The influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems

Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and por...

Full description

Saved in:
Bibliographic Details
Published inEnergy science & engineering Vol. 11; no. 4; pp. 1436 - 1450
Main Authors Abasaeed, Ahmed E., Sofiu, Mahmud L., Acharya, Kenit, Osman, Ahmed I., Fakeeha, Anis H., AL‐Otaibi, Raja Lafi, Ibrahim, Ahmed A., Al‐Awadi, Abdulrhman S., Bayahia, Hossein, Al‐Zahrani, Salma A., Kumar, Rawesh, Al‐Fatesh, Ahmed Sadeq
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.04.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H2‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C. The manuscript investigated the influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05 0.07, and 0.09) catalyst was prepared by sol–gel method, tested for dry reforming of methane. CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C.
AbstractList Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X-ray diffraction, H2-temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO-species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag-off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C.
Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H2‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C. The manuscript investigated the influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05 0.07, and 0.09) catalyst was prepared by sol–gel method, tested for dry reforming of methane. CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C.
Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H2‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C.
Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi 0.9 Zr 1 − x Y x O 3 (M = Ce, La, and La 0.6 Ce 0.4 ; x  = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H 2 ‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La 0.6 Ce 0.4 NiO 3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO 2 . Substitution of Ni by Zr and Y in the CeNiO 3 catalyst system nurtures Ni 3 Y (providing highly stable metallic Ni for CH 4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi 0.9 Zr 0.01 Y 0.09 O 3 shows 85% H 2 yield at 800°C.
Author Abasaeed, Ahmed E.
Bayahia, Hossein
Sofiu, Mahmud L.
Al‐Awadi, Abdulrhman S.
Acharya, Kenit
AL‐Otaibi, Raja Lafi
Al‐Fatesh, Ahmed Sadeq
Ibrahim, Ahmed A.
Al‐Zahrani, Salma A.
Kumar, Rawesh
Osman, Ahmed I.
Fakeeha, Anis H.
Author_xml – sequence: 1
  givenname: Ahmed E.
  surname: Abasaeed
  fullname: Abasaeed, Ahmed E.
  organization: King Saud University
– sequence: 2
  givenname: Mahmud L.
  surname: Sofiu
  fullname: Sofiu, Mahmud L.
  organization: King Saud University
– sequence: 3
  givenname: Kenit
  surname: Acharya
  fullname: Acharya, Kenit
  organization: Indus University
– sequence: 4
  givenname: Ahmed I.
  orcidid: 0000-0003-2788-7839
  surname: Osman
  fullname: Osman, Ahmed I.
  email: aosmanahmed01@qub.ac.uk
  organization: Queen's University Belfast
– sequence: 5
  givenname: Anis H.
  surname: Fakeeha
  fullname: Fakeeha, Anis H.
  organization: Energy Research & Innovation Center (K.A.CARE) in Riyadh
– sequence: 6
  givenname: Raja Lafi
  surname: AL‐Otaibi
  fullname: AL‐Otaibi, Raja Lafi
  email: raletabi@kacst.edu.sa
  organization: King Abdulaziz City for Science and Technology
– sequence: 7
  givenname: Ahmed A.
  surname: Ibrahim
  fullname: Ibrahim, Ahmed A.
  organization: King Saud University
– sequence: 8
  givenname: Abdulrhman S.
  surname: Al‐Awadi
  fullname: Al‐Awadi, Abdulrhman S.
  organization: Energy Research & Innovation Center (K.A.CARE) in Riyadh
– sequence: 9
  givenname: Hossein
  orcidid: 0000-0002-1287-910X
  surname: Bayahia
  fullname: Bayahia, Hossein
  organization: Albaha University
– sequence: 10
  givenname: Salma A.
  surname: Al‐Zahrani
  fullname: Al‐Zahrani, Salma A.
  organization: University of Hail
– sequence: 11
  givenname: Rawesh
  surname: Kumar
  fullname: Kumar, Rawesh
  email: kr.rawesh@gmail.com
  organization: Indus University
– sequence: 12
  givenname: Ahmed Sadeq
  orcidid: 0000-0002-5521-5741
  surname: Al‐Fatesh
  fullname: Al‐Fatesh, Ahmed Sadeq
  email: aalfatesh@ksu.edu.sa
  organization: King Saud University
BookMark eNp1kcFuGyEQhlGVSk3THPoGSD1VihNY2MV7rCK3iRS1h6ZnNAuDjbUGF7CbfZk-a9i4qnqpBGLE_80_MPOWnIUYkJD3nF1zxpobzCiuuWTNK3LesJYt6m7P_onfkMuct4wxLrnsGT8nvx83SH1w4wGDQRod_eppLjD40Zfpiia08emKQrB0hFL8zDxNawzUwB5MZWic4wLjVFW6mWyKs7xP0R5M8VU9eqA7LBsISG2aqqeLaefDuhauK8QjFH_EmYGx2nuLNE-54C6_I68djBkv_5wX5Mfn1ePt3eLh25f7208PCyP6ZbOwYK2Vg-xYp4Tr-QDCMOitkQKlda3iwooBDTiu3NDJpWHMKumGRvF2YE5ckPuTr42w1fvkd5AmHcHrl4uY1hpS_d-I2nW2Nwaxl9BJ0dkloFJKMme4a0Dy6vXh5FVb8POAuehtPKRQn68b1Xesld2yrdTHE2VSzLm25G9VzvQ8TT1PU8_TrOzNif3lR5z-D-rV95V4yXgGAiCmPQ
CitedBy_id crossref_primary_10_1007_s10562_023_04503_y
crossref_primary_10_1002_ese3_1586
crossref_primary_10_1007_s10562_023_04450_8
crossref_primary_10_1007_s42250_023_00730_3
crossref_primary_10_1016_j_jes_2023_06_024
crossref_primary_10_1039_D3RE00714F
Cites_doi 10.2478/s11696-014-0566-2
10.1016/j.ijhydene.2012.04.059
10.1021/ef800326q
10.1016/j.cattod.2005.07.010
10.1016/j.ijhydene.2007.11.029
10.1016/j.jaap.2018.09.025
10.1016/j.jallcom.2010.01.071
10.1016/j.cattod.2007.12.049
10.1016/j.jcou.2021.101455
10.1016/j.cattod.2009.09.017
10.1021/acscatal.0c01229
10.1016/j.joei.2017.06.001
10.1016/j.catcom.2012.05.018
10.1016/S0021-9517(03)00044-7
10.1016/j.ijhydene.2022.09.029
10.1016/S0009-2614(97)00555-1
10.1016/j.apcata.2007.10.010
10.1021/acsomega.2c00471
10.1007/s12039-017-1359-2
10.1016/j.rser.2012.02.028
10.1016/j.ijhydene.2015.03.152
10.1016/j.jcou.2014.02.001
10.1007/s10562-006-0026-x
10.1016/0920-5861(94)00081-C
10.1016/j.jcou.2016.12.014
10.13005/ojc/340337
10.1016/S1872-2067(08)60079-0
10.1021/ie800111e
10.1016/j.jpowsour.2009.10.004
10.1016/j.mcat.2021.111498
10.3390/pr9010157
10.1016/j.apcatb.2017.10.022
10.1016/S0360-0564(02)47006-X
10.1016/j.cattod.2007.12.069
10.3390/catal10010027
10.1016/j.ijhydene.2013.11.050
10.1016/j.apcata.2019.02.029
10.1016/j.cattod.2005.07.112
10.1016/j.mcat.2021.111676
10.1039/b820373c
10.1016/j.ijhydene.2021.05.049
10.1016/j.energy.2019.01.085
10.1016/j.apcata.2018.07.039
10.1016/j.ijhydene.2015.12.062
10.3390/ma15103564
10.1016/j.apcata.2016.07.024
10.1016/j.ijhydene.2022.04.199
10.1515/9783110656480
10.1016/j.apcata.2008.03.023
10.1016/j.ijhydene.2019.07.133
10.1016/j.apcata.2006.06.010
10.1016/j.apcatb.2020.118859
10.1016/j.fuproc.2014.01.035
10.1016/j.ijhydene.2009.12.120
10.1002/jctb.6451
10.1016/j.apcata.2009.09.004
10.1016/j.micromeso.2020.110278
10.1016/S0167-2991(01)80333-5
10.1016/j.ijhydene.2014.01.077
10.1016/j.cattod.2019.09.003
10.1016/j.apcatb.2016.09.071
10.3390/catal10040379
10.1016/j.catcom.2009.10.003
10.1002/ese3.1063
10.1016/j.apcata.2016.02.029
10.1016/S0021-9517(03)00045-9
10.1016/j.jcat.2016.03.018
10.13005/ojc/320546
10.1016/j.apcatb.2020.119335
ContentType Journal Article
Copyright 2023 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by the Society of Chemical Industry and John Wiley & Sons Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
FR3
H8D
HCIFZ
KR7
L6V
L7M
M7S
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/ese3.1402
DatabaseName Wiley-Blackwell Titles (Open access)
Wiley Online Library Free Content
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-0505
EndPage 1450
ExternalDocumentID oai_doaj_org_article_f6d9ccee94a6436d8ae77740fc1f2a41
10_1002_ese3_1402
ESE31402
Genre article
GrantInformation_xml – fundername: SEUPB
  funderid: Bryden Centre
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAYXX
CITATION
ITC
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
KR7
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3982-daddd4b460673f91ba3c0a9dc43e4df5713d3becaf17fb648c00d74fb2715b0f3
IEDL.DBID 24P
ISSN 2050-0505
IngestDate Tue Oct 22 15:06:47 EDT 2024
Thu Oct 10 16:44:06 EDT 2024
Thu Sep 26 18:41:04 EDT 2024
Sat Aug 24 01:00:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3982-daddd4b460673f91ba3c0a9dc43e4df5713d3becaf17fb648c00d74fb2715b0f3
ORCID 0000-0002-5521-5741
0000-0002-1287-910X
0000-0003-2788-7839
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1402
PQID 2796054685
PQPubID 2034362
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_f6d9ccee94a6436d8ae77740fc1f2a41
proquest_journals_2796054685
crossref_primary_10_1002_ese3_1402
wiley_primary_10_1002_ese3_1402_ESE31402
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Energy science & engineering
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1997; 272
2010; 149
2018; 565
2016; 32
2016; 343
2014; 68
2008; 33
2012; 16
2008; 133‐135
2020; 10
2008; 344
2009; 11
2002; 47
2016; 517
2020; 95
2015; 40
2021; 510
2008; 29
1995; 23
1997; 14
2018; 136
2016; 41
2020; 45
2010; 195
2008; 22
2012; 26
2018; 34
2014; 122
2014; 6
2017; 202
2001; 136
2009; 369
2017; 129
2014; 53
2021; 9
2021; 46
2003; 219
2021; 45
2010; 35
2016; 526
2021; 504
2020; 303
2022; 47
2020; 348
2012; 37
2006; 311
2005; 107‐108
2006; 108
2022
2022; 7
2020; 270
2008; 47
2018; 91
2019; 575
2022; 15
2010; 494
2017; 18
2008; 334
2022; 10
2014; 39
2020; 278
2019; 171
2018; 10
e_1_2_8_28_1
Chai Y (e_1_2_8_37_1) 2018; 10
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_3_1
Abasaeed A (e_1_2_8_68_1) 1997; 14
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
Sagar TV (e_1_2_8_26_1) 2014; 53
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 39
  start-page: 4917
  year: 2014
  end-page: 4925
  article-title: Modifying perovskite‐type oxide catalyst LaNiO with Ce for carbon dioxide reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 23
  start-page: 59
  year: 1995
  end-page: 66
  article-title: Potential sources of CO and the options for its large‐scale utilisation now and in the future
  publication-title: Catal Today
– volume: 136
  start-page: 381
  year: 2001
  end-page: 386
  article-title: Perovskites as catalysts precursors for methane reforming: Ru based catalysts
  publication-title: Stud Surf Sci Catal
– volume: 91
  start-page: 683
  year: 2018
  end-page: 694
  article-title: Hydrogen production from CH dry reforming over bimetallic Ni–Co/Al O catalyst
  publication-title: J Energy Inst
– volume: 10
  issue: 1
  year: 2020
  article-title: Effect of Fe and Mn substitution in LaNiO on exsolution, activity, and stability for methane dry reforming
  publication-title: Catalysts
– volume: 10
  start-page: 2078
  year: 2018
  end-page: 2086
  article-title: A nickel‐based perovskite catalyst with a bimodal size distribution of nickel particles for dry reforming of methane
  publication-title: Chem.Cat.Chem
– volume: 171
  start-page: 465
  year: 2019
  end-page: 474
  article-title: Role of the nanoparticles of Cu–Co alloy derived from perovskite in dry reforming of methane
  publication-title: Energy
– volume: 278
  year: 2020
  article-title: Characterization of none and yttrium‐modified Ni‐based catalysts for dry reforming of methane
  publication-title: Appl Catal B
– volume: 39
  start-page: 1680
  year: 2014
  end-page: 1687
  article-title: Enhancing hydrogen production by dry reforming process with strontium promoter
  publication-title: Int J Hydrogen Energy
– volume: 6
  start-page: 7
  year: 2014
  end-page: 11
  article-title: The effects of partial substitution of Ni by Zn in LaNiO perovskite catalyst for methane dry reforming
  publication-title: J CO2 Util
– volume: 47
  start-page: 65
  year: 2002
  end-page: 139
  article-title: Hydrogen and synthesis gas by steam‐ and CO reforming
  publication-title: Adv Catal
– volume: 575
  start-page: 198
  year: 2019
  end-page: 203
  article-title: Reduced perovskite LaNiO catalysts modified with Co and Mn for low coke formation in dry reforming of methane
  publication-title: Appl Catal A
– volume: 517
  start-page: 47
  year: 2016
  end-page: 55
  article-title: Rh, Ru and Pt ternary perovskites type oxides BaZr Me O for methane dry reforming
  publication-title: Appl Catal A
– volume: 136
  start-page: 222
  year: 2018
  end-page: 231
  article-title: Performance of a Ni/ZrO catalyst in the steam reforming of the volatiles derived from biomass pyrolysis
  publication-title: J Anal Appl Pyrolysis
– volume: 272
  start-page: 445
  year: 1997
  end-page: 452
  article-title: Methane dissociation on Ni, Pd, Pt and Cu metal (111) surfaces—a theoretical comparative study
  publication-title: Chem Phys Lett
– volume: 15
  issue: 10
  year: 2022
  article-title: Modification of CeNi Zr O perovskite catalyst by partially substituting yttrium with zirconia in dry reforming of methane
  publication-title: Materials
– volume: 369
  start-page: 97
  year: 2009
  end-page: 103
  article-title: Influence of Pr and Ce in dry methane reforming catalysts produced from La A NiO perovskites
  publication-title: Appl Catal A
– year: 2022
– volume: 45
  year: 2021
  article-title: Improving the catalytic performance of LaNiO perovskite by manganese substitution via ultrasonic spray pyrolysis for dry reforming of methane
  publication-title: J CO2 Util
– volume: 53
  start-page: 478
  year: 2014
  end-page: 483
  article-title: Methane reforming with carbon dioxide over La–Ni –Ce mixed oxide catalysts
  publication-title: Indian J Chem—Sect A Inorg Phys Theor Anal Chem
– volume: 270
  year: 2020
  article-title: Dry reforming of methane over the cobalt catalyst: theoretical insights into the reaction kinetics and mechanism for catalyst deactivation
  publication-title: Appl Catal B
– volume: 565
  start-page: 26
  year: 2018
  end-page: 33
  article-title: LaNi Mn O perovskite‐type oxides as catalysts precursors for dry reforming of methane
  publication-title: Appl Catal A
– volume: 344
  start-page: 10
  year: 2008
  end-page: 19
  article-title: Structural features and performance of LaNi Rh O system for the dry reforming of methane
  publication-title: Appl Catal A
– volume: 133‐135
  start-page: 129
  year: 2008
  end-page: 135
  article-title: Catalytic evaluation of perovskite‐type oxide LaNi Ru O in methane dry reforming
  publication-title: Catal Today
– volume: 504
  year: 2021
  article-title: Ce promoted lanthana–zirconia supported Ni catalyst system: a ternary redox system for hydrogen production
  publication-title: Mol Catal
– volume: 526
  start-page: 132
  year: 2016
  end-page: 138
  article-title: Effects of Fe partial substitution of La NiO /LaNiO catalyst precursors prepared by wet impregnation method for the dry reforming of methane
  publication-title: Appl Catal A
– volume: 311
  start-page: 94
  year: 2006
  end-page: 104
  article-title: Structural features of La Ce NiO mixed oxides and performance for the dry reforming of methane
  publication-title: Appl Catal A
– volume: 68
  start-page: 1240
  year: 2014
  end-page: 1247
  article-title: Characterization of LaRhO perovskites for dry (CO ) reforming of methane (DRM)
  publication-title: Chem Pap
– volume: 7
  start-page: 16468
  year: 2022
  end-page: 16483
  article-title: Barium‐promoted yttria–zirconia‐supported Ni catalyst for hydrogen production via the dry reforming of methane: role of barium in the phase stabilization of cubic ZrO
  publication-title: ACS Omega
– volume: 202
  start-page: 683
  year: 2017
  end-page: 694
  article-title: Dry reforming of methane over Ni/La O nanorod catalysts with stabilized Ni nanoparticles
  publication-title: Appl Catal B
– volume: 10
  start-page: 866
  issue: 3
  year: 2022
  end-page: 880
  article-title: Role of Ca, Cr, Ga and Gd promotor over lanthana–zirconia‐supported Ni catalyst towards H ‐rich syngas production through dry reforming of methane
  publication-title: Energy Sci Eng
– volume: 22
  start-page: 3575
  year: 2008
  end-page: 3582
  article-title: Comparative study of Ni‐based mixed oxide catalyst for carbon dioxide reforming of methane
  publication-title: Energy Fuels
– volume: 122
  start-page: 141
  year: 2014
  end-page: 152
  article-title: Activities of Ni‐based nano catalysts for CO –CH reforming prepared by polyol process
  publication-title: Fuel Process Technol
– volume: 47
  start-page: 5892
  year: 2008
  end-page: 5898
  article-title: Production of syngas by CO reforming on M La Ni Al O (M = Li, Na, K) catalysts
  publication-title: Ind Eng Chem Res
– volume: 11
  start-page: 5246
  year: 2009
  end-page: 5252
  article-title: Electronic charge transfer between ceria surfaces and gold adatoms: a GGA+U investigation
  publication-title: Phys Chem Chem Phys
– volume: 133‐135
  start-page: 142
  year: 2008
  end-page: 148
  article-title: Dry reforming of CH over solid solutions of LaNi Co O
  publication-title: Catal Today
– volume: 37
  start-page: 11195
  issue: 15
  year: 2012
  end-page: 11207
  article-title: CO dry‐reforming of methane over La Sr Ni M O perovskite (M = Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C–H activation and carbon suppression
  publication-title: Int J Hydrogen Energy
– volume: 107‐108
  start-page: 436
  year: 2005
  end-page: 443
  article-title: New Co–Ni catalyst systems used for methane dry reforming based on supported catalysts over an INT‐MM1 mesoporous material and a perovskite‐like oxide precursor LaCo Ni O
  publication-title: Catal Today
– volume: 303
  year: 2020
  article-title: Mesoporous LaAl Ni O perovskite catalyst using SBA‐15 as templating agent for methane dry reforming
  publication-title: Microporous Mesoporous Mater
– volume: 18
  start-page: 345
  year: 2017
  end-page: 352
  article-title: Highly carbon‐resistant Ni–Co/SiO catalysts derived from phyllosilicates for dry reforming of methane
  publication-title: J CO2 Util
– volume: 348
  start-page: 236
  year: 2020
  end-page: 242
  article-title: The effect of modifier identity on the performance of Ni‐based catalyst supported on ‐Al O in dry reforming of methane
  publication-title: Catal Today
– volume: 334
  start-page: 251
  year: 2008
  end-page: 258
  article-title: Dry reforming of methane over LaNi B O (B = Mg, Co) perovskites used as catalyst precursor
  publication-title: Appl Catal A
– volume: 45
  start-page: 18114
  year: 2020
  end-page: 18132
  article-title: Biomass‐derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review
  publication-title: Int J Hydrogen Energy
– volume: 29
  start-page: 960
  year: 2008
  end-page: 968
  article-title: Effects of lanthanum substitution by strontium and calcium in La–Ni–Al perovskite oxides in dry reforming of methane
  publication-title: Chin J Catal
– volume: 219
  start-page: 295
  year: 2003
  end-page: 304
  article-title: Catalytic studies on ceria lanthana solid solutions II. Oxidation of carbon monoxide
  publication-title: J Catal
– volume: 108
  start-page: 63
  year: 2006
  end-page: 70
  article-title: Ni–Fe catalysts based on perovskite‐type oxides for dry reforming of methane to syngas
  publication-title: Catal Lett
– volume: 107‐108
  start-page: 785
  year: 2005
  end-page: 791
  article-title: Dry reforming of methane over Ni perovskite type oxides
  publication-title: Catal Today
– volume: 195
  start-page: 1765
  year: 2010
  end-page: 1771
  article-title: La–Sr–Ni–Co–O based perovskite‐type solid solutions as catalyst precursors in the CO reforming of methane
  publication-title: J Power Sources
– volume: 10
  issue: 4
  year: 2020
  article-title: Effect of pressure on Na La Ni Al O perovskite catalyst for dry reforming of CH
  publication-title: Catalysts
– volume: 510
  year: 2021
  article-title: Optimizing yttria–zirconia proportions in Ni supported catalyst system for H production through dry reforming of methane
  publication-title: Mol Catal
– volume: 10
  start-page: 12466
  year: 2020
  end-page: 12486
  article-title: Effect of partial Fe substitution in La Sr NiO perovskite‐derived catalysts on the reaction mechanism of methane dry reforming
  publication-title: ACS Catal
– volume: 494
  start-page: 190
  year: 2010
  end-page: 195
  article-title: Oxygen transport in perovskite and related oxides: a brief review
  publication-title: J Alloys Compd
– volume: 34
  start-page: 1469
  year: 2018
  end-page: 1477
  article-title: Synthesis, characterization, and catalytic performance of La Ce Ni Zr O perovskite nanocatalysts in dry reforming of methane
  publication-title: Orient J Chem
– volume: 219
  start-page: 286
  year: 2003
  end-page: 294
  article-title: Catalytic studies on ceria lanthana solid solutions I. Oxidation of methane
  publication-title: J Catal
– volume: 33
  start-page: 991
  year: 2008
  end-page: 999
  article-title: Synthesis gas production from dry reforming of methane over Ni/Al O stabilized by ZrO
  publication-title: Int J Hydrogen Energy
– volume: 46
  start-page: 25015
  year: 2021
  end-page: 25028
  article-title: Impact of ceria over WO –ZrO supported Ni catalyst towards hydrogen production through dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 129
  start-page: 1787
  year: 2017
  end-page: 1794
  article-title: Syngas production by CO  reforming of methane on LaNi Al O perovskite catalysts: influence of method of preparation
  publication-title: J Chem Sci
– volume: 11
  start-page: 240
  year: 2009
  end-page: 246
  article-title: Effect of MgO addition on the basicity of Ni/ZrO and on its catalytic activity in carbon dioxide reforming of methane
  publication-title: Catal Commun
– volume: 32
  start-page: 2723
  year: 2016
  end-page: 2730
  article-title: Synthesis and application of LaNiO perovskite‐type nanocatalyst with Zr for carbon dioxide reforming of methane
  publication-title: Orient J Chem
– volume: 47
  start-page: 38242
  issue: 90
  year: 2022
  end-page: 38257
  article-title: Holmium promoted yttria–zirconia supported Ni catalyst for H production via dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 26
  start-page: 169
  year: 2012
  end-page: 172
  article-title: The influence of partial substitution of alkaline earth with la in the LaNiO perovskite catalyst
  publication-title: Catal Commun
– volume: 47
  start-page: 20838
  year: 2022
  end-page: 20850
  article-title: Promotional effect of addition of ceria over yttria–zirconia supported Ni based catalyst system for hydrogen production through dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 6818
  year: 2015
  end-page: 6826
  article-title: Catalytic performance of CeO and ZrO supported Co catalysts for hydrogen production via dry reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 14
  start-page: 2
  year: 1997
  end-page: 4
  article-title: Hydrogen yield from CO reforming of methane: impact of La O doping on supported Ni catalysts
  publication-title: Energies
– volume: 149
  start-page: 248
  year: 2010
  end-page: 253
  article-title: Ruthenium supported on new TiO –ZrO systems as catalysts for the partial oxidation of methane
  publication-title: Catal Today
– volume: 343
  start-page: 208
  year: 2016
  end-page: 214
  article-title: Dry‐reforming of methane over bimetallic Ni–M/La O (M = Co, Fe): the effect of the rate of La O CO formation and phase stability on the catalytic activity and stability
  publication-title: J Catal
– volume: 95
  start-page: 2911
  year: 2020
  end-page: 2920
  article-title: Dry reforming of methane by La Sr NiO perovskite oxides: influence of preparation method on performance and structural features of the catalysts
  publication-title: J Chem Technol Biotechnol
– volume: 35
  start-page: 5895
  year: 2010
  end-page: 5901
  article-title: Ethanol steam reforming on Ni/Al‐SBA‐15 catalysts: effect of the aluminium content
  publication-title: Int J Hydrogen Energy
– volume: 41
  start-page: 2477
  year: 2016
  end-page: 2486
  article-title: Enhanced catalytic behaviour of surface dispersed nickel on LaCuO perovskite in the production of syngas: an expedient approach to carbon resistance during CO reforming of methane
  publication-title: Int J Hydrogen Energy
– volume: 16
  start-page: 3024
  year: 2012
  end-page: 3033
  article-title: Hydrogen as an energy carrier: prospects and challenges
  publication-title: Renewable Sustainable Energy Rev
– volume: 9
  year: 2021
  article-title: Role of mixed oxides in hydrogen production through the dry reforming of methane over nickel catalysts supported on modified ‐Al O
  publication-title: Processes
– volume: 10
  start-page: 2078
  year: 2018
  ident: e_1_2_8_37_1
  article-title: A nickel‐based perovskite catalyst with a bimodal size distribution of nickel particles for dry reforming of methane
  publication-title: Chem.Cat.Chem
  contributor:
    fullname: Chai Y
– volume: 53
  start-page: 478
  year: 2014
  ident: e_1_2_8_26_1
  article-title: Methane reforming with carbon dioxide over La–Ni x –Ce1−x mixed oxide catalysts
  publication-title: Indian J Chem—Sect A Inorg Phys Theor Anal Chem
  contributor:
    fullname: Sagar TV
– ident: e_1_2_8_9_1
  doi: 10.2478/s11696-014-0566-2
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ijhydene.2012.04.059
– ident: e_1_2_8_70_1
  doi: 10.1021/ef800326q
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cattod.2005.07.010
– ident: e_1_2_8_59_1
  doi: 10.1016/j.ijhydene.2007.11.029
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jaap.2018.09.025
– ident: e_1_2_8_63_1
  doi: 10.1016/j.jallcom.2010.01.071
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cattod.2007.12.049
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jcou.2021.101455
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cattod.2009.09.017
– ident: e_1_2_8_29_1
  doi: 10.1021/acscatal.0c01229
– ident: e_1_2_8_45_1
  doi: 10.1016/j.joei.2017.06.001
– ident: e_1_2_8_58_1
  doi: 10.1016/j.catcom.2012.05.018
– ident: e_1_2_8_51_1
  doi: 10.1016/S0021-9517(03)00044-7
– ident: e_1_2_8_73_1
  doi: 10.1016/j.ijhydene.2022.09.029
– ident: e_1_2_8_14_1
  doi: 10.1016/S0009-2614(97)00555-1
– ident: e_1_2_8_13_1
  doi: 10.1016/j.apcata.2007.10.010
– ident: e_1_2_8_72_1
  doi: 10.1021/acsomega.2c00471
– ident: e_1_2_8_15_1
  doi: 10.1007/s12039-017-1359-2
– ident: e_1_2_8_2_1
  doi: 10.1016/j.rser.2012.02.028
– ident: e_1_2_8_47_1
  doi: 10.1016/j.ijhydene.2015.03.152
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jcou.2014.02.001
– ident: e_1_2_8_20_1
  doi: 10.1007/s10562-006-0026-x
– ident: e_1_2_8_3_1
  doi: 10.1016/0920-5861(94)00081-C
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jcou.2016.12.014
– ident: e_1_2_8_41_1
  doi: 10.13005/ojc/340337
– ident: e_1_2_8_40_1
  doi: 10.1016/S1872-2067(08)60079-0
– ident: e_1_2_8_35_1
  doi: 10.1021/ie800111e
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jpowsour.2009.10.004
– ident: e_1_2_8_61_1
  doi: 10.1016/j.mcat.2021.111498
– ident: e_1_2_8_67_1
  doi: 10.3390/pr9010157
– ident: e_1_2_8_60_1
  doi: 10.1016/j.apcatb.2017.10.022
– ident: e_1_2_8_4_1
  doi: 10.1016/S0360-0564(02)47006-X
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cattod.2007.12.069
– ident: e_1_2_8_17_1
  doi: 10.3390/catal10010027
– ident: e_1_2_8_66_1
  doi: 10.1016/j.ijhydene.2013.11.050
– ident: e_1_2_8_23_1
  doi: 10.1016/j.apcata.2019.02.029
– ident: e_1_2_8_12_1
  doi: 10.1016/j.cattod.2005.07.112
– ident: e_1_2_8_64_1
  doi: 10.1016/j.mcat.2021.111676
– ident: e_1_2_8_57_1
  doi: 10.1039/b820373c
– ident: e_1_2_8_62_1
  doi: 10.1016/j.ijhydene.2021.05.049
– ident: e_1_2_8_11_1
  doi: 10.1016/j.energy.2019.01.085
– ident: e_1_2_8_18_1
  doi: 10.1016/j.apcata.2018.07.039
– volume: 14
  start-page: 2
  year: 1997
  ident: e_1_2_8_68_1
  article-title: Hydrogen yield from CO2 reforming of methane: impact of La2O3 doping on supported Ni catalysts
  publication-title: Energies
  contributor:
    fullname: Abasaeed A
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ijhydene.2015.12.062
– ident: e_1_2_8_50_1
  doi: 10.3390/ma15103564
– ident: e_1_2_8_21_1
  doi: 10.1016/j.apcata.2016.07.024
– ident: e_1_2_8_71_1
  doi: 10.1016/j.ijhydene.2022.04.199
– ident: e_1_2_8_54_1
  doi: 10.1515/9783110656480
– ident: e_1_2_8_27_1
  doi: 10.1016/j.apcata.2008.03.023
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ijhydene.2019.07.133
– ident: e_1_2_8_33_1
  doi: 10.1016/j.apcata.2006.06.010
– ident: e_1_2_8_10_1
  doi: 10.1016/j.apcatb.2020.118859
– ident: e_1_2_8_43_1
  doi: 10.1016/j.fuproc.2014.01.035
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ijhydene.2009.12.120
– ident: e_1_2_8_30_1
  doi: 10.1002/jctb.6451
– ident: e_1_2_8_34_1
  doi: 10.1016/j.apcata.2009.09.004
– ident: e_1_2_8_16_1
  doi: 10.1016/j.micromeso.2020.110278
– ident: e_1_2_8_49_1
  doi: 10.1016/S0167-2991(01)80333-5
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ijhydene.2014.01.077
– ident: e_1_2_8_56_1
  doi: 10.1016/j.cattod.2019.09.003
– ident: e_1_2_8_48_1
  doi: 10.1016/j.apcatb.2016.09.071
– ident: e_1_2_8_36_1
  doi: 10.3390/catal10040379
– ident: e_1_2_8_7_1
  doi: 10.1016/j.catcom.2009.10.003
– ident: e_1_2_8_69_1
  doi: 10.1002/ese3.1063
– ident: e_1_2_8_6_1
  doi: 10.1016/j.apcata.2016.02.029
– ident: e_1_2_8_52_1
  doi: 10.1016/S0021-9517(03)00045-9
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jcat.2016.03.018
– ident: e_1_2_8_53_1
  doi: 10.13005/ojc/320546
– ident: e_1_2_8_65_1
  doi: 10.1016/j.apcatb.2020.119335
SSID ssj0001414901
Score 2.3281217
Snippet Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and...
Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi 0.9 Zr 1 − x Y x O 3 (M...
Abstract Finding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La,...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 1436
SubjectTerms Acids
Carbon
Carbon dioxide
Catalysts
Catalytic activity
CeNi0.9Zr1−xYxO3
Cerium
Cerium oxides
dry reforming
H2 yield
Heat resistance
Hydrogen
Hydrogen production
La0.6Ce0.4Ni0.9Zr1−xYxO3 catalyst system
Metal oxides
Metals
Methane
Oxidation
Oxygen
Porosity
Reforming
Sol-gel processes
Stainless steel
Substitutes
Synthesis gas
Thermogravimetry
X-ray diffraction
Yttrium
Yttrium oxide
Zirconium
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp_RQ2qal2yZlKD30EBN9WbKOadkQCsmlDeQmZH3QhWKH3U1Y_5n-1o4su2wPoZeCD8aSrUEzlt6I4T1CPnKTaq8lrbhvYiVVHarGaFGxlLzWyik-isFcXavLG_n1tr7dk_rKNWGFHrhM3FlSwXhcyY10uHmq0LioEbLQ5FniTpbEh5q9ZGo8XZGI_CmbqYQoP4ubKHBZmI5P5g1o5On_C1zuQ9Rxj7l4Tp5N4BDOi1EvyJPYvSRP9ygDj8gv9CusZmUR6BNcrwAR3ljjOpxC5v_cnYLrAvx021zZBv1uwCgBj9uixz7Q53vE3AO2wo8hrPvcfFeoX9FN8LBykJWlXRchrAf8Zka2ODwOjFeRUX2IuQ9a2-9WIUJhhN68IjcXy-9fLqtJY6HywiC4Dri-BdlKlQVrkmGtE546E7wUUYZUYw4bBPrZJaZTq2TjKQ1appZrVrc0idfkoOu7-IaA9wGTlaapeUyScdoqx7hWxuPbhkWxIB_mibd3hUrDFtJkbrN3bPbOgnzOLvnTIbNfjw8wJuwUE_ZfMbEgx7ND7fRLbizXmKzVUjX1gnwanfy4FXb5bSnyzdv_Yc47cphF6ku9zzE52K7v4wlCmW37foza3ygE9Xw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgbGCByksMLchCLFg0ql-x41UFaIYKiW6gUneW4weMhJJhZlpNfqbf2nvzoGUBUhZW7MRWjh_HN9Y5hLwTNpfBKFaIUKVC6TIWlTWy4DkHY7TXojeD-XqmT8_Vl4vyYgy4bcZjldOc2E_UsQ0YIz8WBrh2qXRVnqx-F-gahX9XRwuN--QBF8Zgr64Wn29jLAr4P-OToBATx2mTJEwOYxBlWoZ6tf6_KOZdotqvNIt98nikiPTDgOkTci81T8mjO8KBz8g1oEuXk78IbTM9W1Lgef1J1-6Iogro7oj6JtJffovn22i766Cv0ACLY4AytMU0MO8OcunPLq5bzF4NArAAFr1aeor-0r5JNK47eCfyW6geKoZrMFO9SlgGWtvuljHRQRd685ycL-bfP50Wo9NCEaQFih1hlouqVhpta7LltZeBeRuDkknFXMJONkpA22ducq1VFRiLRuVaGF7WLMsXZK9pm_SS0BAibFmqqhQpKy5YrT1Ao22Apy1PckbeTh_erQZBDTdIJwuH6DhEZ0Y-IiR_CqAGdn-jXf9w45ByWUcbYI23ygOt0rHyyQCZZTnwLLziM3I4AerGgblxt91oRt73IP-7FW7-bS4x8er_bzogD9GEfjjPc0j2tuvL9BqoyrZ-0_fHG3X07CU
  priority: 102
  providerName: ProQuest
Title The influence of Ni stability, redox, and lattice oxygen capacity on catalytic hydrogen production via methane dry reforming in innovative metal oxide systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1402
https://www.proquest.com/docview/2796054685
https://doaj.org/article/f6d9ccee94a6436d8ae77740fc1f2a41
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LatwwFBUh2bSL0vRBp00GUbroIiayrIdNVkmZaSh0CG0D2QlZj3Yg2GFmGsY_k2_NvfJ4kiwKBWOMJVnCR1f3SJbPJeQTr6J0WrCMuzJkQkmflZUusjxGp7WyiqdgMN9n6vxSfLuSVzvkZPgXpteH2C64oWWk8RoN3NbL4wfR0LAMBdg5CknuoWIMdm8uLh4WWASQ_xT-mDOJH3yZHJSFGD_eln7ij5Js_xOu-ZixJpczfUlebLgiPe3B3Sc7oXlFnj9SEHxN7gBmOh8CjdA20tmcAuFLW167I4pyoOsjahtPr-0KN7rRdt1Bp6EOvKSDPLTFa6DgHaTSP51ftJh80yvBAmr0dm4pBpq2TaB-0cEzkehC9VAxHH1U1duAeaC17XruA-0FopdvyOV08uvLebYJuZC5ogKu7WG486IWCuPXxCqvbeGYrbwTRRA-SpjS-gJgtzHXsVaidIx5LWLNdS5rFou3ZLdpm_COUOc8zF3KUvIQRc5ZrWzOtaoclK7yUIzIx-HFm5teWcP0GsrcIDoG0RmRM4RkmwHFsNONdvHbbGzLROUrB86-Ehb4lfKlDRpYLYsuj9yKfEQOBkDNxkKXhmuYu0mhSjkinxPI_26FmfycFHjx_v-zfiDPMDJ9v8nngOyuFn_DIfCXVT1O_RTO5fTrmOydTWYXP8ZpLeAeYDzxQA
link.rule.ids 315,783,787,867,2109,11576,12779,21402,27938,27939,33387,33758,43614,43819,46066,46490,50828,50937,74371,74638
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgLIAF4immFLAQCxaNGj9ixysEaIYB2tnQSt1Zjh8wEkqGmWk1-Rm-lXvzoGUBUhZR4jhRju17fOOcQ8hrblLhtcwz7suYSVWErDRaZCwlr7VyindmMCcLNT-Tn8-L8yHhthmWVY5jYjdQh8ZjjvyIa-DahVRl8Xb1M0PXKPy6Olho3CS3pIBAg3-Kzz5e5Vgk8P-cjYJCOT-KmyhgcBiSKGMY6tT6_6KY14lqF2lm98m9gSLSdz2mD8iNWD8kd68JBz4ivwBduhz9RWiT6GJJged1K13bQ4oqoLtD6upAf7gtrm-jza6FtkI9BEcPZWiD-8C8WzhLv7dh3eDpVS8AC2DRy6Wj6C_t6kjDuoU6kd_C7eHGsPVmqpcRy8DTNrtliLTXhd48Jmez6emHeTY4LWReGKDYAUa5ICup0LYmGVY54XNngpciypAKmMkGAWi7xHSqlCx9ngctU8U1K6o8iSdkr27q-JRQ7wNMWcqy4DFJxvNKOca1Mh6uNiyKCXk1vni76gU1bC-dzC2iYxGdCXmPkPwpgBrY3YFm_c0OXcomFYyHGG-kA1qlQumiBjKbJ88Sd5JNyMEIqB065sZeNaMJedOB_O-nsNOvU4E7-_-v6SW5PT89ObbHnxZfnpE7aEjfr-05IHvb9UV8DrRlW73o2uZvlVrvBw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwGLWgSAgOiFUdWsBCHDg0Gm-x4xNimaFsIySo1JvleIGRUDLMTKvJn-G38jlxaDmAlIMVO4vybH_Pzqf3EHrGdCydEqRgrgqFkKUvKq14QWN0SkkrWW8G82khj0_E-9PyNOc_bXJa5Tgn9hO1b13aI58yBVy7FLIqpzGnRXx-M3-x-lkkB6n0pzXbaVxF1yAqqjRIq_nbi_0WAWsBQkdxIcKmYRM4TBR5Q2UMSb1y_1908zJp7aPO_Da6lekifjngewddCc1ddPOSiOA99AuQxsvRawS3ES-WGDhfn_XaHeGkCLo7wrbx-Ifdplw33O466DfYQaB00Aa3qQwsvINa_L3z6zZVrwYxWAAOny8tTl7TtgnYrzu4Z-K68Hh4MByDsep5SG3gbdvd0gc8aERv7qOT-ezr6-Miuy4Ujmug2x5mPC9qIZOFTdS0ttwRq70TPAgfS1jVeg7I20hVrKWoHCFeiVgzRcuaRP4A7TVtE_YRds7D8qWqShaioIzU0lKmpHZwtaaBT9DT8cOb1SCuYQYZZWYSOiahM0GvEiR_GiQ97P5Eu_5m8vAyUXrtIN5rYYFiSV_ZoIDYkuhoZFbQCTocATV5kG7MRZeaoOc9yP9-CzP7MuOp8PD_d3qCrkO3NB_fLT4coBvJm35I8zlEe9v1WXgEDGZbP-675m-BC_M8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+Ni+stability%2C+redox%2C+and+lattice+oxygen+capacity+on+catalytic+hydrogen+production+via+methane+dry+reforming+in+innovative+metal+oxide+systems&rft.jtitle=Energy+science+%26+engineering&rft.au=Abasaeed%2C+Ahmed+E.&rft.au=Sofiu%2C+Mahmud+L.&rft.au=Acharya%2C+Kenit&rft.au=Osman%2C+Ahmed+I.&rft.date=2023-04-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=11&rft.issue=4&rft.spage=1436&rft.epage=1450&rft_id=info:doi/10.1002%2Fese3.1402&rft.externalDBID=10.1002%252Fese3.1402&rft.externalDocID=ESE31402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon