Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN‐LSTM

Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The carbon market is recognized as the most promising mean to curb carbon emissions, furthermore, carbon price forecasting will promote the role of the carbon market in emissions reduction and ach...

Full description

Saved in:
Bibliographic Details
Published inEnergy science & engineering Vol. 11; no. 1; pp. 79 - 96
Main Authors Yun, Po, Huang, Xiaodi, Wu, Yaqi, Yang, Xianzi
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.01.2023
Wiley
Subjects
Online AccessGet full text
ISSN2050-0505
2050-0505
DOI10.1002/ese3.1304

Cover

Loading…
Abstract Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The carbon market is recognized as the most promising mean to curb carbon emissions, furthermore, carbon price forecasting will promote the role of the carbon market in emissions reduction and achieve reduction targets at lower economic costs for emission entities. However, there are still some technical problems in carbon price prediction, such as mode mixing and larger reconstruction error for the traditional empirical mode decomposition‐type models. Therefore, the innovation of this paper is constructing a novel carbon price prediction model of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)‐long short‐term memory (LSTM), that combines the advantages of CEEMDAN in decomposing the multiscale time‐frequency carbon price signals and the LSTM model in fitting the financial signals. The results show the proposed CEEMDAN‐LSTM model has significant accuracy in predicting the complex carbon price signals. The prediction error and expectation indicators of root mean square error, mean absolute error, mean absolute percentage error, and direction accuracy are 0.638342, 0.448695, 0.015666, and 0.687631, respectively, which is better than other benchmark models. Further evidence convince that the short‐term forecasting performance is superior to the long‐term and medium‐term performance. That evidence concludes that the proposed model is a reliable method to reveal the carbon price‐driving mechanism from the point of multiscale time‐frequency characteristics. Particularly, short‐term forecasting is more accurate and can provide a valuable technical reference for reduction entities and green financial companies to judge the market situation and formulate quantitative transactions. This paper constructs a novel carbon price prediction model of complete ensemble empirical mode decomposition with adaptive noise‐long short‐term memory, that overcomes the problem of mode mixing and larger reconstruction error for the traditional empirical mode decomposition models. The conclusion proves the superiority and robustness of the proposed machine learning model.
AbstractList Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The carbon market is recognized as the most promising mean to curb carbon emissions, furthermore, carbon price forecasting will promote the role of the carbon market in emissions reduction and achieve reduction targets at lower economic costs for emission entities. However, there are still some technical problems in carbon price prediction, such as mode mixing and larger reconstruction error for the traditional empirical mode decomposition‐type models. Therefore, the innovation of this paper is constructing a novel carbon price prediction model of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)‐long short‐term memory (LSTM), that combines the advantages of CEEMDAN in decomposing the multiscale time‐frequency carbon price signals and the LSTM model in fitting the financial signals. The results show the proposed CEEMDAN‐LSTM model has significant accuracy in predicting the complex carbon price signals. The prediction error and expectation indicators of root mean square error, mean absolute error, mean absolute percentage error, and direction accuracy are 0.638342, 0.448695, 0.015666, and 0.687631, respectively, which is better than other benchmark models. Further evidence convince that the short‐term forecasting performance is superior to the long‐term and medium‐term performance. That evidence concludes that the proposed model is a reliable method to reveal the carbon price‐driving mechanism from the point of multiscale time‐frequency characteristics. Particularly, short‐term forecasting is more accurate and can provide a valuable technical reference for reduction entities and green financial companies to judge the market situation and formulate quantitative transactions. This paper constructs a novel carbon price prediction model of complete ensemble empirical mode decomposition with adaptive noise‐long short‐term memory, that overcomes the problem of mode mixing and larger reconstruction error for the traditional empirical mode decomposition models. The conclusion proves the superiority and robustness of the proposed machine learning model.
Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The carbon market is recognized as the most promising mean to curb carbon emissions, furthermore, carbon price forecasting will promote the role of the carbon market in emissions reduction and achieve reduction targets at lower economic costs for emission entities. However, there are still some technical problems in carbon price prediction, such as mode mixing and larger reconstruction error for the traditional empirical mode decomposition-type models. Therefore, the innovation of this paper is constructing a novel carbon price prediction model of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-long short-term memory (LSTM), that combines the advantages of CEEMDAN in decomposing the multiscale time-frequency carbon price signals and the LSTM model in fitting the financial signals. The results show the proposed CEEMDAN-LSTM model has significant accuracy in predicting the complex carbon price signals. The prediction error and expectation indicators of root mean square error, mean absolute error, mean absolute percentage error, and direction accuracy are 0.638342, 0.448695, 0.015666, and 0.687631, respectively, which is better than other benchmark models. Further evidence convince that the short-term forecasting performance is superior to the long-term and medium-term performance. That evidence concludes that the proposed model is a reliable method to reveal the carbon price-driving mechanism from the point of multiscale time-frequency characteristics. Particularly, short-term forecasting is more accurate and can provide a valuable technical reference for reduction entities and green financial companies to judge the market situation and formulate quantitative transactions.
Abstract Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The carbon market is recognized as the most promising mean to curb carbon emissions, furthermore, carbon price forecasting will promote the role of the carbon market in emissions reduction and achieve reduction targets at lower economic costs for emission entities. However, there are still some technical problems in carbon price prediction, such as mode mixing and larger reconstruction error for the traditional empirical mode decomposition‐type models. Therefore, the innovation of this paper is constructing a novel carbon price prediction model of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)‐long short‐term memory (LSTM), that combines the advantages of CEEMDAN in decomposing the multiscale time‐frequency carbon price signals and the LSTM model in fitting the financial signals. The results show the proposed CEEMDAN‐LSTM model has significant accuracy in predicting the complex carbon price signals. The prediction error and expectation indicators of root mean square error, mean absolute error, mean absolute percentage error, and direction accuracy are 0.638342, 0.448695, 0.015666, and 0.687631, respectively, which is better than other benchmark models. Further evidence convince that the short‐term forecasting performance is superior to the long‐term and medium‐term performance. That evidence concludes that the proposed model is a reliable method to reveal the carbon price‐driving mechanism from the point of multiscale time‐frequency characteristics. Particularly, short‐term forecasting is more accurate and can provide a valuable technical reference for reduction entities and green financial companies to judge the market situation and formulate quantitative transactions.
Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The carbon market is recognized as the most promising mean to curb carbon emissions, furthermore, carbon price forecasting will promote the role of the carbon market in emissions reduction and achieve reduction targets at lower economic costs for emission entities. However, there are still some technical problems in carbon price prediction, such as mode mixing and larger reconstruction error for the traditional empirical mode decomposition‐type models. Therefore, the innovation of this paper is constructing a novel carbon price prediction model of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)‐long short‐term memory (LSTM), that combines the advantages of CEEMDAN in decomposing the multiscale time‐frequency carbon price signals and the LSTM model in fitting the financial signals. The results show the proposed CEEMDAN‐LSTM model has significant accuracy in predicting the complex carbon price signals. The prediction error and expectation indicators of root mean square error, mean absolute error, mean absolute percentage error, and direction accuracy are 0.638342, 0.448695, 0.015666, and 0.687631, respectively, which is better than other benchmark models. Further evidence convince that the short‐term forecasting performance is superior to the long‐term and medium‐term performance. That evidence concludes that the proposed model is a reliable method to reveal the carbon price‐driving mechanism from the point of multiscale time‐frequency characteristics. Particularly, short‐term forecasting is more accurate and can provide a valuable technical reference for reduction entities and green financial companies to judge the market situation and formulate quantitative transactions.
Author Yun, Po
Huang, Xiaodi
Wu, Yaqi
Yang, Xianzi
Author_xml – sequence: 1
  givenname: Po
  orcidid: 0000-0002-6579-0299
  surname: Yun
  fullname: Yun, Po
  email: yunpo2010@mail.hfut.edu.cn
  organization: Hefei University
– sequence: 2
  givenname: Xiaodi
  surname: Huang
  fullname: Huang, Xiaodi
  organization: Hefei University
– sequence: 3
  givenname: Yaqi
  orcidid: 0000-0002-8705-4559
  surname: Wu
  fullname: Wu, Yaqi
  organization: North Minzu University
– sequence: 4
  givenname: Xianzi
  surname: Yang
  fullname: Yang, Xianzi
  organization: Anhui Agricultural University
BookMark eNp9kcFu1DAQhi1UJErpgTeIxInDtuPYcZJjtaRQaVsOLWfLmYxbr5J4sbOF5cQj8Iw8SZ1dhBASHCxbv775Z8b_S3Y0-pEYe83hjAPk5xRJnHEB8hk7zqGARTrF0R_vF-w0xjUAcMllDfyYfbv0gdDEyY33GZrQ-jHrnP_qOspocDG6JGyCQ8q2cWZMNvpH6rPBJ6Ij9MPGRzfN2GDwwY2U9WTCOLMPuza4bo_2mbfZsmmu313c_Pz-Y3V7d_2KPbemj3T66z5hny6bu-WHxerj-6vlxWqBoq7kolaKlEQEU1Kp2rRnwTvqaoTWkuUdF23XIloopBBVXavCVqrMZWVybiUW4oRdHXw7b9Y67TKYsNPeOL0XfLjXJkwOe9KQC1tw4ChFLQVag8piWUFRtLKtOCavNwevTfCftxQnvfbbMKbxdV4qBRLyWiTq7YHC4GMMZH935aDnpPSclJ6TSuz5Xyy6ycz_OQXj-v9VfHE97f5trZvbRuwrngBX6qcA
CitedBy_id crossref_primary_10_1007_s11356_024_32169_5
crossref_primary_10_1007_s11356_022_24186_z
crossref_primary_10_3390_en16124613
crossref_primary_10_3390_su16198324
crossref_primary_10_1155_2023_5903362
crossref_primary_10_1080_21642583_2023_2291409
crossref_primary_10_1002_ese3_1769
crossref_primary_10_1016_j_jenvman_2024_123663
crossref_primary_10_1080_15567036_2024_2440050
crossref_primary_10_1016_j_spc_2024_08_015
crossref_primary_10_1016_j_jenvman_2024_120131
crossref_primary_10_1038_s41598_023_45524_2
crossref_primary_10_1016_j_heliyon_2023_e19966
crossref_primary_10_1007_s10479_023_05443_x
crossref_primary_10_1016_j_jenvman_2023_118137
crossref_primary_10_1109_ACCESS_2024_3443606
crossref_primary_10_3390_math13030464
crossref_primary_10_1007_s10668_023_03886_7
crossref_primary_10_1016_j_eneco_2024_107459
crossref_primary_10_3390_math12233713
crossref_primary_10_1016_j_energy_2024_132929
crossref_primary_10_1109_ACCESS_2024_3425727
crossref_primary_10_1016_j_jenvman_2024_121253
crossref_primary_10_1007_s12145_023_01011_w
crossref_primary_10_1016_j_apm_2023_05_007
Cites_doi 10.1016/j.eneco.2009.02.008
10.1142/S1793536909000047
10.1016/j.eneco.2011.11.001
10.1016/j.jclepro.2015.09.118
10.1016/j.jeem.2016.03.004
10.1016/j.eneco.2008.07.003
10.1016/j.neunet.2018.07.006
10.1109/ICASSP.2011.5947265
10.1016/j.apenergy.2022.118601
10.1016/j.apenergy.2021.116485
10.1016/j.egyr.2021.11.270
10.1109/TPAMI.2013.50
10.1142/S1793536910000422
10.1016/j.eneco.2012.09.009
10.1016/j.eneco.2022.105842
10.1016/j.scitotenv.2020.137117
10.1007/s11069-018-3223-1
10.1016/j.jenvman.2022.115650
10.1142/S0218348X21501760
10.1007/s10100-014-0340-0
10.1098/rspa.1998.0193
10.1016/j.eneco.2013.05.022
10.1108/JPIF-12-2021-0104
10.1016/j.scitotenv.2020.143099
10.1016/j.knosys.2020.106686
10.1007/s10614-021-10231-5
10.1002/for.2831
10.1016/j.chaos.2021.111783
10.1007/s10614-013-9417-4
10.1016/j.najef.2020.101307
10.1016/j.jclepro.2019.118671
10.1016/j.asoc.2021.108204
10.1016/j.energy.2020.118294
10.1016/j.physa.2018.12.017
10.1002/ese3.703
10.1016/j.frl.2018.05.014
10.1080/17583004.2019.1568138
10.1080/15567249.2020.1785055
10.1016/j.eswa.2021.116267
10.1016/j.neucom.2015.04.071
10.1016/j.energy.2020.119644
10.1016/j.enpol.2009.11.066
10.1162/neco.1997.9.8.1735
10.3390/ijerph19020899
10.1016/j.eneco.2013.06.017
10.1016/j.enpol.2015.02.024
10.1016/j.eneco.2017.12.030
10.1080/14693062.2018.1521332
10.1080/09638180.2014.927782
ContentType Journal Article
Copyright 2022 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
COVID
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/ese3.1304
DatabaseName Wiley Online Library Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
Aerospace Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 2050-0505
EndPage 96
ExternalDocumentID oai_doaj_org_article_023f5101c43943cfac6fc78055b4b81c
10_1002_ese3_1304
ESE31304
Genre article
GrantInformation_xml – fundername: Ministry of Education of the People's Republic of China
  funderid: 21YJC790152
– fundername: Social Sciences innovation and development project of Anhui Province of China
  funderid: 2021CX028
– fundername: University Humanities and Social Sciences Research Project of Anhui Province of China
  funderid: SK2021A0574
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
ITC
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAYXX
ADMLS
CITATION
IVC
PHGZM
PHGZT
7TB
8FD
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
COVID
DWQXO
FR3
H8D
KR7
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c3984-966e64cc0a7e76b00251ded9c0bfef1d13bdbccf0543389965f867248a21f4c53
IEDL.DBID BENPR
ISSN 2050-0505
IngestDate Wed Aug 27 01:27:35 EDT 2025
Wed Aug 13 10:07:48 EDT 2025
Tue Jul 01 04:24:07 EDT 2025
Thu Apr 24 22:50:37 EDT 2025
Wed Jan 22 16:18:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3984-966e64cc0a7e76b00251ded9c0bfef1d13bdbccf0543389965f867248a21f4c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6579-0299
0000-0002-8705-4559
OpenAccessLink https://www.proquest.com/docview/2766040293?pq-origsite=%requestingapplication%
PQID 2766040293
PQPubID 2034362
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_023f5101c43943cfac6fc78055b4b81c
proquest_journals_2766040293
crossref_primary_10_1002_ese3_1304
crossref_citationtrail_10_1002_ese3_1304
wiley_primary_10_1002_ese3_1304_ESE31304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Energy science & engineering
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2022; 156
2010; 38
2021; 762
2022; 191
2011
2018; 108
2019; 10
2013; 40
2021; 29
2015; 167
2019; 19
2020; 15
2022; 41
2021; 285
2020; 243
2022; 319
2021; 220
2012; 34
1998; 454
1997; 9
2020; 207
2022; 116
2016; 78
2022; 311
2015; 24
2020; 8
2015; 45
2013; 36
2009; 31
2021; 55
2015; 82
2019; 519
2022
2021; 214
2013; 35
2022; 40
2022; 8
2018; 70
2019; 28
2018; 92
2016; 112
2010; 2
2009; 1
2022; 107
2010; 30
2016; 24
2020; 716
2022; 19
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Chevallier J (e_1_2_8_14_1) 2010; 30
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 40
  start-page: 381
  year: 2022
  end-page: 397
  article-title: Stochastic framework for carbon price risk estimation of real estate: a Markov switching GARCH simulation approach
  publication-title: J Prop Invest Finance
– volume: 29
  issue: 7
  year: 2021
  article-title: Multifractal cross‐correlation analysis between carbon spot and futures markets considering asymmetric conduction effect
  publication-title: Fractals
– volume: 716
  year: 2020
  article-title: Carbon price forecasting based on modified ensemble empirical mode decomposition and long short‐term memory optimized by improved whale optimization algorithm
  publication-title: Sci Total Environ
– start-page: 4144
  year: 2011
  end-page: 4147
– volume: 207
  year: 2020
  article-title: A novel carbon price prediction model combines the secondary decomposition algorithm and the long short‐term memory network
  publication-title: Energy
– volume: 41
  start-page: 615
  issue: 3
  year: 2022
  end-page: 632
  article-title: Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine
  publication-title: J Forecasting
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  end-page: 1828
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Pattern Anal
– volume: 24
  start-page: 551
  issue: 3
  year: 2015
  end-page: 580
  article-title: The valuation relevance of greenhouse gas emissions under the European Union carbon emissions trading scheme
  publication-title: Eur Account Rev
– volume: 15
  start-page: 151
  issue: 3
  year: 2020
  end-page: 171
  article-title: Influence of allowance allocation events on prices in China's carbon market pilots– an AR‐GARCH‐based analysis
  publication-title: Energy Source B
– volume: 243
  year: 2020
  article-title: A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network
  publication-title: J Clean Prod
– volume: 31
  start-page: 4
  issue: 1
  year: 2009
  end-page: 15
  article-title: Modeling the price dynamics of CO emission allowances
  publication-title: Energy Econ
– volume: 8
  start-page: 1644
  year: 2022
  end-page: 1664
  article-title: Carbon price combination prediction model based on improved variational mode decomposition
  publication-title: Energy Rep
– volume: 214
  year: 2021
  article-title: A new secondary decomposition ensemble learning approach for carbon price forecasting
  publication-title: Knowl‐Based Syst
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  end-page: 41
  article-title: Ensemble empirical mode decomposition: a noise‐assisted data analysis method
  publication-title: Adv Data Sci Adapt
– volume: 220
  year: 2021
  article-title: The future of coal supply in China based on non‐fossil energy development and carbon price strategies
  publication-title: Energy
– volume: 82
  start-page: 321
  year: 2015
  end-page: 331
  article-title: Understanding volatility dynamics in the EU‐ETS market
  publication-title: Energy Policy
– volume: 116
  year: 2022
  article-title: A three‐stage framework for vertical carbon price interval forecast based on decomposition–integration method
  publication-title: Appl Soft Comput
– volume: 191
  year: 2022
  article-title: A combination forecasting model based on hybrid interval multi‐scale decomposition: application to interval‐valued carbon price forecasting
  publication-title: Expert Syst Appl
– volume: 19
  start-page: 386
  issue: 3
  year: 2019
  end-page: 400
  article-title: Environmental integrity of international carbon market mechanisms under the Paris Agreement
  publication-title: Clim Policy
– volume: 10
  start-page: 175
  issue: 2
  year: 2019
  end-page: 187
  article-title: Carbon price forecasting models based on big data analytics
  publication-title: Carbon Manag
– volume: 519
  start-page: 140
  year: 2019
  end-page: 158
  article-title: Carbon price forecasting with variational mode decomposition and optimal combined model
  publication-title: Physica A
– volume: 19
  start-page: 899
  issue: 2
  year: 2022
  article-title: Forecasting carbon dioxide price using a time‐varying high‐order moment hybrid model of NAGARCHSK and gated recurrent unit network
  publication-title: Int J Environ Res Public Health
– volume: 30
  start-page: 558
  issue: 1
  year: 2010
  end-page: 576
  article-title: EUAs and CERs: vector autoregression, impulse response function and cointegration analysis
  publication-title: Econ Bull
– volume: 31
  start-page: 614
  issue: 4
  year: 2009
  end-page: 625
  article-title: Carbon futures and macroeconomic risk factors: a view from the EU ETS
  publication-title: Energy Econ
– volume: 38
  start-page: 1879
  issue: 4
  year: 2010
  end-page: 1884
  article-title: Factors affecting the carbon allowance market in the US
  publication-title: Energy Policy
– volume: 34
  start-page: 327
  issue: 1
  year: 2012
  end-page: 334
  article-title: Carbon price drivers: phase I versus phase II equilibrium?
  publication-title: Energy Econ
– year: 2022
  article-title: CO emission allowances risk prediction with GAS and GARCH models
– volume: 156
  year: 2022
  article-title: Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine
  publication-title: Chaos Soliton Fractals
– volume: 24
  start-page: 149
  issue: 1
  year: 2016
  end-page: 176
  article-title: Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models
  publication-title: Cent Eur J Oper Res
– volume: 762
  year: 2021
  article-title: An innovative random forest‐based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting
  publication-title: Sci Total Environ
– volume: 40
  start-page: 207
  year: 2013
  end-page: 221
  article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities
  publication-title: Energy Econ
– volume: 311
  year: 2022
  article-title: Carbon price forecasting based on CEEMDAN and LSTM
  publication-title: Appl Energy
– volume: 108
  start-page: 379
  year: 2018
  end-page: 392
  article-title: State representation learning for control: an overview
  publication-title: Neural Net
– volume: 78
  start-page: 121
  year: 2016
  end-page: 139
  article-title: Politics matters: regulatory events as catalysts for price formation under cap‐and‐trade
  publication-title: J Environ Econ Manag
– volume: 45
  start-page: 195
  issue: 2
  year: 2015
  end-page: 206
  article-title: Carbon price analysis using empirical mode decomposition
  publication-title: Comput Econ
– volume: 28
  start-page: 319
  year: 2019
  end-page: 327
  article-title: Study on the wandering weekday effect of the international carbon market based on trend moderation effect
  publication-title: Finance Res Lett
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  end-page: 995
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‐stationary time series analysis
  publication-title: Proc R Soc Lond A Math Phys Sci
– volume: 285
  year: 2021
  article-title: A hybrid model for carbon price forecasting using GARCH and long short‐term memory network
  publication-title: Appl Energy
– volume: 8
  start-page: 2708
  issue: 8
  year: 2020
  end-page: 2721
  article-title: Forecasting the carbon price sequence in the Hubei emissions exchange using a hybrid model based on ensemble empirical mode decomposition
  publication-title: Energy Sci Eng
– volume: 36
  start-page: 380
  year: 2013
  end-page: 395
  article-title: Price determination in the EU ETS market: theory and econometric analysis with market fundamentals
  publication-title: Energy Econ
– volume: 40
  start-page: 222
  year: 2013
  end-page: 232
  article-title: Nonlinearity in cap‐and‐trade systems: the EUA price and its fundamentals
  publication-title: Energy Econ
– volume: 167
  start-page: 243
  year: 2015
  end-page: 253
  article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method
  publication-title: Neurocomputing
– volume: 2
  start-page: 135
  issue: 2
  year: 2010
  end-page: 156
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv Data Sci Adapt
– volume: 55
  year: 2021
  article-title: Carbon option price forecasting based on modified fractional Brownian motion optimized by GARCH model in carbon emission trading
  publication-title: North Am J Econ Finance
– volume: 70
  start-page: 143
  year: 2018
  end-page: 157
  article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting
  publication-title: Energy Econ
– volume: 107
  year: 2022
  article-title: Dependence structure and dynamic connectedness between Green bonds and financial markets: fresh insights from time‐frequency analysis before and during COVID‐19 pandemic
  publication-title: Energy Econ
– volume: 112
  start-page: 2654
  year: 2016
  end-page: 2663
  article-title: The dynamic volatility spillover between European carbon trading market and fossil energy market
  publication-title: J Clean Prod
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput
– volume: 319
  year: 2022
  article-title: Market incentives, carbon quota allocation and carbon emission reduction: evidence from China's carbon trading pilot policy
  publication-title: J Environ Manag
– volume: 92
  start-page: 761
  issue: 2
  year: 2018
  end-page: 782
  article-title: Research on carbon market price mechanism and influencing factors: a literature review
  publication-title: Nat Hazards
– ident: e_1_2_8_10_1
  doi: 10.1016/j.eneco.2009.02.008
– ident: e_1_2_8_40_1
  doi: 10.1142/S1793536909000047
– ident: e_1_2_8_2_1
  doi: 10.1016/j.eneco.2011.11.001
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jclepro.2015.09.118
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jeem.2016.03.004
– ident: e_1_2_8_11_1
  doi: 10.1016/j.eneco.2008.07.003
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neunet.2018.07.006
– ident: e_1_2_8_41_1
  doi: 10.1109/ICASSP.2011.5947265
– ident: e_1_2_8_39_1
  doi: 10.1016/j.apenergy.2022.118601
– ident: e_1_2_8_30_1
  doi: 10.1016/j.apenergy.2021.116485
– ident: e_1_2_8_31_1
  doi: 10.1016/j.egyr.2021.11.270
– volume: 30
  start-page: 558
  issue: 1
  year: 2010
  ident: e_1_2_8_14_1
  article-title: EUAs and CERs: vector autoregression, impulse response function and cointegration analysis
  publication-title: Econ Bull
– ident: e_1_2_8_48_1
  doi: 10.1109/TPAMI.2013.50
– ident: e_1_2_8_42_1
  doi: 10.1142/S1793536910000422
– ident: e_1_2_8_44_1
  doi: 10.1016/j.eneco.2012.09.009
– ident: e_1_2_8_28_1
  doi: 10.1016/j.eneco.2022.105842
– ident: e_1_2_8_29_1
  doi: 10.1016/j.scitotenv.2020.137117
– ident: e_1_2_8_46_1
  doi: 10.1007/s11069-018-3223-1
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jenvman.2022.115650
– ident: e_1_2_8_20_1
  doi: 10.1142/S0218348X21501760
– ident: e_1_2_8_13_1
  doi: 10.1007/s10100-014-0340-0
– ident: e_1_2_8_22_1
  doi: 10.1098/rspa.1998.0193
– ident: e_1_2_8_4_1
  doi: 10.1016/j.eneco.2013.05.022
– ident: e_1_2_8_12_1
  doi: 10.1108/JPIF-12-2021-0104
– ident: e_1_2_8_33_1
  doi: 10.1016/j.scitotenv.2020.143099
– ident: e_1_2_8_35_1
  doi: 10.1016/j.knosys.2020.106686
– ident: e_1_2_8_7_1
  doi: 10.1007/s10614-021-10231-5
– ident: e_1_2_8_27_1
  doi: 10.1002/for.2831
– ident: e_1_2_8_38_1
  doi: 10.1016/j.chaos.2021.111783
– ident: e_1_2_8_23_1
  doi: 10.1007/s10614-013-9417-4
– ident: e_1_2_8_21_1
  doi: 10.1016/j.najef.2020.101307
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jclepro.2019.118671
– ident: e_1_2_8_36_1
  doi: 10.1016/j.asoc.2021.108204
– ident: e_1_2_8_25_1
  doi: 10.1016/j.energy.2020.118294
– ident: e_1_2_8_26_1
  doi: 10.1016/j.physa.2018.12.017
– ident: e_1_2_8_6_1
  doi: 10.1002/ese3.703
– ident: e_1_2_8_45_1
  doi: 10.1016/j.frl.2018.05.014
– ident: e_1_2_8_34_1
  doi: 10.1080/17583004.2019.1568138
– ident: e_1_2_8_15_1
  doi: 10.1080/15567249.2020.1785055
– ident: e_1_2_8_37_1
  doi: 10.1016/j.eswa.2021.116267
– ident: e_1_2_8_49_1
  doi: 10.1016/j.neucom.2015.04.071
– ident: e_1_2_8_19_1
  doi: 10.1016/j.energy.2020.119644
– ident: e_1_2_8_18_1
  doi: 10.1016/j.enpol.2009.11.066
– ident: e_1_2_8_43_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_8_50_1
  doi: 10.3390/ijerph19020899
– ident: e_1_2_8_9_1
  doi: 10.1016/j.eneco.2013.06.017
– ident: e_1_2_8_16_1
  doi: 10.1016/j.enpol.2015.02.024
– ident: e_1_2_8_24_1
  doi: 10.1016/j.eneco.2017.12.030
– ident: e_1_2_8_8_1
  doi: 10.1080/14693062.2018.1521332
– ident: e_1_2_8_3_1
  doi: 10.1080/09638180.2014.927782
SSID ssj0001414901
Score 2.377802
Snippet Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The carbon market is recognized as the most promising...
Abstract Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The carbon market is recognized as the most...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms Accuracy
Algorithms
Carbon
Carbon dioxide
Carbon dioxide emissions
CEEMDAN
Coal
Coronaviruses
COVID-19
Decomposition
Economic impact
Economics
Emissions
Emissions control
Energy industry
Errors
Forecasting
forecasting carbon dioxide emission price
LSTM
Machine learning
Mathematical models
mode decomposition
Model accuracy
Neural networks
Prediction models
Predictions
Stochastic models
Time-frequency analysis
Volatility
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT3ysEsSDl2KTpq_junYRcb2o4K00k0QX1nZxVdSTP8Hf6C8xk3alguLFW1vmMCSTzDfp5PsI2YdYqVBx6UkmpCcEcC8VyhauRgNTwFLlqJSG59HJlTi9Dq9bUl_YE1bTA9cDd2hzisG4AbzCGYApAG-nJH4YSiETBrj72pzXKqbc6YqwyN9nMyohnx_qqQ5Q-lh8S0COp_8buGxDVJdjBktksQGHtFc7tUzmdLlCFlqUgavkFbU0oZhitzKF4l5WJVWj6nmkNEXpNjz8ohNkCqLY0n5DC1pWT3pMUfKGKo0t5E2fFr1zjZSaNsoRN_T2Be9vOdMxrQztZ9nwuHf-8fZ-dnE5XCNXg-yyf-I1-gkeBGkikHhTRwLAL2IdR3U5obRKwZdGG6ZYIJUEMBa1BUizF4UmiWIukoIzIyAM1kmnrEq9QShH2nyfFVr7WBGmKQ9NbF-YtJuUBLFJDmaDmkNDLo4aF-O8pkXmOY4__juzpntfppOaUeMnoyOcmS8DJMF2H2xo5E1o5H-FxibpzuY1b1bmNOdxFNmNy6Ic67Ob69-9yLOLLMCHrf9wZ5vMo1Z9fX7TJZ2H-0e9YxHNg9x1wfsJqwrzpA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS-QwFA46vuiDuF7wMi5BfPCl2KRJL_ikbkWWHRFU8K00J8k4MLYyo6I--RP8jftLNiftjAoK-9aWUwg9PSdfknO-j5BdSLSWmqtAMaECIYAHmdBu4WoNMA0s055KqXcWn16J39fyeoYcTHphGn6I6YYbRobP1xjgpRrvv5OGmrGJUMtYzJI5bK1F4nwuzt83WIQD_17-mIcSD3xDOWEWCvn-9O1P85Gn7f-ENT8iVj_lnCyRxRYr0sPGuT_IjKmWycIHBsEV8oLSmlCOsXiZQjlSdUX1oH4aaENRyQ33wugdEgdRrHDv05JW9aMZUlTAodpgRXlbtkVvfV2loa2QRJ_ePGM7lzcd0trS4zzv_To8-_v69ufisrdKrk7yy-PToJVTCCDKUoE8nCYWAGGZmCRuVhfa6AxCZY1lmkVKKwDrQFyErHuxtGmccJGWnFkBMlojnaquzDqhHFn0Q1YaE-ICMcu4tIm7YcrlLAVig-xNPmoBLdc4Sl4Mi4YlmRf4_fEozZnuTE3vGoKNr4yO0DNTA-TE9g_qUb9oQ6xw6MNihgFs9o3AloB9TGkopRIqZbBBuhO_Fm2gjguexLHLYw70uDF7X38_iiK_yCO82Px_0y0yjwL1zaZNl3TuRw9m28GYe_XT_67_AG6g7UI
  priority: 102
  providerName: Wiley-Blackwell
Title Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN‐LSTM
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1304
https://www.proquest.com/docview/2766040293
https://doaj.org/article/023f5101c43943cfac6fc78055b4b81c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKHKCHilIQtHRlIQ5cImLHeZ0Q0Cyo6q4QD4lbFI_tBWlJthuK6L-vx3F4SIVLlESjyMrY45nxzPcRsgupUrHiMpBMyEAI4EEulA1cjQamgOXKQSmNxsnplfh5HV_7hFvryyp7m-gMtWoAc-T7PE0SO-Hs7nQw-x0gaxSernoKjQWyZE1wZoOvpaNifHb-nGURNgIIWQ8pFPJ93eoIKZDFq43I4fW_cjJfuqpurxmukk_eSaSHnVY_kw-6XiPLfQ9xu0Y-voAR_EIekV8TqhYrmClUc9nUVN02j7dKU6Rzw4QYnSF6EMUy9wmtaN086ClFGhyqNJaV-9oteueKKzX1bBITevMXe7qc6JQ2hh4XxejH4Tj4dXE5WidXw-Ly-DTwjAoBRHkmEIpTJwIgrFKdJl2AobTKIZRGG6ZYJJUEMNaPixB4L4lNlqRcZBVnRkAcbZDFuqn1JqEcgfRDVmkdYoyY5zw2qX1g0potCWKL7PW_twQPN46sF9OyA0rmJWoCT9Os6M6T6KzD2Pif0BHq6EkAYbHdi2Y-Kf0qK60DYtDIAPb7RmAqwFamLIxjKWTGYIts9xou_Vpty-eZZcfstP72KMrioojw5uv7X_pGVpCXvsvVbJPF-_kf_d16L_dyQBa4OLPXbHgy8NN14DIB_wA_A_GM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigcEC0gCi21EEhcosaO8zqgqrRZtnR3L91KvZl4bC-VlmTZFGj_FL8Rj5P0IQG33vIYRVZmPB6PZ76PkLeQah1rrgLFhAqEAB7kQruNqzXANLBceyil8SQZnorPZ_HZCvnd98JgWWXvE72j1jVgjnyXp0niDM6tTnuL7wGyRuHpak-h0ZrFsbn65bZszYejQ6ffd5wPiunBMOhYBQKI8kwgHKVJBEBYpiZN2iBbG51DqKyxTLNIaQVgXSwTIfhcEtssSbnISs6sAGSJcC7_gXuZ44zKBp9ucjrC7TdC1gMYhXzXNCZCwmVxZ9nz7AB3QtrbgbFf2QZPyOMuJKX7rQ2tkxVTbZC1vmO52SCPboEWPiWXyOYJZYP10hTKpaorqs_ry3NtKJLHYfqNLhCriGJR_YyWtKp_mjlF0h2qDRaxd5Vi9Jsv5TS0466Y0a9X2EHmRee0tvSgKMaH-5NgdDIdPyOn9_Knn5PVqq7MC0I5wvaHrDQmxB1pnvPYpu6GKeckFYhN8r7_vRI6cHPk2JjLFpaZS9QEnt050TfXoosW0eNvQh9RR9cCCMLtH9TLmezmtHThjkWXBthdHIEtARunsjCOlVAZg02y1WtYdp6hkTd27Mbstf7vUcjipIjw4uX_v7RD1obT8UiOjibHr8hD7gbWZom2yOrF8ofZdnHThXrtjZWSL_c9O_4ASX0qKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrcTjgKCAKBSwEEhcoo0d53VAqO1m1dLuqqKt1JuJx_ZSaUmWTYH2r_Hr8CROHxJw6y2JRpHlGY9n7JnvI-QtpFrHmqtAMaECIYAHudAucbUGmAaW6xZKaTJNdo7Fp5P4ZIX87nthsKyy94mto9Y14Bn5kKdJ4gzO7U5D68siDkbjj4vvATJI4U1rT6fRmcieufjl0rfmw-7I6fod5-PiaHsn8AwDAUR5JhCa0iQCICxTkyZdwK2NziFU1limWaS0ArAurokQiC6JbZakXGQlZ1YAMkY497-auqwoHJDVrWJ68PnqhEe47CNkPZxRyIemMRHSL4sbm2DLFXAjwL0eJrf73PgheeADVLrZWdQjsmKqNXK3719u1sj9axCGj8k5cntC2WD1NIVyqeqK6tP6_FQbilRyeBhHF4hcRLHEfkZLWtU_zZwiBQ_VBkvafd0Y_dYWdhrqmSxm9OsF9pO1onNaW7pdFJPR5jTYPzyaPCHHtzLXT8mgqivzjFCOIP4hK40JMT_Ncx7b1L0w5VymArFO3vfTK8FDnSPjxlx2IM1coibwJs-JvrkUXXT4Hn8T2kIdXQogJHf7oV7OpF_h0gU_Fh0cYK9xBLYEbKPKwjhWQmUM1slGr2Hp_UQjr6zajbnV-r9HIYvDIsKH5___02tyx60Mub873XtB7nE3ru7IaIMMzpY_zEsXRJ2pV95aKfly2wvkDxt9L7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+carbon+dioxide+emission+price+using+a+novel+mode+decomposition+machine+learning+hybrid+model+of+CEEMDAN-LSTM&rft.jtitle=Energy+science+%26+engineering&rft.au=Yun%2C+Po&rft.au=Huang%2C+Xiaodi&rft.au=Wu%2C+Yaqi&rft.au=Yang%2C+Xianzi&rft.date=2023-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2050-0505&rft.volume=11&rft.issue=1&rft.spage=79&rft.epage=96&rft_id=info:doi/10.1002%2Fese3.1304&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon