Properties of Bloodmeal/Linear Low-density Polyethylene Blends Compatibilized with Maleic Anhydride Grafted Polyethylene
ABSTRACT Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and co...
Saved in:
Published in | Journal of applied polymer science Vol. 130; no. 3; pp. 1890 - 1897 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, NJ
Blackwell Publishing Ltd
05.11.2013
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013 |
---|---|
AbstractList | ABSTRACT
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐
g
‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated
T
g
revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013 ABSTRACT Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013 Novatein thermoplastics from bloodmeal (NTP) were blended with linear low-density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE-g-MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890-1897, 2013 [PUBLICATION ABSTRACT] Novatein thermoplastics from bloodmeal (NTP) were blended with linear low-density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE-g-MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated T sub(g)revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. [copy 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890-1897, 2013 |
Author | Verbeek, C. J. R. Marsilla, K. I. Ku |
Author_xml | – sequence: 1 givenname: K. I. Ku surname: Marsilla fullname: Marsilla, K. I. Ku organization: Department of Engineering, University of Waikato, 3240, Hamilton, New Zealand – sequence: 2 givenname: C. J. R. surname: Verbeek fullname: Verbeek, C. J. R. email: jverbeek@waikato.ac.nz organization: Department of Engineering, University of Waikato, 3240, Hamilton, New Zealand |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27655786$$DView record in Pascal Francis |
BookMark | eNp1kc-LEzEYhoOsYHf14H8wIIIeZptMJj_mWItW2ao9LAp7CenkC82aJmMypTv-9Ua7LiJ4-g7v8z588J6jsxADIPSc4EuCcTPXw3BJO9rQR2hGcCfqljfyDM1KRmrZdewJOs_5FmNCGOYzdLdJcYA0OshVtNUbH6PZg_bztQugU7WOx9pAyG6cqk30E4y7yUOAQkIwuVrG_aBHt3Xe_QBTHd24qz5qD66vFmE3meQMVKuk7VjSvwVP0WOrfYZn9_cCXb97e718X68_rz4sF-u6p52ktZGmx63suWwoo8CBWdrSVjdYaMqsEVayRloD275pmeZAt8xi0FtsMNGSXqBXJ-2Q4vcD5FHtXe7Bex0gHrIiLe2EkB0lBX3xD3obDymU5wpFZMs5F6JQr09Un2LOCawaktvrNCmC1a8JVJlA_Z6gsC_vjTr32tukQ-_yQ6ERnDEheeHmJ-7oPEz_F6rFZvPHXJ8aLo9w99DQ6Zviggqmvn5aKXnDr666m436Qn8CgUCnfA |
CODEN | JAPNAB |
CitedBy_id | crossref_primary_10_1002_mame_201400141 crossref_primary_10_1016_j_polymertesting_2014_04_001 crossref_primary_10_1016_j_egypro_2016_05_046 crossref_primary_10_1002_pen_25818 crossref_primary_10_4028_www_scientific_net_AMM_884_3 crossref_primary_10_1021_acs_iecr_5b00580 crossref_primary_10_1007_s10924_016_0774_7 crossref_primary_10_1002_adv_21847 crossref_primary_10_1002_mame_201300396 crossref_primary_10_3390_polym15183750 |
Cites_doi | 10.1088/0370-1301/69/8/305 10.1002/pol.1984.180220306 10.1007/s10924-010-0232-x 10.1002/mame.201000374 10.1016/0032-3861(95)93919-D 10.1016/j.carbpol.2004.08.018 10.1016/j.biortech.2009.05.076 10.1002/app.1994.070531011 10.1016/S0032-3861(99)00337-7 10.1002/app.10271 10.1002/app.1994.070520505 10.1016/S0032-3861(97)10200-2 10.1016/B978-0-12-546802-2.50012-9 10.1002/star.201000075 10.1002/(SICI)1097-4628(19981121)70:8<1503::AID-APP9>3.0.CO;2-# 10.1007/978-1-4615-5789-0 10.1002/app.23047 10.1002/app.20416 10.1002/app.36329 10.1002/adv.20019 10.1002/mame.200900167 10.1002/pol.1982.130200903 10.1002/(SICI)1097-0126(199911)48:11<1165::AID-PI286>3.0.CO;2-L 10.1002/app.20015 10.1002/1097-4628(20010509)80:6<863::AID-APP1164>3.0.CO;2-R 10.1021/jf60218a033 10.1002/pen.21896 10.1002/app.1994.070530212 10.1002/app.30712 10.1002/app.29206 10.1002/app.11965 10.1002/vnl.20197 10.1002/vnl.20292 10.1080/00222358008081053 10.1016/S0032-3861(97)81176-7 10.1002/pen.760110305 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.39323 |
DatabaseName | Istex Pascal-Francis CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1097-4628 |
EndPage | 1897 |
ExternalDocumentID | 3039687571 10_1002_app_39323 27655786 APP39323 ark_67375_WNG_8Z6KK9ZP_V |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT 6TJ 6XO AAJUZ ABCVL ABDEX ABEML ABFLS ABHUG ACSCC ACSMX ACXME ADAWD ADDAD AFFNX AFVGU AGJLS AI. FEDTE G8K GYXMG HF~ HVGLF H~9 IPNFZ IQODW M6T NEJ PALCI RIWAO RJQFR SAMSI VH1 XFK AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c3983-d8dc048c682353e6e5f3434a207a35fd7f8528fdebc245a6e3b5f0eab0d01a83 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Aug 16 01:45:51 EDT 2024 Thu Oct 10 17:44:49 EDT 2024 Fri Aug 23 04:06:39 EDT 2024 Tue Sep 20 21:47:55 EDT 2022 Sat Aug 24 01:07:15 EDT 2024 Wed Oct 30 09:57:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Polymer blends Meat product Mechanical properties compatibilization Organic anhydride Experimental study biopolymers and renewable polymers Compatibilizer Functional polymer Heterogeneous mixture Tensile strength Thermal properties Industrial waste Morphology Blood meal Animal protein Extrusion Olefin polymer Water absorption Linear low density ethylene polymer blends |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3983-d8dc048c682353e6e5f3434a207a35fd7f8528fdebc245a6e3b5f0eab0d01a83 |
Notes | ArticleID:APP39323 istex:DD4FF1ECB47D24812A9316FD336E35687B8A6680 ark:/67375/WNG-8Z6KK9ZP-V ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1418466677 |
PQPubID | 1006379 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1439778931 proquest_journals_1418466677 crossref_primary_10_1002_app_39323 pascalfrancis_primary_27655786 wiley_primary_10_1002_app_39323_APP39323 istex_primary_ark_67375_WNG_8Z6KK9ZP_V |
PublicationCentury | 2000 |
PublicationDate | November 5, 2013 |
PublicationDateYYYYMMDD | 2013-11-05 |
PublicationDate_xml | – month: 11 year: 2013 text: November 5, 2013 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, NJ |
PublicationPlace_xml | – name: Hoboken, NJ – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationTitleAlternate | J. Appl. Polym. Sci |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Rudin, A. J. Macromol. Sci. C Polym. Rev. 1980, 19, 267. Nielsen, L. E. Mechanical Properties of Polymers and Composites. Marcel Dekker: New York, 1974. Shin, B. Y.; Jang, S. H.; Kim, B. S. Polym. Eng. Sci. 2011, 51, 826. Walia, P. S.; Lawton, J. W.; Shogren, R. L. J. Appl. Polym. Sci. 2002, 84, 121. Popli, R.; Glotin, M.; Mandelkern, L.; Benson, R. S. J. Polym. Sci. Polym. Phys. Ed. 1984, 22, 407. Wang, Y. J.; Liu, W.; Sun, Z. J. Appl. Polym. Sci. 2004, 92, 344. St-Pierre, N.; Favis, B. D.; Ramsay, B. A.; Ramsay, J. A.; Verhoogt, H. Polymer 1997, 38, 647. Khonakdar, H. A.; Wagenknecht, U.; Jafari, S. H.; Hässler, R.; Eslami, H. Adv. Polym. Technol. 2004, 23, 307. Vieyra Ruiz, H.; Martínez, E. S. M.; Méndez, M. Á. A. Starch-Stärke 2010, 63, 42. Vaidya, U. R.; Bhattacharya, M. J. Appl. Polym. Sci. 1994, 52, 617. Sathe, S. N.; Rao, G. S. S.; Devi, S. J. Appl. Polym. Sci. 1994, 53, 239. Wang, S.; Yu, J.; Yu, J. J. Appl. Polym. Sci. 2004, 93, 686. Pedroso, A. G.; Rosa, D. S. Carbohydr. Polym. 2005, 59, 1. Utracki, L. A. Commercial Polymer Blends; Chapman & Hall, London SE1 8HN, UK, 1998. Kaur, I.; Bhalla, T. C.; Deepika, N.; Gautam, N. J. Appl. Polym. Sci. 2009, 111, 2460. Sam, S. T.; Ismail, H.; Ahmad, Z. J. Vinyl Addit. Technol. 2009, 15, 252. Ratanakamnuan, U.; Aht-Ong, D. J. Appl. Polym. Sci. 2006, 100, 2717. Liu, H.; Wu, Q.; Zhang, Q. Bioresour. Technol. 2009, 100, 6088. Vermeesch, I.; Groeninckx, G. J. Appl. Polym. Sci. 1994, 53, 1365. Bikiaris, D.; Panayiotou, C. J. Appl. Polym. Sci. 1998, 70, 1503. Veenstra, H.; Verkooijen, P. C. J.; van Lent, B. J. J.; van Dam, J.; de Boer, A. P.; Nijhof, A. P. H. J. Polymer 2000, 41, 1817. Sugih, A. K.; Drijfhout, J. P.; Picchioni, F.; Janssen, L. P. B. M.; Heeres, H. J. J. Appl. Polym. Sci. 2009, 114, 2315. Janssen, L. Leszek Mościcki, Thermoplastic Starch: A Green Material for Various Industries; Wiley-VCH Verlag GmbH & Co. KGaA, 2010, p 119-148. Paul, D. R.; Newman, S. Polymer Blends; Academic Press: New York, 1978. Verbeek, C. J. R.; van den Berg, L. E. Macromol. Mater. Eng. 2010, 295, 10. John, J.; Bhattacharya, M. Polym. Int. 1999, 48, 1165. Bier, J. M.; Verbeek, C. J. R.; Lay, M. C. J. Ther. Anal. Calorimetry 2012, 1-13. Sabetzadeh, M.; Bagheri, R.; Masoomi, M. J. Appl. Polym. Sci. 2012, 126, E63-E69. Kerner, E. H. Proc Phys Soc 1956, 69B, 808. Ting, S. S.; Ismail, H.; Ahmad, Z. J. Vinyl Addit. Technol. 2012, 18, 57. Manas-Zloczower, I. Rheol. Bull. 1997, 66, 5. Liu, W.; Wang, Y. J.; Sun, Z. J. Appl. Polym. Sci. 2003, 88, 2904. Kramer, S. L.; Waibel, P. E.; Behrends, B. R.; El Kandelgy, S. M. J. Agric. Food Chem. 1978, 26, 979. Verbeek, C. J. R.; van den Berg, L. E. Macromol. Mater. Eng. 2011, 296, 524. Willemse, R. C.; de Boer, A. P.; van Dam, J.; Gotsis, A. D. Polymer 1998, 39, 5879. Sailaja, R. R. N.; Chanda, M. J. Appl. Polym. Sci. 2001, 80, 863. Verbeek, C. J. R.; van den Berg, L. E. J. Polym. Environ. 2010, 19, 1. Nicolais, L. N. M. Polym. Eng. Sci. 1971, 1, 194. Vaidya, U. R.; Bhattacharya, M.; Zhang, D. Polymer 1995, 36, 1179. Gaylord, N. G.; Mehta, M. J. Polym. Sci. Polym. Lett. Ed. 1982, 20, 481. 1997; 66 2012 2011 2010; 19 2010 1995; 36 1956; 69B 1984; 22 1999; 48 2000; 41 2004; 23 1998 2009; 111 1974 2012; 18 2012; 126 2010; 63 2009; 114 1978 2011; 296 2001; 80 1998; 39 1980; 19 2004; 92 2004; 93 2002; 84 1982; 20 2011; 51 2009; 100 2010; 295 1997; 38 1998; 70 1978; 26 2005; 59 1971; 1 1994; 52 2009; 15 2006; 100 2003; 88 1994; 53 e_1_2_5_27_1 Bier J. M. (e_1_2_5_40_1) 2012 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_15_1 e_1_2_5_14_1 Nielsen L. E. (e_1_2_5_31_1) 1974 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 Manas‐Zloczower I. (e_1_2_5_38_1) 1997; 66 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 Janssen L. (e_1_2_5_9_1) 2010 |
References_xml | – year: 2011 – volume: 296 start-page: 524 year: 2011 publication-title: Macromol. Mater. Eng. – volume: 53 start-page: 239 year: 1994 publication-title: J. Appl. Polym. Sci. – volume: 69B start-page: 808 year: 1956 publication-title: Proc Phys Soc – volume: 39 start-page: 5879 year: 1998 publication-title: Polymer – volume: 59 start-page: 1 year: 2005 publication-title: Carbohydr. Polym. – volume: 26 start-page: 979 year: 1978 publication-title: J. Agric. Food Chem. – volume: 15 start-page: 252 year: 2009 publication-title: J. Vinyl Addit. Technol. – volume: 80 start-page: 863 year: 2001 publication-title: J. Appl. Polym. Sci. – volume: 84 start-page: 121 year: 2002 publication-title: J. Appl. Polym. Sci. – volume: 111 start-page: 2460 year: 2009 publication-title: J. Appl. Polym. Sci. – volume: 22 start-page: 407 year: 1984 publication-title: J. Polym. Sci. Polym. Phys. Ed. – volume: 295 start-page: 10 year: 2010 publication-title: Macromol. Mater. Eng. – volume: 36 start-page: 1179 year: 1995 publication-title: Polymer – volume: 100 start-page: 2717 year: 2006 publication-title: J. Appl. Polym. Sci. – start-page: 1–13 year: 2012 publication-title: J. Ther. Anal. Calorimetry – volume: 19 start-page: 1 year: 2010 publication-title: J. Polym. Environ. – volume: 19 start-page: 267 year: 1980 publication-title: J. Macromol. Sci. C Polym. Rev. – volume: 23 start-page: 307 year: 2004 publication-title: Adv. Polym. Technol. – volume: 70 start-page: 1503 year: 1998 publication-title: J. Appl. Polym. Sci. – year: 2010 – year: 1998 – volume: 93 start-page: 686 year: 2004 publication-title: J. Appl. Polym. Sci. – volume: 63 start-page: 42 year: 2010 publication-title: Starch—Stärke – volume: 88 start-page: 2904 year: 2003 publication-title: J. Appl. Polym. Sci. – volume: 52 start-page: 617 year: 1994 publication-title: J. Appl. Polym. Sci. – volume: 38 start-page: 647 year: 1997 publication-title: Polymer – volume: 126 start-page: E63–E69 year: 2012 publication-title: J. Appl. Polym. Sci. – volume: 51 start-page: 826 year: 2011 publication-title: Polym. Eng. Sci. – volume: 18 start-page: 57 year: 2012 publication-title: J. Vinyl Addit. Technol. – volume: 20 start-page: 481 year: 1982 publication-title: J. Polym. Sci. Polym. Lett. Ed. – year: 1974 – volume: 92 start-page: 344 year: 2004 publication-title: J. Appl. Polym. Sci. – volume: 66 start-page: 5 year: 1997 publication-title: Rheol. Bull. – volume: 1 start-page: 194 year: 1971 publication-title: Polym. Eng. Sci. – year: 1978 – volume: 100 start-page: 6088 year: 2009 publication-title: Bioresour. Technol. – volume: 53 start-page: 1365 year: 1994 publication-title: J. Appl. Polym. Sci. – volume: 48 start-page: 1165 year: 1999 publication-title: Polym. Int. – volume: 41 start-page: 1817 year: 2000 publication-title: J. Polymer – volume: 114 start-page: 2315 year: 2009 publication-title: J. Appl. Polym. Sci. – ident: e_1_2_5_30_1 doi: 10.1088/0370-1301/69/8/305 – ident: e_1_2_5_42_1 doi: 10.1002/pol.1984.180220306 – ident: e_1_2_5_4_1 doi: 10.1007/s10924-010-0232-x – ident: e_1_2_5_6_1 doi: 10.1002/mame.201000374 – ident: e_1_2_5_18_1 doi: 10.1016/0032-3861(95)93919-D – ident: e_1_2_5_33_1 doi: 10.1016/j.carbpol.2004.08.018 – ident: e_1_2_5_15_1 doi: 10.1016/j.biortech.2009.05.076 – ident: e_1_2_5_25_1 doi: 10.1002/app.1994.070531011 – ident: e_1_2_5_37_1 doi: 10.1016/S0032-3861(99)00337-7 – volume-title: Mechanical Properties of Polymers and Composites year: 1974 ident: e_1_2_5_31_1 contributor: fullname: Nielsen L. E. – ident: e_1_2_5_34_1 doi: 10.1002/app.10271 – ident: e_1_2_5_19_1 doi: 10.1002/app.1994.070520505 – ident: e_1_2_5_35_1 doi: 10.1016/S0032-3861(97)10200-2 – ident: e_1_2_5_7_1 doi: 10.1016/B978-0-12-546802-2.50012-9 – ident: e_1_2_5_17_1 doi: 10.1002/star.201000075 – ident: e_1_2_5_36_1 doi: 10.1002/(SICI)1097-4628(19981121)70:8<1503::AID-APP9>3.0.CO;2-# – ident: e_1_2_5_10_1 doi: 10.1007/978-1-4615-5789-0 – ident: e_1_2_5_23_1 doi: 10.1002/app.23047 – ident: e_1_2_5_16_1 doi: 10.1002/app.20416 – ident: e_1_2_5_22_1 doi: 10.1002/app.36329 – ident: e_1_2_5_41_1 doi: 10.1002/adv.20019 – ident: e_1_2_5_5_1 doi: 10.1002/mame.200900167 – ident: e_1_2_5_26_1 doi: 10.1002/pol.1982.130200903 – ident: e_1_2_5_28_1 doi: 10.1002/(SICI)1097-0126(199911)48:11<1165::AID-PI286>3.0.CO;2-L – ident: e_1_2_5_14_1 doi: 10.1002/app.20015 – ident: e_1_2_5_21_1 doi: 10.1002/1097-4628(20010509)80:6<863::AID-APP1164>3.0.CO;2-R – volume: 66 start-page: 5 year: 1997 ident: e_1_2_5_38_1 publication-title: Rheol. Bull. contributor: fullname: Manas‐Zloczower I. – ident: e_1_2_5_3_1 doi: 10.1021/jf60218a033 – ident: e_1_2_5_39_1 doi: 10.1002/pen.21896 – ident: e_1_2_5_24_1 doi: 10.1002/app.1994.070530212 – ident: e_1_2_5_29_1 doi: 10.1002/app.30712 – ident: e_1_2_5_11_1 doi: 10.1002/app.29206 – start-page: 1–13 year: 2012 ident: e_1_2_5_40_1 publication-title: J. Ther. Anal. Calorimetry contributor: fullname: Bier J. M. – ident: e_1_2_5_27_1 doi: 10.1002/app.11965 – ident: e_1_2_5_12_1 doi: 10.1002/vnl.20197 – ident: e_1_2_5_13_1 doi: 10.1002/vnl.20292 – ident: e_1_2_5_8_1 doi: 10.1080/00222358008081053 – ident: e_1_2_5_20_1 doi: 10.1016/S0032-3861(97)81176-7 – ident: e_1_2_5_2_1 – volume-title: Leszek Mościcki, Thermoplastic Starch: A Green Material for Various Industries year: 2010 ident: e_1_2_5_9_1 contributor: fullname: Janssen L. – ident: e_1_2_5_32_1 doi: 10.1002/pen.760110305 |
SSID | ssj0011506 |
Score | 2.1955507 |
Snippet | ABSTRACT
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene... Novatein thermoplastics from bloodmeal (NTP) were blended with linear low-density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE-g-MAH)... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1890 |
SubjectTerms | Applied sciences Biological and medical sciences biopolymers and renewable polymers Blends Compatibility compatibilization Exact sciences and technology extrusion Extrusion moulding Food industries Fundamental and applied biological sciences. Psychology Grafting Machinery and processing Maleic anhydride Materials science Moulding Natural polymers Physicochemistry of polymers Plastics Polyethylenes Polymer blends Polymer industry, paints, wood Polymers Proteins Reproduction Technology of polymers Use and upgrading of agricultural and food by-products. Biotechnology Water absorption |
Title | Properties of Bloodmeal/Linear Low-density Polyethylene Blends Compatibilized with Maleic Anhydride Grafted Polyethylene |
URI | https://api.istex.fr/ark:/67375/WNG-8Z6KK9ZP-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.39323 https://www.proquest.com/docview/1418466677 https://search.proquest.com/docview/1439778931 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqsoEFb0SgVAYhxCadxK84YjU82orSaoQKVBVS5MS2QIUEzWQEMys-gW_kS7jXmYQOEhJiFynXTmL72ufaJ-cS8lBZ7jkgZQhTSxELYZJY54mIjfXCGeN4Eo5iDo_U_hvx8kSebJAn_b8wnT7EsOGGnhHma3RwU85Gv0VDMQ0WB_SBSp8pz5DO9fz1IB2FQEd19I4Unp7LXlUoYaOh5NpadAGb9RtyI80Mmsd3eS3WgOd5-BrWn90r5H3_5h3t5Gxn3pY71fIPUcf__LSr5PIKl9JxN5CukQ1XXyeXzqkV3iDLCW7cT1GBlTaePkXK-2fAmSOIZ8Ff6Kvm68_vPywy4tsFnTSfFg5GAaxqDmyReUvD5NMGPu7SWYp7wPQQVqiPFR3XHxaY6d3RvSnmLbdrFdwkx7svjp_tx6vUDXHFc81jq20Fc0OlNOOSO-Wk54ILw5LMcOlt5rVk2ltXVkxIoxwvpU-cKRObpEbzW2Szbmp3m1CZem2Yh6oUVGiTsnKlFmDHKgajLI_Ig74Piy-dQEfRSTGzAtqxCO0YkUehdwcLMz1DRlsmi3dHe4U-VQcH-emkeBuR7bXuHwqwTEmY3FREtvrxUKy8fQbhE8TJEAdmWUTuD7fBT_HwxdSumaMNQm1Ah2lEHofO__vrFuPJJFzc-XfTu-Qiw0wduOMtt8hmO527e4CX2nI7OMYvq1YT5w |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAceCMCpRiEEJd0s3ach8RlebQL-1CEFqgqociJbYEKCdpmBbsnfgK_kV_CTLIJXSQkxC1Sxk4y9tjfjCffADwMtLACkTK6qZnv-r7y3Cj2fFdp6xuljPDqo5jJNBi-8V8dyaMteNL-C9PwQ3QBN7KMer0mA6eAdO83ayjVwRIIP8Q52EFzF1S44fnrjjyKoE7QJHj08fmxbHmFPN7rmm7sRjuk2G-UHalOUUG2qWyxAT3PAth6Bzq4DO_bd28ST072F1W2n6_-oHX834-7ApfW0JQNmrl0FbZMcQ0uniEsvA6rhGL3cyJhZaVlTynr_TNCzR66tGgybFx-_fn9h6ak-GrJkvLT0uBEwI3NoCwl37J6_anqlNyV0YzCwGyCm9THnA2KD0sq9m7Y4ZxKl-uNDm7A7ODF7NnQXVdvcHMRR8LVkc5xeciDiAspTGCkFb7wFfdCJaTVoY0kj6w2Wc59qQIjMmk9ozJPe30ViZuwXZSFuQVM9m2kuMWuAuxQe1lusshHOZ5znGixAw_aQUy_NBwdacPGzFPUY1rr0YFH9fB2Emp-QkltoUzfTQ_T6DgYjeLjJH3rwN7G-HcNeBhIXN8CB3bbCZGuDf4UPSh0ldEVDEMH7ne30VTp_EUVplyQDKFtBIh9Bx7Xo__3100HSVJf3P530XtwfjibjNPxy-noDlzgVLiDAuByF7ar-cLcRfhUZXu1lfwCvo4X_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB2VVkLwwB1hKGVBCPHixtmbbfEULmkhbWShQqsKyVp7dwUqOFWaCJInPoFv5EuYsRPTICEh3ix5dm3vzsye2R2fAXisrfACkTKGqYUMpTRRmKSRDI310hnjRFQfxewP9e47-eZIHa3Bs-W_MA0_RLvhRpZR-2sy8FPrO79JQ6kMlkD0IS7AhtSIfAkRvW25owjp6Ca_o4uPT9WSVijinbbpymK0QeP6jZIjzRmOj28KW6wgz_P4tV6A-lfhw_LVm7yTk-3ppNgu53-wOv7nt12DKwtgynqNJl2HNVfdgMvn6ApvwjyjnfsxUbCykWfPKef9CwLNDga0aDBsb_T15_cfllLiJzOWjT7PHKoBLmsOZSn1ltXeZ1In5M6dZbQJzPZxifpUsl71cUal3h3bGVPhcrvSwS046L86eLEbLmo3hKVIExHaxJboHEqdcKGE0055IYU0PIqNUN7GPlE88dYVJZfKaCcK5SNnishGXZOI27BejSp3B5jq-sRwj11p7NBGRemKRKIcLzmqWRrAo-Uc5qcNQ0fecDHzHMcxr8cxgCf17LYSZnxCKW2xyg-HO3lyrAeD9DjL3wewtTL9bQMea4XeTQewudSHfGHuZxg_YaCMgWAcB_CwvY2GSqcvpnKjKckQ1kZ42A3gaT35f3_dvJdl9cXdfxd9ABezl_187_VwcA8ucaraQbvfahPWJ-Opu4_YaVJs1TbyC3LJFq4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+Bloodmeal%2FLinear+Low%E2%80%90density+Polyethylene+Blends+Compatibilized+with+Maleic+Anhydride+Grafted+Polyethylene&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Marsilla%2C+K.+I.+Ku&rft.au=Verbeek%2C+C.+J.+R.&rft.date=2013-11-05&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=130&rft.issue=3&rft.spage=1890&rft.epage=1897&rft_id=info:doi/10.1002%2Fapp.39323&rft.externalDBID=10.1002%252Fapp.39323&rft.externalDocID=APP39323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |