The influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems
Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and por...
Saved in:
Published in | Energy science & engineering Vol. 11; no. 4; pp. 1436 - 1450 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.04.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H2‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C.
The manuscript investigated the influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05 0.07, and 0.09) catalyst was prepared by sol–gel method, tested for dry reforming of methane. CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C. |
---|---|
AbstractList | Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X-ray diffraction, H2-temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO-species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag-off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C. Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H2‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C. The manuscript investigated the influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05 0.07, and 0.09) catalyst was prepared by sol–gel method, tested for dry reforming of methane. CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C. Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H2‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C. Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi 0.9 Zr 1 − x Y x O 3 (M = Ce, La, and La 0.6 Ce 0.4 ; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H 2 ‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La 0.6 Ce 0.4 NiO 3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO 2 . Substitution of Ni by Zr and Y in the CeNiO 3 catalyst system nurtures Ni 3 Y (providing highly stable metallic Ni for CH 4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi 0.9 Zr 0.01 Y 0.09 O 3 shows 85% H 2 yield at 800°C. |
Author | Abasaeed, Ahmed E. Bayahia, Hossein Sofiu, Mahmud L. Al‐Awadi, Abdulrhman S. Acharya, Kenit AL‐Otaibi, Raja Lafi Al‐Fatesh, Ahmed Sadeq Ibrahim, Ahmed A. Al‐Zahrani, Salma A. Kumar, Rawesh Osman, Ahmed I. Fakeeha, Anis H. |
Author_xml | – sequence: 1 givenname: Ahmed E. surname: Abasaeed fullname: Abasaeed, Ahmed E. organization: King Saud University – sequence: 2 givenname: Mahmud L. surname: Sofiu fullname: Sofiu, Mahmud L. organization: King Saud University – sequence: 3 givenname: Kenit surname: Acharya fullname: Acharya, Kenit organization: Indus University – sequence: 4 givenname: Ahmed I. orcidid: 0000-0003-2788-7839 surname: Osman fullname: Osman, Ahmed I. email: aosmanahmed01@qub.ac.uk organization: Queen's University Belfast – sequence: 5 givenname: Anis H. surname: Fakeeha fullname: Fakeeha, Anis H. organization: Energy Research & Innovation Center (K.A.CARE) in Riyadh – sequence: 6 givenname: Raja Lafi surname: AL‐Otaibi fullname: AL‐Otaibi, Raja Lafi email: raletabi@kacst.edu.sa organization: King Abdulaziz City for Science and Technology – sequence: 7 givenname: Ahmed A. surname: Ibrahim fullname: Ibrahim, Ahmed A. organization: King Saud University – sequence: 8 givenname: Abdulrhman S. surname: Al‐Awadi fullname: Al‐Awadi, Abdulrhman S. organization: Energy Research & Innovation Center (K.A.CARE) in Riyadh – sequence: 9 givenname: Hossein orcidid: 0000-0002-1287-910X surname: Bayahia fullname: Bayahia, Hossein organization: Albaha University – sequence: 10 givenname: Salma A. surname: Al‐Zahrani fullname: Al‐Zahrani, Salma A. organization: University of Hail – sequence: 11 givenname: Rawesh surname: Kumar fullname: Kumar, Rawesh email: kr.rawesh@gmail.com organization: Indus University – sequence: 12 givenname: Ahmed Sadeq orcidid: 0000-0002-5521-5741 surname: Al‐Fatesh fullname: Al‐Fatesh, Ahmed Sadeq email: aalfatesh@ksu.edu.sa organization: King Saud University |
BookMark | eNp1kcFuGyEQhlGVSk3THPoGSD1VihNY2MV7rCK3iRS1h6ZnNAuDjbUGF7CbfZk-a9i4qnqpBGLE_80_MPOWnIUYkJD3nF1zxpobzCiuuWTNK3LesJYt6m7P_onfkMuct4wxLrnsGT8nvx83SH1w4wGDQRod_eppLjD40Zfpiia08emKQrB0hFL8zDxNawzUwB5MZWic4wLjVFW6mWyKs7xP0R5M8VU9eqA7LBsISG2aqqeLaefDuhauK8QjFH_EmYGx2nuLNE-54C6_I68djBkv_5wX5Mfn1ePt3eLh25f7208PCyP6ZbOwYK2Vg-xYp4Tr-QDCMOitkQKlda3iwooBDTiu3NDJpWHMKumGRvF2YE5ckPuTr42w1fvkd5AmHcHrl4uY1hpS_d-I2nW2Nwaxl9BJ0dkloFJKMme4a0Dy6vXh5FVb8POAuehtPKRQn68b1Xesld2yrdTHE2VSzLm25G9VzvQ8TT1PU8_TrOzNif3lR5z-D-rV95V4yXgGAiCmPQ |
CitedBy_id | crossref_primary_10_1007_s10562_023_04503_y crossref_primary_10_1002_ese3_1586 crossref_primary_10_1007_s10562_023_04450_8 crossref_primary_10_1007_s42250_023_00730_3 crossref_primary_10_1016_j_jes_2023_06_024 crossref_primary_10_1039_D3RE00714F |
Cites_doi | 10.2478/s11696-014-0566-2 10.1016/j.ijhydene.2012.04.059 10.1021/ef800326q 10.1016/j.cattod.2005.07.010 10.1016/j.ijhydene.2007.11.029 10.1016/j.jaap.2018.09.025 10.1016/j.jallcom.2010.01.071 10.1016/j.cattod.2007.12.049 10.1016/j.jcou.2021.101455 10.1016/j.cattod.2009.09.017 10.1021/acscatal.0c01229 10.1016/j.joei.2017.06.001 10.1016/j.catcom.2012.05.018 10.1016/S0021-9517(03)00044-7 10.1016/j.ijhydene.2022.09.029 10.1016/S0009-2614(97)00555-1 10.1016/j.apcata.2007.10.010 10.1021/acsomega.2c00471 10.1007/s12039-017-1359-2 10.1016/j.rser.2012.02.028 10.1016/j.ijhydene.2015.03.152 10.1016/j.jcou.2014.02.001 10.1007/s10562-006-0026-x 10.1016/0920-5861(94)00081-C 10.1016/j.jcou.2016.12.014 10.13005/ojc/340337 10.1016/S1872-2067(08)60079-0 10.1021/ie800111e 10.1016/j.jpowsour.2009.10.004 10.1016/j.mcat.2021.111498 10.3390/pr9010157 10.1016/j.apcatb.2017.10.022 10.1016/S0360-0564(02)47006-X 10.1016/j.cattod.2007.12.069 10.3390/catal10010027 10.1016/j.ijhydene.2013.11.050 10.1016/j.apcata.2019.02.029 10.1016/j.cattod.2005.07.112 10.1016/j.mcat.2021.111676 10.1039/b820373c 10.1016/j.ijhydene.2021.05.049 10.1016/j.energy.2019.01.085 10.1016/j.apcata.2018.07.039 10.1016/j.ijhydene.2015.12.062 10.3390/ma15103564 10.1016/j.apcata.2016.07.024 10.1016/j.ijhydene.2022.04.199 10.1515/9783110656480 10.1016/j.apcata.2008.03.023 10.1016/j.ijhydene.2019.07.133 10.1016/j.apcata.2006.06.010 10.1016/j.apcatb.2020.118859 10.1016/j.fuproc.2014.01.035 10.1016/j.ijhydene.2009.12.120 10.1002/jctb.6451 10.1016/j.apcata.2009.09.004 10.1016/j.micromeso.2020.110278 10.1016/S0167-2991(01)80333-5 10.1016/j.ijhydene.2014.01.077 10.1016/j.cattod.2019.09.003 10.1016/j.apcatb.2016.09.071 10.3390/catal10040379 10.1016/j.catcom.2009.10.003 10.1002/ese3.1063 10.1016/j.apcata.2016.02.029 10.1016/S0021-9517(03)00045-9 10.1016/j.jcat.2016.03.018 10.13005/ojc/320546 10.1016/j.apcatb.2020.119335 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KR7 L6V L7M M7S PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1002/ese3.1402 |
DatabaseName | Wiley-Blackwell Titles (Open access) Wiley Online Library Free Content CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-0505 |
EndPage | 1450 |
ExternalDocumentID | oai_doaj_org_article_f6d9ccee94a6436d8ae77740fc1f2a41 10_1002_ese3_1402 ESE31402 |
Genre | article |
GrantInformation_xml | – fundername: SEUPB funderid: Bryden Centre |
GroupedDBID | 0R~ 1OC 24P 31~ 5VS 8-1 8FE 8FG 8FH AAHHS AAZKR ABJCF ACCFJ ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU D-9 EBS EJD GODZA GROUPED_DOAJ HCIFZ HZ~ IAO IGS KQ8 L6V L8X LK5 M7R M7S M~E O9- OK1 PCBAR PIMPY PROAC PTHSS TUS WIN AAYXX CITATION ITC 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D KR7 L7M PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3982-daddd4b460673f91ba3c0a9dc43e4df5713d3becaf17fb648c00d74fb2715b0f3 |
IEDL.DBID | 24P |
ISSN | 2050-0505 |
IngestDate | Tue Oct 22 15:06:47 EDT 2024 Thu Oct 10 16:44:06 EDT 2024 Thu Sep 26 18:41:04 EDT 2024 Sat Aug 24 01:00:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3982-daddd4b460673f91ba3c0a9dc43e4df5713d3becaf17fb648c00d74fb2715b0f3 |
ORCID | 0000-0002-5521-5741 0000-0002-1287-910X 0000-0003-2788-7839 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1402 |
PQID | 2796054685 |
PQPubID | 2034362 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6d9ccee94a6436d8ae77740fc1f2a41 proquest_journals_2796054685 crossref_primary_10_1002_ese3_1402 wiley_primary_10_1002_ese3_1402_ESE31402 |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Energy science & engineering |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 1997; 272 2010; 149 2018; 565 2016; 32 2016; 343 2014; 68 2008; 33 2012; 16 2008; 133‐135 2020; 10 2008; 344 2009; 11 2002; 47 2016; 517 2020; 95 2015; 40 2021; 510 2008; 29 1995; 23 1997; 14 2018; 136 2016; 41 2020; 45 2010; 195 2008; 22 2012; 26 2018; 34 2014; 122 2014; 6 2017; 202 2001; 136 2009; 369 2017; 129 2014; 53 2021; 9 2021; 46 2003; 219 2021; 45 2010; 35 2016; 526 2021; 504 2020; 303 2022; 47 2020; 348 2012; 37 2006; 311 2005; 107‐108 2006; 108 2022 2022; 7 2020; 270 2008; 47 2018; 91 2019; 575 2022; 15 2010; 494 2017; 18 2008; 334 2022; 10 2014; 39 2020; 278 2019; 171 2018; 10 e_1_2_8_28_1 Chai Y (e_1_2_8_37_1) 2018; 10 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_3_1 Abasaeed A (e_1_2_8_68_1) 1997; 14 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 Sagar TV (e_1_2_8_26_1) 2014; 53 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 39 start-page: 4917 year: 2014 end-page: 4925 article-title: Modifying perovskite‐type oxide catalyst LaNiO with Ce for carbon dioxide reforming of methane publication-title: Int J Hydrogen Energy – volume: 23 start-page: 59 year: 1995 end-page: 66 article-title: Potential sources of CO and the options for its large‐scale utilisation now and in the future publication-title: Catal Today – volume: 136 start-page: 381 year: 2001 end-page: 386 article-title: Perovskites as catalysts precursors for methane reforming: Ru based catalysts publication-title: Stud Surf Sci Catal – volume: 91 start-page: 683 year: 2018 end-page: 694 article-title: Hydrogen production from CH dry reforming over bimetallic Ni–Co/Al O catalyst publication-title: J Energy Inst – volume: 10 issue: 1 year: 2020 article-title: Effect of Fe and Mn substitution in LaNiO on exsolution, activity, and stability for methane dry reforming publication-title: Catalysts – volume: 10 start-page: 2078 year: 2018 end-page: 2086 article-title: A nickel‐based perovskite catalyst with a bimodal size distribution of nickel particles for dry reforming of methane publication-title: Chem.Cat.Chem – volume: 171 start-page: 465 year: 2019 end-page: 474 article-title: Role of the nanoparticles of Cu–Co alloy derived from perovskite in dry reforming of methane publication-title: Energy – volume: 278 year: 2020 article-title: Characterization of none and yttrium‐modified Ni‐based catalysts for dry reforming of methane publication-title: Appl Catal B – volume: 39 start-page: 1680 year: 2014 end-page: 1687 article-title: Enhancing hydrogen production by dry reforming process with strontium promoter publication-title: Int J Hydrogen Energy – volume: 6 start-page: 7 year: 2014 end-page: 11 article-title: The effects of partial substitution of Ni by Zn in LaNiO perovskite catalyst for methane dry reforming publication-title: J CO2 Util – volume: 47 start-page: 65 year: 2002 end-page: 139 article-title: Hydrogen and synthesis gas by steam‐ and CO reforming publication-title: Adv Catal – volume: 575 start-page: 198 year: 2019 end-page: 203 article-title: Reduced perovskite LaNiO catalysts modified with Co and Mn for low coke formation in dry reforming of methane publication-title: Appl Catal A – volume: 517 start-page: 47 year: 2016 end-page: 55 article-title: Rh, Ru and Pt ternary perovskites type oxides BaZr Me O for methane dry reforming publication-title: Appl Catal A – volume: 136 start-page: 222 year: 2018 end-page: 231 article-title: Performance of a Ni/ZrO catalyst in the steam reforming of the volatiles derived from biomass pyrolysis publication-title: J Anal Appl Pyrolysis – volume: 272 start-page: 445 year: 1997 end-page: 452 article-title: Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study publication-title: Chem Phys Lett – volume: 15 issue: 10 year: 2022 article-title: Modification of CeNi Zr O perovskite catalyst by partially substituting yttrium with zirconia in dry reforming of methane publication-title: Materials – volume: 369 start-page: 97 year: 2009 end-page: 103 article-title: Influence of Pr and Ce in dry methane reforming catalysts produced from La A NiO perovskites publication-title: Appl Catal A – year: 2022 – volume: 45 year: 2021 article-title: Improving the catalytic performance of LaNiO perovskite by manganese substitution via ultrasonic spray pyrolysis for dry reforming of methane publication-title: J CO2 Util – volume: 53 start-page: 478 year: 2014 end-page: 483 article-title: Methane reforming with carbon dioxide over La–Ni –Ce mixed oxide catalysts publication-title: Indian J Chem—Sect A Inorg Phys Theor Anal Chem – volume: 270 year: 2020 article-title: Dry reforming of methane over the cobalt catalyst: theoretical insights into the reaction kinetics and mechanism for catalyst deactivation publication-title: Appl Catal B – volume: 565 start-page: 26 year: 2018 end-page: 33 article-title: LaNi Mn O perovskite‐type oxides as catalysts precursors for dry reforming of methane publication-title: Appl Catal A – volume: 344 start-page: 10 year: 2008 end-page: 19 article-title: Structural features and performance of LaNi Rh O system for the dry reforming of methane publication-title: Appl Catal A – volume: 133‐135 start-page: 129 year: 2008 end-page: 135 article-title: Catalytic evaluation of perovskite‐type oxide LaNi Ru O in methane dry reforming publication-title: Catal Today – volume: 504 year: 2021 article-title: Ce promoted lanthana–zirconia supported Ni catalyst system: a ternary redox system for hydrogen production publication-title: Mol Catal – volume: 526 start-page: 132 year: 2016 end-page: 138 article-title: Effects of Fe partial substitution of La NiO /LaNiO catalyst precursors prepared by wet impregnation method for the dry reforming of methane publication-title: Appl Catal A – volume: 311 start-page: 94 year: 2006 end-page: 104 article-title: Structural features of La Ce NiO mixed oxides and performance for the dry reforming of methane publication-title: Appl Catal A – volume: 68 start-page: 1240 year: 2014 end-page: 1247 article-title: Characterization of LaRhO perovskites for dry (CO ) reforming of methane (DRM) publication-title: Chem Pap – volume: 7 start-page: 16468 year: 2022 end-page: 16483 article-title: Barium‐promoted yttria–zirconia‐supported Ni catalyst for hydrogen production via the dry reforming of methane: role of barium in the phase stabilization of cubic ZrO publication-title: ACS Omega – volume: 202 start-page: 683 year: 2017 end-page: 694 article-title: Dry reforming of methane over Ni/La O nanorod catalysts with stabilized Ni nanoparticles publication-title: Appl Catal B – volume: 10 start-page: 866 issue: 3 year: 2022 end-page: 880 article-title: Role of Ca, Cr, Ga and Gd promotor over lanthana–zirconia‐supported Ni catalyst towards H ‐rich syngas production through dry reforming of methane publication-title: Energy Sci Eng – volume: 22 start-page: 3575 year: 2008 end-page: 3582 article-title: Comparative study of Ni‐based mixed oxide catalyst for carbon dioxide reforming of methane publication-title: Energy Fuels – volume: 122 start-page: 141 year: 2014 end-page: 152 article-title: Activities of Ni‐based nano catalysts for CO –CH reforming prepared by polyol process publication-title: Fuel Process Technol – volume: 47 start-page: 5892 year: 2008 end-page: 5898 article-title: Production of syngas by CO reforming on M La Ni Al O (M = Li, Na, K) catalysts publication-title: Ind Eng Chem Res – volume: 11 start-page: 5246 year: 2009 end-page: 5252 article-title: Electronic charge transfer between ceria surfaces and gold adatoms: a GGA+U investigation publication-title: Phys Chem Chem Phys – volume: 133‐135 start-page: 142 year: 2008 end-page: 148 article-title: Dry reforming of CH over solid solutions of LaNi Co O publication-title: Catal Today – volume: 37 start-page: 11195 issue: 15 year: 2012 end-page: 11207 article-title: CO dry‐reforming of methane over La Sr Ni M O perovskite (M = Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C–H activation and carbon suppression publication-title: Int J Hydrogen Energy – volume: 107‐108 start-page: 436 year: 2005 end-page: 443 article-title: New Co–Ni catalyst systems used for methane dry reforming based on supported catalysts over an INT‐MM1 mesoporous material and a perovskite‐like oxide precursor LaCo Ni O publication-title: Catal Today – volume: 303 year: 2020 article-title: Mesoporous LaAl Ni O perovskite catalyst using SBA‐15 as templating agent for methane dry reforming publication-title: Microporous Mesoporous Mater – volume: 18 start-page: 345 year: 2017 end-page: 352 article-title: Highly carbon‐resistant Ni–Co/SiO catalysts derived from phyllosilicates for dry reforming of methane publication-title: J CO2 Util – volume: 348 start-page: 236 year: 2020 end-page: 242 article-title: The effect of modifier identity on the performance of Ni‐based catalyst supported on ‐Al O in dry reforming of methane publication-title: Catal Today – volume: 334 start-page: 251 year: 2008 end-page: 258 article-title: Dry reforming of methane over LaNi B O (B = Mg, Co) perovskites used as catalyst precursor publication-title: Appl Catal A – volume: 45 start-page: 18114 year: 2020 end-page: 18132 article-title: Biomass‐derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review publication-title: Int J Hydrogen Energy – volume: 29 start-page: 960 year: 2008 end-page: 968 article-title: Effects of lanthanum substitution by strontium and calcium in La–Ni–Al perovskite oxides in dry reforming of methane publication-title: Chin J Catal – volume: 219 start-page: 295 year: 2003 end-page: 304 article-title: Catalytic studies on ceria lanthana solid solutions II. Oxidation of carbon monoxide publication-title: J Catal – volume: 108 start-page: 63 year: 2006 end-page: 70 article-title: Ni–Fe catalysts based on perovskite‐type oxides for dry reforming of methane to syngas publication-title: Catal Lett – volume: 107‐108 start-page: 785 year: 2005 end-page: 791 article-title: Dry reforming of methane over Ni perovskite type oxides publication-title: Catal Today – volume: 195 start-page: 1765 year: 2010 end-page: 1771 article-title: La–Sr–Ni–Co–O based perovskite‐type solid solutions as catalyst precursors in the CO reforming of methane publication-title: J Power Sources – volume: 10 issue: 4 year: 2020 article-title: Effect of pressure on Na La Ni Al O perovskite catalyst for dry reforming of CH publication-title: Catalysts – volume: 510 year: 2021 article-title: Optimizing yttria–zirconia proportions in Ni supported catalyst system for H production through dry reforming of methane publication-title: Mol Catal – volume: 10 start-page: 12466 year: 2020 end-page: 12486 article-title: Effect of partial Fe substitution in La Sr NiO perovskite‐derived catalysts on the reaction mechanism of methane dry reforming publication-title: ACS Catal – volume: 494 start-page: 190 year: 2010 end-page: 195 article-title: Oxygen transport in perovskite and related oxides: a brief review publication-title: J Alloys Compd – volume: 34 start-page: 1469 year: 2018 end-page: 1477 article-title: Synthesis, characterization, and catalytic performance of La Ce Ni Zr O perovskite nanocatalysts in dry reforming of methane publication-title: Orient J Chem – volume: 219 start-page: 286 year: 2003 end-page: 294 article-title: Catalytic studies on ceria lanthana solid solutions I. Oxidation of methane publication-title: J Catal – volume: 33 start-page: 991 year: 2008 end-page: 999 article-title: Synthesis gas production from dry reforming of methane over Ni/Al O stabilized by ZrO publication-title: Int J Hydrogen Energy – volume: 46 start-page: 25015 year: 2021 end-page: 25028 article-title: Impact of ceria over WO –ZrO supported Ni catalyst towards hydrogen production through dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 129 start-page: 1787 year: 2017 end-page: 1794 article-title: Syngas production by CO reforming of methane on LaNi Al O perovskite catalysts: influence of method of preparation publication-title: J Chem Sci – volume: 11 start-page: 240 year: 2009 end-page: 246 article-title: Effect of MgO addition on the basicity of Ni/ZrO and on its catalytic activity in carbon dioxide reforming of methane publication-title: Catal Commun – volume: 32 start-page: 2723 year: 2016 end-page: 2730 article-title: Synthesis and application of LaNiO perovskite‐type nanocatalyst with Zr for carbon dioxide reforming of methane publication-title: Orient J Chem – volume: 47 start-page: 38242 issue: 90 year: 2022 end-page: 38257 article-title: Holmium promoted yttria–zirconia supported Ni catalyst for H production via dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 26 start-page: 169 year: 2012 end-page: 172 article-title: The influence of partial substitution of alkaline earth with la in the LaNiO perovskite catalyst publication-title: Catal Commun – volume: 47 start-page: 20838 year: 2022 end-page: 20850 article-title: Promotional effect of addition of ceria over yttria–zirconia supported Ni based catalyst system for hydrogen production through dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 40 start-page: 6818 year: 2015 end-page: 6826 article-title: Catalytic performance of CeO and ZrO supported Co catalysts for hydrogen production via dry reforming of methane publication-title: Int J Hydrogen Energy – volume: 14 start-page: 2 year: 1997 end-page: 4 article-title: Hydrogen yield from CO reforming of methane: impact of La O doping on supported Ni catalysts publication-title: Energies – volume: 149 start-page: 248 year: 2010 end-page: 253 article-title: Ruthenium supported on new TiO –ZrO systems as catalysts for the partial oxidation of methane publication-title: Catal Today – volume: 343 start-page: 208 year: 2016 end-page: 214 article-title: Dry‐reforming of methane over bimetallic Ni–M/La O (M = Co, Fe): the effect of the rate of La O CO formation and phase stability on the catalytic activity and stability publication-title: J Catal – volume: 95 start-page: 2911 year: 2020 end-page: 2920 article-title: Dry reforming of methane by La Sr NiO perovskite oxides: influence of preparation method on performance and structural features of the catalysts publication-title: J Chem Technol Biotechnol – volume: 35 start-page: 5895 year: 2010 end-page: 5901 article-title: Ethanol steam reforming on Ni/Al‐SBA‐15 catalysts: effect of the aluminium content publication-title: Int J Hydrogen Energy – volume: 41 start-page: 2477 year: 2016 end-page: 2486 article-title: Enhanced catalytic behaviour of surface dispersed nickel on LaCuO perovskite in the production of syngas: an expedient approach to carbon resistance during CO reforming of methane publication-title: Int J Hydrogen Energy – volume: 16 start-page: 3024 year: 2012 end-page: 3033 article-title: Hydrogen as an energy carrier: prospects and challenges publication-title: Renewable Sustainable Energy Rev – volume: 9 year: 2021 article-title: Role of mixed oxides in hydrogen production through the dry reforming of methane over nickel catalysts supported on modified ‐Al O publication-title: Processes – volume: 10 start-page: 2078 year: 2018 ident: e_1_2_8_37_1 article-title: A nickel‐based perovskite catalyst with a bimodal size distribution of nickel particles for dry reforming of methane publication-title: Chem.Cat.Chem contributor: fullname: Chai Y – volume: 53 start-page: 478 year: 2014 ident: e_1_2_8_26_1 article-title: Methane reforming with carbon dioxide over La–Ni x –Ce1−x mixed oxide catalysts publication-title: Indian J Chem—Sect A Inorg Phys Theor Anal Chem contributor: fullname: Sagar TV – ident: e_1_2_8_9_1 doi: 10.2478/s11696-014-0566-2 – ident: e_1_2_8_38_1 doi: 10.1016/j.ijhydene.2012.04.059 – ident: e_1_2_8_70_1 doi: 10.1021/ef800326q – ident: e_1_2_8_31_1 doi: 10.1016/j.cattod.2005.07.010 – ident: e_1_2_8_59_1 doi: 10.1016/j.ijhydene.2007.11.029 – ident: e_1_2_8_42_1 doi: 10.1016/j.jaap.2018.09.025 – ident: e_1_2_8_63_1 doi: 10.1016/j.jallcom.2010.01.071 – ident: e_1_2_8_28_1 doi: 10.1016/j.cattod.2007.12.049 – ident: e_1_2_8_19_1 doi: 10.1016/j.jcou.2021.101455 – ident: e_1_2_8_55_1 doi: 10.1016/j.cattod.2009.09.017 – ident: e_1_2_8_29_1 doi: 10.1021/acscatal.0c01229 – ident: e_1_2_8_45_1 doi: 10.1016/j.joei.2017.06.001 – ident: e_1_2_8_58_1 doi: 10.1016/j.catcom.2012.05.018 – ident: e_1_2_8_51_1 doi: 10.1016/S0021-9517(03)00044-7 – ident: e_1_2_8_73_1 doi: 10.1016/j.ijhydene.2022.09.029 – ident: e_1_2_8_14_1 doi: 10.1016/S0009-2614(97)00555-1 – ident: e_1_2_8_13_1 doi: 10.1016/j.apcata.2007.10.010 – ident: e_1_2_8_72_1 doi: 10.1021/acsomega.2c00471 – ident: e_1_2_8_15_1 doi: 10.1007/s12039-017-1359-2 – ident: e_1_2_8_2_1 doi: 10.1016/j.rser.2012.02.028 – ident: e_1_2_8_47_1 doi: 10.1016/j.ijhydene.2015.03.152 – ident: e_1_2_8_25_1 doi: 10.1016/j.jcou.2014.02.001 – ident: e_1_2_8_20_1 doi: 10.1007/s10562-006-0026-x – ident: e_1_2_8_3_1 doi: 10.1016/0920-5861(94)00081-C – ident: e_1_2_8_46_1 doi: 10.1016/j.jcou.2016.12.014 – ident: e_1_2_8_41_1 doi: 10.13005/ojc/340337 – ident: e_1_2_8_40_1 doi: 10.1016/S1872-2067(08)60079-0 – ident: e_1_2_8_35_1 doi: 10.1021/ie800111e – ident: e_1_2_8_39_1 doi: 10.1016/j.jpowsour.2009.10.004 – ident: e_1_2_8_61_1 doi: 10.1016/j.mcat.2021.111498 – ident: e_1_2_8_67_1 doi: 10.3390/pr9010157 – ident: e_1_2_8_60_1 doi: 10.1016/j.apcatb.2017.10.022 – ident: e_1_2_8_4_1 doi: 10.1016/S0360-0564(02)47006-X – ident: e_1_2_8_8_1 doi: 10.1016/j.cattod.2007.12.069 – ident: e_1_2_8_17_1 doi: 10.3390/catal10010027 – ident: e_1_2_8_66_1 doi: 10.1016/j.ijhydene.2013.11.050 – ident: e_1_2_8_23_1 doi: 10.1016/j.apcata.2019.02.029 – ident: e_1_2_8_12_1 doi: 10.1016/j.cattod.2005.07.112 – ident: e_1_2_8_64_1 doi: 10.1016/j.mcat.2021.111676 – ident: e_1_2_8_57_1 doi: 10.1039/b820373c – ident: e_1_2_8_62_1 doi: 10.1016/j.ijhydene.2021.05.049 – ident: e_1_2_8_11_1 doi: 10.1016/j.energy.2019.01.085 – ident: e_1_2_8_18_1 doi: 10.1016/j.apcata.2018.07.039 – volume: 14 start-page: 2 year: 1997 ident: e_1_2_8_68_1 article-title: Hydrogen yield from CO2 reforming of methane: impact of La2O3 doping on supported Ni catalysts publication-title: Energies contributor: fullname: Abasaeed A – ident: e_1_2_8_24_1 doi: 10.1016/j.ijhydene.2015.12.062 – ident: e_1_2_8_50_1 doi: 10.3390/ma15103564 – ident: e_1_2_8_21_1 doi: 10.1016/j.apcata.2016.07.024 – ident: e_1_2_8_71_1 doi: 10.1016/j.ijhydene.2022.04.199 – ident: e_1_2_8_54_1 doi: 10.1515/9783110656480 – ident: e_1_2_8_27_1 doi: 10.1016/j.apcata.2008.03.023 – ident: e_1_2_8_5_1 doi: 10.1016/j.ijhydene.2019.07.133 – ident: e_1_2_8_33_1 doi: 10.1016/j.apcata.2006.06.010 – ident: e_1_2_8_10_1 doi: 10.1016/j.apcatb.2020.118859 – ident: e_1_2_8_43_1 doi: 10.1016/j.fuproc.2014.01.035 – ident: e_1_2_8_44_1 doi: 10.1016/j.ijhydene.2009.12.120 – ident: e_1_2_8_30_1 doi: 10.1002/jctb.6451 – ident: e_1_2_8_34_1 doi: 10.1016/j.apcata.2009.09.004 – ident: e_1_2_8_16_1 doi: 10.1016/j.micromeso.2020.110278 – ident: e_1_2_8_49_1 doi: 10.1016/S0167-2991(01)80333-5 – ident: e_1_2_8_32_1 doi: 10.1016/j.ijhydene.2014.01.077 – ident: e_1_2_8_56_1 doi: 10.1016/j.cattod.2019.09.003 – ident: e_1_2_8_48_1 doi: 10.1016/j.apcatb.2016.09.071 – ident: e_1_2_8_36_1 doi: 10.3390/catal10040379 – ident: e_1_2_8_7_1 doi: 10.1016/j.catcom.2009.10.003 – ident: e_1_2_8_69_1 doi: 10.1002/ese3.1063 – ident: e_1_2_8_6_1 doi: 10.1016/j.apcata.2016.02.029 – ident: e_1_2_8_52_1 doi: 10.1016/S0021-9517(03)00045-9 – ident: e_1_2_8_22_1 doi: 10.1016/j.jcat.2016.03.018 – ident: e_1_2_8_53_1 doi: 10.13005/ojc/320546 – ident: e_1_2_8_65_1 doi: 10.1016/j.apcatb.2020.119335 |
SSID | ssj0001414901 |
Score | 2.3281217 |
Snippet | Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and... Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi 0.9 Zr 1 − x Y x O 3 (M... Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La,... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1436 |
SubjectTerms | Acids Carbon Carbon dioxide Catalysts Catalytic activity CeNi0.9Zr1−xYxO3 Cerium Cerium oxides dry reforming H2 yield Heat resistance Hydrogen Hydrogen production La0.6Ce0.4Ni0.9Zr1−xYxO3 catalyst system Metal oxides Metals Methane Oxidation Oxygen Porosity Reforming Sol-gel processes Stainless steel Substitutes Synthesis gas Thermogravimetry X-ray diffraction Yttrium Yttrium oxide Zirconium |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp_RQ2qal2yZlKD30EBN9WbKOadkQCsmlDeQmZH3QhWKH3U1Y_5n-1o4su2wPoZeCD8aSrUEzlt6I4T1CPnKTaq8lrbhvYiVVHarGaFGxlLzWyik-isFcXavLG_n1tr7dk_rKNWGFHrhM3FlSwXhcyY10uHmq0LioEbLQ5FniTpbEh5q9ZGo8XZGI_CmbqYQoP4ubKHBZmI5P5g1o5On_C1zuQ9Rxj7l4Tp5N4BDOi1EvyJPYvSRP9ygDj8gv9CusZmUR6BNcrwAR3ljjOpxC5v_cnYLrAvx021zZBv1uwCgBj9uixz7Q53vE3AO2wo8hrPvcfFeoX9FN8LBykJWlXRchrAf8Zka2ODwOjFeRUX2IuQ9a2-9WIUJhhN68IjcXy-9fLqtJY6HywiC4Dri-BdlKlQVrkmGtE546E7wUUYZUYw4bBPrZJaZTq2TjKQ1appZrVrc0idfkoOu7-IaA9wGTlaapeUyScdoqx7hWxuPbhkWxIB_mibd3hUrDFtJkbrN3bPbOgnzOLvnTIbNfjw8wJuwUE_ZfMbEgx7ND7fRLbizXmKzVUjX1gnwanfy4FXb5bSnyzdv_Yc47cphF6ku9zzE52K7v4wlCmW37foza3ygE9Xw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgbGCByksMLchCLFg0ql-x41UFaIYKiW6gUneW4weMhJJhZlpNfqbf2nvzoGUBUhZW7MRWjh_HN9Y5hLwTNpfBKFaIUKVC6TIWlTWy4DkHY7TXojeD-XqmT8_Vl4vyYgy4bcZjldOc2E_UsQ0YIz8WBrh2qXRVnqx-F-gahX9XRwuN--QBF8Zgr64Wn29jLAr4P-OToBATx2mTJEwOYxBlWoZ6tf6_KOZdotqvNIt98nikiPTDgOkTci81T8mjO8KBz8g1oEuXk78IbTM9W1Lgef1J1-6Iogro7oj6JtJffovn22i766Cv0ACLY4AytMU0MO8OcunPLq5bzF4NArAAFr1aeor-0r5JNK47eCfyW6geKoZrMFO9SlgGWtvuljHRQRd685ycL-bfP50Wo9NCEaQFih1hlouqVhpta7LltZeBeRuDkknFXMJONkpA22ducq1VFRiLRuVaGF7WLMsXZK9pm_SS0BAibFmqqhQpKy5YrT1Ao22Apy1PckbeTh_erQZBDTdIJwuH6DhEZ0Y-IiR_CqAGdn-jXf9w45ByWUcbYI23ygOt0rHyyQCZZTnwLLziM3I4AerGgblxt91oRt73IP-7FW7-bS4x8er_bzogD9GEfjjPc0j2tuvL9BqoyrZ-0_fHG3X07CU priority: 102 providerName: ProQuest |
Title | The influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1402 https://www.proquest.com/docview/2796054685 https://doaj.org/article/f6d9ccee94a6436d8ae77740fc1f2a41 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LatwwFBUh2bSL0vRBp00GUbroIiayrIdNVkmZaSh0CG0D2QlZj3Yg2GFmGsY_k2_NvfJ4kiwKBWOMJVnCR1f3SJbPJeQTr6J0WrCMuzJkQkmflZUusjxGp7WyiqdgMN9n6vxSfLuSVzvkZPgXpteH2C64oWWk8RoN3NbL4wfR0LAMBdg5CknuoWIMdm8uLh4WWASQ_xT-mDOJH3yZHJSFGD_eln7ij5Js_xOu-ZixJpczfUlebLgiPe3B3Sc7oXlFnj9SEHxN7gBmOh8CjdA20tmcAuFLW167I4pyoOsjahtPr-0KN7rRdt1Bp6EOvKSDPLTFa6DgHaTSP51ftJh80yvBAmr0dm4pBpq2TaB-0cEzkehC9VAxHH1U1duAeaC17XruA-0FopdvyOV08uvLebYJuZC5ogKu7WG486IWCuPXxCqvbeGYrbwTRRA-SpjS-gJgtzHXsVaidIx5LWLNdS5rFou3ZLdpm_COUOc8zF3KUvIQRc5ZrWzOtaoclK7yUIzIx-HFm5teWcP0GsrcIDoG0RmRM4RkmwHFsNONdvHbbGzLROUrB86-Ehb4lfKlDRpYLYsuj9yKfEQOBkDNxkKXhmuYu0mhSjkinxPI_26FmfycFHjx_v-zfiDPMDJ9v8nngOyuFn_DIfCXVT1O_RTO5fTrmOydTWYXP8ZpLeAeYDzxQA |
link.rule.ids | 315,783,787,867,2109,11576,12779,21402,27938,27939,33387,33758,43614,43819,46066,46490,50828,50937,74371,74638 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgLIAF4immFLAQCxaNGj9ixysEaIYB2tnQSt1Zjh8wEkqGmWk1-Rm-lXvzoGUBUhZR4jhRju17fOOcQ8hrblLhtcwz7suYSVWErDRaZCwlr7VyindmMCcLNT-Tn8-L8yHhthmWVY5jYjdQh8ZjjvyIa-DahVRl8Xb1M0PXKPy6Olho3CS3pIBAg3-Kzz5e5Vgk8P-cjYJCOT-KmyhgcBiSKGMY6tT6_6KY14lqF2lm98m9gSLSdz2mD8iNWD8kd68JBz4ivwBduhz9RWiT6GJJged1K13bQ4oqoLtD6upAf7gtrm-jza6FtkI9BEcPZWiD-8C8WzhLv7dh3eDpVS8AC2DRy6Wj6C_t6kjDuoU6kd_C7eHGsPVmqpcRy8DTNrtliLTXhd48Jmez6emHeTY4LWReGKDYAUa5ICup0LYmGVY54XNngpciypAKmMkGAWi7xHSqlCx9ngctU8U1K6o8iSdkr27q-JRQ7wNMWcqy4DFJxvNKOca1Mh6uNiyKCXk1vni76gU1bC-dzC2iYxGdCXmPkPwpgBrY3YFm_c0OXcomFYyHGG-kA1qlQumiBjKbJ88Sd5JNyMEIqB065sZeNaMJedOB_O-nsNOvU4E7-_-v6SW5PT89ObbHnxZfnpE7aEjfr-05IHvb9UV8DrRlW73o2uZvlVrvBw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwGLWgSAgOiFUdWsBCHDg0Gm-x4xNimaFsIySo1JvleIGRUDLMTKvJn-G38jlxaDmAlIMVO4vybH_Pzqf3EHrGdCydEqRgrgqFkKUvKq14QWN0SkkrWW8G82khj0_E-9PyNOc_bXJa5Tgn9hO1b13aI58yBVy7FLIqpzGnRXx-M3-x-lkkB6n0pzXbaVxF1yAqqjRIq_nbi_0WAWsBQkdxIcKmYRM4TBR5Q2UMSb1y_1908zJp7aPO_Da6lekifjngewddCc1ddPOSiOA99AuQxsvRawS3ES-WGDhfn_XaHeGkCLo7wrbx-Ifdplw33O466DfYQaB00Aa3qQwsvINa_L3z6zZVrwYxWAAOny8tTl7TtgnYrzu4Z-K68Hh4MByDsep5SG3gbdvd0gc8aERv7qOT-ezr6-Miuy4Ujmug2x5mPC9qIZOFTdS0ttwRq70TPAgfS1jVeg7I20hVrKWoHCFeiVgzRcuaRP4A7TVtE_YRds7D8qWqShaioIzU0lKmpHZwtaaBT9DT8cOb1SCuYQYZZWYSOiahM0GvEiR_GiQ97P5Eu_5m8vAyUXrtIN5rYYFiSV_ZoIDYkuhoZFbQCTocATV5kG7MRZeaoOc9yP9-CzP7MuOp8PD_d3qCrkO3NB_fLT4coBvJm35I8zlEe9v1WXgEDGZbP-675m-BC_M8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+Ni+stability%2C+redox%2C+and+lattice+oxygen+capacity+on+catalytic+hydrogen+production+via+methane+dry+reforming+in+innovative+metal+oxide+systems&rft.jtitle=Energy+science+%26+engineering&rft.au=Abasaeed%2C+Ahmed+E.&rft.au=Sofiu%2C+Mahmud+L.&rft.au=Acharya%2C+Kenit&rft.au=Osman%2C+Ahmed+I.&rft.date=2023-04-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=11&rft.issue=4&rft.spage=1436&rft.epage=1450&rft_id=info:doi/10.1002%2Fese3.1402&rft.externalDBID=10.1002%252Fese3.1402&rft.externalDocID=ESE31402 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon |