpydeW98K05jR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8NADICtUiTEwhvx5gYGlqPJ5XEJTIhStTyqDlR0i673kCpBqFAR4t9jX9ICG1KGDLkhthw_Yn8GOAuNdaEKHLcuwgRFC8XR6Ske6FQq42j5nm-Q7afdYXw3SkYNuJrPwlR8iEXBjSzDf6_JwKfGtX6goZ8T83pBc1pLsOx_9hHWOR4sCiwEisv8sijM0wUnCM2cLBSI1uL036DUe5XOBqzV4SC7rvS3CQ1bbsH6fNUCqy1vG3LqlasHnRhpuwI_sMkvouYlUyVe6uXL16dZNZWyA8PO7dNNl9dbD7iO8izmKjTSKZmGimSlhXahETKQDgMPo1WQ5VrbREZGaQy-dDxG2QoXJ1Ea6dyoLNqFZvlW2j1gmGupWKMXlhINdZzn0uIxzDBCq520Yh_O_bsX04psUVQMY1GQdAqSTvHcaz_SzcH_Hz2FlUG7Uzz0-veHsCqoB8T3ZB1Bc_b-YY_Ric_GJ15Z34ComAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainable+artificial+intelligence%3A+an+analytical+review&rft.jtitle=Wiley+interdisciplinary+reviews.+Data+mining+and+knowledge+discovery&rft.au=Angelov%2C+Plamen+P.&rft.au=Soares%2C+Eduardo+A.&rft.au=Jiang%2C+Richard&rft.au=Arnold%2C+Nicholas+I.&rft.date=2021-09-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1942-4787&rft.eissn=1942-4795&rft.volume=11&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwidm.1424&rft.externalDBID=10.1002%252Fwidm.1424&rft.externalDocID=WIDM1424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-4787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-4787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-4787&client=summon